
TOWARDS FAST AND ACCURATE STREAMING END-TO-END ASR

Bo Li, Shuo-yiin Chang, Tara N. Sainath, Ruoming Pang, Yanzhang He, Trevor Strohman, Yonghui Wu

Google LLC, USA
{boboli,shuoyiin,tsainath,rpang,yanzhanghe,strohman,yonghui}@google.com

ABSTRACT

End-to-end (E2E) models fold the acoustic, pronunciation and lan-
guage models of a conventional speech recognition model into one
neural network with a much smaller number of parameters than a
conventional ASR system, thus making it suitable for on-device ap-
plications. For example, recurrent neural network transducer (RNN-
T) as a streaming E2E model has shown promising potential for on-
device ASR [1]. For such applications, quality and latency are two
critical factors. We propose to reduce E2E model’s latency by ex-
tending the RNN-T endpointer (RNN-T EP) model [2] with addi-
tional early and late penalties. By further applying the minimum
word error rate (MWER) training technique [3], we achieved 8.0%
relative word error rate (WER) reduction and 130ms 90-percentile
latency reduction over [2] on a Voice Search test set. We also exper-
imented with a second-pass Listen, Attend and Spell (LAS) rescorer
[4]. Although it did not directly improve the first pass latency, the
large WER reduction provides extra room to trade WER for latency.
RNN-T EP+LAS, together with MWER training brings in 18.7%
relative WER reduction and 160ms 90-percentile latency reductions
compared to the original proposed RNN-T EP [2] model.

Index Terms— RNN-T, Endpointer, Latency

1. INTRODUCTION

End-to-end (E2E) models [1, 5–12] have attracted large interest in
both academia and industry. These models fold in components of the
conventional automatic speech recognition (ASR) systems, namely
an acoustic model (AM), pronunciation model (PM) and language
model (LM), into a single neural network and optimize them jointly.
E2E models simplify ASR system building and maintenance. They
can have a much smaller model size than conventional ASR systems
and are therefore more suitable for systems that perform the recog-
nition on mobile devices. Among E2E variants, recurrent neural
network transducer (RNN-T) [6] has shown potential for on-device
streaming ASR [1].

Besides recognition quality, latency is another critical metric for
streaming ASR. In this paper, we define recognition latency as the
time difference between when the user stops speaking and when the
system produces its final text hypothesis. It is desirable for model la-
tency to be low enough that the system responds to the user quickly,
while still high enough that it does not cut off the user’s speech.
Building models that have a better trade-off between word error rate
(WER) and latency is crucial to achieving fast and accurate stream-
ing speech recognition [13–15]

The decision of whether a user has stopped speaking is usually
generated by an endpointer (EP) model. A voice activity detector
(VAD) that detects speech and filters out non-speech is one such
model. It can be used to declare an end-of-query (EOQ) as soon as
VAD observes speech followed by a fixed interval of silence. VAD

is not optimized to distinguish within-speech and query-end silences
and may generate many false positive endpointing decisions. EOQ-
based models address these issues [16]. They are directly optimized
to distinguish speech and different types of silence including initial,
intermediate and final. They have been shown to give better latency
and WER trade-offs.

Even with EOQ, the endpointer model and the ASR model are
still optimized independently. Information captured by ASR models
is not shared to the endpointer, which may be useful for making
endpointing decisions. It would be better to optimize the endpointer
and ASR models together. E2E models make this joint optimization
simpler than with conventional modeling approaches. [2] does this
by folding the EOQ detector into the RNN-T model by introducing
a special token (</s>), signaling the end of speech, into RNN-T’s
output vocabulary. It is treated the same as all the other tokens during
training. However, during inference it is used as one of the signals to
end a search path. Premature </s> prediction may cause not only
substitution errors but also deletions.

To achieve better WER and latency trade-offs, we not only
need the joint optimization of endpointer and ASR, the </s> token
should also be predicted as close to the end of the last word as possi-
ble. In this work we propose to extend the joint RNN-T endpointer
(EP) model [2] in a number of ways. First, we introduce penalties
for emitting </s> too early or late in training, to encourage the
model to find a good WER and latency trade-off. These penalties
are applied to the </s> token, where the ground truth is obtained
from a forced alignment between the transcript and audio signals.

Second, premature </s> prediction causes a sequence level loss
rather than a single token’s. This leads us to explore whether se-
quence training [3,17,18] would address this problem. We hence in-
vestigated minimum word error rate [3] training for RNN-T EP mod-
els, which is found to yield both a WER and latency improvements.
Third, we rescore RNN-T EP’s hypotheses with a non-streaming
model, namely Listen, Attend and Spell (LAS) [4]. The direct mod-
eling of </s> in RNN-T makes the score combination with LAS,
which emits </s> already, more consistent. While the rescoring
model does not directly change the latency of RNN-T, WER gains
it brings gives us more room for potential WER and latency trade-
offs. The final setup, RNN-T EP with late penalty, LAS rescoring
and MWER training, achieves a 18.7% relative WER reduction and
40ms median latency and 160ms 90-percentile latency reductions on
a Voice Search task comparing to the original RNN-T EP [2].

The rest of the paper is organized as follows. Section 2 ex-
plains the model architecture of the RNN-T EP and then details the
proposed improvements of the RNN-T EP model using early and
late penalties, MWER training and LAS rescoring. Section 3 and 4
presents the experimental setup, results and analysis.

ar
X

iv
:2

00
4.

11
54

4v
2

 [
ee

ss
.A

S]
 1

3
M

ay
 2

02
0

Fig. 1: Recurrent neural network transducer and endpointer (RNN-T
EP) with non-streaming Listen, Attend and Spell (LAS) rescoring.

2. RNN TRANSDUCER AND ENDPOINTER

The recurrent neural network transducer and endpointer (RNN-T
EP) model explored in this work is shown in Figure 1. Let us denote
the input acoustic frames as x = {x1, . . . ,xT }, where xt ∈ Rd are
log-mel filterbank energies (d = 512) and T is the number of frames
in x. Each acoustic frame xt is first passed through the RNN-T en-
coder, which consists of multiple layers of unidirectional LSTM lay-
ers. We denote the output of the RNN-T encoder as et and it is then
forwarded to the RNN-T decoder for producing yRNN-T

t . The output
is decoded as soon as the input is encoded, without introducing addi-
tional latency incurred when processing the entire utterance at once.
In this work, RNN-T is trained to directly predict word piece token
sequence y = {y1, . . . , yU} where the last label yU is the special
token </s> .

2.1. Early and Late Penalties

logPRNN-T(yU |xt) −=
(
max(0, αearly ∗ (t</s> − t))+
max(0, αlate ∗ (t− t</s> − tbuffer))

)
(1)

Extending RNN-T’s output vocabulary with a special token
</s> helps improve its latency [2], as the endpointing decision is
made jointly with the model rather than with a separate endpointer.
However, there is no constraint on when </s> should occur during
training. A premature </s> prediction can result in deletion errors,
while late predictions of </s> can increase latency as </s> is
used to inform the system when the speech ends. In this paper, we
address these issues by applying additional early and late penalties
on the </s> token (Equation (1)). Specifically, during training for
every input frame in {x1, . . . ,xT } and every label {y1, . . . , yU},
RNN-T computes a U×T matrix PRNN-T(y|x), which is used in the
training loss computation. The last label yU is always </s> . We

denote t</s> as the frame index after the last non-silence phoneme,
obtained from the forced alignment of the audio with a conventional
model. The RNN-T log-probability logPRNN-T(yU |x) is modified
to include a penalty at each time step t for predicting </s> too
early or too late. tbuffer gives a grace period after the reference t</s>
before the late penalty is applied. αearly and αlate are scales on the
early and late penalties respectively. All hyper parameters are tuned
experimentally.

2.2. MWER Training

Minimizing RNN-T loss corresponds to improving the log-likelihood
of the training data. However, ASR system performance is measured
in terms of WER, not log-likelihood. To address this mismatch, [19]
proposes to minimize expected WER of the RNN-T model by ap-
proximating the expectation with samples draw from the model.
Minimum word error rate training (MWER) is later applied to atten-
tion based LAS E2E models [3].

During the beam search decoding of the RNN-T EP model, the
inference is terminated when either a blank symbol is generated at
the last input frame or an </s> token is predicted. Premature </s>
prediction results in deletion of the remaining reference target se-
quence, leading to a large sequence loss. This makes it more suitable
for sequence training techniques. In this work, we hence investigate
MWER training with N-best hypotheses for the RNN-T EP model.

2.3. Listen, Attend and Spell Rescoring

Non-streaming E2E models such as Listen, Attend and Spell (LAS)
has shown better performance than streaming ones such as RNN-T.
LAS has been explored to serve as a second pass rescorer [4], that
can still fit within the on-device latency constraints. As illustrated in
Figure 1, the model first collects the output of the RNN-T encoder of
all the frames e = [e1, . . . , eT]. They are then forwarded through
an extra LAS encoder to generate a new set of encoder features for
the LAS decoder. The decoder then computes output yLAS accord-
ingly. During inference, we first pick the top-K hypotheses from the
RNN-T decoder. We then run the LAS model on each sequence in
the teacher-forcing mode to compute a score, which combines log
probability of the sequence and the attention coverage penalty [20].
The sequence with the highest LAS score is picked as the output
sequence.

One of the issues in [4] is that RNN-T did not produce a score
for </s> , while LAS is indeed trained to produce a score for it.
Thus, when rescoring RNN-T hypotheses, an “artificial” </s> score
for RNN-T was added to the </s> from LAS. One can argue that
including a score for </s> generated from RNN-T based on the
inputs should help recognition, as it gives more confidence as to if
the sentence should actually be completed. In this work, we look at
improving LAS rescoring with the RNN-T EP model by including a
score for </s> . The use of </s> token in RNN-T makes the score
combination with LAS more consistent acorss all the output units.
It is important to note that LAS rescoring cannot make the RNN-T
model emit </s> faster; it can only improve the WER of RNN-T.
However, the improvement of WER may provide additional room to
trade WER for latency.

3. EXPERIMENTAL SETUPS

3.1. Dataset

We use the same multidomain dataset as [21] for training. Multistyle
training (MTR) is used for noise robustness [22]. During training, a

noise configuration, which defines mixing conditions like the size of
the room, reverberation time, position of the microphone, speech and
noise sources, signal to noise ratio (SNR), etc, for each utterance is
randomly sampled from a collection of 3 million pre-generated con-
figurations. The detailed noise configuration can be found in [21].
The test set we use consists of 14K Voice Search utterances with
duration less than 5.5 seconds long. They are all anonymized and
hand-transcribed, and are representative of Google traffic.

3.2. Modeling

The input waveforms are framed using a 32 msec window with 10
msec shift. Globally normalized 128 dimension logmel features ex-
tracted from frequencyies spanning from 125 Hz to 7.5kHz are used
as inputs. The input window size is 4, consisting of 3 frames on the
left and no future context. It is further subsampled by a factor of 3
making the system operate at 33 Hz [23].

Similar to [24], multidomain models are trained with domain
id as an additional input for learning domain-dependent variations.
Following [1], all LSTM layers in the model are unidirectional, with
2048 units and a projection layer with 640 units. The RNN-T en-
coder consists of 8 LSTM layers, with a time-reduction layer after
the second layer. The RNN-T decoder consists of a prediction net-
work with 2 LSTM layers, and a joint network with a single feed-
forward layer with 640 units. The additional LAS encoder consists
of 2 LSTM layers. The LAS decoder consists of multi-head atten-
tion [25] with 4 attention heads, which is fed into 2 LSTM layers. All
models are trained on 8x8 Cloud TPU using the Tensorflow Lingvo
toolkit [26] to predict 4,096 word pieces including the </s> token.

3.3. Inference

Despite the use of multidomain training, this work focuses only on
the Voice Search task. We append the </s> token only to the Voice
Search queries and keep the other data untouched. We report both
the recognition performance in terms of word error rate (WER) and
the latency of the models for Voice Search only. The latency metrics
used in this paper includes median latency (EP50), 90 percentile la-
tency (EP90) and the endpointing coverage (EOU) which represents
the percentage of the test data actually receives an end-of-utterance
signal from the endpointer model.

There is a trade-off between accuracy and latency, which is often
depicted by ROC curves. For EOU EPs, it is obtained by adjusting
the endpointing decision threshold. For RNN-T EPs, the endpointing
decision is defined by:

p(</s>|x1, . . . ,xt, y
RNN-T
0 , . . . , yRNN-T

t−1)α</s> ≥ β. (2)

α</s> is a penalty term for the posterior of </s> that modifies the
ordering for the hypothesis with </s> . β is a predefined threshold
that determines if </s> is allowed in the search beam [2]. Sweeping
α</s> and β gives us a ROC curve of the WER and latency trade-off.
For simplicity, we most of the time report a single trade-off point and
only show the ROC curves at the end for the final comparisons.

4. RESULTS

4.1. Baseline

We first train a RNN-T model to predict 4,096 word pieces for the
ASR task only (no </s>) as was done in past [1]. This RNN-T can-
not be used to output an endpointing decision and an external EOQ

Table 1: Quality and latency performance of the baseline models.

Exp. WER EP50 EP90 EOU
(%) (ms) (ms) (%)

B1 RNN-T 7.2 540 910 86.7

B2 RNN-T EP 7.5 410 710 92.1

Table 2: Quality and latency performance of models with early and
late penalties.

Exp. WER EP50 EP90 EOU
(%) (ms) (ms) (%)

E1 Early 7.2 430 830 90.7

E2 E1 + 3Frame Late 7.2 380 850 88.3
E3 E1 + 5Frame Late 7.2 400 790 91.5
E4 E1 + 7Frame Late 7.2 540 860 90.8

EP is used [2, 16] (B1 in Table 1). The endpointer and the RNN-
T ASR model are trained independently and at the inference time,
the information from RNN-T’s hypotheses cannot be used for end-
pointing decisions. To address this issue, we also trained a joint end-
pointing and recognition RNN-T EP model proposed in [2] (B2 in
Table 1). As suggested in [2], we also use the independnetly trained
EOQ EP as a backup for the RNN-T EP model. From Table 1, the
RNN-T EP (B2) shows good latency gains (130ms EP50 and 200ms
EP90 latency reductions and a 5.4% absolute EOU coverage im-
provement) but has an increase of 0.3% WER. One assumption of
this regression is that during training </s> is treated the same as
all the other tokens, with no constraint on how early or late </s>
should occur; however in inference, a path ends when a </s> token
is predicted. Predicting EOS prematurely brings in deletion errors.

4.2. Early and Late Penalties

To address the potential premature </s> prediction, we adopt an
early penalty term to the training. It is added only if </s> is pre-
dicted at any frame earlier than its ground truth time. When adding
the early penalty, we scale it by a factor of 0.1 which is found to
work well. This (E1 in Table 2) reduces the WER from 7.5% to
7.2% but degrades on latency comparing to B2. The use of early
penalty does help the model to address premature </s> prediction
but has the risk of the model learning to over-delay its predictions,
which leads to worse latency. The regression on EP90 is more sever
which is because many tail cases are not endpointed by RNN-T EP
and they simply fall back to the EOQ EP.

We further introduce a late penalty term to penalize the </s>
prediction that happens too late comparing to the ground truth. Dur-
ing training the granularity of the time is frame (particularly 60ms
in our setup). We experimented with tbuffer = {3, 5, 7} which cor-
responds to a grace period of 180ms, 300ms and 420ms after the
reference </s> label. The results are presented in Table 2. With 3
frames’ buffer, we obtain the best median latency but 5-frame gives
the best 90-percentile latency which is still worse than B2. We take
model E2, namely the RNN-T EP model with early penalty and 3-
frame late penalty, as the setup for following experiments.

Table 3: Quality and latency performance of models w and w/o
MWER training.

Exp. WER EP50 EP90 EOU
(%) (ms) (ms) (%)

B1 RNN-T 7.2 540 910 86.7
B2 RNN-T EP 7.5 410 710 92.1

B3 B1 + MWER 6.9 540 910 86.7

E2 B2 + Early + Late 7.2 380 850 88.3

E4 E2 + MWER 7.2 430 630 97.3
E5 E4 - Early 6.9 380 580 95.5

Table 4: Quality and latency performance of models with 2nd pass
LAS rescoring.

Exp. WER EP50 EP90 EOU
(%) (ms) (ms) (%)

B2 RNN-T EP 7.5 410 710 92.1
E2 B2 + Early + Late 7.2 380 850 88.3

E6 E2 + LAS 6.4 380 850 88.3
+ re-sweep 6.4 370 740 91.4
+ ignore RNN-T </s> score 6.6 370 740 91.4

E7 E6 + MWER LAS only 6.2 350 620 92.4
E8 E7 + MWER All 6.1 370 550 95.2

4.3. MWER training

For the RNN-T EP model, a wrong prediction of </s> leads to not
just a token error but a sequence level loss as it is used to terminate a
path in beam search. MWER training optimizes sequence level loss
and penalizes WER when </s> is emitted too early, thus prompting
our investigation in this section.

We conducted MWER training for the RNN-T model without
</s> (B1) and the best RNN-T EP (E2). Both the pre- and post-
MWER results are reported in Table 3. For B1, the latency is con-
trolled by a separate EOU EP and hence remains the same after
MWER training (B3). But the WER reduces from 7.2% to 6.9%.
While for E2, MWER training (E4) maintains the same 7.2% WER
as E2 but achieves 220ms EP90 reduction with 50ms regression
on EP50. Because optimizing MWER already penalizes premature
</s> predictions, we turn off the early penalty for MWER train-
ing. This (E5 in Table 3) reduces WER from 7.2% to 6.9% WER
and more importantly it still yields a 270ms EP90 latency reduction
while maintaining the same EP50 latency as E2. MWER training of
the RNN-T EP model with only late penalty can bring in both WER
and latency improvements. Comparing to B2, E5 gives 8.0% relative
WER reduction and 30ms EP50 and 130ms EP90 latency reductions.

4.4. LAS Rescoring

So far we see good latency reductions, but the WER gains are small.
In the literature, two-pass model that runs RNN-T as the first pass
streaming model for fast response and LAS as the rescorer has been
shown to be effective in WER reductions. We hence investigate the
effect of LAS rescoring on RNN-T EP model. We took the pre-
MWER model E2 and added an additional encoder with two LSTM

400 500 600 700 800 900

EP90(ms)

5

6

7

8

9

10

11

12

W
E
R

(%
)

B1 (RNN-T)

B2 (RNN-T EP)

E5 (RNN-T EP + MWER)

E8 (RNN-T EP + LAS + MWER)

Fig. 2: ROC curves of WER and 90-percentile latency (EP90) trade-
offs for RNN-T (B1), the original RNN-T EP (B2), the proposed
RNN-T EP with late penaly and MWER training (E5) and with ad-
ditional LAS rescoring (E8). Red circles represent operation points
reported in early sections.

layers and an extra LAS decoder (Figure 1). They are trained with
cross entropy (CE) loss with the RNN-T weights frozen. The results
are presented as E6 in Table 4. In this work, the latency is only mea-
sured for the first pass model. With the same decoding configuration
as E2, LAS rescoring reduces the WER by 11.1% relative from 7.2%
to 6.4%. Although LAS rescoring cannot directly affect first pass
latency, with the WER gains, we may be able to trade WER for la-
tency. We further swept the penalty scale for </s> and obtained an
operation point with the same 6.4% WER but 10ms EP50 and 130ms
EP90 reductions. As mentioned in Section 2.3, one problem for LAS
rescoring of RNN-T without </s> as done in [4] is that RNN-T does
not generate an explicit </s> score to combine with that from LAS.
To simulate that effect, we zeroed out the </s> score from RNN-T
EP and swept a global value to be combined with LAS </s> score.
The result (E6 + ignore RNN-T </s> score in Table 4) shows an in-
crease in WER from 6.4% to 6.6%, highlighting the benefit of using
</s> in RNN-T EP for LAS rescoring.

Instead of CE loss, MWER loss of RNN-T outputs can be used
to update the LAS rescorer (E7 in Table 4). It further reduces the
WER down to 6.2% and obtains 100ms EP90 reductions. Moreover,
when we update both RNN-T and LAS during MWER (E8), we can
obtain another 70ms EP90 reduction. Comparing to B2, the RNN-T
EP + LAS with MWER training gives a 18.7% relative WER reduc-
tion and 40ms EP50 and 160ms EP90 reductions.

4.5. Analysis

The proposed RNN-T EP with late penalty and MWER training (E5)
gives us both WER and latency improvement over the RNN-T (B1)
and the original RNN-T EP (B2). Further WER improvement is
achieved via a second pass LAS rescorer (E8). In this section, we
compare these systems across different operating points. We plotted
the WER vs latency (EP90) curve for these four models (B1, B2, E5,
E8) in Figure 2 by varying the penalty scale α</s> and threshold β.
Lower curves are better. RNN-T (B1) tends to delay outputs and has
worse latency. With </s> , RNN-T EP (B2) addresses the latency
problem but with some WER degradations. With the modifications
proposed in this work, namely late penalty, MWER and LAS rescor-
ing, both E5 and E8 have much better WER and latency trade-offs.

5. REFERENCES

[1] Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar, Ian Mc-
Graw, Raziel Alvarez, Ding Zhao, David Rybach, Anjuli Kan-
nan, Yonghui Wu, Ruoming Pang, Qiao Liang, Deepti Bhatia,
Yuan Shangguan, Bo Li, Golan Pundak, Khe Chai Sim, Tom
Bagby, Shuo-Yiin Chang, Kanishka Rao, and Alexander Gru-
enstein, “Streaming End-to-end Speech Recognition For Mo-
bile Devices,” in Proc. ICASSP, 2019.

[2] Shuo-Yiin Chang, Rohit Prabhavalkar, Yanzhang He, Tara N.
Sainath, and Gabor Simko, “Joint Endpointing and Decoding
with End-to-end Models,” in Proc. ICASSP. IEEE, 2019, pp.
5626–5630.

[3] Rohit Prabhavalkar, Tara N. Sainath, Yonghui Wu, Patrick
Nguyen, Zhifeng Chen, Chung-Cheng Chiu, and Anjuli Kan-
nan, “Minimum Word Error Rate Training for Attention-based
Sequence-to-Sequence Models,” in Proc. ICASSP, 2018.

[4] Tara N. Sainath, Ruoming Pang, David Rybach, Yanzhang
He, Rohit Prabhavalkar, Wei Li, Mirko Visontai, Qiao Liang,
Trevor Strohman, Yonghui Wu, Ian McGraw, and Chung-
Cheng Chiu, “Two-Pass End-to-End Speech Recognition,”
Proc. Interspeech, 2019.

[5] Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Rohit
Prabhavalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kan-
nan, Ron J. Weiss, Kanishka Rao, Navdeep Jaitly, Bo Li, Jan
Chorowski, and Michiel Bacchiani, “State-of-the-art Speech
Recognition With Sequence-to-Sequence Models,” in Proc.
ICASSP, 2018.

[6] Alex Graves, “Sequence Transduction with Recurrent Neural
Networks,” CoRR, vol. abs/1211.3711, 2012.

[7] Kanishka Rao, Hasim Sak, and Rohit Prabhavalkar, “Exploring
architectures, data and units for streaming end-to-end speech
recognition with RNN-transducer,” in Proc. ASRU, 2017, pp.
193–199.

[8] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals,
“Listen, Attend and Spell,” CoRR, vol. abs/1508.01211, 2015.

[9] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio, “Attention-based mod-
els for speech recognition,” in Advances in neural information
processing systems, 2015, pp. 577–585.

[10] Suyoun Kim, Takaaki Hori, and Shinji Watanabe, “Joint CTC-
attention based end-to-end speech recognition using multi-task
learning,” in Proc. ICASSP, 2017, pp. 4835–4839.

[11] Christoph Lüscher, Eugen Beck, Kazuki Irie, Markus Kitza,
Wilfried Michel, Albert Zeyer, Ralf Schlüter, and Hermann
Ney, “RWTH ASR systems for LibriSpeech: Hybrid vs At-
tention,” Proc. Interspeech, 2019.

[12] Haoran Miao, Gaofeng Cheng, Pengyuan Zhang, Ta Li, and
Yonghong Yan, “Online Hybrid CTC/Attention Architecture
for End-to-End Speech Recognition,” Proc. Interspeech, pp.
2623–2627, 2019.

[13] Shuo-Yiin Chang, Bo Li, and Gabor Simko, “A unified end-
pointer using multitask and multidomain training,” in Proc.
ASRU. IEEE, 2019.

[14] Shuo-Yiin Chang, Bo Li, Tara N. Sainath, Gabor Simko, and
Carolina Parada, “Endpoint Detection Using Grid Long Short-
Term Memory Networks for Streaming Speech Recognition,”
in Proc. Interspeech, 2017.

[15] Shuo-Yiin Chang, Bo Li, Tara N. Sainath, Gabor Simko, An-
shuman Tripath, Aaron van den Oord, and Oriol Vinyals,
“Temporal modeling using dilated convolution and gating for
voice-activity-detection,” in Proc. ICASSP, 2018.

[16] Matt Shannon, Gabor Simko, Shuo-Yiin Chang, and Car-
olina Parada, “Improved end-of-query detection for streaming
speech recognition,” in Proc. Interspeech, 2017.

[17] Brian Kingsbury, “Lattice-based optimization of sequence
classification criteria for neural-network acoustic modeling,”
in Proc. ICASSP. IEEE, 2009, pp. 3761–3764.

[18] Karel Veselỳ, Arnab Ghoshal, Lukas Burget, and Daniel Povey,
“Sequence-discriminative training of deep neural networks,” in
Proc. Interspeech, 2013, vol. 2013, pp. 2345–2349.

[19] Alex Graves and Navdeep Jaitly, “Towards end-to-end speech
recognition with recurrent neural networks,” in Proc. ICML,
2014, pp. 1764–1772.

[20] Jan Chorowski and Navdeep Jaitly, “Towards better decoding
and language model integration in sequence to sequence mod-
els,” Proc. Interspeech, 2016.

[21] Arun Narayanan, Ananya Misra, Khe Chai Sim, Golan Pun-
dak, Anshuman Tripathi, Mohamed Elfeky, Parisa Haghani,
Trevor Strohman, and Michiel Bacchiani, “Toward domain-
invariant speech recognition via large scale training,” in Proc.
SLT. IEEE, 2018, pp. 441–447.

[22] Chanwoo Kim, Ananya Misra, Kean Chin, Thad Hughes, Arun
Narayanan, Tara N. Sainath, and Michiel Bacchiani, “Gen-
eration of large-scale simulated utterances in virtual rooms to
train deep-neural networks for far-field speech recognition in
Google Home,” Proc. Interspeech, 2017.

[23] Golan Pundak and Tara N. Sainath, “Lower frame rate neural
network acoustic models,” 2016.

[24] Bo Li, Tara N Sainath, Khe Chai Sim, Michiel Bacchiani, Eu-
gene Weinstein, Patrick Nguyen, Zhifeng Chen, Yanghui Wu,
and Kanishka Rao, “Multi-dialect speech recognition with a
single sequence-to-sequence model,” in Proc. ICASSP. IEEE,
2018, pp. 4749–4753.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin, “Attention is all you need,” in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[26] Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng
Chen, et al., “Lingvo: a modular and scalable frame-
work for sequence-to-sequence modeling,” arXiv preprint
arXiv:1902.08295, 2019.

	1 Introduction
	2 RNN Transducer and Endpointer
	2.1 Early and Late Penalties
	2.2 MWER Training
	2.3 Listen, Attend and Spell Rescoring

	3 Experimental Setups
	3.1 Dataset
	3.2 Modeling
	3.3 Inference

	4 Results
	4.1 Baseline
	4.2 Early and Late Penalties
	4.3 MWER training
	4.4 LAS Rescoring
	4.5 Analysis

	5 References

