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ABSTRACT

Specialized hardware has become an indispensable component to deep neural net-
work acceleration. To keep up with the rapid evolution of neural networks, re-
cently, holistic and automated solutions for jointly optimizing both hardware ar-
chitectures and software mapping have been studied. In this paper, we propose
UNICO, a Unified Co-Optimization framework for hardware-software co-design,
aimed at addressing the efficiency issues of vast design space exploration and
the issue of overfitting to specific input neural network workloads that are fac-
ing current approaches. UNICO employs multi-objective Bayesian optimization
to sample hardware, and performs parallel and adaptive software mapping search
for hardware samples with a customized successive halving algorithm. To re-
duce overfitting, UNICO incorporates quantitative robustness measures to guide
the proposed search and evaluation procedure. Experiments performed for both
open-source spatial accelerators and a real-world commercial environment show
that UNICO significantly improves over its counterparts, finding not only superior
but also more robust hardware configurations, yet at drastically lower search cost.

1 INTRODUCTION

Deep neural networks (DNNs) (LeCun et al., 2015) are pervasive nowadays, finding diverse appli-
cations in, e.g., computer vision (He et al., 2016), natural language processing (Dosovitskiy et al.,
2021), and autonomous driving (Chen et al., 2015). DNNs are based on tensor computations, where
tensors are data represented and processed in the form of multi-dimensional arrays. Typically, a
deep neural network consists of multiple layers of tensor operators, where each operator performs
multiple basic tensor computations, e.g., general matrix multiply (GEMM), general matrix-vector
multiplication (GEMV), etc.

Tensor computations are expensive. Thus, specialized hardware (Chen et al., 2016b), i.e. neural
network accelerators, have been designed to speed up DNN execution. These accelerators (Chen
et al., 2016b; Norrie et al., 2020; Liao et al., 2021) deliver fast execution by taking advantage of
parallel computation while preserving high energy efficiency. Theoretically speaking, there is an
optimal accelerator architecture that best suits every specific deep neural network workload. In
practice, however, considering the cost of chip design and corresponding tool-chain development,
moderately general-purpose hardware is preferred. Consequently, the success of end-to-end AI ac-
celeration hinges not only on hardware design, but also on the effectiveness of software mapping
compilation for the specific input DNN. For example, the hardware could be designed only to exe-
cute a fixed sized GEMM tensor computation; given a DNN model, it is the responsibility of soft-
ware mapping to decide how to split the workload into sub-tasks and invoke corresponding GEMM
intrinsics on hardware for best end-to-end efficiency. Therefore, the quality of software mapping
optimization becomes another crucial factor for achieving fast execution promised by the hardware.
To ease this difficulty, deep learning compiler frameworks (Li et al., 2020; Chen et al., 2018a) have
been proposed, aiming at automatically synthesizing efficient mappings for different neural network
models and AI accelerators.

While AI hardware and software stacks are conventionally updated separately, the solutions found
may be suboptimal, resulting into compounded end-to-end performance loss when jointly deployed.
Recently, holistic approaches (Zhang et al., 2022; Xiao et al., 2021; Kao et al., 2022) aspiring to
jointly optimize both the hardware architecture and software mapping have been investigated. While
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this is a more appealing paradigm, the major challenge is that the space for hardware-software
co-optimization can be gigantic. For example, it is estimated that addressing the bottlenecks of
EfficientNet (Tan & Le, 2019) by joint optimization requires an exploration of a large search space
of O(102300) (Zhang et al., 2022). To counter this issue, different solutions have been proposed to
reduce the size of the search space, mainly focusing on 1) design space pruning, e.g., HASCO (Xiao
et al., 2021), or 2) design space approximation, e.g., FAST (Zhang et al., 2022). Despite these
efforts, the hardware and software design choices are still explored in isolation from an algorithmic
perspective. Moreover, new models, neural network architectures are constantly emerging, which
may void the hardware/software co-design optimized for specific applications/workloads.

In this paper, we propose a Unified Co-Optimization (UNICO) framework for AI accelerator co-
design, which can dramatically speed up hardware/software co-optimization for DNN workloads
as compared to the state-of-the-art methods. This is achieved by solving bi-level exploration in a
symbiotic way such that we focus on performing software exploration only for promising hardware
candidates while discarding unfavourable ones early. In the meantime, UNICO also finds robust
accelerator hardware that generalizes better to new applications unseen in the co-optimization. We
show that by taking additional quantitative measures in software exploration, UNICO can lessen
the effect of “overfitting” hardware to input workloads as in prior approaches. Specificially, our
contributions can be summarized as follows:

• We propose a batched hardware sampling strategy, to enable parallel hardware evaluation
guided by multi-objective Bayesian optimization (MOBO) with a surrogate model that is
refined with high-fidelity data samples selected by an adaptive data-driven approach;

• We propose concurrent software mapping exploration with successive halving for sampled
hardware configurations, using a customized and effective candidate promoting criterion;

• We further propose a method to enhance the generalization of hardware to unseen work-
loads, by introducing an additional quantitative robustness measure into co-optimization.

We conduct extensive experiments on spatial accelerator co-design for a wide range of DNN work-
loads under the edge and cloud devices’ power constraints based on open-source accelerator micro-
architectural model, MAESTRO (Kwon et al., 2020). We also perform hardware-software co-search
on a cycle-accurate simulator for Ascend-like NPU Architecture (Liao et al., 2021), where each
evaluation of hardware-software co-design is costly. Experiments show that UNICO achieves con-
sistently better performance on the identified Pareto Front in terms of power, latency and area com-
pared to state-of-the-art methods with a significantly smaller search cost. Moreover, the hardware
discovered by UNICO by searching on multiple input workloads achieves better performance on a
range of newer (in age and dimension) DNNs unseen in optimization.

2 BACKGROUND ON HARDWARE/SOFTWARE CO-DESIGN

A number of studies have been conducted for designing customized hardware accelerators for pro-
viding real-time processing of deep neural networks (Jia et al., 2021; Prabhakar et al., 2017; Jouppi
et al., 2017). These accelerators are mostly spatial in nature. They use an array of interconnected
processing elements (PEs) for parallelism. The internal dataflow between the PEs is optimized via
network-on-chips(NoCs) for efficient data reuse (e.g. input activations, weights, or output activa-
tions). Such a design reduces memory accesses, thus preserves high energy-efficiency. Figure 1a
illustrates a general design template of a typical 2D spatial accelerator where the key design choices
are number of processing element (PE) in X and Y axis (PEx, PEy), private scratch pad size (L1),
global memory size (L2) and network on-chip bandwidth (NoCBW).

Once HW design is fixed, for a given input DNN workload, the remaining task is optimizing SW
mapping choices. DNN accelerators invariably expose a number of runtime parameters where the
programmers have to explicitly manage how computation is scheduled both spatially and temporally.
Indeed, it is known that different scheduling choices result into large variations in efficiency (Huang
et al., 2021). Traditionally, tensor SW mapping generation largely relies on manually optimized,
high-performance tensor kernel libraries, such as cuDNN. However, these manual operator-level
libraries development is not only laborious but also difficulty to maintain as it demands timely update
whenever there is a change in the HW configuration.
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(a) A typical 2D spatial accelerator HW design com-
ponents (e.g. (PEx, PEy), L1 and L2 buffer sizes) (b) Schematic illustration of HW/SW co-search.

Figure 1: Spatial Accelerator and HW/SW Co-Design.
To ease this difficulty, there have been auto-scheduling frameworks (Chen et al., 2018a; Ragan-
Kelley et al., 2013) aiming to automatically synthesize efficient software mapping for various hard-
ware targets. These frameworks assume DNNs as programs of domain specific languages (DSLs),
then introduce a set of optimization primitives where the compiler can translate the high-level DNN
DSL into low-level code; the process is thus named as scheduling. For example, commonly used
primitives for loop transformation include loop split, reorder, fuse, tiling. As demonstrated in Fig-
ure 1a, SW mapping space is composed by a particular set of scheduling primitives that can be
applied in a specific order to the original loop representation such that the smallest computation
unite (e.g. inner-most loop) can be mapped directly to certain HW resources spatially or temporally
(Zheng et al., 2020b; Kwon et al., 2020). Apparently, which is the best SW mapping depends on
what HW topology and parameters are selected.

The HW-SW co-design paradigm is a bi-level optimization, since the SW mapping choices are af-
fected by selected HW config (e.g. #PEs, L1 and L2), and the latter must be sampled first such that it
shapes a constraint for SW mapping parameters search space. This sequential dependency naturally
implies a bi-level optimization scheme (Xiao et al., 2021; Zhang et al., 2022; Kao & Krishna, 2020).
Figure 1b shows the flow diagram of a bi-level HW-SW co-optimization. In the outer-level, a HW
design configuration is sampled and is passed to the inner-level for SW mapping exploration. When
a specific HW config and its corresponding SW mapping is determined, a power-performance-area
(PPA) estimator is needed to evaluate the quality of given HW-SW candidate. In practice, HW-SW
co-design still faces the following challenges:

Large co-optimization space. The combined HW/SW space for optimization can be huge. Sup-
pose HW design space is of OHW (.), and SW space is of OSW (.). Clearly, the joint space would
be ≈ OHW (.) × OSW (.). For a given convolution workload expressed as a 7D loop, the corre-
sponding unconstrained SW mapping space is of OSW (260). For the spatial accelerator template as
in Figure 1a, there are OHW (222) hardware parameters. For commercial accelerators, assuming the
overall architecture is fixed, the parameter choices of buffer capacities and PE array shapes can still
be huge, e.g. for TPU (Zhang et al., 2022), it is OHW (244).

Generalizing to unseen DNN workloads. The other challenge that has not been discussed in pre-
vious research is HW design generalization ability to unseen DNN workloads. We argue that this
is a crucial issue since HW accelerators are typically designed w.r.t specific DNN workloads, such
that the pareto-optimal HW designs that achieve the best PPA for that time being may not handle
new DNN models at the time these HW are released to the market. This is particularly pressing for
automatic HW design, since, in essence, the HW configuration being explored are invariably aimed
to best fit the input DNNs. It is important to consider generality in HW-SW co-optimization from
co-search aspect, ensuring that the PPA optimization is not over-fitting to a narrow set of DNNs.

3 UNICO: A UNIFIED CO-OPTIMIZATION FRAMEWORK

In this section, we present the design of UNICO to address the aforementioned challenges. Fig. 2
illustrates the overall workflow of UNICO. How these components are used in UNICO is described
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Figure 2: Implementation of UNICO with multi-objective Bayesian optimization and successive
halving.

Algorithm 1: UNICO
Input: w: workload
Output: Pareto-Front set of HW configurations X
Parameters: N : HW batch size; MaxIter : maximum MOBO iterations; bmax: Maximum SW

mapping search budget

1 Randomly initialize MOBO’s Surrogate model
2 b = bmaxη

−⌊logη bmax⌋

3 for i ∈ {1, . . . ,MaxIter} do
4 H0 ← Sample a batch of N HW configurations using Surrogate model
5 for j ∈ {1, ..., ⌈log2 N⌉} do
6 bj ← ⌊bη−j⌋
7 for h ∈ Hj−1 parallel do
8 {s(h, b1), ..., s(h, bj)} ← Software Mapping Search(h, bj)

9 Hj ← top k HW samples from Hj−1 by assessing ∪b=1,...,bjs(h, b), ∀h ∈ Hj−1

10 Form high-fidelity HW sample set D by assessing s(h, b), ∀h ∈ H0,∀b ∈ [1, bmax]
11 Update Surrogate model using D
12 Update HW Pareto Front X
13 return HW Pareto Front X

in Algorithm 1. UNICO is an iterative algorithm such that in each iteration, it samples a batch of
N hardware candidates. As shown in Fig. 2, UNICO adopts a bi-level HW-SW co-search strat-
egy such that the MOBO guides the HW design space exploration (DSE). Following conventional
MOBO (Nardi et al., 2019), for the co-search problem, the surrogate model inputs are HW design
configurations and its outputs are co-search objectives that need to be minimized. In our implemen-
tation, we use Gaussian process (GP) as the surrogate model for MOBO. First the surrogate model
is initialized randomly in line 1. Then acquisition function (e.g. MesMo) will sample a batch of N
HW configs to likely minimize all objectives in line 4. Then at the end of each MOBO iteration,
the surrogate model is then refined with data points collected from that iteration. In the follow-
ing subsections we describe how batch of N HW candidates are evaluated and how high-fidelity
configurations are selected to update the surrogate model.

To facilitate exposition, we introduce the following notations. First, HW-SW co-search can be
viewed as a hyperparameter optimization task such that the choice of HW are the hyper-parameters
and SW mapping exploration is deemed as a training/evaluation task. The input is a (DNN)
workload w for conducting HW/SW optimization. Let h ∈ H be a hardware sample, and
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(a) Illustration of candidate promoting criteria and comparison be-
tween SH and proposed MSH.

(b) Area under the curve
(AUC) measures the area that
is trapped between the curve
and the horizontal line corre-
sponding to the end loss value
of the curve (i.e. dashed line).

Figure 3: A modified successive halving (MSH) that uses both AUC and terminal value to select
candidates.

gw,h
b : H → S represents the SW mapping search function with parameter search budget b,

where each s(w, h, b) ∈ S is the best mapping generated with budget b for workload w and
hardware h. The SW mapping search is driven by minimizing some cost function, e.g., latency:
l(s) ∀s ∈ S, such that it is clear ∀b1 ≤ b2, l(s(w, h, b1)) ≥ l(s(w, h, b2)). That is, the software
mapping search is monotonic. In other words, for a set of software mappings with different budgets
{s(w, h, b1), s(w, h, b2), . . . , s(w, h, bn)}, then s(w, h, bj) is monotonically non-increasing with re-
spect to j ∈ {1, 2, . . . , n}. Since the input workload w is fixed throughout the optimization, to ease
presentation, in the remaining text we drop w when the context is clear.

3.1 SW MAPPING SEARCH WITH MODIFIED SUCCESSIVE HALVING (MSH)

After a batch of N hardware configurations are sampled, the next step is to call the software mapping
search for each hardware h. Ideally, for hardware h1 and h2, if h1 is superior to h2, we would hope
more search budget can be given to h1 than h2. In UNICO, as shown in Algorithm 1 (Line 2–
9), we use successive halving(SH) (Jamieson & Talwalkar, 2016) for this aim. However, in the
original SH, the succeeding candidates selection criterion is only based on terminal value (TV) at
the end of the current round of budget bj such that only the best half candidates are selected for
further exploration. For software mapping search, we observe that the HW configurations with
relatively steep convergence rate are also likely to be promising. In other words, if those of steep
convergence candidates were given a second chance to be evaluated with higher budget in next
round (i.e. selected as succeeding candidate), they might outperform those with best TVs. Fig.
3 illustrates the difference between original SH and our modified successive halving (MSH) for
software mapping search. Specifically. we quantify the convergence rate of each h by measuring the
area under the curve (AUC) of its mapping history (see Fig. 3b) — hardware h with higher AUC
tends to converge faster, resulting into better final outcome than those with relatively smaller AUC.
After measuring both by TV and AUC, we select top k succeeding HW Htop k as follows:

Htop (k) = H
top (k−p)
TV ∪H

top (p)
AUC s.t. H

top (k−p)
TV ∩H

top (p)
AUC = ∅ (1)

where Htop (k−p)
TV is top (k− p) HW configurations according to their TV sorted in ascending order

and H
top (p)
AUC is top (p) HW configs according to their AUC sorted in descending order. Essentially,

Eq. (1) represents a generalization of the original SH, and would degenerate to the original SH
if k = ⌊0.5N⌋ and p = ⌊0⌋. To balance the contribution of TV and AUC, for UNICO, we use
k = ⌊0.5N⌋ and p = ⌊0.15N⌋ for all experiments.

3.2 HARDWARE ROBUSTNESS AND HIGH-FIDELITY SURROGATE UPDATE

After performing parallel SW mapping search for the batch of N hardware with successive halv-
ing, for each hardware h, what we obtain is a list of best mapping history at different budgets,
i.e {s(h, b1), s(h, b2), . . . , s(h, bmax)} where bmax is the maximum budget eventually spent on a
HW config h. Then, there are two major questions: 1) how should we measure the quality of
each HW-SW pair (h, s(h, b)), given that s(h, b) is the best mapping for h with budget b; 2) how
should we select a set of data samples to retrain MOBO’s surrogate model. For 1), the straight-
forward approach is to call the PPA estimator function Y for each hardware h and its best mapping
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Figure 4: (a) SW Mapping objective convergence during search. (b) Pictorial illustration of HW
config robustness metric calculation. (c) Proposed analytical function F (θ) to quantify the power
variation behaviour with respect to latency decrease in R = ∆(1 + F (θ)).

s(h, s(h, bmax)). That is, Y (h, s(h, bmax)) provides a three-dimensional measurement of (power,
performance, area). However, this assessment on h is arguably fragile since it evaluates h
solely by the best seen software mapping and omits how the mapping optimization landscape looks
during mapping search. For 2), a popular approach is to collapse the multi-objectives into a sin-
gle objective as in (Knowles, 2006), then select top candidates based on that single objective. The
issue is, however, that for (h, s(h, b)), the power and performance measurements are often
correlated; therefore, it is better to consider such correlation when they are combined together.

In UNICO, we propose yet another robustness metric R for both 1) and 2), effectively realizing
a high-fidelity measurement for assessing hardware configurations. Specifically, we say a hardware
h is deemed robust when both latency (i.e. performance) and power have negligible variations
with SW mappings at a range of different budgets. Fig. 4(a) show SW mapping minimization
loss for a given HW config during SW mapping search. We consider the variation of promising
SW mapping choices with latency values fall in (1 − α) right-tail percentile of the distribution. To
tackle the correlation between latency and power, we propose a geometric approach to quantify
robustness as R = ∆(1+F (θ)) where ∆ is the 2-norm distance of the two selected candidates as in
Fig. 4(a). θ is the linear approaching angle of the αth-percentile mapping choice to the best found
SW mapping. By design, ∆ = 0 implies ideal robustness and as shown in Fig. 4(b); 0 ≤ θ ≤ π/2
means that both power and latency decrease from αth percentile candidate to the best one, while
π/2 ≤ θ ≤ π means power increases which is less favourable. To incorporate this intuitive design,
an analytical function F (θ) = (6/π2)θ2−(5/π)θ+1, as shown in Fig. 4(c), is derived to incorporate
the involvement of 0 ≤ F (θ) ≤ 2 in robustness metric calculation. See Appendix A.1 for detailed
explanation of R.

After introducing robustness, a single scalar V Best
ParEGO of high-fidelity metric V W

ParEGO is determined as
follows:

VParEGO(Ŷ ,W ) = max
j∈1,2,3,4

(wjyj) + ρ(Ŷ TW ) s.t.
∑
j

wj = 1 (2)

where W is importance weight vector for each optimization objective yj . Ŷ (h, s(h, b)) gives a four
dimensional measurement of (performance, power, area, robustness), and yj is the measure-
ment at dimension j. ρ (Default=0.2) adds a weighted sum of objectives to ensure partial partici-
pation of all objectives in fidelity metric calculation. Then, upper update limit (UUL) is defined as
α(default = 0.95) percentile value corresponding to a kernel density estimator (KDE) that is fitted
to a historian list of distances d = ||VParEGO − V Best

ParEGO||2 obtained from high-fidelity HW configura-
tions. Finally, for every evaluated HW at the end of one MOBO iteration, only those with d ≤ UUL
are deemed as high-fidelity and used to update MOBO surrogate model (i.e. they are used to com-
pose distribution D as in Algorithm 1 Line 11). As in Fig. 2, new high-fidelity HW configs are used
to update the KDE model and recalibrate the UUL for the next trial. By intuition, the empirical KDE
learns to select higher fidelity HW configurations when MOBO surrogate model becomes more ac-
curate as the advancing of more iteration trials. For detailed descriptions of proposed empirical
MOBO surrogate update mechanism, see Appendix A.1.

4 EXPERIMENTS

To show the effectiveness of our approach, we deploy UNICO to both open source accelerator (Xiao
et al., 2021) and a commercial architecture (Liao et al., 2021). Specifically, we compare UNICO’s
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Table 1: Comparisons of HASCO, NSGAII and UNICO on the Edge Device (Power < 2W).

Networks HASCO NSGAII UNICO
L(Ms),P(mW),A(mm2) Min. Dist. Cost(h) L(Ms),P(mW),A(mm2) Min. Dist. Cost(h) L(Ms),P(mW),A(mm2) Min. Dist. Cost(h)

Bert 0.0032, 99.7, 1.1 0.043 35.5 0.00064, 317.9, 6.5 0.16 35.5 0.018, 18.0, 0.3 0.0007 7.48
MobileNet 3.33, 160.5, 1.9 0.07 155.5 40.77, 45.5, 1.1 0.025 85.75 36.31, 38.9, 0.2 0.021 31.4

ResNet 33.28, 244.3, 1.7 0.12 105.5 81.13, 63.4, 0.58 0.05 76.45 40.91, 57.1, 1.1 0.029 21.43
SRGAN 281.71, 103.9, 1.6 0.15 145.5 278.29, 317.9, 6.5 0.21 44 109.45, 155.2, 3.7 0.09 29.4

UNet 220.06, 303.3, 4.6 0.19 100.5 88.03, 277.3, 4.2 0.14 52.17 85.05, 148.6, 2.8 0.08 20.43
VIT 171.28, 317.9, 6.5 0.18 35.5 206.85, 239.7, 5.3 0.15 35.5 199.37, 176.0, 3.7 0.13 7.48

Xception 35.80, 244.3, 1.7 0.12 130.5 11.79, 317.9, 6.5 0.16 80.67 22.33, 68.7, 1.3 0.03 26.41

Table 2: Comparisons of HASCO, NSGAII and UNICO on the Cloud Device (Power < 20W).

Networks HASCO NSGAII UNICO
L(Ms),P(mW),A(mm2) Min. Dist. Cost(h) L(Ms),P(mW),A(mm2) Min. Dist. Cost(h) L(Ms),P(mW),A(mm2) Min. Dist. Cost(h)

Bert 0.00037, 142.4, 2.4 0.02 35.5 0.00064, 317.9, 6.5 0.04 35.5 0.0062, 29.0, 0.4 0.002 7.48
MobileNet 4.69, 57.1, 1.2 0.006 155.5 5.59, 185.4, 3.8 0.024 107.45 6.35, 43.1, 0.7 0.0048 39.63

ResNet 47.57, 136.8, 3.1 0.028 105.5 8.96, 317.9, 6.5 0.043 91.5 15.89, 114.6, 2.7 0.016 28.41
SRGAN 106.6, 263.1, 4.9 0.061 145.5 84.04, 543.2, 10.4 0.084 45.45 51.02, 310.3, 4.7 0.048 29.4

UNet 95.3, 173.2, 2.4 0.05 100.5 118.59, 293.1, 3.9 0.068 52.5 50.64, 215.7, 4.8 0.037 24.42
VIT 72.65, 591.8, 8.4 0.088 35.5 171.28, 317.9, 6.5 0.091 35.5 155.61, 287.0, 2.9 0.082 13.29

Xception 14.05, 132.6, 1.2 0.018 130.5 11.97, 317.9, 6.5 0.043 88.03 16.48, 82.9, 1.3 0.012 26.41

performance against the state-of-the-art co-search solution from the following aspects 1) efficiency
improvement due to the use of batch sampling and parallel SW mapping search with successive halv-
ing, (2) generalizability capacity to unseen applications because of the newly introduce robustness
metric, and (3) overall performance enhancement for industrial-class HW design upon an Ascend-
like (Liao et al., 2021) architecture.

For open source accelerator experiments, GEMMCore intrinsic is selected such that the hardware
search space includes PE array shape, L1 and L2 buffer sizes, NoC bandwidth and dataflow style;
see (Xiao et al., 2021) for details about experiment search space. FlexTensor (Zheng et al., 2020b) is
used to perform SW mapping search and MAESTRO (Kwon et al., 2020) is used to estimate PPAs.
For experiment on industrial Ascend-like architecture, an expensive cycle accurate model (similar
to (Tang et al., 2021; Samajdar et al., 2020; Xi et al., 2019; Muñoz-Martı́nez et al., 2020)) is used
as the PPA estimator.

4.1 PERFORMANCE OF UNICO ON OPEN SOURCE ACCELERATOR

We compare the performance of UNICO with the state-of-the-art open source co-design framework
HASCO (Xiao et al., 2021) and NSGAII(Deb et al., 2002) on individual networks (BERT (Devlin
et al., 2019), MobileNet (Howard et al., 2017), ResNet (He et al., 2016), SRGAN (Ledig et al.,
2017), UNET (Ronneberger et al., 2015), VIT (Dosovitskiy et al., 2021), Xception (Chollet, 2017))
under edge (power ≤ 2W ) and cloud (power ≤ 20W ) constraints. To demonstrate the end-to-end
performance of each co-search approach, the best HW config is selected according to the achieved
min-Euclidean-distance on PPA Pareto-Front set. As can be seen in Tables 1 and 2, on average
among all DNN workloads, UNICO outperforms both HASCO and NSGAII by 2.29× and 2.35× for
edge device, and by 1.34× and 1.94× for cloud device, respectively. Furthermore, due to UNICO’s
concurrent and adaptive mapping search using modified successive halving, UNICO found these
higher quality HW configs with approximately 4.5× and 2.7× less search cost in comparison to
HASCO and NSGAII, respectively. For details regarding the selected HW configs of listed methods
and models, please refer to Tables 4 and 5 in Appendix.

In addition to HASCO and NSGAII, we also implement a multi-objective version of BOHB (Falkner
et al., 2018b). Figures 5a and 5b show the hypervolume difference across the tested networks on
edge and cloud devices, respectively. Clearly, UNICO shows faster search convergence due to its
advantageous batch HW sampling and high-fidelity MOBO surrogate update. In particular, com-
pared with MOBOHB, which also uses successive halving, UNICO still shows superior convergence
behavior, indicating that our customized successive halving is indeed a more suited algorithm for
adaptive SW mapping search. For additional ablation studies on different UNICO’s components,
please refer to Appendix B.1.

4.2 GENERALIZATION ABILITY TO UNSEEN NEURAL NETWORKS

To demonstrate UNICO’s better generalization ability for unseen applications, we again compare
UNICO with HASCO (Xiao et al., 2021) by conducting the co-optimation on a set of “training”
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Table 3: Comparisons of HASCO, HASCO-Robustness and UNICO on Validation Networks.

Networks HASCO HASCO with Robustness UNICO
L(Ms),P(mW),A(mm2) Min. Dist. L(Ms),P(mW),A(mm2) Min. Dist. L(Ms),P(mW),A(mm2) Min. Dist.

UNET 379.26, 308.6, 5.2 0.238 46.72, 200.9, 3.1 0.0923 54.18, 194.7, 4.3 0.0899
VIT 159.43, 311.6, 5.3 0.170 132.03, 201.2, 3.1 0.110 158.35, 196.2, 4.3 0.116

Xception 12.78, 307.8, 5.2 0.150 3.86, 205.4, 3.1 0.0920 2.72, 194.0, 4.3 0.0856
MobileNetV3Large 1.16, 308.6, 5.2 0.150 0.87, 203.0, 3.1 0.0906 0.80, 191.5, 4.3 0.0841
MobileNetV3Small 0.49, 308.4, 5.2 0.150 0.40, 202.9, 3.1 0.0905 0.36, 190.8, 4.3 0.0837

ConvNeXtBase 67.59, 308.6, 5.2 0.154 23.70, 201.5, 3.1 0.0905 11.96, 190.3, 4.3 0.0837
EfficientNetV2 4.06, 308.6, 5.2 0.150 1.10, 203.7, 3.1 0.0910 0.76, 191.9, 4.3 0.0844
NASNetMobile 1.76, 308.2, 5.2 0.150 1.50, 203.9, 3.1 0.0911 1.22, 193.1, 4.3 0.0850

(a) Edge Device (b) Cloud Device (c) Ascend Architecture. (d) Ascend Architecture.

Figure 5: Comparisons of UNICO and listed methods in terms of Hypervolume Difference.

workloads, and then directly apply the best found HW configurations to new and unseen applica-
tions. See Appendix B.3 for more information about how they are selected. To solely show the
usefulness of the robustness metric, we implement a “HASCO with Robustness” version by directly
injecting UNICO’s partial robustness metric R = ∆ as forth HASCO’s MOBO optimization ob-
jective; thus the only difference between HASCO and “HASCO with Robustness” is that the latter
contains our partial robustness metric.

Specifically, we perform the co-search on a set of training networks consisting of four networks (i.e.
MobileNetV2, ResNet, SRGAN and VGG) to obtain the best HW config w.r.t the min-Euclidean-
distance. Then, selected HW config for each approach is directly applied to a validation set consist-
ing of seven new networks: UNET, VIT, Xception, MobileNetV3 (Howard et al., 2019), NASNet-
Mobile (Zoph et al., 2018), EfficientNetV2 (Tan & Le, 2021), ConvNeXt (Liu et al., 2022). The
best achieved PPAs from software mapping are reported in Table 3. As we can see, on average for all
validation networks, UNICO improves the min-Euclidean-distance of HASCO and “HASCO with
Robustness” by 44% and 7%, respectively. Considering that, for UNICO, the robustness metric R is
not only an additional MOBO optimization objective but also being used in selecting high-fidelity
HW configurations for MOBO surrogate model update and learning — this feature further enables
UNCIO to harness the full strength of the robustness measurement and improves its generalization
ability on unseen DNN workloads.

4.3 PERFORMANCE OF UNICO ON ASCEND ARCHITECTURES

We compare the performance of our proposed UNICO with HASCO (Xiao et al., 2021) on Ascend-
like architecture (Liao et al., 2021) on individual networks UNET and FSRCNN (Dong et al., 2016).
For all experiments, PPA estimation is done by cycle accurate model (CAmodel) with benchmarked
simulation accuracy of 8± 3%. The CAmodel takes the workload App according to a compiled SW
mapping choice along with a particular HW configuration and return profiled PPAs. In comparison
to MAESTRO that takes fraction of seconds to output PPAs, Ascend like CAmodel wall-clock time
is highly expensive due to it topological complexity. Hence, the effect of co-search wall-clock time
efficiency and its fast convergence is even more crucial on total experiment time.

Relative improvement results of UNICO over HASCO is illustrated in Figure 5d. On average among
all applications, UNICO achieved a HW-SW design point with 17.2% less min-Euclidean-distance,
and the co-optimization using UNICO consumed 18.4% less search cost. Furthermore, comparing
UNICO and HASCO convergence rate by hypervolume difference in Figure 5c, we can see that
UNICO’s high-fidelity MOBO surrogate update mechanism and its concurrent exploration strategy
has led to the discovery of better HW configurations faster. In addition, we compare the PPA min-
Euclidean-distance of best HW configurations for HASCO or UNICO and the one used in Ascend
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DaVinci Lite as the default HW configuration (Liao et al., 2021). For both applications, UNICO
outperforms HASCO and Ascend DaVinci Lite by 7.2% and 20.8% on average, respectively.

5 RELATED WORK

Spatial Accelerators. Many spatial accelerators have been developed. Some accelerators follow
a rigid architecture ( e.g. Eyeriss (Chen et al., 2016a)) that supports only a fixed type of computa-
tion pattern. Some are more flexible and supports a large range of tensor operations (e.g. Eyeriss
v2 (Chen et al., 2019), MAERI (Kwon et al., 2018)). Some aggregates multiple chiplet as one ac-
celerator hardware (e.g. SIMBA (Shao et al., 2019)). The commercial accelerators typically have
additional and more complex memory and processing element (PE) hierarchy. For example, TPU
(Norrie et al., 2020) allocates dedicated buffers to weights and output with sophisticated synchro-
nization. Huawei’s DaVinci core (Liao et al., 2021) has 3 different PE types (i.e. scalar unit, vector
unit and 3D cube unit) and employs a more complex network on chip and memory hierarchy for
data/computation orchestration.

Software Mapping. Given a fixed hardware, the scheduling space for a DNN layer can still have
billions of valid candidates. Thus, many algorithms have been developed for the schedule opti-
mization problem. The static cost model based search (Parashar et al., 2019; Yang et al., 2020; Genç
et al., 2019; Kao & Krishna, 2020; Zheng et al., 2020b; Chatarasi et al., 2021; Dave et al., 2019) typ-
ically use an analytical model to estimate and compare different schedule candidates. Together with
manual pruning, the schedule exploration algorithms try to identify a best candidate judged by the
static cost-model. The feedback-based search (Chen et al., 2018b; Ragan-Kelley et al., 2013; Zheng
et al., 2020a; Gao et al., 2021) approaches assume that the hardware is fixed and try to construct a
learning-based cost model by collecting real hardware evaluation data through search. The search
algorithm is then further guided with the refined cost model. This approach alleviates the burden
of constructing analytical model by human experts, relying on feedback from the real hardware for
cost model learning and search.

PPA Estimation. Various models have been proposed to estimate PPA from internal metrics such
as data-reuse, # of FLOPS, minimum required buffers, etc. MAESTRO (Kwon et al., 2020) models
spatial accelerator architecture from a data-centric perspective. TimeLoop (Parashar et al., 2019)
estimates PPA from a loop-centric perspective by analyzing loop computation and data movements.
For commercial accelerators, slower yet more accurate cycle accurate models (CAModel) are often
used (Tang et al., 2021; Samajdar et al., 2020; Xi et al., 2019; Muñoz-Martı́nez et al., 2020).

Hyperparameter optimization. Both Bayesian optimization (BO) (Snoek et al., 2012) and succes-
sive halving (SH) (Jamieson & Talwalkar, 2016) have been used for hyperparameter optimization,
but with different focuses. The former aims on adaptive configuration selection while the latter pays
more attention on adaptive resource allocation and early stopping. HYPERBAND (Li et al., 2017)
wraps over SH by essentially performing a grid search for addressing the “n versus B/n” question
in SH. BOHB (Falkner et al., 2018a) combines HYPERBAND with BO, aspiring to achieve both
strong anytime performance and optimal convergence. UNICO resembles BOHB in spirit but is
specially designed to the application of HW/SW co-optimization.

CONCLUSION

In this paper, we present UNICO, a HW-SW co-optimization framework for DNNs aimed at boosting
the efficiency of exploring the vast HW-SW design space for neural accelerators. We propose a
batched hardware sampling strategy guided by multi-objective Bayesian optimization (MOBO), and
enable parallel hardware evaluation and software mapping search through a customized successive
halving algorithm. To enhance the generalization of HW candidates, we have designed a robustness
metric which is incorporated into multi-objective Bayesian optimization to guide HW sampling. We
have applied our approach to both open source and commercial architectures. Experimental results
confirm that our algorithm can generate better solutions than existing methods with lower search
cost, while generalizing well to new applications that are unseen in the co-optimization process.
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A UNICO’S IMPLEMENTATION

A.1 HW DESIGN ROBUSTNESS AND EMPIRICAL MOBO SURROGATE UPDATE PROCEDURE

In this subsection, we provide more details on proposed robustness metric R. Then, we elaborate on
how UNICO selects high-fidelity HW configs D to update the MoBo surrogate model.

HW Config Robustness to Promising SW Mapping Choices:

The existing co-search solutions (Zhang et al., 2022)Xiao et al. (2021) do not have a mechanism in
their search methodology to avoid Pareto-front HW configs overfit to only those apps present at the
time of co-search. Hence, UNICO introduces the concept of HW design robustness as a regularizer
to maintain a degree of generalizability. Such HW design robustness can be enforced either from a
HW system design topology perspective or from algorithmic concept during search, which the latter
is the case in UNICO.

As shown in Fig. 4(b), to intuitively quantify robustness metric R = ∆(1 + F (θ)), we use ∆ to
indicate the Euclidean distance between ‘orange‘ (relatively worse among promising choice) and
‘green‘ (best among promising choice) points in Fig. Fig. 4(a), meaning if the ∆ = 0, then R = 0.
However, if ∆ > 0, we want to further consider the coupled behavior of latency and power; this
is purposed by the second term (1 + F (Θ)). According to Fig. 4(b), if Θ = π/2, that means
latency was decreased by ∆ and power was not changed, which implies power robustness but latency
non-robustness with value of ∆. To incorporate this power-latency interactions in our robustness
metric calculation, we defined F (θ) = (6/π2)θ2 − (5/π)θ + 1 such that F (π/2) = 0, hence
R = ∆(1 + 0) = ∆.

For the scenario when the orange point is in first circle quarter, 0 ≤ F (0 ≤ θ ≤ π/2) ≤ 1, the
robustness metric range is ∆ ≤ R ≤ 2∆. That means if θ = 0, power variation value is ∆ and
F (0) = 1, hence R = ∆(1 + 1) = 2∆. This specifically implies our design prefer θ = π/2
more than θ = 0. On the other hand, when the ‘orange‘ point is in the second circle quarter, 0 ≤
F (π/2 ≤ θ ≤ π) ≤ 2, hence the robustness metric is further penalized to be within ∆ ≤ R ≤ 3∆.
The intuition behind this design is that from point ‘orange‘ to ‘green‘, power was increased which is
not favorable by our design in comparison to the other case (first circle quarter) when both latency
and power decreases. That is, if θ = π, then F (π) = 2, hence R = ∆(1 + 2) = 3∆.

Empirical MoBo Surrogate Update

According to PPA and robustness metric R, UNICO adopts a data-driven approach to fit an empirical
KDE model, which can distinguish low-fidelity HW configs from high-fidelity ones and use the later
to update the MoBo surrogate model. In each MoBo trial, the full SW mapping history result during
concurrent successive halving implementation is collected to be used for calculating the robustness
metric using R = ∆(1 + F (θ)). After obtaining the Y = (latency, Power, Area, R) for every
HW configs, we compute the ParEGO metric VParEGO shown in Eq. 2. In the next step, we compute
the euclidean distance of VParEGO for each HW config of the batch in this MoBo trial from the
historian best (i.e. minimum) V Best

ParEGO. It should be noted that V Best
ParEGO keeps updated at the end of

each MoBo trial according to the new HW samples fidelity values. Let VRef List is the historian
list of all high-fidelity VParEGO values form previous MoBo trials. Also, let D is the updated list of
euclidean distance of set VRefList from current V Best

ParEGO. Then UNICO proposes to fit a kernel density
estimator (KDE) to D at the end of each MoBo trial, and re-calibrate UUL as α(Default = 0.95)
percentile value of the newly fitted KDE. Finally, at the end of each MoBo trial, the HW configs
whose their VParEGO Euclidean distances from historian V Best

ParEGO are not greater than UUL is selected
as high-fidelity samples and are used to update MoBo surrogate in Algorithm 1 line 11.

B ADDITIONAL EXPERIMENTAL EVALUATION & RESULTS

B.1 ABLATION STUDY ON DIFFERENT UNICO’S COMPONENTS

In this section, we investigate implication of different variations of UNICO’s components. With
regards to early stopping rule, we compare original successive halving (SH) with UNICO’s cus-
tomized SH. Also, with regards to MoBo surrogate update component, we investigate implication
of adopting three settings including (a) using only champion HW config that was assigned bmax
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Table 4: Comparisons of HASCO, NSGAII and UNICO on the Edge Device (Power < 2W).

Networks HASCO NSGAII UNICO
PExy ,L1(B),L2(KB),NocBW,DF Min. Dist. PExy ,L1(B),L2(KB),NocBW,DF Min. Dist. PExy ,L1(B),L2(KB),NocBW,DF Min. Dist.

Bert (1,8), 80, 1, 48, WS 0.043 (1,24), 768, 2, 128, WS 0.16 (1,1), 192, 1, 64, OS 0.0007
MobileNet (13,1), 256, 64, 48, WS 0.07 (1,3), 128, 96, 128, WS 0.025 (3,1), 32, 192, 16, OS 0.021

ResNet (7,3), 56, 8, 16, OS 0.12 (1,5), 154, 64, 32, WS 0.05 (2,2), 72, 1024, 96, OS 0.029
SRGAN (8,1), 640, 16, 64, OS 0.15 (1,24), 768, 16, 128, WS 0.21 (11,1), 72, 640, 160, OS 0.09

UNet (1,24), 768, 1, 80, WS 0.19 (11,2), 84, 32, 80, OS 0.14 (11,1), 256, 64, 112, OS 0.08
VIT (1,24), 768, 2, 128, WS 0.18 (1,18), 768, 16, 128, OS 0.15 (13,1), 154, 64, 128, OS 0.13

Xception (7,3), 56, 8, 16, OS 0.12 (1,24), 768, 16, 128, WS 0.16 (5,1), 72, 24, 96, OS 0.03

mapping search budget, (b) using a hybrid filtering rule that only selects those HW configs that
are Pareto-front among the current batch of N , and (c) UNICO’s proposed adaptive high-fidelity
approach.

According to above choices, five different scenarios are defined to be implemented for comparison
with proposed UNICO and HASCO. All co-search experiments are implemented in a multi-App
setting including UNET, SRGAN and BERT and VIT. The experimentation configuration is same as
those in section 4.

From Fig. 6a, Modified-SH improves the performance of HASCO by approximately 7%, while SH
decreases the performance of HASCO by approximately 48%. This shows that Modified-SH bal-
ances the exploitation and the exploration better than the original HASCO MOBO method (using
no-SH and Champion Point update method), thus being able to find better design point using smaller
search costs. Besides, from Figure 6b, the performance of Modified-SH is 43% better than HASCO
and is 7% better than SH. Moreover, from Figure 6c, the performance of Modified-SH is approxi-
mately 52% better than HASCO, and is approximately 5% better than SH. In summary, by isolating
choice of successive having policy, our proposed customized SH method improves the performance
and efficiency of the original SH. In addition, our proposed Adaptive high-fidelity MoBo surrogate
update mechanism outperforms outperforms the other update setting choices.

(a) Champion Point Update (b) Hybrid Update (c) Adaptive Update

Figure 6: Comparisons of UNICO and listed methods in terms of Hypervolume Difference

B.2 UNICO CO-SEARCH PERFORMANCE

As in Section 4.1, we show the performance of HASCO, NSGAII and UNICO on individual net-
works under the edge and cloud devices’ power constraint, respectively, in terms of PPA perfor-
mance, min-Euclidean-distance and search cost. In this subsection, we further provide the cor-
responding HW configs for listed search methods and networks as the supplementary material in
Tables 4 and 5.

B.3 SELECTION OF UNSEEN DNN WORKLOADS FOR UNICO EXPERIMENTATION

Section 4.2 shows how the robustness metric helps UNICO to achieve better generalization. In the
experiments (section 4.2), four worklaods (MobileNetV2 Howard et al. (2017), ResNet He et al.
(2016), SRGAN Ledig et al. (2017) and VGG19) are selected for co-design optimization. A list
of other apps UNET, VIT, Xception, MobileNetV3 (Howard et al., 2019), NASNetMobile (Zoph
et al., 2018), EfficientNetV2 (Tan & Le, 2021), ConvNeXt (Liu et al., 2022))3 are considered as
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Table 5: Comparisons of HASCO, NSGAII and UNICO on the Cloud Device (Power < 20W).

Networks HASCO NSGAII UNICO
PExy ,L1(B),L2(KB),NocBW,DF Min. Dist. PExy ,L1(B),L2(KB),NocBW,DF Min. Dist. PExy ,L1(B),L2(KB),NocBW,DF Min. Dist.

Bert (1,11), 80, 128, 96, OS 0.02 (1,24), 768, 2, 128, WS 0.04 (2,1), 80, 12, 48, OS 0.002
MobileNet (4,1), 42, 24, 112, OS 0.006 (1,14), 128, 16, 128, WS 0.024 (3,1), 84, 192, 80, OS 0.0048

ResNet (5,2), 80, 4, 144, WS 0.028 (1,24), 768, 2, 128, WS 0.043 (2,4), 288, 512, 144, OS 0.016
SRGAN (10,2), 112, 64, 112, OS 0.061 (3,14), 768, 16, 112, WS 0.084 (24,1), 192, 768, 80, OS 0.048

UNet (12,1), 1024, 640, 64, OS 0.05 (12,2), 42, 32, 64, OS 0.068 (8,2), 1024, 64, 144, OS 0.037
VIT (4,12), 192, 16, 64, WS 0.088 (1,24), 768, 2, 128, WS 0.091 (1,24), 154, 288, 32, OS 0.082

Xception (11,1), 56, 32, 32, OS 0.018 (1,24), 768, 16, 128, WS 0.043 (2,3), 640, 96, 64, OS 0.012

unseen workloads. Our unseen apps are selected according to their year of release and differences
in layers input dimensions. That is, co-search apps are mostly models published before 2018 and
unseen apps are mostly after that. The intuition is that if we design a HW today according to the
targeted end-to-end applications, the selected HW design configuration should remain superior for
the years to come when new SOTA DNN models are introduced to the market.

Either convolution(Conv2D, DWConv2D, etc.) operator or fully-connected operator (matrix multi-
plication, MatMul) can be representation as a seven nested loop with dimensions C,K,P,Q,R, S.
For MatMul, some of these dimensions are 1. For all mentioned apps above, Fig. 7 compares op-
erators’ loops dimensions distributions to show our second reasoning behind selecting unseen apps.
That is, the four apps utilized in co-search have average higher filter sizes P and Q. The output sizes
P and Q for unseen apps are relatively larger.
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(a) Dimension C. (b) Dimension K.

(c) Dimension P. (d) Dimension Q.

(e) Dimension R. (f) Dimension S.

Figure 7: Dimension statistics of seen and unseen apps w.r.t their seven nested loop representation
of Conv2D and MatMul operators.
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