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Abstract

The emergence of multi-modal foundation models has markedly transformed the technology
for autonomous driving, shifting away from conventional and mostly hand-crafted design
choices towards unified, foundation-model-based approaches, capable of directly inferring
motion trajectories from raw sensory inputs. This new class of methods can also incorporate
natural language as an additional modality, with Vision-Language-Action (VLA) models
serving as a representative example. In this review, we provide a comprehensive examination
of such methods through a unifying taxonomy to critically evaluate their architectural design
choices, methodological strengths, and their inherent capabilities and limitations. Our survey
covers 37 recently proposed approaches that span the landscape of trajectory planning with
foundation models. Furthermore, we assess these approaches with respect to the openness of
their source code and datasets, offering valuable information to practitioners and researchers.
We provide an accompanying webpage that catalogues the methods based on our taxonomy,
available at: https://github.com/fiveai/FMs-for-driving-trajectories.

Contents
1 Introduction 2

1.1 Scope and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Comparison with Previous Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Notations and Background 6

3 A Hierarchical Taxonomy 7
3.1 Foundation Models Tailored for Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Foundation Models Guiding Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . 10

The authors are from the ADAS Systems, Software & Services Business Unit of Robert Bosch GmbH.

1

https://github.com/fiveai/FMs-for-driving-trajectories


4 Foundation Models Tailored for Trajectory Planning 11
4.1 How to Fine-tune a FM for Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Models Focused Solely on Trajectory Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Models without CoT Reasoning ❶ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Text Output for CoT Reasoning ❷ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Initial Trajectory Prediction for CoT Reasoning ❸ . . . . . . . . . . . . . . . . . . . . 17

4.3 Models Providing Additional Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Models Providing Language Interaction Capability ❹ . . . . . . . . . . . . . . . . . . . 18
4.3.2 Models Providing Action Interaction Capability ❺ . . . . . . . . . . . . . . . . . . . . 20

5 Foundation Models Guiding Trajectory Planning 21
5.1 Models Using Knowledge Distillation Only During Training ❼ . . . . . . . . . . . . . . . . . . 22
5.2 Models Using Knowledge Transfer During Inference ❽ . . . . . . . . . . . . . . . . . . . . . . 23

6 How Open Are the Dataset and Code of Existing Approaches? 25

7 Open Issues and Emerging Directions 28

8 Conclusive Remarks 31

A Further Details on the Openness of the Methods 46

1 Introduction

Foundation models (FMs) are large-scale models that leverage vast amounts of data to learn representations
that can be effectively adapted to a variety of downstream tasks. Depending on the type of data they process,
these models are generally referred to by different terms. FMs that operate only on language data, such as
BERT (Devlin et al., 2019), GPT-2 (Radford et al., 2019), Chat-GPT (OpenAI, 2023) and Qwen (Bai et al.,
2023a; Yang et al., 2024a; Qwen Team, 2025), are known as large language models (LLMs). Alternatively,
models that process both language and visual data are considered vision language models (VLMs), with
examples including CLIP (Radford et al., 2021), Flamingo (Alayrac et al., 2022), LLaVA (Liu et al., 2023;
2024a;b), GPT-4o (OpenAI, 2024), Intern-VL (Chen et al., 2024e; Gao et al., 2024c; Zhu et al., 2025) and
Gemini (Gemini Team, 2025). As opposed to LLMs and VLMs, which generally output language data, a class
of FMs are designed to generate images from language inputs (Saharia et al., 2022; Peebles & Xie, 2023), or
from both language and vision inputs (Bruce et al., 2024; Genie Team, 2024; 2025; Meta Chameleon Team,
2025; NVIDIA, 2025).

These models generally serve as a backbone upon which more specialised models for various different domains
are built using fine-tuning; autonomous driving (AD) is no exception. The scope of this work is to investigate
the usefulness of FMs for AD. However, before delving into the AD-specific approaches, a natural question
to ask would be: “Can off-the-shelf FMs, specifically VLMs, understand driving scenarios without being
explicitly trained or fine-tuned for them?”. To answer this, we prompt GPT-4o (OpenAI, 2024) with three
complex driving scenes and related questions, and show the interaction in Fig. 1. The first two examples
include rare driving scenes, where GPT-4o’s replies are highly accurate and insightful. For example, in the
first case, it not only understands the scene but also provides useful instructions on why and how one should
drive cautiously in the given scenario. Similarly, in the last example, the model captures the misleading
prompt and provides a reasonable explanation that promotes driving safely. Therefore, due to the scale
of the architecture, training procedure, and the vast amount of training data involved, these models have
learned representations that can already understand driving scenes surprisingly well, making them a highly
promising precursor to build AD-specific solutions—a key driver to the paradigm shift currently observed
in the AD industry. Nevertheless, to deploy FMs efficiently and reliably on edge devices for AD, several
aspects of customising such models (e.g., chain-of-thought inference cost, scale, accessibility to open weights,
training/inference efficiency, obtaining suitable data for fine-tuning, etc.) form integral parts of the ongoing
research and design choices in this area. Through this review, we present a holistic perspective on these
aspects, highlighting progress, limitations, and open research directions.
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Is it safe to drive on the road?

The image shows a road with a sign 
indicating that cows may be present
for the next mile. There are several 
cows crossing the road, which 
suggests that you should exercise 
caution while driving. It is 
important to drive slowly and be
prepared to stop if necessary to 
avoid hitting any animals. The
speed limit is also reduced to 30
mph, likely for safety reasons.

Is there anything unusual in this 
scene?

Yes, there is something unusual in 
this scene. The image shows a truck
that has overturned on the road. 
This is not a normal occurrence and 
indicates that there may have been 
an accident. The overturned truck is
blocking part of the road, which 
could cause traffic delays and pose a
hazard to other vehicles. Drivers 
should exercise caution and possibly 
seek an alternate route to avoid the 
obstruction.

How can I turn right while I am 
driving on this lane?

The image shows a lane with 
markings indicating that vehicles in 
this lane must turn left. If you need
to turn right, you should not be in
this lane. Instead, you should move 
to a lane that allows right turns, if 
available. Always follow the road 
markings and signs to ensure safe 
and legal driving.

Figure 1: GPT-4o’s response to driving-related prompts on three different scenarios.

1.1 Scope and Contributions

FMs can be used in several ways for AD. Some methods leverage synthetic data for training (Chi et al., 2025;
Yang et al., 2025a) and evaluation (Ljungbergh et al., 2024; Yan et al., 2025; Cao et al., 2025a), for which the
models generating AD data, such as AD world models (Hu et al., 2023a; Wang et al., 2024b; Gao et al., 2024b;
Wen et al., 2024b; Zhao et al., 2025a;c), can be helpful. A number of methods enhance scene understanding
and reasoning capabilities of an FM for AD using visual question answering (VQA) tasks (Yang et al., 2024b;
Ding et al., 2024b; Ma et al., 2024a; Nie et al., 2024; Lu et al., 2025; Qian et al., 2025a; Jiang et al., 2025c).
Some methods also use an FM to improve a specific capability of the AD model such as perception (Pan
et al., 2024b; Xinpeng et al., 2025), prediction (Zheng et al., 2024a; Zhou et al., 2025a) or control (Wang
et al., 2023b; Sha et al., 2025). Within this context, a group of methods leverage FMs to yield textual actions,
commonly by classifying the scene into one of the predefined meta-actions, such as “go straight” and “slow
down” (Chen et al., 2023a; Fu et al., 2024; Wang et al., 2024c; Wen et al., 2024a; Jiang et al., 2025b; Ma
et al., 2024b; Jin et al., 2024; Zhou et al., 2024b; Li et al., 2024a; Wang et al., 2025d). Last but not least,
some models benefit from an FM to directly operate the vehicle, typically through trajectory planning (Pan
et al., 2024a; Xu et al., 2025b; Tian et al., 2024; Fu et al., 2025a; Wang et al., 2025b; Hwang et al., 2025;
Renz et al., 2025). While each of the above capabilities is essential for developing a robust and accurate AD
model, trajectory planning is, arguably, the most critical task for driving, where the others serve as auxiliary
functions for this primary goal. Consequently, considering the profound effect of FMs on this crucial task, in
this paper, we primarily focus on how trajectory planning models for AD benefit from FMs.1

There are, in fact, various ways FMs can be leveraged for enhanced trajectory planning, as illustrated in
Fig. 2. A common approach involves adapting existing FMs through minimal architectural modifications
followed by fine-tuning them on a task-specific dataset. This fine-tuning can be as simple as training the
model to output a trajectory directly from the sensor data (Mao et al., 2023; Zhang et al., 2024; Yuan et al.,
2024; Xu et al., 2025c; Xie et al., 2025; Zhou et al., 2025b)(see Fig. 2(a)). Additionally, some models use

1Although we use the term trajectory planning, our scope also includes the models predicting outputs in different forms such
as control signals. One example of this is DriveGPT4 (Xu et al., 2024), which predicts the target speed and turning angle of the
autonomous vehicle.
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(e) Knowledge transfer from an FM to guide trajectory planning

(b) Trajectory planning using CoT reasoning as critical objects and meta-action

(c) Trajectory planning and language interaction

(d) Trajectory planning via action interaction

Direct one lane to the left.

Trajectory: [(x1, y1), …, (xn, yn)]

FM

FM

FM

FM

Scene Description: The image shows an urban  
intersection with traffic lights. The traffic lights are red, 
indicating that vehicles should stop. There are several 
cars visible, including one silver car in the foreground 
that appears to be waiting at the intersection.

Critical Objects that Need Attention:
•  Red traffic lights: indicating that vehicles must stop.
•  Vehicles at the intersection: monitoring their 

movements is important.
Meta-Actions: 
•  Speed: STOP (due to the red traffic lights)
•  Steering: STRAIGHT (continue straight once the                

light turns green)

You are an autonomous driving 
system and this is the front camera 
view. Provide a description of the 
scene and the critical objects. Finally, 
provide a meta-action for speed from 
the set of ([ACCELERATE, KEEP, 
DECELERATE, STOP]) and one for 
steering from ([STRAIGHT, LEFT, 
RIGHT]).

Plan the trajectory.

What are the important objects in 
the current scene?

Trajectory: 
[(x1, y1),
     …
 (xn, yn)]

In the current scene, several important objects should be considered for future 
reasoning and driving decisions:
• Traffic Lights: The red traffic lights indicate that vehicles must stop and wait

until the lights turn green.
• Vehicles: There are multiple vehicles, including a silver car in the foreground 

and other cars in the background. Their positions and movements need to be 
monitored.

• Pedestrians: There are pedestrians walking on the sidewalk to the right. Their 
safety and movements should be considered.

• Road Signs: The "No Turn on Red" sign on the right side of the image is 
crucial for understanding traffic rules at this intersection.

• Lane Markings indicate the direction of travel
• Lane boundaries are essential for maintaining proper lane discipline.

Trajectory for changing lane to left: [(x1, y1), …, (xn, yn)]

Critical Objects that Need Attention:
• Red traffic lights: indicating that vehicles must stop.
•  Vehicles at the intersection: monitoring their movements is important.
Meta-Actions: 
•  Speed: STOP (due to the red traffic lights), 
•  Steering: STRAIGHT (continue straight once the light turns green)

Trajectory 
Planning Model

FM Trajectory: [(x1, y1), …, (xn, yn)]

(a) Trajectory planning directly from the sensor data

Figure 2: Different ways of how FMs are helping trajectory planning. While (a-d) set examples for FMs
tailored for FM, (e) is an example for an FM guiding trajectory planning. The input image is from
nuScenes (Caesar et al., 2020), the question is from DriveLM-nuScenes (Sima et al., 2024), the user instruction
is from the SimLingo dataset (Renz et al., 2025).

chain-of-thought (CoT) reasoning, a technique that helps LLMs break down a problem into multiple steps for
enhanced reasoning. Fig. 2(b) illustrates its common usage, in which the FM first leverages CoT in the form of
critical objects and meta-actions, before producing the final trajectory. The fact that VLMs are equipped with
a linguistic modality has also motivated several approaches that leverage this capability to enable language
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and/or action interactions with trajectory planning models (Xu et al., 2024; Sima et al., 2024; Hwang et al.,
2025; Shao et al., 2024a; Renz et al., 2025). As illustrated in Fig. 2(c), language interaction capability can
offer reasoning behind a model’s behaviour, giving reassurance to users. Differently, the action interaction
capability facilitates driving assistance by executing driving commands of the user (refer to Fig. 2(d)), similar
to existing vision language action model (VLA) models (Brohan et al., 2023; Kim et al., 2024). Alternatively,
there are approaches where FMs guide an existing trajectory planning system by transferring their knowledge
during training and/or inference (Pan et al., 2024a; Tian et al., 2024; Jiang et al., 2024; Wang et al., 2024a;
Liu et al., 2025; Jiang et al., 2025a; Guo et al., 2025; Qian et al., 2025b; Xu et al., 2025b; Hegde et al., 2025;
Chen et al., 2025; Han et al., 2025). Fig. 2(e) illustrates this set of approaches with an example, where a
VLM (GPT-4o (OpenAI, 2024) in this case) outputs a description of the scene, critical objects that the ego
should pay attention to, and a meta-action.

Although, as briefly indicated above, numerous studies benefit from FMs for trajectory planning in autonomous
driving, the field still lacks a holistic understanding of the progress achieved. The sheer variety of existing
heterogeneous approaches has made it increasingly difficult to tell what truly distinguishes one method
from another, since the underlying architectures, datasets, and training procedures vary widely and have
great impact on the performance. In this work, we aim to bring structure to this fragmented landscape by
systematically analysing and comparing current techniques, highlighting the architectural design choices and
capabilities that influence their effectiveness, and providing a unified perspective to guide further progress
in applying foundation models to trajectory planning for autonomous driving. Our primary contributions,
therefore, are:

1. We introduce a hierarchical taxonomy of the methods that employ FMs for trajectory planning in
autonomous driving and systematically analyse 37 existing methods based on this taxonomy2. Our
study is a comprehensive effort to organise, interpret, and unify this rapidly evolving field, where a
variety of heterogenous approaches has emerged without clear benchmarking and understanding of
their distinctions. We believe that our study provides a structured foundation to help the field in
making methodical progress.

2. In addition to providing practical guidance on how to tailor and to fine-tune an FM for trajectory
planning and strategies for curating datasets for different use cases, we also assess these approaches
in terms of how open their code and data are, in order to give practitioners and researchers useful
pointers for their reproducibility and reuse. We also outline key future challenges and open research
questions from multiple perspectives, including efficiency, robustness, evaluation benchmarks and
sim-to-real transfer.

Given that pioneering works in this domain first emerged as preprints in late 2023 (e.g., GPT-Driver (Mao
et al., 2023), DriveGPT4 (Xu et al., 2024)), this review encompasses approximately two years of research
progress through October 2025 in leveraging FMs for autonomous trajectory planning. Within this period, we
select 37 methods published in peer-reviewed venues to provide a clear conceptual analysis and well-structured
organization. We also include a limited number of representative preprints to incorporate emergent research.
For example, V2X-VLM (You et al., 2024) represents a specialized FM for trajectory planning uniquely
utilizing additional infrastructure images, while FASIONAD++(Qian et al., 2025b) employs a FM selectively
to guide trajectory planning only when the AD model has a high uncertainty. We emphasize that our objective
is not to compare or rank these methods, but rather to organize and analyse them conceptually.

1.2 Comparison with Previous Reviews

Considering that there are several reviews or surveys focusing on AD, we would like to mention key differences
between ours and the existing ones. One particular set of these reviews focuses on AD, usually to present
and discuss the state-of-the-art at the time they were published (Yurtsever et al., 2020; Badue et al., 2021;
Janai et al., 2021; Tampuu et al., 2022; Coelho & Oliveira, 2022; Li et al., 2023b; Zhao et al., 2024; Chen

2We aim to consider papers published in peer-reviewed venues. Additionally, we include a few representative preprints to
provide a broader discussion. For example, DriveMLM is one of the few methods providing action interaction, and V2X-VLM
employs an additional infrastructure image for improving trajectory planning.
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“Plan the trajectory”

(a) Modular AD models

(b) E2E-AD models

(c) Foundation Models for AD

Vision 
Encoder Prediction

e.g., Bounding boxes e.g., Agent coordinates

PerceptionVision 
Encoder Prediction Planning

e.g., Agent Features,
Map Features

e.g., Prediction
Features, Ego Query

Vision 
Adapter

Vision 
Encoder

Large 
Language 

ModelText 
Tokenizer

e.g., Vision Features 
in BEV

!!"#$

!!"#$

!!"#$

!!%&!

Planning

Latent 
Interface

Explicit 
Interface

Explicit 
Interface

Latent 
Interface

Vision 
Features

Latent 
Interface

Vision 
Features

Legend

         Optional

Vision token
Text token

Figure 3: Trajectory planning methods. (a) Modular approaches use explicit interfaces between different
modules. (b) End-to-End (E2E-AD) models replace explicit interfaces with latent ones, allowing all modules
to be jointly differentiable. (c) FM-based methods that follow the typical VLM pipeline. The text output
of the VLM can also be used, e.g., CoT reasoning. In this illustration, we simplify the pipelines to provide a
high-level overview of how these models work, yet they can include different number of components and more
complex connections across the modules. Input images are taken from nuScenes (Caesar et al., 2020).

et al., 2024a). Some of these surveys have a narrower scope such as focusing on end-to-end (E2E)-trainable
models (Tampuu et al., 2022; Coelho & Oliveira, 2022; Chen et al., 2024a), models using reinforcement
learning (Kiran et al., 2022), imitation learning-based approaches (Le Mero et al., 2022), or existing AD
datasets (Liu et al., 2024c). Alternatively, rather than trajectory planning, some reviews focus on a single
auxiliary task for AD such as perception (Wang et al., 2025a), occupancy prediction (Xu et al., 2025a) or
motion planning (Teng et al., 2023). While these are useful for their respective purposes, they do not pay
special attention to how FMs can be used within the context of trajectory planning. As a result, our review
is complementary to this set of reviews.

Due to the common adoption of FMs in several fields, including AD, a few review papers consider how these
models can help AD (Gao et al., 2024a; Yang et al., 2024c;c; Zhou et al., 2024a; Li et al., 2025a; Cui et al.,
2025b). Although they consider the use of FMs for AD, their scope is broader than ours. Specifically, these
studies aim to cover how FMs can be useful from various perspectives, including perception, data generation,
scene understanding, as well as trajectory planning. Consequently, the discussion on trajectory planning is
quite limited, whereas we focus exclusively on trajectory planning, allowing a more comprehensive discussion.
As one similar survey to ours, Jiang et al. (2025d) discuss different architectural paradigms for the models
built on VLMs and their chronological progress. In addition, we include knowledge transfer approaches using
FMs in our scope, introduce a hierarchical taxonomy over this broader set of models, delve deeper into the
design choices for adapting a VLM for trajectory planning and elaborate on the openness of the methods
that can be useful for researchers and practitioners.

2 Notations and Background

Notations. We denote the set of observations by X, where X typically includes a subset of (i) sensor readings
generally from cameras, lidar, or radar, (ii) the state of the ego vehicle such as its velocity, acceleration and
steering, and (iii) an indicator of the route, which can be in the form of a GPS target point or a high level
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command such as {go straight, turn left, turn right}. We use Otraj ∈ Rk×p to represent the output trajectory,
such that k is the prediction horizon and p is the dimension of the output at each time step, commonly
p = 2 for bird’s eye view (BEV) coordinates. Considering that the models typically aim to maximise the
likelihood of the data, Otraj can be assumed to be a sample from the predictive distribution of the model,
Otraj ∼ p(Otraj|X), where Otraj denotes the corresponding random variable. Furthermore, we use Oinittraj to
denote an initially-predicted trajectory to account for methods predicting an initial trajectory before refining
it to obtain Otraj. T and Otext denote the input text to the FM and the output text from it, where each
of them is a sequence of text tokens, i.e., T = {Tj}n

j=1 and Otext = {Oj
text}m

j=1 with n and m being their
sequence lengths.

FMs typically generate the next token of a text output conditioning on the previous tokens, known as
the autoregressive (AR) generation or next token prediction. In the context of VLMs, which predict a
categorical distribution over the text tokens, we formulate this as Oi

text ∼ p(Oi
text|X, T, {Oj

text}i−1
j=1) with

Oi
text being the random variable for the i-th token. For clarity, when we refer to the entire text output, we

use Otext ∼ p(Otext|X, T). Additionally, in the case of knowledge transfer (refer to Fig. 2(e)), the set of
observations provided to the FM can be different from that provided to the trajectory planning model for
AD. For example, while the AD model may receive multi-view images, the corresponding FM may receive
only the front image, potentially with additional privileged information, e.g., VLM-AD (Xu et al., 2025b). As
a result, while discussing the approaches with knowledge transfer, we denote the observations provided to the
FM as XFM, and corresponding latent representations as Z.

Trajectory planning for AD. The trajectory planning task for AD is typically considered as a non-
deterministic environment where the world is partially observed through the sensors. Reinforcement
Learning (Kazemkhani et al., 2025) and Tree-Search (Huang et al., 2024) methods typically formulate
this environment as either a Fully- or Partially-Observed Markov Decision Process (Russell et al., 1995),
and explicitly define numeric rewards and penalties to be optimised, while considering the distribution of
expected rewards to form a control policy. In contrast, Imitation Learning delegates planning strategy to
a teacher, where the objective of such a planner is to predict how a teacher model would act, and use this
prediction as a plan for operating the vehicle. Essentially, given a set of observations X from the sensors,
the trajectory planning task involves determining a trajectory for the ego vehicle to follow (Otraj). And, to
operate a vehicle, Otraj is typically propagated to a controller such as a Proportional-Integral-Derivative
(PID) controller (Bennett, 2001) to obtain control signals, such as for the accelerator and steering.

Model architectures for trajectory planning can be divided into three main groups, as shown in Fig. 3.
Modular approaches, shown in Fig. 3(a), use explicit interfaces, where each module independently aims to
solve a subproblem such as perception (Zhu et al., 2021; Zeng et al., 2022; Liu et al., 2022; Wang et al., 2023a;
Oksuz et al., 2023; Yavuz et al., 2024; Li et al., 2025b), prediction (Shi et al., 2022; 2023; Zhou et al., 2023b;
Cheng et al., 2023; Prutsch et al., 2024) or planning (Gao et al., 2020; Chen et al., 2024b). This architecture
does not allow gradient flow during training, i.e., it is not E2E-trainable, and each module is optimised for
its own objective. E2E-AD models in Fig. 3(b) replace explicit interfaces by latent representations from
the previous module, to optimise all modules jointly for trajectory planning (Hu et al., 2023b; Jiang et al.,
2023; Chen et al., 2024c; Li et al., 2024c;b; Weng et al., 2024; Zheng et al., 2024b; Liao et al., 2025; Zhang
et al., 2025; Song et al., 2025). FM-based models are recent approaches that are built directly on FMs to
benefit from their vast world knowledge (Xu et al., 2024; Zhang et al., 2024; Wang et al., 2025b; Renz et al.,
2025; Hwang et al., 2025; Fu et al., 2025a; Xie et al., 2025; Chen et al., 2025). Fig. 3(c) illustrates a typical
VLM pipeline (Bai et al., 2023b; Li et al., 2023a; Liu et al., 2023; 2024b), in which a vision encoder (He
et al., 2016; Dosovitskiy et al., 2021; Liu et al., 2021) outputs vision features, which are then projected onto
the LLM embedding space using a vision adapter, e.g., a linear layer (Liu et al., 2023). Finally, an LLM
processes vision and text tokens to yield the final trajectory. As more recent approaches, existing E2E-AD
and FM-based methods are predominantly trained using Imitation Learning.

3 A Hierarchical Taxonomy

We now present a taxonomy to systematically study trajectory planning approaches utilising FMs. Broadly
speaking, there are two main categories: FMs tailored for trajectory planning, and FMs guiding trajectory
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FM-based methods for AD

FMs tailored for trajectory planning

Models focused solely on
traj planning (Sec. 4.2)

Models providing additional
capabilities (Sec. 4.3)

FMs guiding trajectory planning

Knowledge distillation only
during training (Sec. 5.1)

Knowledge transfer
during inference (Sec. 5.2)

❼
VLP (Pan et al., 2024a)
VLM-AD (Xu et al., 2025b)
DiMA (Hegde et al., 2025)
Solve-E2E (Chen et al., 2025)

❽
VLM-E2E (Liu et al., 2025)
DME-Driver (Han et al., 2025)
Senna-E2E (Jiang et al., 2024)
DiffVLA (Jiang et al., 2025a)
DriveVLM-Dual (Tian et al., 2024)
Solve-E2E-Async (Chen et al., 2025)
DiMA-Dual (Hegde et al., 2025)
HE-Drive (Wang et al., 2024a)
VDT-Auto (Guo et al., 2025)
FASIONAD++ (Qian et al., 2025b)
AsyncDriver (Chen et al., 2024d)

❶No CoT
CarLLaVA (Renz et al., 2024)
DriveGPT4-v2 (Xu et al., 2025c)
V2X-VLM (You et al., 2024)
❷Text as CoT
GPT-Driver (Mao et al., 2023)
Drive-VLM (Tian et al., 2024)
Auto-VLA (Zhou et al., 2025b)
RAG-Driver (Yuan et al., 2024)
S4-Driver (Xie et al., 2025)
❸Trajectory as CoT
Agent-driver (Mao et al., 2024)
FeD (Zhang et al., 2024)
Solve-VLM (Chen et al., 2025)

❹Language interaction
DriveGPT4 (Xu et al., 2024)
DriveLM-Agent (Sima et al., 2024)
Emma (Hwang et al., 2025)
OpenDriveVLA (Zhou et al., 2026)
DiMA-MLLM (Hegde et al., 2025)
Omni-Q (Wang et al., 2025b)
Omni-L (Wang et al., 2025b)
Orion (Fu et al., 2025a)
❺Action interaction
DriveMLM (Cui et al., 2025a)
LMDrive (Shao et al., 2024a)
❻Language & action interaction
SimLingo (Renz et al., 2025)

Figure 4: Taxonomy of trajectory planning methods utilising or getting help from FMs.

planning. However, these main categories do involve various subcategories, eventually forming a hierarchical
taxonomy as shown in Fig. 4. Specifically, each of the eight leaf nodes in the taxonomy tree corresponds to
the formulations in Fig. 5. In what follows, we discuss them in detail.

3.1 Foundation Models Tailored for Trajectory Planning

The primary characteristic of the methods in this group is that they, partly or fully, utilise existing pre-trained
FMs by tailoring and fine-tuning them to trajectory planning for AD. Therefore, effectively, they build
FMs that are directly used for AD use cases. Considering the auto-regressive generation of FMs and the
convention that the trajectory Otraj is commonly predicted after the text output Otext, these approaches
can be formulated as:

Otext ∼ p(Otext|X, T) = f(X, T), and Otraj ∼ p(Otraj|X, T, Otext) = f(X, T, Otext), (1)

where f(·) is the fine-tuned FM. By design, these methods have the advantage of directly exploiting the vast
world knowledge of FMs and tailor it towards autonomous driving applications via fine-tuning, a significant
advantage over traditional methods for trajectory planning. Additionally, the choice of FM also allows
these models to have new capabilities. For example, in the case of language-based FMs, capabilities such as
language- and action-based interactions with users are possible—along with the original task of trajectory
planning—during inference. Further details regarding the design choices and categorisation of these methods
are provided in Sec. 4.

We identify 22 current approaches from the literature falling under this broader category. Below, we divide
them further into two subgroups depending on the features they have.

Models focused solely on trajectory prediction. These models either have no text prompt T = ∅, or a
fixed one. In the latter case, T simply aims to trigger the model to yield the desired output, e.g., the fixed
prompt could be “plan the trajectory”. Since there is no variability in the language, Otraj primarily relies on
input observations X. Methods using CoT reasoning solely to provide better trajectories during inference also
fall in this category. Similarly, these methods either use a fixed single prompt or a set of multiple sequential
fixed prompts in a pre-defined order to exploit reasoning abilities of FMs. However, the choice of the nature of
these prompts plays a crucial role in understanding different factors influencing the decision making of these
models, therefore, we further divide this category into three subcategories depending on how, if, CoT is used.
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Figure 5: Formulations of subcategories in our taxonomy. (a–f) FMs tailored for trajectory planning.
Specifically, (a–c) are focused solely on trajectory planning. These methods either do not have a text prompt
T or have a fixed one, hence T is optional. (c) shows a case where Otraj optionally conditions on the text
output Otext. Similarly, Oinittraj can also benefit from a text output as CoT, which is omitted for clarity.
(d–f) are the subcategories providing additional capabilities. In (d–f), Otraj is shown without CoT for clarity
and ∗ highlights that Otraj can also be obtained using different forms of CoT in (b) or (c). (g) FMs guiding
trajectory planning via knowledge distillation.

• ❶ No CoT, hence Otext = ∅ and Otraj ∼ p(Otraj|X) (see Fig. 5(a)). Fig. 2(a) sets an example
for this category. As an example, given front view image, speed of the ego and GPS target points,
CarLLaVA (Renz et al., 2024) only outputs the trajectory.

• ❷ Text outputs for CoT, hence Otext ∼ p(Otext|X) and Otraj ∼ p(Otraj|X, Otext) (see Fig. 5(b)).
Fig. 2(b) can be considered as an example of this category. One example of this subcategory is
DriveVLM (Tian et al., 2024), where a text output including a scene description (e.g., weather, road
type, critical objects), influence of the critical objects on ego and planning decision are generated
before the model outputs the trajectory.

• ❸ Initial trajectory prediction Oinittraj for CoT, hence predicting Otraj ∼ p(Otraj|X, Otext, Oinittraj)
(refer Fig. 5(c)). Such models first yield Oinittraj and then refine it further to Otraj. These models
can still leverage text output as well for CoT reasoning while generating either Oinittraj or Otraj.
To illustrate, FeD (Zhang et al., 2024) aims to improve the initially-predicted trajectory based on the
textual feedback it generates, e.g., if Oinittraj could result in a collision.

Models providing additional capabilities. In addition to trajectory planning, these models exploit
the language understanding of FMs to build additional features to cater for language- and/or action-based
interactions. Below we further divide them into three subcategories.
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• ❹ Language interaction capabilities via Otext ∼ p(Otext|X, T) (see Fig. 5(d)). These language
interaction capabilities primarily involve question-answer or description tasks, generally for the
purpose of informing users about the surrounding or the potential action taken by the model, as also
illustrated in Fig. 2(c). These capabilities also serve as a tool to understand the decision-making
process of these models—allowing practitioners to provide explanations towards model’s actions,
debug model’s outcomes, or to potentially reassure users about its behaviour. As an example,
Orion (Fu et al., 2025a) can respond to different questions such as “Could you describe the overall
environment and objects captured in the images provided?” and “Has the traffic light influenced
the driving strategy of the ego vehicle in the previous frames?”. Accordingly, the set of the text
inputs T that such models can respond is richer than the models providing text output as CoT, in
which T typically does not exist or it can be limited to a single prompt, e.g., “What is my future
trajectory?” (Xie et al., 2025). The trajectory planning Otraj in these models can follow one of the
alternatives in Fig. 5(a-c) depending on if CoT reasoning is used.

• ❺ Action interaction capabilities where text prompt T may directly result in modifications to the
planned trajectory by the model (see Fig. 5(e)). For example, an input that prompts a model to
follow instructions would be “turn left from the next intersection” and this prompt may result
in replanning of the predicted trajectory. Such instruction following prompts indicate the model
to behave in a particular way and are normally diverse in nature. Few additional examples from
LMDrive (Shao et al., 2024a) include “Feel free to start driving.”, “Depart at the second exit on the
roundabout.”, and “Execute a right maneuver, prepare for highway exit” would be “take over the
car ahead” , “pull over in front of the coffee shop” , and “slow down” . These are much more diverse
compared to the navigational instructions (or route indicators) which consists of pre-defined set of
basic commands such as turn right or go straight, therefore, we do not consider models that can only
interact with a navigator in this category. Note, in addition to instructions that directly impact
actions, other forms of instructions can surely have indirect impact. For example, an input “watch
out for crossing pedestrians” that provides a warning would be considered as a notice instruction
prompt, while “crash into the vehicle front” would be considered as a misleading instruction
prompt where the model is expected to avoid following this prompt and follow a safe trajectory.

• ❻ Some models can also have both action and language interaction capabilities, as illustrated in
Fig. 5(f). SimLingo (Renz et al., 2025) is the only example falling under this subcategory among the
methods we consider in this paper.

3.2 Foundation Models Guiding Trajectory Planning

Inspired by the well-known knowledge distillation work (Hinton et al., 2014), these models do not build an FM
for driving use cases, rather they mostly use off-the-shelf FMs to help improve their existing trajectory planning
models for AD. From a broader perspective, the methods falling under this category can be formulated as,

Otraj ∼ p(Otraj|X, Z) = f(X, Z), (2)

where Z is the transferred knowledge from the FM to the corresponding AD model f(·, ·). Note, in this case,
f(·, ·) is either a modular approach (Chen et al., 2024d) (see Fig. 3(a)), where the FM can be used at any level
to improve trajectory planning, or an E2E-AD model (see Fig. 3(b)) (Hu et al., 2023b; Jiang et al., 2023).

We identify 15 methods in this category and further split them into two subcategories depending on whether
Z is needed during inference or not, as illustrated in Fig. 5(g).

❼ Knowledge distillation only during training. These approaches employ an FM for knowledge
distillation during training the AD model. As an example, this can be achieved by prompting a VLM with a
text input and sensor data to obtain a structured output such as a meta-action, which can be distilled into
the AD model by appending a meta-action prediction module to it, similar to VLM-AD (Xu et al., 2025b).
In such a case the FM is not needed for inference, effectively corresponding to Z = ∅ in Eq. (2). Hence, the
prediction of the model is conditioned only on the observations X during inference, i.e., Otraj ∼ p(Otraj|X).
This offers the advantage of maintaining the inference efficiency of the AD model as the FM is not needed for
inference.

10



❽ Knowledge transfer during inference. These methods utilise an FM not only during training,
but also during inference with the intention to leverage the knowledge of FMs more effectively. This
corresponds to Z ̸= ∅ in Eq. (2), where Z is usually taken as a scene description (Liu et al., 2025), typically
involving perception knowledge such as the objects in the scene, or a planning decision, which can include a
trajectory (Tian et al., 2024; Chen et al., 2025) or a meta-action (Jiang et al., 2024) from the FM. In either
of the cases, Z is typically used either as an internal representation of the FM, or directly as the output of
the FM. In the latter, the FM output can also be a plain text, in which case an additional text encoder is
typically employed for encoding the text before propagating to the AD model. Nevertheless, due to the use
of FM at inference, this group of approaches typically requires additional compute for inference compared to
the methods mentioned in the category above.

4 Foundation Models Tailored for Trajectory Planning

We now delve deeper into the design and development of FMs tailored for trajectory planning for AD. We
first elaborate on the important ingredients one must pay attention to before even beginning to fine-tune an
FM for trajectory planning in Sec. 4.1, and then discuss different approaches for each of the subcategories in
detail in Sec. 4.2 and Sec. 4.3.

4.1 How to Fine-tune an FM for Trajectory Planning

Data Curation. The structure of the data to be curated while adapting an FM for trajectory planning
depends primarily on the desired use case of the model, as illustrated in Fig. 6(a).

• Driving Dataset. The dataset for trajectory planning would simply comprise the pairs of observations
and the trajectory, i.e., (X, Otraj). As aforementioned, the observations (X) typically include a
subset of the sensor data, the ego status, and an indicator of the route. An example of this form of
dataset is nuScenes (Caesar et al., 2020), including multi-view camera, radar and lidar data as sensor
input, and future ego positions as the trajectory target.

• Driving Dataset with CoT Reasoning. For complex situations where reasoning is crucial, one might
be interested in exploiting the CoT reasoning ability of FMs for enhanced understanding of the scene.
To enable that, each tuple in the driving dataset is extended by Otext (the text to enforce CoT
reasoning) leading to the dataset consisting of tuples (X, Otext, Otraj). An example dataset with
textual descriptions that can be used as CoT reasoning is BDD-X (Kim et al., 2018). When CoT
is performed using an initial trajectory However, as for the CoT as the initial trajectory planning
Oinittraj, a dataset might not be curated and stored in advance, and instead it is generated by the
model. These driving datasets could also include a typically fixed input prompt T, such as the
example in Fig. 2(b) with T =“Plan the trajectory”.

• Language Interaction Capability. Although this resulting driving dataset can be used for trajectory
planning, additional tuples are needed to account for the language or action interaction capabilities,
depending on the use case. Specifically, for the language interaction capability, the dataset is generally
extended with new tuples, (X, T, Otext) where T, Otext is the question-answer pair grounding on X.
An example dataset with language interaction is the Chat-B2D dataset used by Orion (Fu et al.,
2025a).

• Action Interaction Capability. If the model is expected to generate a trajectory, while answering the
question, then such tuples include Otraj, i.e., (X, T, Otext, Otraj), in which case the answer Otext
could serve as CoT reasoning. As for the action interaction capability, the model is expected to
consider the user instruction for trajectory planning. Accordingly, the data tuples typically follow
(X, T, Otraj), such that T is the user instruction and Otraj is the trajectory corresponding to T. An
example dataset with language and action interaction is the SimLingo dataset (Renz et al., 2025).
Again, optionally, Otext can be included for CoT reasoning during instruction following. We further
discuss the different choices of the CoT reasoning in Sec. 4.2 and the datasets designed to include
additional capabilities in Sec. 4.3.

Model Design. While designing the model architecture, some approaches (Renz et al., 2025; Zhou et al.,
2025b) use off-the-shelf VLMs, providing the advantage of initialising all parameters jointly from a state
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Figure 6: The steps to fine-tune an FM for trajectory planning. (a) Data curation. (b) For the model
design, either an off-the-shelf VLM can be used or a vision encoder can be combined with an LLM using one
of the depicted vision adapters. (c) Trajectory representation. Vision encoder and adapter are omitted
for clarity. (d) Among various model training strategies, this is an example two-stage training approach
based on Liu et al. (2023), usually adopted when an off-the-shelf VLM is not used.

trained on a large dataset. Differently, another group of approaches (Xu et al., 2024; Chen et al., 2025; Fu
et al., 2025a) combines a preferred vision encoder, such as ViT (Dosovitskiy et al., 2021), with a preferred
LLM using a randomly-initialised vision adapter. Both approaches follow the typical VLM architecture
(see Fig. 3(c)), where the vision adapter connects the vision encoder and the LLM. Additionally, the latter
approach to combine preferred vision encoder and LLM, requires designing a vision adapter. As shown in
Fig. 6(b), in general, there are three different choices of the vision adapter:

• The vision adapter can be a text interface where the vision encoder directly outputs perception
and/or prediction information such as the locations of the objects and map elements in the scene.
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This information is then propagated to the LLM as text, in which case the model is not trained
end-to-end as in Mao et al. (2023).

• A linear layer or an multi-layer perceptron (MLP) can project all vision tokens from the vision
encoder onto the LLM input space (Liu et al., 2023) as used by Renz et al. (2025).

• Different from a linear layer or MLP block, Queryformer (Li et al., 2023a) relies on cross-attention
between a set of typically randomly-initialised latent representations and the tokens from the vision
encoder to selectively project the most useful set of representations. This approach is taken by
Omni-Q (Wang et al., 2025b).

Additionally, including custom modules can impose certain inductive biases absent in off-the-shelf FMs. For
example, as off-the-shelf VLMs are generally not pretrained on 3D perception tasks or using videos, some
approaches design custom modules (Fu et al., 2025a; Wang et al., 2025b; Xie et al., 2025; Chen et al., 2025)
to enforce the model to consider these clues absent in the VLMs.

Trajectory Representation. Another crucial aspect in tailoring an FM for AD is how to represent the
trajectory, as this can consequently require modifications in the model design as well. Fig. 6(c) illustrates
common trajectory representations, which we elaborate on below:

• Trajectory as text, obtained by the standard AR text generation of the LLM. For example, consider a
model that generates a single character in each pass and assume that 1.54, 0.21 is a 2D point of the
trajectory. As a result, this 2D point is generated sequentially as ‘1’, ‘.’, ‘5’, ‘4’, ‘,’, ‘0’, ‘.’, ‘2’, ‘1’ in an
AR manner, as illustrated in Fig. 6(c)(Left). Consequently, while this approach generally does not
require any modification to the tokenizer or model architecture, it requires multiple passes through
the LLM to yield a single point of the trajectory, increasing the inference time.

• Trajectory as action tokens. Instead of generating a single 2D point in multiple passes, one can
discretise the action space and represent these discrete actions in the vocabulary of the LLM by the
action tokens. One example is to discretise 2D BEV space using a grid and use the points on the grid
as the action tokens (Sima et al., 2024; Brohan et al., 2023). These action tokens can be included in
the tokenizer by mapping the rarely-used tokens in the vocabulary to each of these 2D points (Brohan
et al., 2023). Zhou et al. (2025b) also follow a similar approach by building a vocabulary for the
actions with 2048 actions determined by clustering the actions in terms of the relative 2D position
and the heading angle in the next 0.5 seconds. In these examples, the trajectory consists of multiple
points, and hence multiple AR passes within the LLM are required to obtain a trajectory, as shown
in Fig. 6(c)(Middle). As an alternative, similar to the planning vocabulary in VADv2 (Chen et al.,
2024c), an action token can represent an entire trajectory where the trajectory can be obtained in a
single pass, however, this might be more prone to errors due to long-horizon planning.

• Trajectory as a set of numbers, generally obtained in a single pass by using a planning head. Alterna-
tively, the trajectory can be obtained by an additional planning head that utilises the representations
learned by the LLM. There are two main variants of this approach. As shown in Fig. 6(c)(Right),
some methods (Renz et al., 2024; Zhang et al., 2024; Renz et al., 2025) use learned embeddings that
attend to the observations (and a text input, if exists) before being decoded as a trajectory by the
planning head. On the other hand, another group of approaches (Fu et al., 2025a; Xu et al., 2025c)
does not introduce learned embeddings, and instead the planning head relies on the representations
of the LLM in the last layer. In any case, this approach requires designing a planning head to
be appended to the LLM. MLP (Renz et al., 2025) and generative models, such as a variational
autoencoder (Fu et al., 2025a) or diffusion model (Liao et al., 2025), have been explored in the
literature for this purpose.

Model Training. Fine-tuning the FM is typically carried out in a single step or in multiple steps, where
each step generally targets a specific subset of the modules. For example, similar to LLaVA-style training (Liu
et al., 2023), as illustrated in Fig. 6(d), one can first train the vision adapter by freezing the vision encoder
and LLM, especially when a custom vision adapter is introduced with randomly-initialised parameters. After
training the adapter, all model parameters or a subset of them can be fine-tuned for the target task. To
provide an overview of how the existing methods in the literature fine-tune their models, we introduce the
following symbols that represent the change of the parameters in a module across training (spanning all
stages in the case of multi-stage training):
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Table 1: Design choices of FMs tailored for AD (refer to Fig. 4). Unless mentioned otherwise in the
corresponding paper, we assume that each method uses full parameter fine-tuning of a module, generates the
trajectory in the form of text, and does not have route indicator as an input. Custom VLM implies that the
model does not employ an off-the-shelf VLM but combines a vision encoder with an LLM itself, in which case
we specify the details of the vision encoder and LLM, e.g., SigLIP-ViT-G as in the case of S4-Driver. Please
refer to Sec. 4 for the details of the training symbols.

Observations Model Design and Model Training

Model Sensors Route
indicator VLM Vision Encoder Vision Adapter LLM # Params Trajectory

Representation

❶

1 CarLLaVA
(Renz et al., 2024) Front camera ✓ LLaVA-Next ViT-L Linear Tiny-Llama >350M Numbers

2 DriveGPT4-v2
(Xu et al., 2025c) 3 Front cameras ✓ Custom SigLIP-ViT-L Linear Qwen-0.5B >1B Numbers

3 V2X-VLM
(You et al., 2024)

Front+Infra
camera ✗ Florence-2 DaViT Linear BART 232B Text

❷

4 GPT-Driver
(Mao et al., 2023) 360◦ cameras ✓ Custom Based on UniAD Text Chat-GPT3.5 >175B Text

5 Drive-VLM
(Tian et al., 2024) Front camera ✗ Qwen-VL Custom ViT MLP QwenLM 9.6B Text

6 Auto-VLA
(Zhou et al., 2025b) 3 Front cameras ✓ Qwen2.5-VL Custom ViT MLP Qwen2.5 >3B Action token

7 RAG-Driver
(Yuan et al., 2024) Front camera ✗ Video-LLaVA ViT-B Linear LLaMA2 >7B Text

8 S4-Driver
(Xie et al., 2025) 360◦ cameras ✓ PAaLI-3 SigLIP-ViT-G +Custom Linear UL2 >5B Text

❸

9 Agent-Driver
(Mao et al., 2024) 360◦ cameras ✓ Custom Based on UniAD Text Chat-GPT3.5 >175B × 2 Text

10 FeD
(Zhang et al., 2024) Front camera ✓ LLaVA ViT-L Linear Llama >7B Numbers

11 Solve-VLM
(Chen et al., 2025) 360◦ cameras ✗ Custom EVA-02-L Q-Former LLaVA-v1.5-LLM >7B Text

❹

12 DriveGPT4
(Xu et al., 2024) Front camera ✗ Custom Valley-ViT-L Valley-Custom Llama2 >7B Text

13 DriveLM-Agent
(Sima et al., 2024) Front camera ✗ BLIP-2 ViT-L Q-Former Flan-T5 >7B Action token

14 Emma
(Hwang et al., 2025) 360◦ cameras ✓ Gemini Unknown Unknown Unknown 1.8B Text

15 OpenDriveVLA
(Zhou et al., 2026) 360◦ cameras ✓ Custom Bevformer Q-Former+MLP Qwen 2.5-Instruct >0.5B-7B AR text

16 DiMA-MLLM
(Hegde et al., 2025) 360◦ cameras ✗ Custom Bevformer Q-Former LLaVA-v1.5-LLM >7B Text

17 Omni-L
(Wang et al., 2025b) 360◦ cameras ✓ Custom EVA-02-L MLP LLaVA-1.5-LLM >7B Text

18 Omni-Q
(Wang et al., 2025b) 360◦ cameras ✓ Custom EVA-02-L Q-Former LLaVA-1.5-LLM >7B Text

19 Orion
(Fu et al., 2025a) 360◦ cameras ✓ Custom EVA-02-L Q-Former Vicuna-1.5 >7B Numbers

❺
20 DriveMLM

(Cui et al., 2025a)
360◦ cameras,

lidar ✓ Custom EVA-ViT-G +GD-MAE Q-Former Llama >7B Text

21 LMDrive
(Shao et al., 2024a)

360◦ cameras,
lidar ✓ Custom ResNet +PointPillars Q-Former LLaVA-v1.5-LLM >7B Numbers

❻ 22 SimLingo
(Renz et al., 2025) Front camera ✓ Mini-InternVL InternViT MLP Qwen2 1B Numbers

• indicates keeping modules completely frozen during training.
• represents low-rank adaptation (LoRA)-style fine-tuning of a module (Hu et al., 2022), which

assumes that the adaptation needed for new tasks can be captured by low-rank updates. This
approach is efficient but limits the capacity of the model for adaptation.

• implies the standard fine-tuning of all parameters, utilising the full capacity of the module for
fine-tuning, though it requires more resources than using LoRA.

• represents training a module by initialising it either randomly, e.g., once a custom module is
introduced, or from a model pretrained only on domain-specific data, e.g., a vision encoder trained
only on nuScenes (Caesar et al., 2020).

Using these symbols, Tab. 1 presents the main design choices of all 22 methods within the scope of this
section.

4.2 Models Focused Solely on Trajectory Planning

Following the taxonomy provided in Fig. 4, we now discuss different subcategories. Tab. 2 provides an
example approach for each of these subcategories.
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Table 2: Example models solely focused on trajectory planning. For such models, T is either ∅ or fixed, and
CoT reasoning includes Otext or an initially-planned trajectory Oinittraj for self-correction.

Model Type Example Model Observations (X) System Prompt (T) Text Output (Otext)

Otraj ∼ p(Otraj|X) CarLLaVA Front image; speed of ego; GPS target
point ∅ ∅

Otraj ∼ p(Otraj|X, Otext) S4-Driver
Multiview images; speed, acceleration
and past trajectory of ego; high level
command

What is my future trajec-
tory?

Meta-decision, e.g., keep speed then
do decelerating

Otraj ∼ p(Otraj|X, Otext, Oinittraj) FeD Front image; speed of ego; GPS target
point and high level command

Please evaluate the pre-
dicted future locations of
ego vehicle

Collision with vehicles or pedestrians,
traffic light violations, deviation from
the expert and planned route

4.2.1 Models without CoT Reasoning ❶

As one of the earlier approaches that uses a VLM for trajectory planning, CarLLaVA (Renz et al., 2024) is
built on LLaVA-NeXt (Liu et al., 2024b), which combines ViT (Dosovitskiy et al., 2021) vision encoder with
Tiny-Llama (Touvron et al., 2023a) as the LLM. Given the front-view image, current ego speed and two GPS
target points as a route indicator, the model predicts (i) 20 path waypoints that are equidistant points at
1 meter apart, thus independent of the time, to control the steering and (ii) 10 speed waypoints, which are
points at equal time intervals, specifically 0.25 seconds apart, to control the accelerator and the brake. These
outputs are obtained in one-pass using MLPs as the planning head, following the design in Fig. 6(c)(Right).
Note, unlike other methods we explore, the Tiny-Llama in CarLLaVA is trained from scratch. In 2024, this
model, trained on approximately 3 million images, won the CARLA 2.0 challenge (Dosovitskiy et al., 2017),
a competition based on driving in a closed-loop simulator. Given three camera views as front, front-left and
front-right, DriveGPT4-v2 (Xu et al., 2025c), as a similar model, combines SiglipLIP-ViT (Zhai et al.,
2023b) with Qwen (Bai et al., 2023a) to predict the target speed and turning angle controls directly. In
addition to that, the model is supervised to predict a trajectory and equidistant route waypoints, similar
to the path waypoints of CarLLaVA. Different from CarLLaVA, an expert model provided with privileged
information, such as the objects in the scene and potential hazard information, is trained to augment
the training dataset of DriveGPT4-v2. This augmentation is shown to have a notable effect on driving
performance. While these two approaches do not have a system prompt T, V2X-VLM (You et al., 2024)
uses a fixed T = “Please predict the ego vehicle positions over next 45 timestamps.”. V2X-VLM is built
on Florence-2 (Xiao et al., 2023)(using DaViT image encoder (Ding et al., 2022) with BART language
model (Lewis et al., 2020)), and utilizes DAIR-V2X dataset (Yu et al., 2022) to focus and focuses specifically
on leveraging an external camera from the infrastructure in the environment.

Summary of trade-offs: Models without CoT Reasoning ❶

As these approaches are solely designed for driving, the dataset curation is relatively simple, where each
data example typically consists of (X, Otraj) pairs. Moreover, due to the absence of CoT reasoning,
these models demonstrate superior computational efficiency particularly when trajectory generation
can be accomplished through a single forward pass. Nevertheless, these advantages entail certain
trade-offs: the omission of CoT reasoning may compromise driving performance, and the lack of
language generation capabilities diminishes their explainability.

4.2.2 Text Output for CoT Reasoning ❷

CoT reasoning is typically a prompting strategy of the FMs that help them to break down the problem into
multiple steps during inference. This is commonly achieved by prepending a step-by-step solution to a similar
problem (Wei et al., 2022; Yao et al., 2023; Sel et al., 2024) to the input prompt, as a demonstration on how
to approach and solve the problem. Furthermore, simply appending “Let’s think step by step” to the prompt
is also found to be quite effective, also known as the zero-shot CoT (Kojima et al., 2022). These enhanced
ways of prompting strategies facilitate FMs to yield its output step-by-step, improving their performance in
certain tasks such as arithmetic reasoning.
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Similarly, FMs tailored for trajectory planning leverage CoT reasoning for improving the driving performance,
however, in a slightly nuanced manner. In particular, these approaches explicitly fine-tune the FMs to yield
the output step-by-step, instead of modifying the input prompt T during inference time. Besides, the prompt
T, in this case, is typically fixed, e.g., “What is my future trajectory?” (see S4-Driver in Tab. 2), and can
potentially involve multiple steps. As a result of the fine-tuning, text output Otext includes a predefined
set of explanations that are expected to improve trajectory planning, i.e., Otraj. The scope of Otext varies
significantly across methods, ranging from only a meta-action to a comprehensive description of the scene
and agents’ behaviours (please refer to Fig. 2(b) for a more comprehensive example).

Methods using a more comprehensive Otext as the CoT reasoning generally follow the common pipeline
of the modular AD models (see Fig. 3(a)), hence generating the CoT reasoning in the order of perception
and prediction information followed by planning decision, e.g, meta-action and trajectory. As a pioneering
approach following this sequence, GPT-Driver (Mao et al., 2023) fine-tunes Chat-GPT3.5 (OpenAI, 2023)
to yield notable objects in the scene, along with their potential impact on ego, and a meta-action as CoT
reasoning before yielding the proposed trajectory. As an earlier method, GPT-Driver adopts a text interface
as the vision adapter (refer to Fig. 6(b)(Left)), hence it is not E2E-trainable. Specifically, the perception
and prediction information is extracted by the corresponding modules of UniAD (Hu et al., 2023b), and
propagated to Chat-GPT3.5 as text. DriveVLM (Tian et al., 2024) follows a similar sequence in terms
of CoT reasoning, where scene description and analysis are followed by meta-action prediction, and finally
trajectory planning. To preserve the capabilities that the VLM gained before fine-tuning, Qwen-VL (Bai
et al., 2023b) is fine-tuned by combining AD datasets with the LLaVA dataset, which includes examples
from different domains, referred to as co-tuning. Similar to the previous methods, Auto-VLA (Zhou et al.,
2025b) also relies on a comprehensive Otext for CoT reasoning, including a scene description, identification
of the crucial objects, the intentions of the surrounding agents, and ideal driving actions. Differently, it
follows an adaptive CoT mechanism where the model refers to CoT only for complex scenarios, considering
its inefficient nature. To train such a model, a dataset is constructed as a combination of action-only
scenes and reasoning-augmented scenes. The model is first trained using supervised fine-tuning, followed by
reinforcement learning, specifically GRPO (Shao et al., 2024b), where the reward function is designed to
promote driving-related measures such as safety and comfort while discouraging CoT reasoning if deemed
unnecessary.

There are also methods that generate a brief description or explanation as CoT reasoning. One example
is RAG-Driver (Yuan et al., 2024), which only predicts an explanation of the action that the ego is
executing, such as “The car moves forward then comes to a stop because traffic has stopped in front”, known
as action explanation and justification in BDD-X dataset (Kim et al., 2018). Relying on this as CoT
reasoning, the model outputs speed and turning angle of the ego. As the model is named after, it leverages
retrieval-augmented generation (RAG), which essentially retrieves relevant information from external sources
to enhance the model’s prediction. Accordingly, in the AD domain, given a test sample, the two most similar
samples in terms of cosine similarity are retrieved from the training data and propagated to the LLM. As the
retrieved data have known control signals, they are expected to improve driving performance for the test
sample. Alternatively, S4-Driver (Xie et al., 2025) show that it is even useful to predict only one of the
four pre-determined meta-actions (i.e., {keep stationary, keep speed, accelerate and decelerate}) via CoT
reasoning before planning the trajectory. The model is built on PaliLI-3 VLM (Chen et al., 2023b), which is
based on the UL2 LLM (Tay et al., 2022), and equipped with custom modules to facilitate learning 3D scene
representations.

The inference time and accuracy trade-off of CoT reasoning. One key impact of CoT reasoning that
needs to be taken into consideration is its effect on inference time. This is because Otext, as the CoT reasoning,
is typically generated in an AR manner, requiring multiple passes through the LLM. This is especially important
for the applications requiring fast inference speed, such as trajectory planning. To provide an example, we test
the throughput of SimLingo, a relatively lightweight model with 1B parameters that processes only the front
image, with and without CoT reasoning. Specifically for SimLingo, T = “Predict the waypoints.” prompt
yields the trajectory without CoT reasoning, while using T = “What should the ego do next?” triggers a
relatively lightweight CoT reasoning with 2 or 3 short sentences about the what the action should be and why.
For each of these prompts, we propagate 200 images to SimLingo five times using its official implementation.
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We observe that the CoT reasoning increases the inference time of SimLingo by 4.5×, from 3.6fps to 0.8fps
on an Nvidia A4500 GPU, which can be a significant bottleneck for practical deployment. In this case, the
authors report a relatively small performance gain of using CoT reasoning, where the driving score increased
from 84.41 to 85.07 and success rate improved from 64.84 to 67.27 on Bench2Drive benchmark (Jia et al.,
2024). As a result, the compute requirement of the designed CoT reasoning as well as the performance gain
it contributes to should be taken into consideration while using it in practice.

Summary of trade-offs: Models using Text Output for CoT ❷

While text-based CoT reasoning offers the advantage of grounding trajectories in the model’s rationale,
thereby enhancing explainability and potentially driving performance, these benefits come with
substantial trade-offs. Foremost, the additional requirement of annotating training examples with
text output Otext increases the complexity of data curation. Furthermore, as previously established,
CoT reasoning can drastically increase inference latency, thereby imposing severe constraints on the
practical deployment of such models in real-world applications.

4.2.3 Initial Trajectory Prediction for CoT Reasoning ❸

Different from using only Otext for the CoT reasoning, few approaches leverage it to assess or refine a
trajectory that the model initially predicted as Oinittraj. Such methods can also leverage Otext to improve
Oinittraj or Otraj further. As an earlier approach, Agent-driver (Mao et al., 2024) essentially extends
GPT-Driver (Mao et al., 2023) (Sec. 4.2.2) with a multi-step CoT reasoning involving—notable objects (with
their potential effects) and a meta-action (Otext), and an initial trajectory Oinittraj. A predicted occupancy
map from the perception module is also used to check whether Oinittraj resulted in a collision. If so,
Oinittraj is corrected as Otraj , otherwise it is accepted as the final trajectory Otraj. Following GPT-Driver,
it is built on GPT 3.5 and employs a text interface as the vision adapter, hence it is not E2E-trainable.
Alternatively, FeD (Zhang et al., 2024) first predicts a trajectory Oinittraj ∼ p(Otraj|X) with the initial
system prompt “Predict ten future locations in 2.5 seconds”. This is then followed by refining Oinittraj using
the feedback of the same model as the CoT reasoning including potential collisions, traffic light violations
or deviations from the route or expert behaviour, as detailed in Tab. 2. Finally, the trajectory is refined,
i.e., Otraj ∼ p(Otraj|X, Otext, Oinittraj) by conditioning on the feedback as Otext and the initial trajectory
Oinittraj. As a result, unlike Agent-driver, relying on a frozen occupancy prediction model, the feedback on
Oinittraj is learned in an E2E manner during training, and provided as an output such that Otraj considers
it. FeD also employs an expert model with privileged information, similar to DriveGPT4-v2, to augment
the dataset with the demonstrations from the expert (refer to Sec. 4.2.1), but differently by using feature
distillation from the expert. Alternatively, Solve-VLM (Chen et al., 2025) is designed to have the final
trajectory always in two-steps using Trajectory CoT. Specifically, a coarse trajectory, Oinittraj, is predicted
among a set of predetermined trajectories, and then, Oinittraj is refined to be more precise as Otraj. Unlike
FeD, the model does not explicitly make explanations, e.g., about potential collisions or traffic violations.
Solve-VLM uses a custom VLM by combining EVA-02 (Fang et al., 2024) with a LLaVA-based LLM via their
proposed SQ-Former to incorporate 3D representations into the vision features before passing them to the
LLM. As Solve (Chen et al., 2025) also transfers knowledge to another AD model, we will further explore it
in Sec. 5 while discussing methods leveraging knowledge transfer.

Summary of trade-offs: Models using Initial Trajectory Prediction for CoT ❸

These approaches offer the advantage of iterative trajectory refinement, thereby potentially enhancing
driving performance. By utilising exclusively the initial trajectory prediction for CoT reasoning (i.e.,
without incorporating additional text-based CoT), these methods can be adopted with computational
efficiency, particularly when trajectories are generated through a single forward pass. Given that these
models perform self-refinement of their outputs, the data curation does not require an additional
overhead; however, the model design must incorporate appropriate mechanisms to facilitate this
refinement process. A notable drawback, though, is that without text generation capabilities, these
models lack direct explainability and cannot interact with the user.
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Table 3: Characteristics of the models providing language interaction capability. If a model is trained in
multiple settings such as DriveLM-Agent or Emma, then we include only one of them for clarity.

Model Training Dataset Training Dataset
Size

Overview of Language
Annotations

Main Annotator
for Language

Augmentation of
Q&As with FM

An Example
Question Model Training Language Evaluation

DriveGPT4
(Xu et al., 2024)

BDD-X +Custom
Q&As +Additional
non-AD datasets

16K BDD-X Q&As
are enhanced with 40K
Chat-GPT Q&As as
the custom dataset

Action description, action
justification, scene descrip-
tion

Human for BDD-X,
and Chat-GPT for the
custom

Questions of BDD-X Is there any risk to the
ego vehicle?

Step 1. Vision-language
alignment by only training
vision adapter
Step 2. Mix-fine-tuning by
combining both AD and
non-AD datasets

CIDEr, BLEU,
ROUGE, GPT-Score

DriveLM-Agent
(Sima et al., 2024) DriveLM-nuScenes 4K front view images

with 300K Q&A pairs

Video clip level scene
descriptions.
Image-level perception,
prediction, planning, be-
haviour and motion VQAs

Humans Questions

What object should
the ego vehicle notice
first / second / third
when the ego vehicle
is getting to the next
possible location?

Fine-tuning using the train-
ing set

SPICE and GPT-Score
for perception, planning
and prediction VQAs,
and classification ac-
curacy for behaviour
VQA.

Emma
(Hwang et al., 2025)

Custom Dataset
+Waymo Open Mo-
tion Dataset

Custom Dataset: 203K
hours of driving
Waymo Open Motion
Dataset: 572 hours of
driving

3D object detection, driv-
able road graph estimation,
road blockage estimation

Using perception an-
notations labeled by
humans

✗
Is the road ahead tem-
porarily blocked?

Step 1. Pretraining on the
large-scale custom dataset
Step 2. Fine-tuning us-
ing Waymo Open Motion
Dataset

Task metrics such as
Precision-Recall curve
for object detection

OpenDriveVLA
(Zhou et al., 2026)

nuCaption
+nuScenes-QA +nu-X

nuScenes dataset with
∼4 hours of driving sce-
narios in 700 video clips

nuCaption: Description of
the scene, objects and po-
tential risks
nuScenes-QA: Scene under-
standing Q&As including
existence, counting, query-
object, query-status and
comparison-type questions
nu-X: Action description
and justification

nuCaption: LLaMA-
Adapter and GPT-4
nuScenes-QA: Percep-
tion annotations by
humans
nu-X: Human

nuCaption: Both
questions and an-
swers
nuScenes-QA: None
nu-X: Only answers

Are there any cars to
the front right of the
stopped bus?

Step 1. Vision-language
alignment
Step 2. Fine-tuning for
VQAs
Step 3. Fine-tuning for mo-
tion prediction
Step 4. Fine-tuning for tra-
jectory planning

nuCaption: BLEU and
BERT-Score
nuScenes-QA: Accuracy
for each question type
nu-X: CIDEr, BLEU,
METEOR and ROUGE

DiMA-MLLM
(Hegde et al., 2025)

DriveLM-nuScenes ex-
tended with the re-
maining images in
nuScenes

nuScenes dataset with
∼4 hours of driving sce-
narios in 700 video clips

Video-clip level scene de-
scriptions. Image-level per-
ception, prediction, plan-
ning, behaviour and motion
VQAs

Human, and Llama-3-
70B for the extension

No additional aug-
mentation for the ex-
tension

What are the fu-
ture movements of the
agents to the back
right of the ego car?

Step 1. Training only the
E2E model
Step 2. Fine-tuning E2E
model and VLM jointly

Qualitative evaluation

Omni-Q/L
(Wang et al., 2025b) OmniDrive

nuScenes dataset with
700 video clips for train-
ing (∼4 hours of driving
scenarios)

Scene descriptions, atten-
tion, counterfactual reason-
ing (as in the example ques-
tion), decision making and
planning, general conversa-
tion

GPT-4 ✗

If I decide to acceler-
ate and make a left
turn, what could be
the consequences?

Step 1. Vision-language
alignment using 2D percep-
tion tasks
Step 2. Fine-tuning the
model

CIDEr for language eval-
uation, Average Preci-
sion and Average Recall
for counterfactual rea-
soning

Orion
(Fu et al., 2025a) Chat-B2D

B2D-Base dataset with
∼7 hours of driving sce-
narios and 2.11M Q&As
in 950 video clips

Scene description, be-
haviour description of crit-
ical objects, meta-actions
and action reasoning of
the ego, recall of essential
historical information

Based on CARLA
simulator state and
Qwen2VL-72B

✗

How has the current
speed changed com-
pared to the previous
frames?

Step 1. Vision-language
alignment using 2D percep-
tion tasks
Step 2. Language-action
alignment without VQA
dataset
Step 3. Fine-tuning the
model with VQA dataset

Qualitative evaluation

SimLingo
(Renz et al., 2025) Custom

3.1M front images are
annotated in DriveLM
style

Image-level perception,
prediction, planning, be-
haviour and motion VQAs

Based on CARLA
simulator state

Questions and An-
swers

Is there a traffic light
in the scene?

Fine-tuning using the train-
ing set

SPICE and GPT score
on DriveLM dataset

4.3 Models Providing Additional Capabilities

We now discuss models that provide language or action capabilities in addition to trajectory planning.3

4.3.1 Models Providing Language Interaction Capability ❹

Clearly, the ability to interact via language is a remarkable feature enabled by the language interface of LLMs.
Tab. 3 provides an overview of approaches using language interaction, including characteristics regarding
their training datasets, training approaches, and language evaluations. Below, we summarize our observations
regarding their training datasets and evaluations. Language Interaction Capability Datasets. Models
with language interaction capability generally require pairs of VQAs for training, which are not part of
standard driving datasets such as nuScenes (Caesar et al., 2020). Hence, after creating the necessary question
templates, there are three main approaches to annotate these datasets, depending on whether the dataset is
real-world or simulated:

• For simulation datasets, usually curated using CARLA (Dosovitskiy et al., 2017), predefined answer
templates are populated by the simulation state including agents’ velocities and positions, the weather,
junctions, and traffic lights. This approach is used in DriveLM-CARLA (Dosovitskiy et al., 2017)
and the SimLingo dataset (Renz et al., 2025), and is a relatively easy approach resulting in accurate
language annotations.

3Since SimLingo is the only approach providing both capabilities ❻ , we present its language capabilities in Tab. 3 and discuss
SimLingo in detail in Sec. 4.3.2, instead of reserving a section for it.
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• For real-world datasets, the desired details of the scene are usually not available. As a result, some
approaches rely on human annotations such as DriveLM-nuScenes (Sima et al., 2024). Though this
results in accurate annotations, it requires significant resources to annotate a large dataset.

• Alternatively, FMs such as GPT-4 (OpenAI, 2024) are frequently used to create language labels.
Specifically, the question templates are provided to the FM along with a system prompt and sensor
data to obtain the answers. This approach is used to annotate both simulation datasets (Fu et al.,
2025a) and real-world datasets (Hegde et al., 2025). As this is an automated approach, it is efficient,
though manual inspection might be necessary to ensure the quality of the annotations.

After constructing the VQA dataset, several methods augment questions or answers using an LLM to increase
language variability. Furthermore, the size of the training dataset varies significantly across methods. For
instance, while DriveGPT4 is trained on 56K VQAs, Orion uses 2.11M VQAs for training. Additionally, the
VQAs generally focus on perception, prediction and planning as subtasks that allow a model to achieve good
driving performance. DriveLM (Sima et al., 2024) and OmniDrive (Wang et al., 2025b) are proposed as
VQA benchmarks. The DriveLM dataset includes VQA pairs for these tasks, such as “what object should
the ego vehicle notice first when the ego vehicle is getting to the next possible location?”. Alternatively,
OmniDrive stands out with counterfactual VQAs, such as “If I decide to accelerate and make a left turn, what
could be the consequences?”, where the counterfactual questions are designed using templates relying on the
meta-actions such as accelerate and make a left turn in this example. Consequently, the answers are obtained
by a combination of a rule-based checklist and GPT-4.

Evaluating Language Interaction Capability. For evaluating the quality of the generated text, the
methods commonly employ measures from natural language processing literature, comparing machine-
generated text with reference text. These measures include BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee & Lavie, 2005) as well as CIDEr (Vedantam et al., 2015) and SPICE (Anderson
et al., 2016), which are specifically introduced for image captioning. Furthermore, model-based evaluation
measures are also utilised. For example, GPT-Score (Fu et al., 2023), used by Sima et al. (2024), is obtained
by prompting Chat-GPT with the question, the reference answer, and the machine-generated answer, and
asking for a numerical score about the accuracy of the machine-generated answer. Alternatively, Zhou et al.
(2026) use BERT-Score (Zhang* et al., 2020) to compare the similarity of the machine-generated text with
the reference in the BERT embedding space (Devlin et al., 2019).

A Discussion of Existing Approaches. Here, we highlight the key aspects of the trajectory planning
approaches providing language capability. Please refer to Tab. 1 and Tab. 3 for the details on their model
design and language interaction capability, respectively. DriveGPT4 (Xu et al., 2024) aims to retain the
capabilities of the LLM while training a trajectory planning model. To achieve this, they found it useful
to keep non-AD related VQAs in addition to 56K driving-related VQAs during training. As the model is
based on a custom VLM obtained by combining a video encoder (Luo et al., 2025) with Llama2 (Touvron
et al., 2023b), the training of the model is handled in two stages, vision-language alignment and model
fine-tuning, following Fig. 6(d)(Right). Alternatively, DriveLM-Agent (Sima et al., 2024), the proposed
baseline of the DriveLM benchmark, fine-tunes BLIP-2 (Li et al., 2023a), a VLM based on the Flan-T5
LLM (Chung et al., 2024), on the VQAs of the benchmark in a single stage. Emma (Hwang et al., 2025),
based on Gemini VLM (Gemini Team, 2025), uses a large dataset of 203K hours of driving scenes for the
pretraining of the model. This pretrained model is then fine-tuned on specific domains for adaptation,
such as on NuScenes dataset (Caesar et al., 2020). Instead of the conversation type questions and answers,
the language capabilities of Emma seems to be limited to the questions regarding a predetermined set of
perception tasks including object detection, road graph estimation, and road blockage detection. Different
from the existing approaches, OpenDriveVLA (Zhou et al., 2026) and DiMA-MLLM (Hegde et al., 2025)
rely on BevFormer (Li et al., 2025b) as the vision encoder to effectively extract a 3D representation of the
scene to address the limitation of the FM-based vision encoder such as CLIP (Radford et al., 2021; Zhai et al.,
2023b) or EVA (Fang et al., 2024). However, this can also cause a potential disadvantage in comparison to
such models, considering that BevFormer is not pretrained on a large dataset. Omni-Q and Omni-L (Wang
et al., 2025b) share the same architecture, where EVA-02-L (Fang et al., 2024) vision encoder is combined
with LLaVA-v1.5 LLM (Liu et al., 2024a), except their vision adapters. Specifically, Omni-L relies on a
linear layer following LLaVA (Liu et al., 2023) (see Fig. 6(b)(Middle)) while Omni-Q employs a Q-Former
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Table 4: Characteristics of the models providing action interaction capability.

Model Training Dataset (with
sensors and size)

Example Notice
Instructions

Example Action
Instructions

Mechanism to
Avoid Misleading

Instructions
Model Training Instruction-following

Evaluation Measures

DriveMLM
(Cui et al., 2025a)

280 hours of driving sce-
narios in CARLA. Sensors:
4 cameras (front, rear, left
and right) and a lidar sen-
sor.

✗

• I’m running short on time. Is
it possible for you to utilise
the emergency lane to bypass
the vehicles ahead?

• Great view on the left. Can
you change to the left lane?

• There are obstacles ahead.
Can you switch to a different
lane to bypass?

✗
Fine-tune the VLM
using the training
dataset

Qualitative evaluation

LMDrive
(Shao et al., 2024a)

3M driving scenarios col-
lected in CARLA at 10fps
(∼83 hours of driving data).
Sensors: 4 cameras (front,
rear, left and right) and a
lidar sensor

• Please watch out for the
pedestrians up ahead.

• Be mindful of the vehicle
crossing on a red light to
your left.

• Please be alert of the un-
even road surface in the
vicinity ahead.

• Feel free to start driving.

• Find your way out at the
first exit on the roundabout,
please.

• At the forthcoming T-
intersection, execute a right
turn. Just head for the left
lane. Maintain your course
along this route.

✓

Step 1. Train vision
encoder with percep-
tion tasks using the
front image
Step 2. The model is
trained end-to-end

Driving performance is es-
timated while the model
is provided action and no-
tice instructions. LangAuto
benchmark is proposed for
this purpose in the same pa-
per.

SimLingo
(Renz et al., 2025)

3.1M front images (∼215
hours of driving data) col-
lected in CARLA at 4fps

✗

• Gently press the brakes.

• Hit the vehicle Ford Crown.

• Direct one lane to the left.

✓
Fine-tune the VLM
using the training
dataset

Accuracy of the model for
each type of action interac-
tion

supervised by 3D perception tasks (refer to Fig. 6(b)(Right)). Their analyses suggest that using a linear layer
is more beneficial than a Q-Former in terms of both language capabilities and open-loop driving performance.
Finally, Orion (Fu et al., 2025a) combines EVA-02-L with Vicuna-1.5 (Vicuna Team, 2023) using a Q-Former
variant. The proposed Q-Former, coined as QT-Former, also considers the temporal aspect of the observations
through a memory bank to improve the driving performance. Furthermore, Orion presents notable analyses
on using different architectures as planning heads (refer to Fig. 6(c)(Right)). Their analyses conclude that
the planning head based on a variational autoencoder perform better than using an MLP or a diffusion model.

Summary of trade-offs: Models Providing Language Interaction Capability ❹

This group of approaches offers the distinct advantage of answering user questions, primarily serving
to enhance model explainability and provide reassurance regarding the system’s decision-making
processes (i.e., trajectory). Nevertheless, similar to text-based CoT reasoning, the generation of text
output through an AR mechanism can substantially prolong inference time, thereby constraining
the deployment of this functionality. Furthermore, dataset curation for these approaches presents
greater complexity compared to methods only using text-based CoT. This is because developing
language interaction capabilities typically requires each data example (observation) annotated with
multiple question-answer pairs, in contrast to the singular text output per training example requisite
for text-based CoT reasoning.

4.3.2 Models Providing Action Interaction Capability ❺

We now review models that can plan a trajectory by considering instruction from the user. We present an
overview of these methods in terms of training dataset, training approach and evaluation in Tab. 4.

Action Interaction Capability Datasets. All three approaches in this category (refer to Fig. 4) are trained
and tested on synthetic datasets collected using CARLA simulator (Dosovitskiy et al., 2017). This is likely
because annotating data with pairs of instructions and actions is relatively easier for synthetic data as the
simulator state includes comprehensive information about the scene. Furthermore, unlike other approaches
discussed in this paper, both DriveMLM and LMDrive rely on both lidar and camera. Additionally, LMDrive
stands out with the functionality to consider notice instructions such as watch the tunnel coming up. Shao
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et al. (2024a) introduce a specific benchmark called LangAuto-Notice to measure the performance of
the model to respond to such notice instructions, demonstrating that LMDrive effectively leverages notice
information to improve driving performance. Another crucial capability that such models are expected to
have is a mechanism to avoid misleading instructions, as such instructions can result in unsafe consequences.
Ideally, upon capturing a misleading instruction, the model should reject it and follow a safe trajectory. Both
LMDrive and SimLingo incorporate this crucial capability into their models.

Evaluating Action Interaction Capability. Unlike language interaction, the evaluation measures for
action interaction are not yet well-established. In addition to the qualitative evaluation, which is limited in
terms of the number of examples and tends to have a selection bias, two different approaches are adopted
to evaluate action interaction. Shao et al. (2024a) design a benchmark in which the model is instructed
solely by the user, similar to an extended version of the navigational commands, where the standard CARLA
performance measures are reported. As an alternative, Renz et al. (2025) directly measure the percentage of
the trajectories that is following the given instruction, namely, the accuracy of the model to follow instructions.

A Discussion of Existing Approaches. Tab. 4 provides an overview of the approaches with action
interaction capability. DriveMLM (Cui et al., 2025a) combines EVA (Fang et al., 2023) and GD-MAE (Yang
et al., 2023) as vision and lidar encoders, respectively, with Llama LLM (Touvron et al., 2023a) through
Q-Former modules. The model is then supervised to output four predefined commands (i.e., {keep, accelerate,
decelerate, stop}) for controlling the accelerator, and five steering actions (i.e, {follow, left change, right
change, left borrow, right borrow}). Similarly, LMDrive (Shao et al., 2024a) processes inputs from multiple
cameras and lidar using a multimodal vision encoder including ResNet (He et al., 2016) and PointPillars (Lang
et al., 2019). This encoder is initially pretrained using object detection, traffic light status classification, and
trajectory planning before it is combined with Llama (Touvron et al., 2023a) where the model is supervised
for trajectory planning. Unlike other approaches, the LLM is kept frozen during the training. To determine
if the given user instruction is completed, the model predicts an additional flag, making LMDrive the only
approach with this functionality. Finally, SimLingo (Renz et al., 2025) is built on Mini-InternVL VLM (Gao
et al., 2024c) as an extension to CarLLaVA (Sec. 4.2). Different from other approaches, SimLingo has ❻
both language and action interaction capabilities, as well as the option to use CoT reasoning (please refer to
our discussion on inference time-accuracy trade-off of CoT reasoning in Sec. 4.2.2 for further details). The
model is trained in a single stage on a dataset including training examples for these functionalities. The
instruction following capability, coined as action dreaming, aims to align the predicted trajectory with the
natural language instructions. Consequently, it is shown that action dreaming helps improving the driving
performance more than the pure language tasks, i.e., VQA and CoT reasoning, as shown in the paper.
SimLingo also pay attention to the resampling of the dataset via carefully creating data buckets for predefined
driving characteristics and then assign different sampling ratios to each bucket.

Summary of trade-offs: Models Providing Action Interaction Capability ❺

The approaches with only action interaction capability offer the distinct advantage of trajectory
planning conditioned on user instructions, serving as a potentially valuable additional feature. Since
this functionality itself does not require generating text output, such models can be deployed efficiently
in real-world systems. However, the dataset curation protocols for developing these models remain
insufficiently investigated for real-world systems. Essentially, the model requires training with a
substantial volume of text input (user instructions) paired with corresponding output trajectories.
Crucially, the text input should exhibit sufficient variability to enable robust responses to diverse user
instructions. Akin to other subgroups lacking text generation, these models could inherently suffer
from a deficiency in explainability especially when CoT reasoning is not employed either.

5 Foundation Models Guiding Trajectory Planning

An alternative way of utilising FMs for trajectory planning is to use an existing approach for AD, such
as a modular or an E2E one (see Fig. 3(a,b)), and transfer the knowledge of a chosen FM into it either
only during training or during both training and inference. A key distinction among these approaches come
from their choice of using FM during inference which, of course, results in increased computational cost and
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Figure 7: Overview of the approaches that uses an FM only during training for knowledge distillation.
(Center) A generic E2E-AD model (please refer to Sec. 2 for the details.) (Top) VLP prompts the model
with the agent/map elements/scene descriptions to align the representations of CLIP text encoder with those
of the E2E-AD model. The arrows from the text encoder represent the representations. (Right) VLM-AD
prompts a VLM with the privileged information (the red line on the input image) and a few questions to
align the representations of the E2E-AD model. (Bottom) DiMA and Solve jointly trains E2E-AD model
and the FM, where the LLM makes predictions by conditioning on the representations of the E2E-AD model.
Please refer to Sec. 5.1 for further details.

memory requirements. Considering that, based on our taxonomy (refer to Fig. 4), we discuss the models
using knowledge distillation only during training in Sec. 5.1, and those requiring an FM also for inference in
Sec. 5.2.

5.1 Models Using Knowledge Distillation Only During Training ❼

As this group of approaches carries out knowledge distillation only during training, they do not need the
FM for inference. Fig. 7 provides an overview of the existing approaches within this category. Among the
first approaches, VLP (Pan et al., 2024a) aims to align the representations of an E2E-AD model with an
off-the-shelf CLIP (Radford et al., 2021). To obtain CLIP representations, only the text encoder of the CLIP
is used. Specifically, the text encoder is prompted by (i) the descriptions of each agent and map elements such
as their semantic class and location, and (ii) a planning prompt, such as “the self-driving car is driving in an
urban area. It is going straight. Its planned trajectory is Otraj”. Then, these representations are distilled
into the E2E-AD model in two levels as shown in Fig. 7(Top), using contrastive learning. While the agent
and map element representations are distilled into vision features of the E2E-AD model, the representation
of the planning prompt is incorporated into its ego query as the input to the planning module. Similar to
VLP, VLM-AD (Xu et al., 2025b) keeps the FM frozen but instead prompts a VLM, GPT-4o (OpenAI,
2024), with (i) the front image including the privileged information of the future trajectory of the ego shown
by the red line on the image in Fig. 7(Right), and (ii) six different questions to obtain a meta-action and
its reasoning from the VLM. These responses are then structured using one-hot encoding and a CLIP text
encoder, and an adapter layer is appended to the E2E-AD model to predict this structured output. Finally,
cross-entropy loss is used for knowledge distillation.

Different from the previous approaches, DiMA (Hegde et al., 2025) and Solve (Chen et al., 2025) train
E2E-AD and LLM jointly for knowledge distillation. Specifically, as shown in Fig. 7(Bottom), both approaches
propagate representations of the E2E-AD model to the LLM of LLaVA-v1.5 (Liu et al., 2024a), such that
the LLM predicts the trajectory and a text output by conditioning on these representations. While Solve
propagates only the representations after perception, DiMA aims for a more comprehensive distillation. As a
result, in DiMA, (i) BEV features, agent/map representations, and the ego query are all propagated to the
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Table 5: Design choices of the models that transfer knowledge from an FM during inference. : Frozen,
: Standard fine-tuning, : LoRA fine-tuning. Broadly speaking, the last three columns correspond to the

feature volumes (latent interfaces in blue) in Fig. 3(b). For FasionAD++, the used FM type for the main
experiments is not clear in the paper, hence it is marked as not available (N/A).

Model Sensor Input to
FM (XFM) Used FM Transferred Knowledge from FM

at Inference (Z) How to Encode Z Z Transferred Into

Vision
Features

Prediction
Input

Planning
Input

1 VLM-E2E
(Liu et al., 2025) Front camera BLIP-2 Scene description CLIP text encoder + MLP ✓

2 DME-Driver
(Han et al., 2025) Front camera LLaVA

Scene description, driver’s gaze, and
driver’s logic BERT ✓ ✓

3 Senna-E2E
(Jiang et al., 2024) 360◦ cameras ViT-L + Vicuna-v1.5 Meta-action Learnable embedding layer ✓

4 DiffVLA
(Jiang et al., 2025a) 360◦ cameras ViT-L + Vicuna-v1.5 Meta-action One-hot encoding ✓

5 DriveVLM-Dual
(Tian et al., 2024) Front camera Qwen-VL Trajectory None ✓

6 Solve-E2E-Async
(Chen et al., 2025) 360◦ camera features LLaVA-1.5-LLM Trajectory None ✓

7 DiMA-Dual
(Hegde et al., 2025) 360◦ camera features LLaVA-1.5-LLM LLM planning features in the last layer None ✓

8 HE-Drive
Wang et al. (2024a) 360◦ cameras Llama3

Weights of a scoring function to select
the most suitable trajectory among mul-
tiple ones

None ✓

9 VDT-Auto
(Guo et al., 2025) Front camera Qwen2-VL

VLM features of the detected objects,
meta-action, trajectory proposals None ✓

10 FasionAD++
(Qian et al., 2025b) Front camera N/A

Existence of predetermined objects (e.g.,
traffic lights, intersections, obstacles)
and meta-actions

Binary encoding for object ex-
istence, learnable embeddings
for meta-actions

✓ ✓ ✓

11 AsyncDriver
(Qian et al., 2025b)

Vectorised encoding
of the scene Llama2

Ego states, the occupancy of the adja-
cent scene, the state of the traffic light,
lane change and velocity decisions

Learnable embedding layer ✓

LLM (red arrows from LLM to the blue interfaces in Fig. 7(Bottom)), and (ii) a distillation loss is introduced
to align the representations of the LLM and the planning module of the E2E-AD (red arrow from the LLM
to the planning module in Fig. 7(Bottom)). Furthermore, DiMA includes auxiliary tasks such as masked
BEV token reconstruction for effective representation learning during training. Both approaches fine-tune the
LLM using LoRA (Hu et al., 2022) for the trajectory planning task.

Summary of trade-offs: Models Using Knowledge Distillation Only During Training ❼

These approaches are unique in this review by their elimination of FM dependency during inference.
Consequently, the resulting AD models typically have fewer parameters and exhibit a higher inference
rate, thereby facilitating the deployment of computationally efficient systems. However, this indepen-
dence from FMs excludes access to natural language interaction capabilities. Specifically, such models
cannot process user questions or instructions, and are constrained in terms of model explainability.
Moreover, the complexity of the dataset curation process varies depending on whether the FM is
jointly trained and the specific type of knowledge being distilled, which often necessitates additional
input-output pair annotations.

5.2 Models Using Knowledge Transfer During Inference ❽

Unlike the methods in the previous section, the approaches we discuss here are the ones employing FMs not
for during training but also during inference for more effective knowledge transfer. Tab. 5 provides the main
characteristics of these approaches, including the type of knowledge transferred from the FM and how this
knowledge is integrated into the AD model. In the following, we elaborate on these approaches based on
the type of knowledge each transfers to the AD model, which is usually a (i) scene description involving
perception or prediction features, (ii) a planning decision such as a meta-action or trajectory, or (iii) both.

Methods that Transfer Scene Description. These methods aim to transfer scene descriptions, such
as “a black van driving in the ego lane, away from the ego car”, taken from VLM-E2E (Liu et al., 2025).
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Specifically, Liu et al. (2025) prompt an off-the-shelf BLIP-2 (Li et al., 2023a) with a front image of a driving
scene to obtain such a description. As this description is essentially a text, CLIP text encoder (Radford
et al., 2021) converts it into a text representation. Then, the representation is mapped to shifting and scaling
factors using MLPs to update the BEV features of the E2E-AD model, in this case UniAD (Hu et al., 2023b).
DME-Driver (Han et al., 2025) follows a similar approach, including knowledge of the scene description as
well as the driver’s gaze and the driver’s logic on the taken action, such as the presence of the pedestrians for
slowing down. Particularly, given the front view of the driving scene, LLaVA (Liu et al., 2023) is fine-tuned
to produce the text output, which is converted into embeddings using BERT (Devlin et al., 2019). Finally,
BEV features of the E2E-AD model attend to these embeddings through cross-attention before being fed into
the occupancy prediction and planning modules of UniAD (Hu et al., 2023b). Though these methods show
that such a knowledge transfer is useful, they do not guide the E2E-AD model explicitly with a planning
decision such as a meta-action or a trajectory, which we discuss next.

Methods that Transfer Planning Decisions. These methods transfer the planning decisions of the
FM to the AD model, usually in the form of a meta-action or trajectory. For example, Senna-E2E (Jiang
et al., 2024) transfers the meta-action of the VLM by fine-tuning it specifically for this task. The model
is fine-tuned in multiple stages to progressively specialise the VLM for planning: In driving fine-tuning,
the VLM is supervised with VQAs in driving scenarios, followed by planning fine-tuning for meta-action
classification. After the VLM is trained, it is frozen and the meta-action of the VLM is converted into an
embedding using a learnable layer. Then, in order to benefit from the knowledge of the VLM, the planning
query in the AD model, VADv2 (Chen et al., 2024c), attends to this meta-action embedding of the VLM.
DiffVLA (Jiang et al., 2025a) also relies on Senna-VLM but with two main differences. First, instead of a
learnable embedding layer, a one-hot encoding of the meta-action is passed to the planning module. Second,
the VADv2 planner is replaced by a diffusion planner (Liao et al., 2025), which generates the trajectory by
conditioning on this meta-action encoding as well as the BEV features, map and object queries sequentially.
The approach is trained and evaluated using the NAVSIM v2 benchmark (Cao et al., 2025b).

Differently, some approaches, including DriveVLM, Solve and DiMA, fine-tune their VLMs for the trajectory
planning task. This manifests itself as an additional advantage of combining the planned trajectories from
the AD model and the VLM for potentially improving the driving performance. To begin with, DriveVLM-
Dual (Tian et al., 2024) uses the trajectory of the VLM as the input query of the planning module of
the E2E-AD model, such that the planning module refines it further. This approach is incorporated into
UniAD (Hu et al., 2023b), VAD (Jiang et al., 2023) and AD-MLP (Zhai et al., 2023a). Similarly, Solve-
E2E-Async (Chen et al., 2025) uses the trajectory of the LLM as an additional query of the planning
module in the E2E-AD model, yet asynchronously. That is, to account for the longer inference time of
the VLM, (i) the prediction horizon of the VLM is designed to be longer than that of the E2E-AD model,
and (ii) the E2E-AD model uses the last predicted trajectory of the VLM as the additional planning query.
Alternatively, DiMA-Dual (Hegde et al., 2025) transfers the representation yielded by VLM for trajectory
planning. Specifically, max-pooling is used on the last layer features of the planning representations obtained
in the VLM and E2E-AD models, and then the E2E-AD model predicts the trajectory from the resulting
pooled features. Finally, as a different approach, HE-Drive (Wang et al., 2024a) fine-tunes Llama3 (Llama
Team, Meta AI, 2024) to output the weights of a function scoring candidate trajectories. Specifically, Wang
et al. (2024a) use a diffusion-based planner to sample multiple candidate trajectories, each of which is scored
considering various driving-related factors such as collision risk, target speed compliance and comfort. For
example, if there is a stopped vehicle in front of ego and the ego needs to slow down, the weight of the target
speed compliance is increased by the VLM, thereby helping to select the best trajectory.

Methods that Transfer Scene Description and Planning Decision. Some approaches transfer both
a scene description and a planning decision. VDT-Auto (Guo et al., 2025) fine-tunes Qwen2-VL (Bai
et al., 2023b) on driving-related VQAs to output object descriptions, as well as a meta-action and trajectory.
The corresponding representations in the VLM are then transferred to the AD model by freezing the VLM.
Specifically, these embeddings are used as inputs to a diffusion-based planner (Liao et al., 2025), which refines
the trajectories conditioned on these embeddings and the vision features. Alternatively, FasionAD++ (Qian
et al., 2025b) guides the VLM to output (i) a planning state including binary variables indicating the existence
of, e.g., traffic lights, obstacles, intersections; and (ii) a meta-action. The planning state updates BEV
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features, agent, map and ego queries through an adapter layer, while the meta-action is incorporated into
the ego features only. As a result, FasionAD++ provides knowledge transfer at multiple levels into the
E2E-AD model. Additionally, FasionAD++ takes the inefficiency of the VLM into account by referring to
the VLM only when the uncertainty of the AD model increases beyond a certain threshold. Unlike other
methods that we discuss in this section, AsyncDriver (Chen et al., 2024d) transfers LLM knowledge to
the planning module of a modular approach (see Fig. 3(a)). Specifically, it fine-tunes an LLM to predict
useful information for AD by appending it with an assistance alignment module. Conditioned on the output
of the LLM, this module predicts relevant perception features such as traffic light states, occupancy of the
adjacent lane, as well as features affecting the trajectory planning such as lane change and velocity decisions.
The latent encoding of the LLM, used as the input to the assistance alignment module, is propagated to
the modular planner via a feature adapter. To align the LLM and the modular planner, they are trained
jointly on the nuPlan dataset (Caesar et al., 2022). During inference, the latent encoding from the LLM is
passed asynchronously to the modular planner to improve the planning decision, maintaining the previous
high-level instruction features during intervals. This asynchronous connection between the separate real-time
and LLM-based planners provides a balance between quality and inference speed for responses.

Summary of trade-offs: Models Using Knowledge Transfer During Inference ❽

This category of approaches encompasses systems that integrate a FM with an AD model. The
inference latency of such coupled architectures relies upon specific design parameters. For instance,
continuous reliance on the FM by the AD model can substantially increase inference overhead, whereas
selective and conditional FM invocation can enhance average computational efficiency. Additionally, the
inference time is influenced by whether the transferred knowledge is obtained following AR steps within
the FM. Regarding explainability, the integrated FM component might generate natural language
explanations; however, ensuring semantic alignment between the AD model’s decision-making processes
and the FM’s textual outputs presents considerable challenges. Similar to approaches employing
knowledge distillation, the complexity of dataset curation depends upon whether the FM undergoes
joint training and the specific nature of the information being transferred, necessitating the collection
of additional text input-output pairs.

6 How Open Are Data and Code of the Existing Approaches?
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Figure 8: Representation of different stages of model development, and the levels of openness.

Open models and datasets play a vital role in the advancement of research and acceleration of practical
deployment. They enable researchers to quickly build upon existing work to improve the state-of-the-art,
while allowing practitioners to build high-performing real-world systems without the extensive time needed
to reproduce the existing work. It also fosters user trust as transparency reveals strengths and weaknesses of
approaches. Moreover, open-source resources lower economic barriers, promoting adaptation in low-income
regions. Considering the importance of openness, we present the level of openness for all the 37 approaches
for trajectory planning considered in this work.
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Table 6: Openness characteristics. While every effort has been made to ensure the accuracy of this table,
we cannot guarantee its completeness or correctness. The information is provided for general reference only
and should not be interpreted as legal advice. If in doubt, please confirm with the corresponding authors.
The table reflects the status as of 08 October 2025. Entries marked as N/A indicate that the asset is “not
applicable” to the method. We further outline the conventions we used while classifying the openness of the
approaches in Appendix A, which also clarifies the symbols * and **. We label the first method of each
taxonomy group with its corresponding icon.

Method

Training Evaluation Deployment

Training Code Model Weights of
Pretrained FMs

Driving Training
Dataset

Language/Action
Capabilities

Training Dataset

Driving
Evaluation Code

Driving
Evaluation

Dataset

Language/Action
Evaluation Code

Language/Action
Evaluation

Dataset
Inference Code

Model
Architecture and

Weights

❶ 1 CarLLaVA
(Renz et al., 2024)

C3
Apache2.0

D3
LLaVA-NeXT

D2
Custom N/A C3

Apache2.0
D3

Bench2Drive N/A N/A C3
Apache2.0 D1

2 DriveGPT4-v2
(Xu et al., 2025c) C1 D3

Qwen-0.5B
D1

Custom N/A C1 D3
CARLA Longest6 N/A N/A C1 D1

3 V2X-VLM
(You et al., 2024) C1 D3

Florence-2
D3

DAIR-V2X N/A C1 D3
DAIR-V2X N/A N/A C1 D1

❷ 4 GPT-Driver
(Mao et al., 2023)

C1
No license

D1
GPT-3.5

D2
nuScenes N/A C1

No license
D2

nuScenes N/A N/A C1
No license D1

5 Drive-VLM
(Tian et al., 2024) C1 D3

Qwen-VL
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

6 Auto-VLA
(Zhou et al., 2025b) C1 D3

Qwen2.5-VL
D2

WOMD N/A C1 D3
Bench2Drive N/A N/A C1 D1

7 RAG-Driver
(Yuan et al., 2024)

C3
Apache2.0

D2
Vicuna v1.5

D2
BDD-X N/A C3

Apache2.0
D2

BDD-X N/A N/A C3
Apache2.0 D1

8 S4-Driver
(Xie et al., 2025) C1 D1

PaLI-3
D2

WOMD N/A C1 D2
nuScenes N/A N/A C1 D1

❸ 9 Agent-driver
(Mao et al., 2024)

C3
MIT

D1
GPT-3.5

D2
nuScenes N/A C3

MIT
D2

nuScenes N/A N/A C3
MIT D1

10 FeD
(Zhang et al., 2024) C1 D2

LLaVA-7B
D3

CARLA N/A C1 D3
LAV N/A N/A C1 D1

11 Solve-VLM
(Chen et al., 2025) C1 D2

LLaVA v1.5
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

❹ 12 DriveGPT4
(Xu et al., 2024) C1 D2

LLaMA2
D2

BDD-X
D1

Custom, no license
C1

No license
D2

BDD-X
C1

No license
D1

Custom, no license
C1

No license D1

13 DriveLM-Agent
(Sima et al., 2024) C1 D3

BLIP-2
D2

DriveLM
D2

DriveLM
C3

Apache2.0
D2

DriveLM
C3

Apache2.0
D2

DriveLM C1 D1

14 Emma
(Hwang et al., 2025) C1 D1

Gemini
D1

Custom
D1

Custom C1 D2
nuScenes C1 D2

WOD C1 D1

15 OpenDriveVLA
(Zhou et al., 2026) C1 D3

Qwen2.5
D2

nuScenes
D1

nu-X, no license
C3

Apache2.0
D2

nuScenes
C3

Apache2.0
D2

nuScenes-QA
C3

Apache2.0 D1

16 DiMA-MLLM
(Hegde et al., 2025) C1 D2

LLaVA v1.5
D2

nuScenes
D1

Custom C1 D2
nuScenes C1 D2

DriveLM C1 D1

17 Omni-Q
(Wang et al., 2025b)

C2
Custom

D2
LLaVA v1.5

D2
nuScenes

D2
Custom

C3
Custom

D2
nuScenes

C3
Custom

D2
DriveLM

C2
Custom D3*

18 Omni-L
(Wang et al., 2025b)

C2
Custom

D2
LLaVA v1.5

D2
nuScenes

D2
Custom

C3
Custom

D2
nuScenes

C3
Custom

D2
DriveLM

C2
Custom D1

19 Orion
(Fu et al., 2025a)

C3
Apache2.0

D2
Vicuna v1.5

D3
B2D-Base

D3
B2D-Chat

C3
Apache2.0

D3
Bench2Drive

C3
Apache2.0

D3
Bench2Drive

C3
Apache2.0 D3*

❺ 20 DriveMLM
(Cui et al., 2025a) C1 D2

LLaMA-7B
D1

Custom
D1

Custom C1 D3
CARLA Town05 C1 D1

Custom C1 D1

21 LMDrive
(Shao et al., 2024a)

C3
Apache2.0

D2
LLaVA v1.5

D2
Custom

D2
Custom

C3
Apache2.0

D3
CARLA Town05

C3
Apache2.0

D2
Custom

C3
Apache2.0 D2**

❻ 22 SimLingo
(Renz et al., 2025)

C3
Apache2.0

D3
MiniInternVL

D2
Custom

D2
Custom

C3
Apache2.0

D3
Bench2Drive

C3
Apache2.0

D2
DriveLM

C3
Apache2.0 D3

❼ 23 VLP
(Pan et al., 2024a) C1 D3

CLIP
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

24 VLM-AD
(Xu et al., 2025b) C1 D1

GPT-4o
D2

nuScenes N/A C1 D3
CARLA Town05 N/A N/A C1 D1

25 DiMA
(Hegde et al., 2025) C1 D2

LLaVA v1.5
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

26 Solve-E2E
(Chen et al., 2025) C1 D2

LLaVA v1.5
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

❽ 27 VLM-E2E
(Liu et al., 2025) C1 D3

BLIP-2
D2

nuScenes N/A C1 D3
CARLA Town05 N/A N/A C1 D1

28 DME-Driver
(Han et al., 2025) C1 D2

LLaVA
D1

Custom N/A C1 D2
nuScenes N/A N/A C1 D1

29 Senna-E2E
(Jiang et al., 2024)

C3
Apache2.0

D2
Vicuna v1.5

D1
DriveX N/A C3

Apache2.0
D2

nuScenes N/A N/A C3
Apache2.0 D2**

30 DiffVLA
(Jiang et al., 2025a) C1 D2

LLaVA v1.5
D2

NAVSIM v2 N/A C1 D2
NAVSIM v2 N/A N/A C1 D1

31 DriveVLM-Dual
(Tian et al., 2024) C1 D3

Qwen-VL
D1

Custom N/A C1 D2
nuScenes N/A N/A C1 D1

32 Solve-E2E-Async
(Chen et al., 2025) C1 D2

LLaVA v1.5
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

33 DiMA-Dual
(Hegde et al., 2025) C1 D2

LLaVA v1.5
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

34 HE-Drive
(Wang et al., 2024a) C1 D2

LLaMA 3
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

35 VDT-Auto
(Guo et al., 2025) C1 D3

Qwen-VL
D2

nuScenes N/A C1 D2
nuScenes N/A N/A C1 D1

36 FASIONAD++
(Qian et al., 2025b) C1 Unavailable D2

nuScenes N/A C1 D3
Bench2Drive N/A N/A C1 D1

37 AsyncDriver
(Chen et al., 2024d)

C3
Apache2.0

D2
LLaMA 2

D2
nuPlan N/A C3

Apache2.0
D2

nuPlan N/A N/A C3
Apache2.0 D3**
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Figure 9: Distribution of openness levels across data and code assets for the 37 surveyed methods. Numerical
labels on the bars represent the count of approaches in each openness category per asset.

Following Eiras et al. (2024), we consider training, evaluation and deployment as different stages of building
a model, and accordingly score the assets, which is “data” and “code”. For an asset, a higher score implies
a higher openness level. Since we study trajectory planning methods that leverage FMs, the underlying
assets for our use cases require additional elements, as shown in Fig. 8(a). Specifically, we include pretrained
FM weights in the training stage as an additional data asset. We also consider driving and language/action
datasets separately, as language annotations are generally derived from existing driving datasets, and multiple
language annotations can exist for the same driving dataset, e.g., nuCaption (Yang et al., 2025b), nuX (Ding
et al., 2024a), nuScenes-QA (Qian et al., 2024) and DriveLM-nuScenes (Sima et al., 2024). For the levels of
openness, we score each asset between 1 and 3 to provide targeted information for research and commercial
purposes (refer to Fig. 8(b)), defined as:

• 1 implies an asset, i.e., code or data, is not publicly released or is released with a license that restricts
both non-commercial and commercial usage, including research.

• 2 represents that the asset is publicly available and can be used for non-commercial purposes,
including research, but not for commercial use. One example license for this is Creative Commons
Attribution-NonCommercial 4.0 International.

• 3 is for assets that are publicly available and can be used for both research and commercial purposes,
e.g., those with Apache License v2.0 or MIT License.

In Tab. 6, we classify the code and data of all the approaches using these levels of openness. We observe that
there is no approach with all assets being available for both research and commercial purposes. Only five of
the approaches (i.e., Omni-Q, Orion, LMDrive, SimLingo and AgentDriver) released all of their assets openly
with some assets limited for commercial usage. Four of these approaches are FMs tailored for trajectory
planning, and one of them is an FM guiding trajectory planning of a modular AD model. Consequently, no
open-source implementation is available for FM guiding trajectory planning for an E2E-AD model (rows
23-36). We also observe that training code and the model weights are among the most restricted assets, which
consequently makes reproduction and reuse of the methods without these assets significantly challenging
(please refer to Appendix A for further details, and see Fig. A.11).

To demonstrate and summarise per-asset openness status, we provide the distribution of the openness levels
of each asset in Fig. 9. The figure indicates that the model weights of pretrained FMs are commonly open
for research (31 out of 37 models), enabling the models to be developed. On the other hand, this doesn’t
necessarily translate into their derivatives being open. Specifically, the model architecture and weights is the
most restricted asset with only 6 models providing them openly for research and commercial usage (D2 or D3).
Similarly, as another crucial aspect of reproducibility, only 10 models openly share the training code (C2 or
C3). This discrepancy creates a significant bottleneck: without model parameters and implementation details
of the training pipelines, it is difficult for the community to build upon the previous research. Ultimately,
this presents a challenge for reproduction and reuse.
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We also observe a clear distinction between the openness of synthetic and real-world datasets. Synthetic
datasets, generated typically via the CARLA simulator (Dosovitskiy et al., 2017), are often fully-open (D3),
allowing for unrestricted use in both research and commercial projects. In contrast, the real-world datasets
used by the surveyed methods, including nuScenes Caesar et al. (2020) and BDD-X Kim et al. (2018), are
commonly restricted to non-commercial use cases only (D2). This gap creates friction when translating
research into industrial practice and may introduce inconsistencies in standardised evaluation across academic
and commercial domains.

7 Open Issues and Emerging Directions

In this section, we identify and discuss the open issues within our scope, while also considering emerging
directions in the broader research landscape.

Deploying these models can be challenging due to the high inference cost, especially when CoT
reasoning is used. Except for a few models using knowledge distillation only during training (Sec. 5.1), all
other approaches in our scope require an FM for inference. Consequently, mainly due to the large number
of parameters and AR generation of the output, their latency is commonly longer than required,what is
suitable for AD. This is usually accepted as 10-30fps to provide effective responsiveness to the changing
environment and to match the latency of sensor data (camera, lidar) (Caesar et al., 2020; Sun et al., 2020;
Ettinger et al., 2021). For example, Orion (Fu et al., 2025a) has more than 7B parameters (see Tab. 1) and
an inference rate of 0.8fps on an Nvidia A800 GPU, even without CoT (Fu et al., 2025b). Additionally,
referring to our previous experiment in Sec. 4.2.2, the throughput of SimLingo (Renz et al., 2025), a relatively
smaller model than its counterparts, using only the front view, without and with CoT reasoning, is 3.6fps
and 0.8fps, respectively, on an Nvidia A4500 GPU respectively. While, efficient processing has been recently
considered in a number of models, such as the use of separate slow, reasoning-based FM systems alongside a
fast decision system for rapid response times (Qian et al., 2025b; Zhou et al., 2025b; Wang et al., 2025c), fast
control cycles have generally not been a priority for current models. Therefore, more efficient approaches are
necessary to be able deploy such models in the real-world.

Is it safe to drive on the road?

The image shows a road with cows grazing on the side. It is important to 
note that driving on this road is not safe for cows. The cows are crossing 
the road, which is a clear and dangerous situation. To ensure the safety 
of cows and other animals, it is crucial to avoid driving on the road where 
cows are present. Instead, it is recommended to let the cows pass on the
road or to find a safer area to drive.

       Mini-InternVL

   No, the current route is not too busy.
       SimLingo

VS

Figure 10: An example showing vision-language collapse in the VLM of SimLingo after fine-tuning. We first
prompt Mini-InternVL, the VLM that SimLingo is initialised from, and then SimLingo, i.e., Mini-InternVL
after fine-tuning, with the image and text shown in the figure.

Fine-tuned VLMs become less capable of interpreting the world (vision-language collapse). The
superiority of FMs tailored for trajectory planning in benchmarks demonstrates that they effectively leverage
transfer learning via fine-tuning the pretrained models. However, this fine-tuning procedure can result in the
loss of capabilities of the VLM that could potentially be more helpful for trajectory planning. This crippling
effect might be emerging due to the negative effect of fine-tuning, studied as concept forgetting (Mukhoti
et al., 2024) which is an extension of the traditional catastrophic forgetting (Kirkpatrick et al., 2017) for
fine-tuned FMs. We show this effect in Fig. 10, where we prompt the VLM used in SimLingo with the
same image and text inputs before and after fine-tuning. For comparison purposes, we use one of the inputs
we employed for prompting GPT-4o in Fig. 1, where GPT-4o provides a comprehensive accurate response.
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The traffic light is green, indicating that vehicles can proceed 
through the intersection. Stay within the designated lanes and 
avoid crossing solid lines.  Note the presence of parked vehicles 
and ensure not to block driveways or entrances. Adhere to the 
speed limits for the area.

What are the traffic rules that you pay attention? 

It looks like a historical town. Which town is it? Is there anything 
worthwhile to visit?

It appears that you are in Woodstock, a historical town in 
Oxfordshire. It is known for its historical buildings and proximity 
to Blenheim Palace, a UNESCO World Heritage Site.

I want to park here and see around for some time. Is parking 
allowed here?

Yes, parking appears to be allowed here. There are vehicles parked 
along the side of the road, including a green motorcycle and a 
black car. There are no visible signs indicating that parking is 
prohibited.

Then, could you please park between the green motorcycle and the 
black car on the left?

Sure, parking now. [Trajectories are planned and executed 
until parking is completed]

Sure, I will do my best without violating the traffic rules. 
[Trajectories are planned and executed by adjusting the
speed accordingly.]

I am getting late for my meeting. Please overtake the car ahead 
and drive faster.

I am done with my visit. Please start driving and continue to my 
hotel in Oxford.

Okay, I am driving there now. [Trajectories are planned and 
executed for reaching the target destination.]

Figure 11: Example VQAs and user instructions that the current models lack.

Although it is not as comprehensive as GPT-4o, the response of Mini-InternVL, a relatively small VLM that
SimLingo is initialised from, is also quite accurate. Specifically, it captures that the cows are crossing the
road and suggests either letting the cows pass or finding a safer area to drive. On the other hand, after
fine-tuning, SimLingo provides a self-contradictory response, mentioning that it is not safe to drive followed
by an explanation that the route is not busy, implying a safe route. Furthermore, SimLingo does not provide
any insight about the environment, such as the presence of the cows. Further research and thorough analysis
is essential to ensure preservation of necessary capabilities of VLMs after fine-tuning on AD-specific datasets.

Towards Agentic VLAs. Existing approaches with language interaction capability generally focus on
interpreting the current scene to provide explainability to the user. There is however potential to offer further
use cases if the question-answer pairs are tailored accordingly. For example, the user can ask non-driving-
related questions such as the historical details of a landmark in a town that the ego driver passes through, as
illustrated in Fig. 11. Alternatively, the model could help people with visual impairments understand their
surroundings, such as why the traffic is stopping. One limitation of current models with action interaction
capability, is that they are limited to instructions that can be executed in a short time horizon. DriveMLM
and SimLingo consider instructions to change speed or lane, which can be completed within the horizon of
a single trajectory output. As a result, the model does not need to remember the instruction over multiple
calls, or check if it is completed, which is impractical. Though the instruction set used in LMDrive is larger
with 56 different types of instructions, it still doesn’t require the model to break down a human-like complex
instruction into steps as in the example “please start driving and continue to my hotel in Oxford”, illustrated
in Fig. 11. More sophisticated planning models in the robotics literature (Huang et al., 2022; Belcak et al.,
2025) can help leverage similar capabilities in real-world for AD models.

There is no model with action interaction capability in a real-world setup. Challenges of ensuring
safety of action interaction capability in a real-world setup. Providing action-interaction capability
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allows substantial flexibility of commands that can be provided by a user. However, due to the open
domain of user instructions, there are substantial challenges in ensuring that the vehicle operates safety,
regardless of the commands given. Existing methods do include training of action safety in the dataset,
as described in Section 3.1, however ensuring safety with an unrestricted command domain remains an
open issue. Furthemore, all models investigated in this work with action interaction capability are trained
and tested using synthetic setups using CARLA simulator. As domain shift results in a significant drop in
performance (Luo et al., 2018; Zhou et al., 2023a; Oksuz et al., 2023; Kuzucu et al., 2024), deploying existing
models without addressing sim-to-real gap is impractical. Therefore, designing methods to address sim-to-real
gap and curating real-world training datasets is necessary to be able develop, and eventually deploy, models
with action interaction capability.

Further analyses are necessary to identify what is significant for improving driving performance.
There are major differences in model and experimental design choices across methods, which makes it difficult
to understand why a method makes a difference. For example, Orion is trained on the B2D-Base dataset (Jia
et al., 2024) with around 7 hours of video clips, combines an off-the-shelf vision encoder with a custom
Q-Former with memory blocks for videos, trains the model in three stages, has more than 7B parameters,
uses a variational autoencoder as trajectory planning head, and employs a comprehensive CoT including
scene description, scene analysis, action reasoning, and history review. This models achieves 77.74 driving
score on the closed-loop B2D benchmark, significantly outperforming E2E-AD approaches such as VAD with
42.35 driving score (Jia et al., 2024). On the other hand, SimLingo employs Mini-InternVL (1B parameters)
as an off-the-shelf VLM, fine-tunes it on more than 200 hours of video in a single stage relying on a data
resampling approach coined as bucketing, uses a different set of language annotations and CoT, and finally
achieves a driving score exceeding 85. These major differences between models, training approaches as well
as training datasets make it difficult to understand why a model makes a difference. As a result, a deeper
understanding of how these factors affect the model is necessary.

Lack of standardized benchmarks and metrics for FM-based trajectory planning. Building upon
the aforementioned challenges, the establishment of standardized benchmarks and metrics is essential to
facilitate rigorous and equitable comparison across different approaches, and to systematically identify the
key factors contributing to performance improvements (e.g., training data characteristics, architectural design
choices, model scale). Such benchmarks and evaluation metrics should address multiple dimensions of model
performance, including:

• Driving performance under resource-constrained settings. FM-based approaches for AD exhibit
considerable variation in model size. For instance, SimLingo comprises 1B parameters (Renz et al.,
2025), while Orion contains approximately 7B parameters (Fu et al., 2025a). Consequently, inference
latency varies substantially across methods, further influenced by design decisions such as CoT
usage. Therefore, evaluating driving performance under controlled resource constraints (e.g., bounded
inference time) becomes crucial for assessing the practical viability of FM-based methods in real-world
deployment scenarios.

• Language interaction and action interaction capabilities. Beyond core driving competencies, certain
FMs designed for trajectory planning incorporate additional capabilities for language and action
interactions. To comprehensively evaluate these capabilities, standardized benchmarks encompassing
both real-world and simulated data are necessary.

• Reasoning of the models. Furthermore, analogous to the common benchmarks used for evaluating FMs,
standard benchmarks for evaluating the reasoning capabilities of FMs tailored for trajectory planning
are needed. Drawing from the broader FM literature, the ARC-AGI benchmark (Chollet et al., 2025)
exemplifies this approach by designing visual reasoning tasks that humans solve intuitively while
FMs struggle. Similar domain-specific benchmarks should be developed for AD to assess reasoning
abilities when processing complex linguistic inputs, as well as multimodal language-vision grounding
capabilities. Developing such benchmarks presents substantial challenges and warrants dedicated
attention from the research community.

Evaluating reasoning. Similar to the common benchmarks used for evaluating FMs, standard benchmarks
for evaluating the reasoning capabilities of FMs tailored for trajectory planning are needed. As an example
from the FM literature, the ARC-AGI benchmark designs visual reasoning problems that are easily solved by
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the humans while FMs have difficulty with, and measures the accuracy of the FMs on such problems within a
limited resource budget. Similar benchmarks should be designed for AD to evaluate reasoning abilities of the
models considering complex language inputs, as well as language and vision grounding. Such benchmarks
would be challenging, and require special attention from the community.

Improving driving and evaluation with World Models. Training current FM-based methods for AD
typically relies on recorded driving demonstrations from an expert, which can be either human-generated
or derived from another model with access to privileged information. Consequently, model performance
is fundamentally bounded by the capabilities of the expert, and the availability of training data remains
inherently limited. Furthermore, existing closed-loop simulators exhibit significant constraints: they are either
characterized by low fidelity, as exemplified by CARLA (Dosovitskiy et al., 2017), or impose substantial
computational demands, as in the case of novel viewpoint synthesis approaches (Kerbl et al., 2023). In contrast,
world models aim to learn the underlying dynamics of the autonomous vehicle’s operating environment, thereby
enabling the generation of plausible future states. Therefore, world models can be leveraged to synthesize
novel training data (Ren et al., 2025; Zhao et al., 2025b) as well as to facilitate evaluation procedures that
emphasize rare and safety-critical edge cases, thus addressing long-tail distributional challenges. Additionally,
world models can also be integrated with driving models, allowing world dynamics to influence driving
decisions (Wang et al., 2024d), for example by rolling out possible futures using the world model and selecting
the most suitable trajectory for driving.

8 Conclusive Remarks

In this paper, we provided a comprehensive review of trajectory planning methods that utilise an FM. To
offer a complete and coherent perspective, we introduced a taxonomy of these methods based on how an FM
is employed. Using this taxonomy, we discussed the corresponding approaches separately in a detailed and
comparative manner, providing a unified yet critical point of view. We also investigated the openness of the
approaches to assist practitioners and researchers in selecting suitable models. Finally, we identified open
issues that are critical for developing practical models with the desired functionalities. With this review, the
community can better understand the current state of the field and the directions to pursue for developing
more capable solutions for AD leveraging FMs.
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APPENDIX

A Further Details on the Openness of the Methods

We classify and discuss the openness of the assets of each method in Sec. 6. Here, we provide Fig. A.11 as a
summary of the openness levels of each asset, where we can easily see in Fig. A.11(a) that the training code
and model weights of the approaches are the most restricted assets, as stated in Sec.6. Furthermore, below
we include the conventions, which also clarify few outlier cases in the openness classification in Tab. 6:

• If evaluation of an approach is performed on multiple datasets, the dataset with the least restrictive
license is considered for the classifying “Driving Evaluation Dataset” and “Language/Action Evalua-
tion Dataset” assets. The name of the dataset in question is noted as an explanation. This selection
is chosen to reflect when at least part of the results can be reproduced by the community.

• On the other hand, if training is performed on multiple datasets jointly, the dataset with the
most restrictive license is considered for classifying “Trajectory Planning Training Dataset” and
“Language/Action Capabilities Training Dataset‘ assets. The name of the dataset in question is
noted as an explanation. This convention is chosen as all datasets within a mixture are needed to
reproduce the results. However, few methods, e.g. Drive-VLM (Tian et al., 2024), train the models
on different dataset mixtures, with results reported independently. In such a case, the score of the
least restrictive mixture of datasets is used for the corresponding cell entry.

• To provide further clarity on the basis of our classification, we include the license name for the code
assets, and the dataset name for the data assets (except model weights).

• For Omni-Q (Wang et al., 2025b), Orion (Fu et al., 2025a) and AsyncDriver (Chen et al., 2024d), the
license of the released model weights is in conflict with pretrained FMs weights. We classify these
entries based on the released model license and warn the reader that additional restrictions may
apply (noted as *).

• For LMDrive (Shao et al., 2024a) and Senna-E2E (Jiang et al., 2024), there are two contradicting
licenses for the model weights, in the same huggingface space. We classify the entry based on the
more restrictive license which also aligns with the openness score of the pretrained FMs weights
(noted as **).

• If no license is specified, default copyright law applies, which is highly restrictive.

• If the model combines a vision encoder and an LLM–instead of using an off-the-shelf VLM–we consider
the most restrictive license for the pretrained FMs weights classification. Note, any components
trained from scratch are ignored (e.g. LLM in CarLLaVA Renz et al. (2024))

• Closed-loop evaluation benchmarks like CARLA Town05 (Prakash et al., 2021), CARLA Longest6
(Chitta et al., 2022), Bench2Drive (Jia et al., 2024) and LAV (Chen & Krähenbühl, 2022) are
considered within the "Driving Evaluation Dataset" asset as they provide route splits or auxiliary
scenario configuration files.

46


	Introduction
	Scope and Contributions
	Comparison with Previous Reviews

	Notations and Background
	A Hierarchical Taxonomy
	Foundation Models Tailored for Trajectory Planning
	Foundation Models Guiding Trajectory Planning

	Foundation Models Tailored for Trajectory Planning
	How to Fine-tune a FM for Trajectory Planning
	Models Focused Solely on Trajectory Planning
	Models without CoT Reasoning ❶
	Text Output for CoT Reasoning ❷
	Initial Trajectory Prediction for CoT Reasoning ❸

	Models Providing Additional Capabilities
	Models Providing Language Interaction Capability ❹
	Models Providing Action Interaction Capability ❺


	Foundation Models Guiding Trajectory Planning
	Models Using Knowledge Distillation Only During Training ❼
	Models Using Knowledge Transfer During Inference ❽

	How Open Are the Dataset and Code of Existing Approaches?
	Open Issues and Emerging Directions
	Conclusive Remarks
	Further Details on the Openness of the Methods

