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Abstract
Diffusion models, praised for their success in gen-
erative tasks, are increasingly being applied to
robotics, demonstrating exceptional performance
in behavior cloning. However, their slow gen-
eration process stemming from iterative denois-
ing steps poses a challenge for real-time applica-
tions in resource-constrained robotics setups and
dynamically changing environments. In this pa-
per, we introduce the One-Step Diffusion Policy
(OneDP), a novel approach that distills knowl-
edge from pre-trained diffusion policies into a
single-step action generator, significantly accel-
erating response times for robotic control tasks.
We ensure the distilled generator closely aligns
with the original policy distribution by minimiz-
ing the Kullback-Leibler (KL) divergence along
the diffusion chain, requiring only 2%-10% addi-
tional pre-training cost for convergence. We eval-
uated OneDP on 6 challenging simulation tasks
as well as 4 self-designed real-world tasks using
the Franka robot. The results demonstrate that
OneDP not only achieves state-of-the-art success
rates but also delivers an order-of-magnitude im-
provement in inference speed, boosting action pre-
diction frequency from 1.5 Hz to 62 Hz, establish-
ing its potential for dynamic and computationally
constrained robotic applications. A video demo
is provided here, and the code will be publicly
available soon.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have emerged as a leading approach to generative AI,
achieving remarkable success in diverse applications such
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as text-to-image generation (Saharia et al., 2022; Ramesh
et al., 2022; Rombach et al., 2022), video generation (Ho
et al., 2022; OpenAI, 2024), and online/offline reinforce-
ment learning (RL) (Wang et al., 2022; Chen et al., 2023a;
Hansen-Estruch et al., 2023; Psenka et al., 2023; Chen et al.,
2024). Recently, Chi et al. (2023); Team et al. (2024); Reuss
et al. (2023); Ze et al. (2024); Ke et al. (2024); Prasad et al.
(2024) demonstrated impressive results of diffusion models
in imitation learning for robot control. In particular, Chi
et al. (2023) introduces the diffusion policy and achieves a
state-of-the-art imitation learning performance on a variety
of robotics simulation and real-world tasks.

However, because of the necessity of traversing the reverse
diffusion chain, the slow generation process of diffusion
models presents significant limitations for their application
in robotic tasks. This process involves multiple iterations
to pass through the same denoising network, potentially
thousands of times (Song et al., 2020a; Wang et al., 2023).
Such a long inference time restricts the practicality of using
the diffusion policy (Chi et al., 2023), which by default runs
at 1.49 Hz, in scenarios where quick response and low com-
putational demands are essential. While classical tasks like
block stacking or part assembly may accommodate slower
inference rates, more dynamic activities involving human
interference or changing environments require quicker con-
trol responses (Prasad et al., 2024). In this paper, we aim to
significantly reduce inference time through diffusion distil-
lation and achieve responsive robot control.

Considerable research has focused on streamlining the re-
verse diffusion process for image generation, aiming to
complete the task in fewer steps. A prominent approach in-
terprets diffusion models using stochastic differential equa-
tions (SDE) or ordinary differential equations (ODE) and
employs advanced numerical solvers for SDE/ODE to speed
up the process (Song et al., 2020a; Liu et al., 2022; Karras
et al., 2022; Lu et al., 2022). Another avenue explores dis-
tilling diffusion models into generators that require only one
or a few steps through Kullback-Leibler (KL) optimization
or adversarial training (Salimans & Ho, 2022; Song et al.,
2023; Luo et al., 2024; Yin et al., 2024). However, acceler-
ating diffusion policies for robotic control has been largely
underexplored. Consistency Policy (Prasad et al., 2024)
(CP) employs the consistency trajectory model (CTM) (Kim
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Figure 1: Comparison of Diffusion Policy and One-Step Diffusion Policy (OneDP). We demonstrate the rapid response of OneDP
to changes in dynamic environments through real-world experiments. The first row illustrates how Diffusion Policy (Chi et al., 2023)
struggles to adapt to environment changes (here, object perturbation) and fails to complete the task due to its slow inference speed. In
contrast, the second row highlights OneDP’s quick and effective response. The third row offers a quantitative comparison: in the first
panel, OneDP executes action prediction much faster than Diffusion Policy. This enhanced responsiveness results in a higher average
success rate across multiple tasks, particularly in real-world scenarios, as depicted in the second panel. The third panel reveals that OneDP
also completes tasks more swiftly. The final panel indicates that distillation of OneDP requires only a small fraction of the pre-training
cost.

et al., 2023a) to adapt the pre-trained diffusion policy into
a few-step CTM action generator. Despite this, several it-
erations for sampling are still required to maintain good
empirical performance.

In this paper, we introduce the One-Step Diffusion Policy
(OneDP), which distills knowledge from pre-trained diffu-
sion policies into a one-step diffusion-based action genera-
tor, thus maximizing inference efficiency through a single
neural network feedforward operation. We demonstrate su-
perior results over baselines in Figure 1. Inspired by the suc-
cess of SDS (Poole et al., 2022) and VSD (Wang et al., 2024)
in text-to-3D generation, we propose a policy-matching dis-
tillation method for robotic control. The training of OneDP
consists of three key components: a one-step action genera-
tor, a generator score network, and a pre-trained diffusion-
policy score network. To align the generator distribution
with the pre-trained policy distribution, we minimize the KL
divergence over diffused actions produced by the generator,
with the gradient of the KL expressed as a score difference
loss. By initializing the action generator and the genera-
tor score network with the identical pre-trained model, our
method not only preserves or enhances the performance of
the original model, but also requires only 2%-10% addi-
tional pre-training cost for the distillation to converge. We
compare our method with CP and demonstrate that it outper-

forms CP with a higher success rate across tasks, leverag-
ing a single-step action generator and achieving 20× faster
convergence. A detailed comparison with this approach is
provided in Appendix A and Section 4.

We evaluate our method in both simulated and real-world
environments. In simulated experiments, we test OneDP
on the six most challenging tasks of the Robomimic bench-
mark (Mandlekar et al., 2021). For real-world experiments,
we design four tasks with increasing difficulty and deploy
OneDP on a Franka robot arm. In both settings, OneDP
demonstrated state-of-the-art success rates with single-step
generation, performing 42× faster in inference.

2. One-Step Diffusion Policy
2.1. Preliminaries

Diffusion models are powerful generative models applied
across various domains (Ho et al., 2020; Sohl-Dickstein
et al., 2015; Song et al., 2020b). They function by defining
a forward diffusion process that gradually corrupts the data
distribution into a known noise distribution. Given a data
distribution p(x), the forward process adds Gaussian noise
to samples, x0 ∼ p(x), with each step defined as xk =
αkx

0+σkϵk, where ϵk ∼ N (0, I). The parameters αk and
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σk are manually designed and vary according to different
noise scheduling strategies.

A probabilistic model pθ(xk−1|xk) is trained to reverse this
diffusion process, enabling data generation from pure noise.
DDPM (Ho et al., 2020) uses discrete-time scheduling with
a noise-prediction model ϵθ to parameterize pθ, while EDM
(Karras et al., 2022) employs continuous-time diffusion with
x0-prediction. We use epsilon prediction ϵθ in our deriva-
tion. The diffusion model is trained using the denoising
score matching loss (Ho et al., 2020; Song et al., 2020b).
Once trained, we can estimate the unknown score s(xk) at
a diffused sample xk as:

s(xk) = −ϵ
∗(xk, k)

σk
≈ −ϵθ(x

k, k)

σk
, (1)

where ϵ∗(xk, k) is the true noise added at time k and we de-
note sθ(xk) = − ϵθ(x

k,k)
σk

. With a score estimate, clean data
x0 can be sampled by reversing the diffusion chain (Song
et al., 2020b). This requires multiple iterations through the
estimated score network, making it inherently slow.

Wang et al. (2022); Chi et al. (2023) extend diffusion mod-
els as expressive and powerful policies for offline RL and
robotics. In robotics, a set of past observation images, O,
is used as input to the policy. An action chunk, A, which
consists of a sequence of consecutive actions, forms the
output of the policy. Diffusion policy is represented as a
conditional diffusion-based action prediction model,

πθ(A
0|O) :=

∫
N (AK ;0, I)

∏k=1
k=K pθ(A

k−1|Ak,O)dAK · · · dA1,

(2)
The explicit form of πθ(A0|O) is often impractical due
to the complexity of integrating actions from AK to A1.
However, we can obtain action chunk samples from it by
iterative denoising. More details are provided in Appendix B

2.2. One-Step Diffusion Policy

Action sampling through the vanilla diffusion policies is
notoriously slow due to the need of tens to hundreds of
iterative inference steps. The latency issue is critical for
computationally sensitive robotic tasks or tasks that require
high control frequency. Although employing advanced ODE
solvers (Song et al., 2020a; Karras et al., 2022) could help
speed up the sampling procedure, empirically at least ten it-
erative steps are required to ensure reasonable performance.
Here, we introduce a training-based diffusion policy distil-
lation method, which distills the knowledge of a pre-trained
diffusion policy into a single-step action generator, enabling
fast action sampling.

We propose a one-step implicit action generator Gθ, from
which actions can be easily obtained as follows,

z ∼ N (0, I),Aθ = Gθ(z,O). (3)

We define the action distribution generated by Gθ as pGθ .
Assuming the existence of a pre-trained diffusion policy
πϕ(A|O) defined by Equation (2) and parameterized by
ϵϕ, its corresponding action distribution is denoted as pπϕ .
Drawing inspiration from the success of SDS (Poole et al.,
2022) and VSD (Wang et al., 2024) in text-to-3D applica-
tions, we propose using the following reverse KL divergence
to align the distributions pGθ and pπϕ ,

DKL(pGθ ||pπϕ) = E z∼N (0,I),
Aθ=Gθ(z,O)

[
log pGθ (Aθ|O)− log pπϕ(Aθ|O)

]
.

It is generally intractable to estimate this loss by directly
computing the probability densities, since pGθ is an implicit
distribution and pπϕ involves integrals that are impracti-
cal (Equation (2)). However, we only need the gradient
∇θDKL(pGθ ||pπϕ) with respect to θ to train our generator
by gradient descent, with can be computed as follows:

E z∼N (0,I),
Aθ=Gθ(z,O)

[
(∇Aθ

log pGθ (Aθ|O)−∇Aθ
log pπϕ(Aθ|O))∇θAθ

]
.

(4)
Here spGθ (Aθ) = ∇Aθ

log pGθ (Aθ|O) and spπϕ (Aθ) =

∇Aθ
log pπϕ(Aθ|O) are the scores of the pGθ and pπϕ re-

spectively. Computing this gradient still presents two sig-
nificant challenges: First, the scores tend to diverge for
samples from pGθ that have a low probability in pπϕ , espe-
cially when pπϕ may approach zero. Second, the primary
tool for estimating these scores, the diffusion models, only
provides scores for the diffused distribution.

Inspired by Diffusion-GAN (Wang et al., 2023), which
proposed to optimize statistical divergence, such as the
Jensen–Shannon divergence (JSD), throughout diffused data
samples, we propose to similarly optimize the KL diver-
gence outlined in Equation (4) across diffused action sam-
ples using its gradient below,

∇θEk∼U [DKL(pGθ,k||pπϕ,k)] =

E z∼N (0,I),k∼U
Aθ=Gθ(z,O)

Ak
θ∼q(A

k
θ |Aθ,k)

[
w(k)(spGθ (A

k
θ)− spπϕ (A

k
θ))∇θAk

θ

]
.

(5)

where w(k) is a reweighting function, q is the forward dif-
fusion process and spπϕ (A

k
θ) could be obtained through

Equation (1) with ϵϕ. In order to estimate the score of the
generator distribution, spGθ , we introduce an auxiliary dif-
fusion network πψ(A|O), parameterized by ϵψ . We follow
the typical way of training diffusion policies, which opti-
mizes ψ by treating pGθ as the target action distribution
(Wang et al., 2024),

min
ψ

E xk∼q(xk|x0),

x0=stop-grad(Gθ(z)),
z∼N (0,I),k∼U

[λ(k) · ||ϵψ(xk, k)− ϵk||2]. (6)

Then we can obtain spπψ (A
k
θ) by applying ϵψ to Equa-

tion (1). We approximate spGθ (A
k
θ) in Equation (5) with
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Figure 2: Diffusion Distillation Pipeline. a) Our one-step action generator processes image-based visual observations alongside a
random noise input to deliver single-step action predictions. b) We implement KL-based distillation across the entire forward diffusion
chain. Direct computation of the KL divergence is often impractical; however, we can effectively utilize the gradient of the KL, formulated
into a score-difference loss. The pre-trained score network πϕ remains fixed while the action generator Gθ and the generator score
network πψ are trained.

spπψ (A
k
θ). We iteratively update the generator parameters

θ by Equation (5), and the generator score network param-
eter ψ by Equation (6). The parameter of the prertrained
diffusion policy ϕ is fixed throughout the training. During
inference, we directly perform one-step sampling with Equa-
tion (3). We name our algorithm OneDP-S, where S denotes
the stochastic policy.

When we apply a deterministic action generator by omitting
random noise z, such that Aθ = Gθ(O), the distribution
pGθ becomes a Dirac delta function centered at Gθ(O), that
is, pGθ = δGθ(O)(A). Consequently, spGθ (A

k
θ) can be

explicitly solved as follows:

∇Ak
θ
log pθ(A

k
θ) = ∇Ak

θ
log pθ(A

k
θ |Aθ) = −

ϵk
σk

;

where Ak
θ = αkAθ + σkϵk, ϵk ∼ N (0, I).

(7)

By incorporating Equation (7) into Equation (5), we can
have a simplified loss function without the need to introduce
the generator score network:

∇θEk∼U [DKL(pGθ,k||pπϕ,k)] =

E z∼N (0,I),k∼U
Aθ=Gθ(z,O)

Ak
θ∼q(A

k
θ |Aθ,k)

[
w(k)

σk
(ϵϕ(A

k
θ , k))− ϵk)∇θAk

θ

]
. (8)

We name this deterministic diffusion policy distillation
OneDP-D. We illutrate our training pipeline in Figure 2,
and summarize our algorithm training in Algorithm 1.

Policy Discussion. A stochastic policy, which encompasses
deterministic policies, is more versatile and better suited to
scenarios requiring exploration, potentially leading to better
convergence at a global optimum (Haarnoja et al., 2018). In
our case, OneDP-D simplifies the training process, though

it may exhibit slightly weaker empirical performance. We
offer a comprehensive comparison between OneDP-S and
OneDP-D in Section 4.

Distillation Discussion. We discuss the benefits of optimiz-
ing the expectational reverse KL divergence. First, reverse
KL divergence typically induces mode-seeking behavior,
which has been shown to improve empirical performance
in offline RL (Chen et al., 2023a). Therefore, we anticipate
that reverse KL-based distillation offers similar advantages
for robotic tasks. Second, as demonstrated by Wang et al.
(2023), optimizing JSD, a combination of KLs, between dif-
fused action samples provides stronger performance when
dealing with distributions with misaligned supports. This
aligns with our approach of performing KL optimization
over the diffused distribution.

Algorithm 1 OneDP Training

1: Inputs: action generator Gθ, generator score network
πψ , pre-trained diffusion policy πϕ.

2: Initializaiton Gθ ← πϕ, πψ ← πϕ.
3: while not converged do
4: Sample Aθ = Gθ(z,O), z ∼ N (0, I).
5: Diffuse Ak

θ = αkAθ + σkϵk, ϵk ∼ N (0, I).
6: if OneDP-S then
7: Update ψ by Equation (6)
8: Update θ by Equation (5)
9: else if OneDP-D then

10: Update θ by Equation (8)
11: end if
12: end while
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2.3. Implementation Details

Diffusion Policy. Following Chi et al. (2023), we construct
a diffusion policy using a 1D temporal convolutional neural
network (CNN) (Janner et al., 2022) based U-Net and a stan-
dard ResNet18 (without pre-training) (He et al., 2016) as
the vision encoder. We implement the diffusion policy with
two noise scheduling methods: DDPM (Ho et al., 2020)
and EDM (Karras et al., 2022). We use ϵ noise prediction
for discrete-time (100 steps) diffusion and x0 prediction for
continuous-time diffusion, respectively. The EDM schedul-
ing is essential for Consistency Policy (Prasad et al., 2024)
due to the use of CTM (Kim et al., 2023a). For DDPM,
we set λ(k) = 1 and use the original SDE and DDIM
(Song et al., 2020a) sampling. For EDM, we use the default
λ(k) =

σ2
k+σ

2
d

(σkσd)2
with σd = 0.5. We use the second-order

EDM sampler, which requires two neural network forwards
per discretized step in the ODE.

Distillation. We warm-start both the stochastic and de-
terministic action generator Gθ, and the generator score
network, ϵψ, by duplicating the neural-network structure
and weights from the pre-trained diffusion policy, aligning
with strategies from Luo et al. (2024); Yin et al. (2024); Xu
et al. (2024). The inputs of Gθ include pure noise, a fixed
time embedding (an initial timestep for DDPM or initial
sigma value for EDM), and observations O. The outputs of
Gθ are formulated as direct action predictions. Following
DreamFusion (Poole et al., 2022), we set w(k) = σ2

k. In
the discrete-time domain, distillation occurs over [2, 95]
diffusion timesteps to avoid edge cases. In continuous-time,
we employ the same log-normal noise scheduling as EDM
(Karras et al., 2022) used during distillation. The generators
operate at a learning rate of 1× 10−6, while the generator
score network is accelerated to a learning rate of 2× 10−5.
Vision encoders are also actively trained during the distilla-
tion process.

3. Related Work
Diffusion models have been explored as policy representa-
tions for control tasks, demonstrating strong performance in
offline RL and imitation learning (Janner et al., 2022; Wang
et al., 2022; Chi et al., 2023; Ze et al., 2024). However, their
iterative denoising process poses challenges for real-time
applications. To address this, diffusion distillation methods
(Salimans & Ho, 2022; Song et al., 2023; Kim et al., 2023b;
Luo et al., 2024; Yin et al., 2024; Zhou et al., 2024) aim
to accelerate sampling by training a faster student model.
Consistency Policy (Prasad et al., 2024) applies distillation
to diffusion policies but suffers from performance degra-
dation and slow convergence. We build on these ideas by
employing reverse KL optimization to distill a one-step ac-
tion generator, achieving both efficiency and high success
rates. See Appendix A for a detailed discussion.

4. Experiments
We evaluate OneDP on a wide variety of tasks in both sim-
ulated and real environments. In the following sections,
we first report the evaluation results in simulation across
six tasks that include different complexity levels. Then we
demonstrate the results in the real environment by deploy-
ing OneDP in the real world with a Franka robot arm for
object pick-and-place tasks and a coffee-machine manipu-
lation task. We compare our method with the pre-trained
backbone Diffusion Policy (Chi et al., 2023) (DP) and re-
lated distillation baseline Consistency Policy (Prasad et al.,
2024) (CP). We also report the ablation study results in Ap-
pendix E to present more detailed analyses on our method
and discuss the effect of different design choices.

4.1. Simulation Experiments

Datasets. Robomimic. Proposed in (Mandlekar et al., 2021),
Robomimic is a large-scale benchmark for robotic manipu-
lation tasks. The original benchmark consists of five tasks:
Lift, Can, Square, Transport, and Tool Hang. We find that
the the performance of state-of-the-art methods was already
saturated on two easy tasks Lift and Can, and therefore
only conduct the evaluation on the harder tasks Square,
Transport and Tool Hang. For each of these tasks, the bench-
mark provides two variants of human demonstrations: profi-
cient human (PH) demonstrations and mixed proficient/non-
proficient human (MH) demonstrations. PushT. Adapted
from IBC (Florence et al., 2022), Chi et al. (2023) intro-
duced the PushT task, which involves pushing a T-shaped
block into a fixed target using a circular end-effector. A
dataset of 200 expert demonstrations is provided with RGB
image observations.

Experiment Setup. We pretrain the DP model for 1000
epochs on each benchmark under both DDPM (Ho et al.,
2020) and EDM (Karras et al., 2022) noise scheduling. Note
EDM noise scheduling is a requirement for CP (Prasad
et al., 2024) to satisfy diffusion boundary conditions. Subse-
quently, we train OneDP for 20 epochs and the baseline CP
for 450 epochs until convergence. During evaluation, we
observe significant variance in evaluating success rates with
different environment initializations. We present average
success rates across 5 training seeds and 100 different initial
conditions (500 in total). We report the peak success rate
for each method during training, corresponding to the peak
points of the curves in Figure 4. The metric for most tasks is
the success rate, except for PushT, which is evaluated using
the coverage of the target area.

Table 1 presents the results of OneDP compared with DP
under the default DDPM setting. For DP, we report the aver-
age success rate using DDPM sampling with 100 timesteps,
as well as the accelerated DDIM sampling with 1 and 10
timesteps. Notably, DP fails to generate reasonable actions
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PushT Square ToolHang Transport

Figure 3: Simulation tasks. We evaluate our method against baselines on the single-robot tasks: PushT, Square, and ToolHang, as well
as a dual-robot task Transport. Task difficulty increases from left to right.
Table 1: Robomimic Benchmark Performance (Visual Policy) in DDPM. We compare our proposed OneDP-D and OneDP-S, with
DP under the default DDPM scheduling. We report the mean and standard deviation of success rates across 5 different training runs,
each evaluated with 100 distinct environment initializations. Details of the evaluation procedure can be found in Section 4.1. Our results
demonstrate that OneDP not only matches but can even outperform the pre-trained DP, achieving this with just one-step generation,
resulting in an order of magnitude speed-up.

Method Epochs NFE PushT Square-mh Square-ph ToolHang-ph Transport-mh Transport-ph Avg
DP (DDPM) 1000 100 0.863 ± 0.040 0.846 ± 0.023 0.926 ± 0.023 0.822 ± 0.016 0.620 ± 0.049 0.896 ± 0.032 0.829

DP (DDIM)
1000 10 0.823± 0.023 0.850± 0.013 0.918± 0.009 0.828± 0.016 0.688± 0.020 0.908± 0.011 0.836
1000 1 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000

OneDP-D 20 1 0.802 ± 0.057 0.846 ± 0.028 0.926 ± 0.011 0.808 ± 0.046 0.676 ± 0.029 0.896 ± 0.013 0.826
OneDP-S 20 1 0.816 ± 0.058 0.864 ± 0.042 0.926 ± 0.018 0.850 ± 0.033 0.690 ± 0.024 0.914 ± 0.021 0.843

Table 2: Robomimic Benchmark Performance (Visual Policy) in EDM. We compare our proposed OneDP with CP under the EDM
scheduling. EDM scheduling is required in CP to satisfy boundary conditions. We follow our evaluation metric and report similar values
as in Table 1. We also ablate Diffusion Policy with 1, 10 and 18 ODE steps, which utilizes 1, 19 and 35 NFE in EDM sampling.

Method Epochs NFE PushT Square-mh Square-ph ToolHang-ph Transport-mh Transport-ph Avg

DP (EDM)
1000 35 0.861± 0.030 0.810± 0.026 0.898± 0.033 0.828± 0.019 0.684± 0.019 0.890± 0.012 0.829
1000 19 0.851± 0.012 0.828± 0.015 0.880± 0.014 0.794± 0.012 0.692± 0.009 0.860± 0.013 0.818
1000 1 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000

CP 20 1 0.595± 0.141 0.120± 0.165 0.238± 0.219 0.238± 0.163 0.140± 0.148 0.174± 0.257 0.251
CP 450 1 0.828± 0.055 0.646± 0.047 0.776± 0.055 0.650± 0.046 0.378± 0.091 0.754± 0.120 0.672
CP 450 3 0.839± 0.037 0.710± 0.018 0.874± 0.022 0.626± 0.041 0.374± 0.051 0.848± 0.028 0.712

OneDP-D 20 1 0.829± 0.052 0.776± 0.023 0.902± 0.040 0.762± 0.056 0.705± 0.038 0.898± 0.019 0.812
OneDP-S 20 1 0.841± 0.042 0.774± 0.033 0.910± 0.041 0.824± 0.039 0.722± 0.025 0.910± 0.027 0.830

with single-step generation, yielding a 0% success rate for
all tasks. DP with 10 steps under DDIM slightly outper-
forms DP under DDPM. However, OneDP demonstrates
the highest average success rate with single-step generation
across the six tasks, with the stochastic variant OneDP-S
surpassing the deterministic OneDP-D. This superior perfor-
mance of OneDP-S aligns with our discussion in Section 2.2,
suggesting that stochastic policies generally perform bet-
ter in complex environments. Interestingly, OneDP-S even
slightly outperforms the pre-trained DP, which is not un-
precedented, as shown in cases of image distillation (Zhou
et al., 2024) and offline RL (Chen et al., 2023a). We attribute
this to the fact that iterative sampling may introduce subtle
cumulative errors during the denoising process, whereas
single-step sampling avoids this issue by jumping directly
from the end to the start of the reverse diffusion chain.

In Table 2, we report a similar comparison under the EDM
setting, including CP. We report DP under the same 1 and
10 DDIM steps, and 100 DDPM steps, which correspond

to 1, 19, and 35 number of function evaluations (NFE)
in EDM due to second-order ODE sampling. OneDP-S
outperforms the baseline CP with single-step and its default
best setting of 3-step chain generation. Under EDM, OneDP-
S matches the average success rate of the pre-trained DP,
while OneDP-D performs slightly worse. We also observe
that CP converges much more slowly compared to OneDP,
as shown in Figure 4. This slower convergence is likely
because CP, based on CTM, does not involve the auxiliary
discriminator training that is used to enhance distillation
performance in CTM.

4.2. Real World Experiments

We design four tasks to evaluate the real-world performance
of OneDP, including three common tasks where the robot
picks and places objects at designated locations, referred
to as pnp, and one challenging task where the robot learns
to manipulate a coffee machine, called coffee. Figure 5
shows the experimental setup, with the first row illustrating
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Figure 4: Convergence Comparison. We show our method OneDP converges 20× faster than the baseline method Consistency Policy
(CP) under EDM setting.

the pnp tasks and the second row depicting the coffee
task. We introduce the data collection process and the evalu-
ation setup in the following section and provide more details
in Appendix C.

pnp Tasks. This task requires the robot to pick an ob-
ject from the table and put it in a box. We design three
variants of this task: pnp-milk, pnp-anything and
pnp-milk-move. In pnp-milk, the object is always
the same milk box. In pnp-anything, we expand the
target to 11 different objects as shown in Figure 8. For
pnp-milk-move, we involve human interference to cre-
ate a dynamic environment. Whenever the robot gripper
attempts to grasp the milk box, we move it away, following
the trajectory as shown in Figure 9. We collect 100 demon-
strations each for the pnp-milk and pnp-anything
tasks. Separate models are trained for both tasks, with the
pnp-anything model utilizing all 200 demonstrations.
The pnp-milk-move task is evaluated using the check-
point from the pnp-anything model.

Coffee Task. This task requires the robot to operate a
coffee machine. It involves the following steps: (1) picking
up the coffee pod, (2) placing the coffee pod in the pod
holder on the coffee machine, and (3) closing the lid of the
coffee machine. This task is more challenging since it in-
volves more steps and requires the robot to insert the pod in
the holder accurately. We collect 100 human demonstrations
for this task. We train one specific model for this task.

Evaluation. We evaluate the success rate and task com-
pletion time from 20 predetermined initial positions for the
pnp-milk, pnp-anything, and coffee tasks, as well
as 10 motion trajectories for the pnp-milk-move task.
The left side of Figure 7 shows the setup of the robot, desti-
nation box, and coffee machine, with 20 fixed initialization
points. Figure 9 shows the 10 trajectories for evaluating
pnp-milk-move. Details of the evaluation are provided
in Appendix C. For DP, we follow Chi et al. (2023) to use

DDIM (10 steps) to accelerate the real-world experiment.

We compare OneDP against the DP backbone in real-
world experiments, focusing on three key aspects: success
rate, responsiveness, and time efficiency. Table 3 demon-
strates that OneDP consistently outperforms DP across
all tasks, with the most significant improvement seen in
pnp-milk-move. This task demands rapid adaptation to
dynamic environmental changes, particularly due to sudden
human interference. The wall-clock time for action genera-
tion is reported in Table 5. The slow action generation of DP
hinders its ability to track the moving milk box effectively,
often losing control when the box moves out of its visual
range, as it is still predicting actions based on outdated in-
formation. In contrast, OneDP generates actions quickly,
allowing it to instantly follow the box’s movement, achiev-
ing a 100% success rate in this dynamic task. OneDP-S
slightly outperforms OneDP-D, aligning with the observa-
tions from the simulation experiments.

Additionally, we measure the task completion time for suc-
cessful evaluation rollouts across all algorithms. As shown
in Table 4, OneDP completes tasks faster than DP. Both
OneDP-S and OneDP-D exhibit similarly-rapid task com-
pletion times. The quick action prediction of OneDP re-
duces hesitation during robot arm movements, particularly
when the arm camera’s viewpoint changes abruptly. This
leads to significant improvements in task completion speed.
In Figure 7, we present a heatmap for illustrating the task
completion times; lighter colors indicate faster completion
times, while dark red demonstrates failure cases. Overall,
OneDP completes tasks more efficiently across most loca-
tions. Although all three algorithms encounter failures in
some corner cases for the coffee task, OneDP-S shows
fewer failures.
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Figure 5: Real-World Experiment Illustration. In the first row, we display the setup for the pick-and-place experiments, featuring
three tasks: pnp-milk, pnp-anything, and pnp-milk-move. In total, pnp-anything handles around 10 random objects as
shown in Figure 8. The second row illustrates the procedure for the more challenging coffee task, where the Franka arm is tasked with
locating the coffee cup, precisely positioning it in the machine’s cup holder, inserting it, and finally closing the machine’s lid.

Table 3: Success Rate of Real-world Experiments. We evaluate the performance of our proposed OneDP-D and OneDP-S against the
baseline Diffusion Policy in real-world robotic manipulation tasks. The baseline Diffusion Policy was trained for 1000 epochs to ensure
convergence, whereas our distilled models were trained for 100 epochs. We do not select checkpoints; only the final checkpoint is used for
evaluation. Performance is assessed over 20 predetermined rounds, and we report the average success rate.

Method Epochs NFE pnp-milk pnp-anything pnp-milk-move coffee Avg
DP(DDIM) 1000 10 1.00 0.95 0.80 0.80 0.83
OneDP-D 100 1 1.00 1.00 1.00 0.80 0.95
OneDP-S 100 1 1.00 1.00 1.00 0.90 0.98

Table 4: Time Efficiency of Real-world Experiments. We present the completion times for each algorithm as recorded in Table 3. For a
fair comparison, we report the average completion time (in seconds) for each algorithm across evaluation rounds where all algorithms
succeeded. Specifically, the tasks pnp-milk, pnp-anything, pnp-milk-move, and coffee were averaged over 18, 15, 8, and
13 respective rounds. These times indicate how quickly each algorithm responds and completes tasks in a real-world environment.

Method Epochs NFE pnp-milk pnp-anything pnp-milk-move coffee Avg
DP(DDIM) 1000 10 29.74 26.03 34.75 54.92 36.36
OneDP-D 100 1 23.21 22.93 28.73 33.13 27.00
OneDP-S 100 1 22.69 22.62 28.15 29.78 25.81

Table 5: Real-world inference speeds. We report the wall clock
times for each policy in real-world scenarios. The action generation
process consists of two parts: observation encoding (OE) and
action prediction by each method. All measurements were taken
using a local NVIDIA V100 GPU, with the same neural network
size for each method. The policy frequencies, shown in Figure 1,
are based on the values from this table.

OE DDPM (100 steps) DDIM (10 steps) OneDP (1 step)
Time (ms) 9 660 66 7

NFE 1 100 10 1

5. Conclusion
In this paper, we introduced the One-Step Diffusion Policy
(OneDP) through advanced diffusion distillation techniques.

We enhanced the slow, iterative action prediction process of
Diffusion Policy by reducing it to a single-step process, dra-
matically decreasing action inference time and enabling the
robot to respond quickly to environmental changes. Through
extensive simulation and real-world experiments, we demon-
strate that OneDP not only achieves a slightly higher success
rate, but also responds quickly and effectively to environ-
mental interference. The rapid action prediction further
allows the robot to complete tasks more efficiently.

However, this work has some limitations. We did not eval-
uate OneDP on long-horizon real-world tasks, and in real-
world experiments, we constrained the robot’s operation
frequency to 20 Hz for stability, limiting OneDP ’s full

8



One-Step Diffusion Policy

potential. Additionally, the KL-based distillation approach
may not be the optimal choice for distribution matching, and
incorporating a discriminator term could further enhance
distillation performance.
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One-Step Diffusion Policy: Appendix

A. Related Work
Diffusion Models. Diffusion models have emerged as a powerful framework for modeling complex data distributions and
have achieved groundbreaking performance across various tasks involving generative modeling (Ho et al., 2020; Karras
et al., 2022). They operate by transforming data into Gaussian noise through a diffusion process and subsequently learning
to reverse this process via iterative denoising. Diffusion models have been successfully applied to a wide range of domains,
including image, video, and audio generation (Saharia et al., 2022; Ramesh et al., 2022; Balaji et al., 2022; Chen et al.,
2023b; Ho et al., 2022; Popov et al., 2021; Kong et al., 2020), reinforcement learning (Janner et al., 2022; Wang et al., 2022;
Psenka et al., 2023) and robotics (Ajay et al., 2022; Urain et al., 2023; Chi et al., 2023).

Diffusion Policies. Diffusion models have shown promising results as policy representations for control tasks. Janner
et al. (2022) introduced a trajectory-level diffusion model that predicts all timesteps of a plan simultaneously by denoising
two-dimensional arrays of state and action pairs. Wang et al. (2022) proposed Diffusion Q-learning, which leverages a
conditional diffusion model to represent the policy in offline reinforcement learning. An action-space diffusion model is
trained to generate actions conditioned on the states. Similarly, Chi et al. (2023) used a conditional diffusion model in the
robot action space to represent the visuomotor policy and demonstrated a significant performance boost in imitation learning
for various robotics tasks. Ze et al. (2024) further incorporated the power of a compact 3D visual representations to improve
diffusion policies in robotics.

Diffusion Distillations. Although diffusion models are powerful, their iterative denoising process makes them inherently
slow in generation, which poses challenges for time-sensitive applications like robotics and real-time control. Motivated
by the need to accelerate diffusion models, diffusion distillation has become an active research topic in image generation.
Diffusion distillation aims to train a student model that can generate samples with fewer denoising steps by distilling
knowledge from a pre-trained teacher model (Salimans & Ho, 2022; Luhman & Luhman, 2021; Zheng et al., 2023; Song
et al., 2023; Kim et al., 2023b). Salimans & Ho (2022) proposed a method to distill a teacher model into a new model that
takes half the number of sampling steps, which can be further reduced by progressively applying this procedure. Song et al.
(2023) introduced consistency models that enable fewer step sampling by enforcing self-consistency of the ODE trajectories.
CTM (Kim et al., 2023b) improved consistency models and provided the flexibility to trade-off quality and speed. (Luo et al.,
2024; Yin et al., 2024) leverage the success of stochastic distillation sampling (Poole et al., 2022) in text-to-3D and proposes
KL-based score distillation for image generation. Beyond KL, Zhou et al. (2024) proposes the SiD distillation technique
derived from Fisher Divergence. However, leveraging diffusion distillation to accelerate diffusion policies for robotics
remains an underexplored and pressing challenge, particularly for real-time control applications. Consistency Policy (Prasad
et al., 2024) explored applying CTM to reduce the number of denoising steps and accelerate inference of the diffusion
policies. It simplifies the original CTM training by ignoring the adversarial auxiliary loss. While this approach achieves a
considerable speed-up, it leads to performance degradation compared to pre-trained models, and its complex training process
and slow convergence present challenges for robotics applications. In contrast, OneDP employs expectational reverse KL
optimization to distill a powerful one-step action generator, achieving comparable or higher success rates than the original
diffusion policy, while converging 20× faster.

B. Detailed Preliminaries
Diffusion models are robust generative models utilized across various domains (Ho et al., 2020; Sohl-Dickstein et al.,
2015; Song et al., 2020b). They operate by establishing a forward diffusion process that incrementally transforms the data
distribution into a known noise distribution, such as standard Gaussian noise. A probabilistic model is then trained to
methodically reverse this diffusion process, enabling the generation of data samples from pure noise.

Suppose the data distribution is p(x). The forward diffusion process is conducted by gradually adding Gaussian noise to
samples x0 ∼ p(x) as follows,

xk = αkx
0 + σkϵk, ϵk ∼ N (0, I); q(xk|x0) := N (αkx

0, σ2
kI)

where αk and σk are parameters manually designed to vary according to different noise scheduling strategies. DDPM (Ho
et al., 2020) is a discrete-time diffusion model with k ∈ {1, . . . ,K}. It can be easily extended to continuous-time diffusion
from the score-based generative model perspective (Song et al., 2020b; Karras et al., 2022) with k ∈ [0, 1]. With sufficient
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amount of noise added, xK ≃ N (0, I). Ho et al. (2020) propose to reverse the diffusion process and iteratively reconstruct
the original sample x0 by training a neural network ϵθ(xk, k) to predict the noise ϵk added at each forward diffusion step
(epsilon prediction). With reparameterization ϵk = (xk − αkx0)/σk, the diffusion model could also be formulated as a
x0-prediction process xθ(xk, k) (Karras et al., 2022; Xiao et al., 2021). We use epsilon prediction ϵθ in our derivation. The
diffusion model is trained with the denoising score matching loss (Ho et al., 2020),

min
θ

Exk∼q(xk|x0),x0∼p(x),k∼U [λ(k) · ||ϵθ(xk, k)− ϵk||2]

where U is a uniform distribution over the k space, and λ(k) is a noise-ratio re-weighting function. With a trained diffusion
model, we could sample x0 by reversing the diffusion chain, which involves discretizing the ODE (Song et al., 2020b) as
follows:

dxk =

[
f(k)xk − 1

2
g2(k)∇xk log q(x

k)

]
dk (9)

where f(k) = d logαk
dk and g2(k) = dσ2

k

dk − 2d logαkdk σ2
k. The unknown score∇xk log q(x

k) could be estimated as follows:

s(xk) = ∇xk log q(x
k) = −ϵ

∗(xk, k)

σk
≈ −ϵθ(x

k, k)

σk
,

where ϵ∗(xk, k) is the true noise added at time k, and we let sθ(xk) = − ϵθ(x
k,k)
σk

.

Wang et al. (2022); Chi et al. (2023) extend diffusion models as expressive and powerful policies for offline RL and robotics.
In robotics, a set of past observation images O is used as input to the policy. An action chunk A, which consists of
a sequence of consecutive actions, forms the output of the policy. ResNet (He et al., 2016) based vision encoders are
commonly utilized to encode multiple camera observation images into observation features. Diffusion policy is represented
as a conditional diffusion-based action prediction model,

πθ(A
0
t |Ot) :=

∫
· · ·

∫
N (AK

t ;0, I)

k=1∏
k=K

pθ(A
k−1
t |Ak

t ,Ot)dA
K
t · · · dA1

t ,

where Ot contains the current and a few previous vision observation features at timestep t, and pθ could be represented
by ϵθ as shown in DDPM (Ho et al., 2020). The explicit form of πθ(A0

t |Ot) is often impractical due to the complexity
of integrating actions from AK

t to A1
t . However, we can obtain an action chunk prediction A0

t by iteratively solving
Equation (9) from K to 0.

C. Real-World Experiment Setup
Robot Setup. The physical robot setup consists of a Franka Panda robot arm, a front-view Intel RealSense D415 RGB-D
camera, and a wrist-mounted Intel RealSense D435 RGB-D camera. The RGB image resolution was set to 120x160. The
depth image is not used in our experiments.

Teleoperation. Demonstration data for the real robot tasks was collected using a phone-based teleoperation system (Man-
dlekar et al., 2018; 2019).

Data Collection. We collect 100 demonstrations for each task separately: pnp-milk, pnp-anything, and coffee.
In pnp-milk, the target object is always the milk box, and the task involves picking up the milk box from various random
locations and placing it into a designated target box at a fixed location. For pnp-anything, we extend the set of target
objects to 11 different items, as shown in Figure 8, with the target box location randomized vertically. In the coffee task,
the coffee cup is randomly placed, and the robot is required to pick it up, insert it into the coffee machine, and close the lid.

The area and location for each task are illustrated in the left column of Figure 7. During data collection, target objects are
randomly positioned within the blue area; the grid is used for evaluation, as described in the next section. For the pnp tasks,
the blue area is a rectangle measuring 23 cm in height and 20 cm in width, while the target box is a square with a side length
of 13 cm. In the coffee task, the blue area is slightly smaller, measuring 18 cm in height and 20 cm in width.
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Figure 6: Real-world Experiment Setup

Table 6: Real-world experiment demonstrations. In total we collect 300 demonstrations, with 100 demonstrations for
each task.

pnp-milk pnp-anything coffee
Demos 100 100 100

Evaluation. To ensure a fair comparison between OneDP and all baseline methods, we standardize the evaluation process.
For the pnp-milk, pnp-anything, and coffee tasks, we evaluate each method according to the grid order shown
in Figure 7. The target object is placed at the center of the grid to ensure consistent initial conditions across evaluations.
For task pnp-anything, the picked object also follows the order shown in Figure 8. For the dynamic environment task
pnp-milk-move, we introduce human interference during the evaluation. Whenever the robot gripper attempts to grasp
the target milk box, we manually move it away along the trajectory depicted in Figure 9. Although we aim to maintain
consistent conditions during each evaluation, the exact nature of human interference cannot be guaranteed. Some trajectories
involve a single instance of interference, while others may involve two consecutive human movements.

The original DDPM sampling in Diffusion Policy is too slow for real-world experiments. To speed up the evaluation, we
follow (Chi et al., 2023) and use DDIM with 10 steps. For OneDP, we use single-step generation. In real-world experiments,
we do not select intermediate checkpoints but use the final checkpoint after training for each method.

We record both the success rates and completion times, reporting their mean values. For pnp-milk-move, evaluations
are conducted over 10 trajectories, while for the other tasks, results are obtained from 20 grid points. In Figure 7, we present
a heatmap to visualize task completion times, where lighter colors represent faster completions and dark red indicates failure
cases. Overall, OneDP completes tasks more efficiently across most locations. While all three algorithms experience failures
in certain corner cases for the coffee task, OneDP-S demonstrates fewer failures.

D. Training Details
We follow the CNN-based neural network architecture and observation encoder design from Chi et al. (2023). For simulation
experiments, we use a 256-million-parameter version for DDPM and a 67-million-parameter version for EDM, as the
smaller EDM network performs slightly better. In real-world experiments, we also use the 67-million-parameter version.
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Figure 7: Real-World Comparison Illustration. We present the time taken by each algorithm to complete tasks from
a specific starting point in colors. A color map on the right side ranges from white to red indicating the time in seconds.
Dark red signifies that the algorithm failed at that location. The three rows represent tasks pnp-milk, pnp-anything,
coffee. Details of the evaluation of pnp-anything can be found in Figure 8.

Additionally, we adopt the action chunking idea from Chi et al. (2023) and Zhao et al. (2023), using 16 actions per chunk for
prediction, and utilize two observations for vision encoding.

We first train DP for 1000 epochs in both simulation and real-world experiments with a default learning rate of 1e-4 and
weight decay of 1e-6. We then perform distillation using the pre-trained checkpoints, distilling for 20 epochs in simulation
and 100 epochs in real-world experiments.

For distillation, we warm-start both the stochastic and deterministic action generators, Gθ, and the generator score network,
ϵψ , by duplicating the network structure and weights from the pre-trained diffusion-policy checkpoints. Since the generator
network is initialized from a denoising network, a timestep input is required, as this was part of the original input. We fix
the timestep at 65 for discrete diffusion and choose σ = 2.5 for continuous EDM diffusion. The generator learning rate is
set to 1e-6. We find these hyperparameters to be stable without causing significant performance variation. We provide an
ablation study that focuses primarily on the generator score network’s learning rate and optimizer settings in Appendix E.
We provide the hyperparameter details in Table 7.

E. Ablation Study
As shown in the first panel of Figure 10, we explore a range of learning rates for the generator score network in the grid [1e-6,
1e-5, 2e-5, 3e-5, 4e-5] and find 2e-5 to be optimal in most cases. A higher learning rate for the score network compared to
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Hyperparameters Values
generator learning rate lr=1e-6

generator score network learning rate lr=2e-5
generator optimizer Adam([0.0, 0.999])

generator score network optimizer Adam([0.0, 0.999])
action chunk size n=16

number of observations n=2
discrete diffusion init timestep tinit=65

discrete diffusion distillation t range [2, 95]
continuous diffusion init sigma σ = 2.5

Table 7: Hyperparameters

the generator ensures that the score network keeps pace with the generator’s distribution updates during training. In the
second panel, we search for the best optimizer settings, finding that setting β1 to 0 for both the generator and the generator
score network optimizers is effective. This approach, commonly used in GANs, allows the two networks to evolve together
more quickly.

F. Discussion
Comparison with VSD. VSD is designed to distill image-level knowledge from powerful 2D priors, specifically pretrained
text-to-image diffusion models, to facilitate 3D content generation. Its overarching objective—reverse KL optimization—is
widely applied across multiple domains, including VAEs. In this work, we also apply reverse KL optimization for diffusion
policy distillation. However, the implementation and derivation for different domains required major efforts. This extensive
process involved adjustments to noise scheduling (DDPM and EDM), proper initialization, balancing the convergence of the
generator and its score network, tuning parameters, designing experiments in dynamic environments, and conducting both
simulated and real-world robotics experiments—an undertaking that should not be underestimated. Furthermore, OneDP
considered temporal control characteristics by predicting action chunks, each comprising a sequence of actions (K=16).
This approach addresses the temporal dependencies inherent in many robotics tasks, which are not considered in VSD.

Training Cost Comparison of OneDP-D and OneDP-S. OneDP-S and OneDP-D differ in their computational require-
ments. The training cost for OneDP-S is approximately twice that of OneDP-D, due to the inclusion of the generator score
network. When accounting for evaluation during training, the total time for OneDP-S is about 1.5 times longer than that of
OneDP-D. For example, on the small dataset PushT, training and evaluation for OneDP-D take about 30 minutes, while
OneDP-S requires approximately 45 minutes. On the larger ToolHang dataset, OneDP-D takes roughly 6 hours, compared
to about 8 hours for OneDP-S. These details will be further elaborated in future revisions to provide a comprehensive view
of the trade-offs between stochastic and deterministic policies in terms of both performance and computational efficiency.

G. More Dynamic Experiments
We conducted an additional dynamic real-world experiment to evaluate performance under human intervention. During the
milk box pick-and-place task, we randomly reset the milk box pose to simulate changes in the environment. The process is
illustrated in Figure 11. The results indicate that DP achieves a success rate of 28.57% (6/21), while our OneDP significantly
outperforms it with a success rate of 76.19% (16/21), over 21 random initializations. DP fails in most cases due to its slow
response to environmental changes, whereas OneDP reacts quickly and achieves a much higher success rate.
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Figure 8: Evaluation setup for pnp-anything.
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Figure 9: Evaluation trajectories for pnp-milk-move. The box is always on the left-hand side of the tested blue area.

Figure 10: Ablation studies on the learning rate of the generator score network and optimizer settings.

Figure 11: Dynamic Real-World Experiment: Pose Reset.
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