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Abstract

Large-scale pre-training followed by downstream fine-
tuning is an effective solution for transferring deep-
learning-based models. Since finetuning all possible pre-
trained models is computational costly, we aim to predict
the transferability performance of these pre-trained mod-
els in a computational efficient manner. Different from pre-
vious work that seek out suitable models for downstream
classification and segmentation tasks, this paper studies
the efficient transferability assessment of pre-trained object
detectors. To this end, we build up a detector transfer-
ability benchmark which contains a large and diverse zoo
of pre-trained detectors with various architectures, source
datasets and training schemes. Given this zoo, we adopt 7
target datasets from 5 diverse domains as the downstream
target tasks for evaluation. Further, we propose to as-
sess classification and regression sub-tasks simultaneously
in a unified framework. Additionally, we design a comple-
mentary metric for evaluating tasks with varying objects.
Experimental results demonstrate that our method outper-
forms other state-of-the-art approaches in assessing trans-
ferability under different target domains while efficiently re-
ducing wall-clock time 32 x and requires a mere 5.2% mem-
ory footprint compared to brute-force fine-tuning of all pre-
trained detectors. Our assessment code and benchmark will
be publicly available.

1. Introduction

Under a paradigm of large-scale model pre-training [6,
8,16,20-22,46,50] and downstream fine-tuning [7, 17,52],
starting from a good pre-trained model is crucial. Neverthe-
less, it is too costly to perform selection of pre-trained mod-
els by brute-forcibly fine-tuning all available pre-trained
models on a given downstream task [26, 57]. Fortunately,
existing works have shown the advantages to efficiently
evaluate the transferability of pre-trained models with spe-
cific design for image classification [13, 29, 34, 36,42, 58,
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Figure 1. Illustration for selection of pre-trained detectors. The
selection is performed by efficient transferability assessment.

59] and semantic segmentation [2, 36] tasks without fine-
tuning. They usually estimate the transferability by mea-
suring the class separation of representations extracted by
different pre-trained models [2, 13, 34, 36]. While previ-
ous works consider estimating the transferability of classi-
fication or segmentation task, this paper aims to rank the
transferablity of pretrained models for object detection, as
shown in Figure 1. Since object detection methods address
both classification and regression sub-tasks together in the
same scheme, most assessment methods based on class-
separation can hardly be applied, especially for the single-
class object detection.

To evaluate transferability assessment of object detec-
tion, we build up a challenging yet practical experimental
setup with a zoo of diverse pretrained detectors. Specif-
ically, we collect 33 large-scale pre-trained object detec-
tors including two-stage [4, 38], single-stage [31,45], and
transformer [11, 64] based detection architectures. Mean-
while, they are equipped with different backbones, vary-
ing in ResNets [21], ResNeXts [53], and RegNets [37] and
pre-trained with various datasets [12, 28, 32]. Moreover,
we adopt 6 downstream tasks from 5 diverse domains un-
der different scenarios including general objects [15], driv-
ing [9, 19], dense prediction [41], Unmanned Aerial Vehicle
(UAV) [63] and even medical lesions [55]. In contrast, pre-
vious classification assementment methods usually simul-
taneously rank over 10~20 pretrained models and test on
datasets from at most 3 domains [13, 34, 36]. Upon the
detection transferability benchmark, we propose to assess
classification and regression sub-tasks simultaneously in a



unified framework. Moreover, a complementary metric is
designed for better assess tasks with various object scales.

Our main contributions are summarized as:

» This paper studies a crucial yet underexplored prob-
lem: efficient transferability assessment of pre-trained
detectors.

e We build up a challenging detection transferability
benchmark, containing 33 pre-trained detectors with
different architectures, different source datasets and
training schemes, and evaluating on diverse down-
stream target tasks. A series of metrics are designed
to effectively assess these pre-trained detectors.

» Extensive experimental results upon this challeng-
ing transferability benchmark show the effectiveness
and robustness of the proposed assessment framework
compared with previous SOTA methods. Most impor-
tantly, it achieves over 32x wall-clock time speedup
and only 5.2% memory footprint requirement com-
pared with brute-force fine-tuning.

2. Related Work
2.1. Transferability of Pre-trained Models

Assessing the transferability of pre-trained models is an
essential and crucial task. Early works [26, 57] have stud-
ied the transferability of the neural networks based on vari-
ous layers within a single model and various models within
a model zoo while the conclusions were drawn from too
expensive fine-tuning (see Sec. 5.4), which is not afford-
able. Further, the transferability of deep knowledge was
studied by evaluating the task relatedness [14,47,49,60] and
building attribution graphs [43,44]. But these solutions still
need costly downstream training and they are not applicable
when meeting multi-scale features, multiple sub-tasks, and
diverse detection heads, which are the key components in
object detection.

Recently, several papers introduced efficient transfer-
ability metrics for classification. LEEP [34] proposed to
efficiently evaluate the transferability of pre-trained mod-
els for supervised classification tasks by calculating the log
expectation of the empirical predictor. However, the per-
formance of LEEP degrades when the number of classes
within the source data is less than that of the target task. A
series of following works [2,29] further improve LEEP for
multi-class classification and pixel-level classification (i.e.,
semantic segmentation). N-LEEP [29] tried to improve
LEEP with Principal Component Analysis on the model
outputs. and established a neural checkpoint ranking bench-
mark for classification. To better assess multi-class classifi-
cation, Ding et al. [13] proposed a series of Cross Entropy
(CE) based metrics for pre-trained classification models.
Pandy et al. [36] proposed to estimate the pairwise Gaus-
sian class separability using the Bhattacharyya coefficient,

which could be applicable for both classification and seg-
mentation. In SFDA [42], the authors aimed to leverage the
fine-tuning dynamics into transferability measurement in a
self-challenging fisher space, which degraded the efficiency.

Different from previous works designed for image-level
or pixel-level classification, this paper aims to tackle more
challenging pre-trained detector assessment. We thus build
up a detector transferability benchmark, which simultane-
ously ranks 33 pre-trained models over 6 target datasets
from 5 diverse domains, comparing with 10~ 20 pre-
trained models and 3 target domains in classification scenar-
ios. Moreover, assessing pre-trained detectors should con-
sider both classification and regression sub-tasks together.
LogME [58, 59] first extends the transferability assessment
from classification to regression and thus can be used as a
baseline to assess the transferability of pre-trained detec-
tors. However, it is designed for general regression task,
without considering the multi-scale characteristics and in-
herent relation between coordinates in bounding box regres-
sion sub-task. To address these issues, we extend LogME to
a series of metrics with special design for object detection.

2.2. Object Detection

Object detection is a practical computer vision task that
aims to detect the objects and recognize the corresponding
classes from an input image. The object detectors are al-
ways trained under supervised [4, 31, 38,48, 64] and self-
supervised [3,11,51,56] schemes on the large-scale datasets
[12, 18, 28, 32,40]. The supervised detectors are trained
with ground truth bounding boxes and class labels while the
self-supervised ones can only access the training images.
Regarding the design of different detection architectures,
there are three main streams, including two-stage [4,38,61],
single-stage [31, 45, 48], and transformer [3, 11, 64] based
detectors. A typical two-stage detector [38] works with 1st-
stage proposal generator and 2nd stage bounding box re-
finement and class recognition while a single-stage detec-
tor [31] aims to perform dense predictions for the object
location and class. Recent transformer based end-to-end de-
tectors [5, 64] consider the object detection task as a direct
set prediction problem optimized with Hungarian algorithm
[27], in which lots of human-designed complex components
are removed. With these large-scale pre-trained object de-
tectors, how to figure out a good one for a given downstream
detection task is crucial but underexplored. In this work,
we aim to tackle the efficient transferability assessment for
pre-trained detectors, which infers the true fine-tuning per-
formance on a give downstream task.

3. Detector Transferability Benchmark

In this work, we construct a zoo of different detectors
pre-trained with various source datasets and and thus build
up a transferability benchmark to measure different assess-



Table 1. Pre-training schemes, source datasets and detection ar-
chitectures used in this work. We include two-stage, single-stage,
and transformer based detectors to build a pre-trained detector
zoo. These detectors are equipped with different backbones, e.g.,
ResNets [21], ResNeXts [53], and RegNets [37].

Scheme Dataset Type Detector Backbone
R50 [21]
R101 [21]
FRCNN[38]  x101-32x4d [21]
X101-64x4d [21]
R50 [21]
Cascade R101 [21]
RoNN 1 X101-32x4d [21]
X101-64x4d [21]
s Dynamic
two-stage
g ReNN L6117 RSO[21]
400MF [37]
800MF [37]
RegNet [37] 1.6GF [37]
3.2GF [37]
COCO [32] 4GF [37]
Supervised R50 [21]
DCN [10] R101 [21]
X101-32x4d [21]
R50 [21]
FCOS [48] RI01 [21]
RIS [21]
R50 [21]
single-stage  RetinaNet [31]  R101[21]
X101-32x4d [21]
X101-64x4d [21]
Sparse R50 [21]
rRoNN 1 R10121]
transformer DDETR [64] R50[21]
Open two-stage ~ FRCNN[38]  R50[21]
5
Images (28] single-stage  RetinaNet [31]  R50 [21]
SoCo [51] R50 [21]
Self- two-stage  yngJ oc [56] R50 [21]
2 o)
Supervised | mageNet [12] UP-DETR[11] R50[21]
transformer  ppTReg [3]  R50[21]

ment metrics. In what follows, we will provide details of
the detector transferability benchmark.

Problem Setup. With a given downstream detection task
and a detection model zoo consisting of /N pre-trained mod-
els {F,}N_,, the aim of model transferability assessment is
to produce a transferability score for every pre-trained de-
tector, and then find the best one for further fine-tuning ac-
cording to the score ranking.

Pre-trained Source Detectors. In the past few years, a
great number of detection models arise with very smart de-
sign. Typically, these detectors are trained under supervised
[38,48,64] or self-supervised [11,51] scenarios. Supervised
detectors are always trained and evaluated on large-scale de-
tection datasets, such as COCO [32] and Open Images [28],
while self-supervised ones are trained based on ImageNet
[12]. In this work, we take three datasets, i.e., COCO, Open
Images, and ImageNet, as the source datasets for different
pre-training schemes. Upon these source datasets and train-
ing schemes, we use 13 detection architectures, including
two-stage [4,10,37,38,51,56,61], single-stage [31,45,48],

Table 2. Target downstream datasets used in this work, in which
they are from 5 diverse domains.

Dataset Domain Classes Images
Pascal VOC [15] General 20 21K
CityScapes [9] Driving 8 5K
SODA [19] Driving 6 20K
CrowdHuman [41] Dense 1 24K
VisDrone [63] UAV 11 9K
DeepLesion [55] Medical 8 10K

and transformer [3, 11, 64] based detectors, for pre-training
and obtain a model zoo composed of 33 various pre-trained
detectors. These detectors are equipped with different back-
bones, e.g., ResNets [21], ResNeXts [53], and RegNets
[37]. The detailed information is shown in Table 1. With
a large variety of pre-trained source detectors, it can be en-
sured that at least one good model exists for a given target
task and our evaluation metric can distinguish between bad
and good source models.

Target Datasets. The image domain plays an important
role for deep-learning-based models, which directly deter-
mines the model performance in a transfer learning sce-
nario [33,35]. So we cover a wide range of image domains
as a challenging but practical setting with diverse scenarios,
including general objects [15], driving [9, 19], dense predic-
tion [41], Unmanned Aerial Vehicle (UAV) [63], and even
medical lesions [55]. The detailed information of these tar-
get datasets are summarized in Table 2.

Evaluation Protocol. Given pre-trained object detectors
{F,})_, and a downstream dataset D, a transferability
assessment method will produce the transferability scores
{5, }_,. Following the previous works [2, 13,29, 36, 42,
58,59], we take the fine-tuning performance of pre-trained
detectors {g,, }_, as the ground truth, i.e., mean Average
Precision (mAP) as the metric in object detection. Ideally,
the transferability scores are positively correlated with true
fine-tuning performance. That is, if a pre-trained model
Fn has higher detection mAP than F,,, after fine-tuning
(gn>9m), the transferability score of JF,, is also expected
to be larger than F,,, (s,>s,,). So the effectiveness of a
transferability metric for assessing the pre-trained detectors
is evaluated by the ranking correlation between the ground
truth fine-tuning performance {g, })_, and estimated trans-
ferability scores {5, }_,. We use Weighted Kendall’s T,
[23] as the evaluation metric. Larger 7, indicates better
ranking correlation between {g,, }¥_; and {s,,}V_; and bet-
ter transferability metric. 7, is interpreted by

2
m1§n<zmgz\rsgn (gn = gm)sgn (sn — sm). (1)

Tw =

Here 7, ranges in [—1, 1], and the probability of g,,>g.,
is Tw;r L when s,>$.,. Moreover, we use Top-1 Relative
Accuracy (Rel@1) [29] to measure how close model with
the highest transferability performs, in terms of fine-tuning
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Figure 2. The overview of efficient transferability assessment framework for pre-trained detection models. We build a challenging setting
contains various pre-trained object detectors. Based on this challenging setting, we design a pyramid feature matching scheme to handle
objects with various sizes and expand the bounding box matrix B““" according to class label matrix C' to the unified label matrix Y for
evaluation. We estimate the maximum evidence p(Y “|F'), which indicates the compatibility between the object features F' and unified
labels Y. Further, considering ToU as an important metric in object detection, we supply IoU between the predicted bounding boxes and
ground truth ones as a complementary term for transferability assessment of detection model.

performance, compared to the highest performing model.

4. Detection Model Transferability Metrics

In this section, we study the problem of efficient transfer-
ability assessment for detection model. Given a model zoo
with a number of pre-trained detectors and a target down-
stream task, our goal is to predict their transferability per-
formance on the target task efficiently, without brute-force
fine-tuning all pre-trained models. LogME is a classifica-
tion assessment method designed from the viewpoint of re-
gression [58]. Thus, it can be used to assess transferabil-
ity of pre-trained detectors which contain both classification
and regression subtasks. However, it is designed for general
regression and might fail when tackling the bounding box
regression task with multi-scale characteristics of inputs and
inherent relation between coordinates in outputs. To this
end, as shown in Figure 2, we extend LogME to detection
scenario by designing a unified framework (U-LogME in
Sec. 4.2) which assesses multiple sub-tasks and multi-scale
features simultaneously. Furthermore, we propose a com-
plementary metric (i.e., loU-LogME in Sec. 4.3) for better
transferability assessment over objects with varying scales.

4.1. LogME as a Basic Metric

Different from most existing assessment methods that
measure class separation of visual features, LogME ad-
dresses the problem from the viewpoint of regression.
Specifically, it uses a set of Bayesian linear models to fit the

features extracted by the pre-trained models and the corre-
sponding labels. The marginalized likelihood of these linear
models is used to rank pre-trained models. Since it can ad-
dress both classification and regression tasks, we can easily
extend it to assess object detection framework.

Specifically, we extract multi-scale object-level features
of ground-truth bounding boxes by using pre-trained detec-
tors’ backbone followed by an ROIAlign layer [38]. In this
way, for a given pre-trained detector and a downstream task,
we can collect the object-level features of downstream task
by using the detector and form a feature matrix F', with each
row f, denotes an object-level feature vector. For each f,,
we also collect its 4-d coordinates of ground-truth bounding
box b; and class label ¢; to form a bounding box matrix B
and a class label matrix C.

For the bounding box regression sub-task, LogME mea-
sures the transferability by using the maximum evidence

p(B|F)=[p(6|a)p(BI|F,3,0)d0, where 0 is the param-
eter of linear model. « denotes the parameter of prior dis-
tribution of @, and 3 denotes the parameter of posterior dis-
tribution of each observation p(b;|f;, 3,6). By using the
evidence theory [24] and basic principles in graphical mod-
els [25], the transferability metric can be formulated as

LogME =log p(B|F)
M D M
:710gﬁ+510ga7710g2w )

B 2 S 1
S| Fm = BJ} - Sm"m — S log|A,



where m is the solution of 8, M is the number of objects,
D is the dimension of features, and A is the Lo-norm of F'.

LogME for classification sub-task can be computed by
replacing B in Eq. (2) with converted one-hot class label
matrix. By combining the evidences of two sub-tasks to-
gether, we obtain a final evidence for ranking the pre-trained
detector. However, LogME still struggles to rank the pre-
trained detectors accurately due to the following four chal-
lenges: 1) The single-scale features of LogME is not com-
patible with the multi-scale features extracted by pyramid
network architecture of pre-trained detector. 2) The huge
coordinates variances of different-scale objects make it hard
to fit by simple linear model used in LogME. 3) The as-
sessment branch of classification sub-task might fail when
the downstream task is single-class detection. 4) The mean
squared error (MSE) used in LogME isn’t scale-invariant
and measures each coordinate separately, which is not suit-
able for bounding box regression. In what follows, we pro-
pose how to address these issues.

4.2. U-LogME

This subsection proposes to unify multi-scale features

and multiple tasks into an assessment framework. Here,
we propose a pyramid feature mapping scheme to extract
suitable features for different scale objects. Meanwhile, we
normalize coordinates of bounding boxes and jointly evalu-
ate 4-d coordinates with the same linear network. This can
help to reduce coordinate variances and thus benefit rank-
ing. Furthermore, we merge the class labels and normalized
bounding box coordinates into a final ground-truth label to
joint assess two sub-tasks with the same model. In this way,
both single-class and multiple-class downstream detection
tasks are unified into one assessment framework. We pro-
vide more technical details in the following.
Pyramid Feature Matching. Classical object detectors al-
ways include a Feature Pyramid Network (FPN) [30] like
architecture with different feature levels. The object fea-
tures are obtained from different levels according to the
corresponding object sizes during training, e.g., very small
and large objects will be mapped to bottom-level and top-
level image features, respectively. Regarding this, we in-
troduce pyramid feature matching to help objects with dif-
ferent sizes find their matched level features. Following
FPN [30], we assign an object to the feature pyramid level
P, by the following:

I = V“ + 1og2(\/ﬁ/224)J , 3)

where w and & is the width and length of an object on the in-
put image to the network, respectively. Here 224 is the Im-
ageNet [12] training size, and [y is the feature level mapped
by an object with w x h = 2242, Inspired by FCOS [48], to
better handle too small and large objects, objects satisfying
max(w, h)<64 and max(w, h)>512 are further forcibly

assigned to the lowest and highest level of feature pyramid.
Given a bounding box and its P}, we use an Rol Align layer
to crop the P;-th feature map according to bounding box co-
ordinates and thus obtain its features. Thus, we can extract
suitable visual features for multi-scale ground-truth objects.
Improved BBox Evaluation. With these multi-scale ob-
ject features, our model can predict their coordinates of
bounding boxes. In the object detection scenario, bound-
ing box targets can be formulated as corner-wise coordi-
nates b; = (z1,y1, T2, y2) or center-wise coordinates b;*"=
(Zey Ye, We, he). To avoid coordinate scale issue, each coor-
dinate is rescaled to the range [0,1] by using bounding box
center normalization. Since the bias in the former one (i.e.,
r1 < x9,y1 < Yo) is hard to be fit by a linear model in
LogME, we thus select the latter one. LogME for bound-
ing box regression is obtained by averaging over 4-d co-
ordinates, where each coordinate learns different prior dis-
tribution with different o and 3. Considering the inherent
relation between coordinates, we feed 4-d coordinates of
a bounding box as a whole and learn a shared prior dis-
tribution for 4 coordinates with the same « and 3. More
specifically, We expand the dimension of m in Eq. (2) from
meRP to meRP* o match the dimension of B", re-
sulting in a more efficient and accurate evaluation.

Unified Sub-task Evaluation. Although the correlations
among the coordinates are captured by joint evaluation of
bounding box coordinates, LogME for regression sub-task
still suffers from neglecting object classes information. So
how to build the correlation between these sub-tasks? In-
spired by the class-aware detection heads of classical de-
tectors [38,48, 64], we propose unified sub-task evaluation
for assessing the transferability of pre-trained detectors. To
be specific, we combine the bounding box matrix B“"* and
class label matrix C' as the unified label matrix Y. The
bounding box matrix B“" is expanded from B cRM*4
to Y “eRM*(4-K) according to C, where K is the total num-
ber of classes. By integrating pseudo bounding boxes filled
with 0 coordinates, we obtain unified label matrix Y* as

cen
b'i

—_——
Y*“=1(0,0,0,0),..., (zc, Yo, we, he), - .-, (0,0,0,0)[ | . (4
~—— — ~—

1st ci-th K -th M

To this end, both bounding boxes and classes information
are represented by Y. Accordingly, m in Eq. (2) is further
expanded from m € RP* to m e RPX*'K) for matching
the dimension of Y'*. We can take the unified label matrix
Y as the input for transferability assessment and obtain a
unified transferability score for detection as the following:

U-LogME = log p(Y" | F). (5)
4.3. IoU-LogME

Although U-LogME addressed multi-scale and multi-
task issues of vanilla LogME, the MSE used for fitting fea-



Table 3. Ranking results of of six methods for 1% 33-choose-22 possible source model sets (over 1.9M) on 6 downstream target datasets.
Higher 7, and Rel@1 indicate better ranking and transferability metric. As SFDA is specifically designed for classification task, it is
not applicable for the single-class task of CrowdHuman. The results of all three variants of our approach, U-LogME, IoU-LogME, and
Det-LogME are reported. The best methods are in red and good ones are in blue.

Measure Weighted Kendall’s tau (7,,) T

Topl Relative Accuracy (Rel@1) 1

Method KNAS SFDA LogME U-LogME  IoU-LogME Det-LogME ‘ KNAS SFDA LogME U-LogME  IoU-LogME Det-LogME
Pascal VOC 0.10+£0.18  0.65+0.13  0.15+0.22 0.40+£0.17  0.584+0.16  0.784+0.03 | 0.94+0.10 1.00+0.00 0.91+0.12 0.96+£0.05  1.00£0.00  1.00+0.00
CityScapes -0.224+0.24  0.45+£0.06 0.15+0.20 0.13+0.16  0.51+0.09  0.5740.08 | 0.95+0.06 0.95+£0.01 0.95+0.06 0.90+0.04  0.984+0.02  0.98-£0.02
SODA -0.46+£0.09 0.46+0.12 0.13£0.21 0.04+£0.17  0.61£0.09  0.614+0.09 | 0.88+0.04 0.95+0.02 0.924+0.11 0.87£0.06  0.98+0.02  0.98-+0.02
CrowdHuman | -0.42+0.11 N/A 0.19+£0.19 0.21+0.18  0.34+0.16  0.34+0.16 | 0.85+0.04 N/A 0.97+£0.04 0.97+0.04  0.98+0.03  0.98+0.03
VisDrone 0.04+0.20  0.53+0.12  0.48+0.17 0.17+£0.17  0.7040.08  0.69+0.08 | 0.88+0.17 1.00+0.00 0.90+0.15 0.78+0.13  0.9940.02  0.99+0.02
DeepLesion -0.13+0.19  -0.21+0.14  0.08+0.20 0.524+0.14  -0.05+0.18  0.4240.17 | 0.69+0.11 0.65+£0.06 0.72+0.17 0.874+0.28  0.64+0.07  0.75+0.38
Average \ -0.184+0.28  0.31£0.10  0.194£0.20 0.24+0.17  0.45+0.13  0.57+0.10 \ 0.86+0.09 0.91£0.02 0.90+0.11 0.89+0.10  0.931+0.03  0.951-0.08

tures and bounding box coordinates is not robust to object
scales. That is, the larger objects might cause bigger MSE,
which makes the model prefers larger objects than smaller
ones. Moreover, each coordinate is evaluated separately in
mean squared error, without considering the correlations be-
tween different coordinates. To overcome this issue, we in-
troduce IoU metric into U-LogME. Specifically, m in Eq.
(2) is interpreted as a linear regression model so that F'm
can be regarded as the bounding box predictions from a de-
tector naturally. We propose to calculate the IoU between
the bounding boxes predictions F'm and the corresponding
ground truth bounding boxes B“" as a IoU based transfer-
ability measurement. Considering m € RP**X) is com-
puted from the unified label matrix Y“eRM**K) in Eq.
(4), so we downsample m to m’ €RP** by reserving the
values where real coordinates of B°“" arise. This IoU-
based metric is formulated as:

B |Fm/ m BCe"l‘

IoU-LogME = IoU(Fm’, B") = Fm OB (6)

4.4. Det-LogME

Although IoU-LogME is invariant to objects with differ-
ent scales, it degrades to 0 when the two inputs have no
intersection and fails to measure the absolute difference be-
tween them. On the contrary, MSE is good at tackling these
cases. Therefore, to take advantage of their strengths, we
propose to combine them together and obtain a final detec-
tor assessment metric Det-LogME, which is formulated as:

Det-LogME = U-LogME + 4 - IoU-LogME, @)

where p is used for controlling the weight of IToU.
U-LogME and IoU-LogME are normalized to [0, 1] upon
33 pre-trained detectors to unify the scale.

5. Experiment
5.1. Experimental Setup

We employ the proposed benchmark in Sec. 3 to conduct
experiments. Our method is compared with KNAS [54],
SFDA [42], and LogME [58]. KNAS is a gradient-based ap-
proach that operates under the assumption that gradients can

predict downstream training performance. Therefore, we
use it as a point of comparison with our efficient gradient-
free approach. SFDA is not applicable for the single-class
task of CrowdHuman [41]. Therefore, we present the SFDA
results on five other multiple-class datasets. It is worth not-
ing that our proposed pyramid feature matching enhances
both LogME and SFDA, facilitating their evaluation. Fur-
thermore, we present results for all three variants of our ap-
proach: U-LogME, IoU-LogME, and Det-LogME. We uti-
lize two evaluation measures, namely the ranking correla-
tion Weighted Kendall’s tau (7,,), as defined in Eq. (1), and
the Top-1 Relative Accuracy (Rel@1). Larger values of 7,
and Rel@1 indicate better assessment results.

5.2. Main Results

As discussed in [1], transferability metrics can be un-
stable. To address this issue, we randomly sub-sample 22
models from 33 pre-trained detectors and use 1% of the
33-choose-22 possible source model sets (over 1.9M) for
measurement, as shown in Table 3. Our observations indi-
cate that KNAS performs poorly on all 6 target datasets,
with negative ranking correlation 7,,. Our method Det-
LogME consistently outperforms LogME on 6 downstream
tasks. For instance, Det-LogME surpasses LogME by sub-
stantial margins of 0.63, 0.48, and 0.34 in terms of rank-
ing correlation 7, on Pascal VOC, SODA, and DeepLe-
sion, respectively. This validates the high effectiveness of
our proposed unified evaluation and complementary IoU
measurement. On five multiple-class downstream datasets,
Det-LogME still outperforms classification-specific SFDA,
particularly on DeepLesion (+0.63 7). This further indi-
cates that classification-specific transferability metrics may
not yield optimal results for multi-class detection problems.
Furthermore, our Det-LogME achieves better Rel@ 1 values
than all other SOTA methods in average, outperforming the
second-best method SFDA by 4% top-1 relative accuracy.
Overall, our method is robust and consistently outperforms
competing methods over 1.9M sub-sampled model sets.

Regarding the three variants proposed in this paper, U-
LogME performs the worst in most cases. We have further
observations to make. On one hand, IoU-LogME, which
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Figure 3. Comparison of ranking scores. The plots illustrate
ground-truth fine-tuning performance {g, }A_; (x-axis), ranking
scores (y-axis), and Weighted Kendall’s coefficient 7., for 33 pre-
trained detectors on 3 out of 6 target datasets.

uses IoU as a scale-invariant metric, performs better than
MSE-based U-LogME in scenarios where the objects vary
greatly in scale. This is especially evident in CityScapes [9],
SODA [19], and VisDrone [63], where objects captured un-
der driving or UAV scenarios have diverse scales. On the
other hand, IoU-based IoU-LogME suffers from the prob-
lem of remaining equal to 0 when there is no intersection
between the predicted and ground truth bounding boxes, re-
gardless of how far apart they are. In contrast, MSE-based
U-LogME can handle this problem with absolute distances.
This is particularly evident in DeepLesion [55], where the
lesions are very small and difficult to detect. Det-LogME,
which combines the advantages of both unified evalua-
tion and IoU measurement, achieves a trade-off and better
ranking performance than U-LogME and IoU-LogME. We
can also observe that Det-LogME performs better on five
multiple-class tasks than the single-class one. This indi-
cates the significant difficulties and challenges involved in
evaluating the pre-trained detectors on dense tasks.

Figure 3 illustrates the relationship between predicted
transferability and actual fine-tuning performance of 33 pre-
trained detectors for our Det-LogME and three SOTA meth-
ods on three target datasets. We observe that our Det-

Table 4. Effects of different Table 5. Effects of differ-
components of Det-LogME. ent bounding box normaliza-
tion techniques (border and

Method Tw T X
center) in Det-LogME.
Baseline (LogME) 0.22
Method Tw T
w/ bbox center norm. 0.33

w/ joint eval. of coord. 0.40 Baseline (LogME) 022
w/ unified sub-task eval. 0.43 w/ bbox border norm.  0.22
w/ IoU (Det-LogME) 0.79 w/ bbox center norm.  0.33

7y =0.79 —@ w/loU
08 -8 woloU
0.7
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® 7,=0.43
0.4
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Figure 4. Effects of different weights p for complementary IoU
metric in Det-LogME. The first blue marker indicates Det-LogME
without IoU measurement (degrades to U-LogME).

LogME consistently shows better positive correlations com-
pared to other SOTA methods in all experiments, which
demonstrates the effectiveness of our proposed approach.

5.3. Ablation Studies

In this subsection, we carefully study our proposed Det-
LogME with respect to different components and hyper-
parameters by assessing 33 detectors on the Pascal VOC.
Components Analysis of Det-LogME. As shown in Table
4, we can learn that the large variances of different coor-
dinates are eliminated by bounding box center normaliza-
tion and the ranking correlation 7, is improved 0.11. By
jointly evaluating 4-d coordinates, 7,, improves from 0.33
to 0.40, indicating the inherent correlations among 4 coor-
dinates within a bounding box are captured by our proposed
joint evaluation. Under unified sub-task evaluation, 7, fur-
ther improves from 0.40 to 0.43, which demonstrates the ef-
fectiveness of unifying the supervision information by con-
sidering object classes information. Finally, we observe that
the inclusion of the complementary IoU metric in our eval-
uation framework leads to a substantial increase in ranking
performance from 0.43 to 0.79 (4-0.36 7,,). This finding un-
derscores the importance of IoU measurement in assessing
the transferability of pre-trained detectors.

Different BBox Normalization Techniques. To mitigate
the detrimental effects of large variances among different
coordinates, we introduce bounding box normalization. We
experiment with two widely used normalization techniques
in detection. Except for center normalization described in



Table 6. Efficiency evaluation of Det-LogME and comparison with brute-force fine-tuning, naive feature extraction, KNAS, SFDA, and
LogME. Note that the wall-clock time and memory footprint for SFDA are evaluated on 5 multiple-class downstream detection datasets.

Measure | Wall-clock Time (s) | | Memory Footprint (GB) |
Fine-tune  Extract feature Fine-tune  Extract feature

Method (upper bound) (lower bound) | KNAS  SFDA LogME  Det-LogME | (;iner bound) (lower bound) | KNAS SFDA LogME  Det-LogME
Pascal VOC | 28421.09 128.88  [129.99 130.14 130.18  129.89 13.39 047 13.86 055 059 0.66
CityScapes 73973.09 50.50 5153 5202 5180 5118 22.36 0.99 2334 106  1.08 1.10
SODA 13928.24 50.75 5189 51.88 5183 5119 12.54 0.50 13.04 054 055 055
CrowdHuman |  43297.45 17038 17148 N/A 17826  175.06 27.24 0.63 2787 N/A 147 1.46
VisDrone 14067.15 63.38 6451 69.08 6816  64.97 16.69 0.65 1734 079  0.80 0.84
DeepLesion 8465.45 37.13 3824 3749 3771 37.34 6.99 0.52 751 053 054 0.54
Average | 30358.75 8350 | 84.60 6812 8632 8494 | 1653 063 | 17.16 0.69 0.84 0.86

Section 4.2, we also try to apply border normalization by di-
viding the bounding box with the corresponding width and
height of the input image to obtain b%°" = (z, 4/}, 24, yb).
From the results shown in Table 5, we observe that border
normalization yields no improvement, and center normal-
ization outperforms it by +0.1 7,,. Center normalization
scales the four coordinates of the bounding box to the same
range in [0, 1], while border normalization may not work
well when significant biases exist among the x-axis and y-
axis coordinates, such as when an object is located near the
top-right corner of an image where x1 > y; or zo > ys.

Weight of Complementary IoU Metric. The weight
hyper-parameter 1 in Eq. (7) controls the behavior of the
complementary IoU metric. Similar to the weights of IoU-
related losses [39, 62], the weight p is crucial to the final
transferability score of Det-LogME. We investigate the ef-
fects of different weights p€4{0,0.2,...,0.8,1,2,...,10}
of the IoU metric, and the results are presented in Fig-
ure 4. We observe that incorporating the IoU metric as
a complementary term consistently improves the ranking
performance of Det-LogME compared to not including it
(the first blue marker, which degrades to U-LogME, with
Tw = 0.43). The best ranking performance of Det-LogME
is achieved when the weight is 1, resulting in 7, = 0.79.

5.4. Efficiency Analysis

In this subsection, we present a comprehensive evalu-
ation of the assessing efficiency of Det-LogME and com-
pare it with brute-force fine-tuning, naive feature extraction,
KNAS, SFDA, and LogME from two perspectives: 1) wall-
clock time: the average time of fine-tuning (12 epochs) or
evaluating (including feature extraction) all 33 pre-trained
detectors; 2) memory footprint: the maximum memory re-
quired during fine-tuning or evaluating (including feature
extraction, the loading of all visual features, and comput-
ing transferability metric) all 33 pre-trained detectors. The
efficiency of classification-specific SFDA is studied on 5
multiple-class tasks. The results are presented in Table 6.
Wall-clock Time. Over 6 downstream tasks, KNAS has
the fastest speed, but according to Table 3, it performs
the worst, which is not acceptable in practice. On the

other hand, with joint evaluation of bounding box coordi-
nates, Det-LogME runs faster than LogME because Det-
LogME does not need to evaluate all 4-d coordinates in
a loop. Moreover, Det-LogME runs faster than SFDA,
which includes fine-tuning dynamics on all 5 multiple-class
datasets. Considering that the selected model will be fine-
tuned on the target task, our proposed Det-LogME brings
about (NumSourceModels —1)x speedup compared with
brute-force fine-tuning, which is 32 in this work.
Memory Footprint. Table 6 indicates that gradient-based
KNAS demands a significant amount of memory exceed-
ing 17 GB, rendering it infeasible for most practical appli-
cations. In comparison, Det-LogME only marginally in-
creases the memory when compared to LogME and SFDA,
making it practical for deployment. Furthermore, Det-
LogME demonstrates high memory efficiency by requiring
19x less memory than brute-force fine-tuning, underscor-
ing its potential to save computational resources.

6. Conclusion

In this paper, we aim to address a practical but under-
explored problem of efficient transferability assessment for
pre-trained detection models. To achieve this, we estab-
lish a challenging detector transferability benchmark com-
prising a large and diverse zoo consisting of 33 detectors
with various architectures, source datasets and schemes.
Upon this zoo, we adopt 6 downstream tasks spanning 5
diverse domains for evaluation. Further, we propose a sim-
ple yet effective framework for assessing the transferabil-
ity of pre-trained detectors. Extensive experimental results
demonstrate the high effectiveness and efficiency of our ap-
proach compared with other state-of-the-art methods across
a wide range of pre-trained detectors and downstream tasks,
notably outperforming brute-force fine-tuning in terms of
computational efficiency. We hope our work can inspire fur-
ther research into the selection of pre-trained models, par-
ticularly those with multi-scale and multi-task capabilities.

Acknowledgements. We gratefully acknowledge the sup-
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