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ABSTRACT

We present a novel operator-based framework for learning coherent temporal rep-
resentations of cellular dynamics from live-cell imaging data. Recognizing the
inherent stochasticity and measurement limitations in biological systems, our ap-
proach shifts the focus from predicting exact trajectories to characterizing key
dynamical properties that shape cellular behaviors at the population level. By
leveraging spectral analysis of the Koopman operator and smoothing via Markov
semigroups of kernel integral operators, we identify near-resonant patterns and
transient coherent structures that persist across different experimental conditions.
This methodology effectively captures fundamental dynamics, providing insights
into mechanisms of heterogeneous cell responses without the need to model pre-
cise transformation laws. We demonstrate the efficacy of our framework on a
dataset of retinal pigment epithelial cells with an inducible oncogene, revealing
conserved dynamical patterns across varying levels of ERK inhibition. Our work
offers interpretable learned representations, even with limited and noisy single-
cell-resolved recordings, advancing machine learning for dynamical systems and
opening new avenues for understanding and predicting cellular behavior in re-
sponse to external stimuli.

1 INTRODUCTION

Understanding complex dynamical behaviors of cellular signaling networks remains a fundamental
challenge in computational biology and machine learning Ideker et al. (2001). Unlike engineered
systems with deterministic functions and precise equations of motion, cellular dynamics emerge
from the interactions of small numbers of molecules whose combinatorial complexity leads to in-
herent stochasticity Eldar & Elowitz (2010); Altschuler & Wu (2010). More precisely, operating far
from thermodynamic limits where large numbers would average out fluctuations, these subcellular
systems exhibit pronounced stochastic effects - from spontaneous switching between cellular states
to heterogeneous responses to perturbations Elowitz et al. (2002); Spencer et al. (2009).
Factors such as interacting signaling pathways, varying mRNA half-lives, and fluctuating environ-
ments contribute to intrinsic stochasticity within genetically identical (isogenic) cell populations
Eldar & Elowitz (2010); Altschuler & Wu (2010). Rather than viewing this stochasticity as exper-
imental noise to be filtered out, we recognize it as a fundamental feature that both enables cellular
decision-making and induces signatures for identifying robust dynamical patterns Purvis & Lahav
(2013); Levine et al. (2013). A striking example is how cells achieve coordination among groups
of co-regulated genes (regulons) through noise-driven mechanisms Eldar & Elowitz (2010). These
mechanisms operate across multiple scales, from molecular fluctuations that trigger gene expression
switches to population-level coordination of cellular states Elowitz et al. (2002). Capturing these
complex dynamics is further complicated by limitations in measurement technologies. Traditional
high-throughput single-cell technologies enable rapid collection of distributions across diverse con-
ditions Lin et al. (2015; 2016) but lack temporal pairing between cells Weinreb et al. (2018). While
live-cell imaging provides time-resolved measurements Cutrale et al. (2017), it is limited to tracking
only a few variables simultaneously due to technical constraints Stewart et al. (2016). Consequently,
analyzing cellular dynamics from live-cell imaging presents significant challenges due to both in-
trinsic stochastic fluctuations and extrinsic heterogeneity between cells. This heterogeneity, which
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single-cell analysis aims to uncover, makes it particularly difficult to distinguish between transient
behaviors and to build predictive models. Current approaches often average out cell-to-cell varia-
tions, obscuring the very heterogeneity that single cell data is designed to uncover and only provide
phenomenological descriptions without mechanistic insights Snijder & Pelkmans (2011).

While several methods have been developed for analyzing live-cell data, none fully addresses the
challenges of modeling cellular dynamics. CODEX (Jacques et al., 2021) employs convolutional
neural networks for pattern recognition in time-series data. However, it treats cellular trajecto-
ries as static patterns for classification rather than as evolving dynamical systems. While effec-
tive at identifying recurring motifs, CODEX does not explicitly model the underlying dynamics or
stochastic processes, requires large training datasets, and produces models that are challenging to
interpret mechanistically. Functional principal component analysis (fPCA) has been applied to an-
alyze variability in live-cell imaging data (Sampattavanich et al., 2018), particularly for studying
temporal changes in molecular concentrations between nucleus and cytoplasm. While fPCA effec-
tively decomposes trajectories into orthogonal modes capturing dominant patterns, its optimization
for variance explained rather than dynamical features means these components may not correspond
to meaningful biological processes. Moreover, fPCA cannot predict beyond the observed time win-
dow as it does not model the generating system, and manual selection of components can introduce
bias.

More established tools in system identification have attempted to address similar limitations. Sta-
ble linear dynamical systems (LDS) (Boots, 2009) and its extensions for high-dimensional settings
(Chen et al., 2017) provide computationally tractable methods through reduced-rank approxima-
tions. However, these methods make restrictive assumptions that limit their ability to capture
complex nonlinear dynamics. Their linear evolution assumptions cannot capture nonlinear inter-
actions such as transitions present in biological data, their Gaussian noise models may not reflect
true stochastic processes, and their dimensionality reduction can discard important dynamical infor-
mation. In contrast, our operator-based approach using the Koopman framework explicitly models
system evolution without linearity assumptions. By lifting nonlinear dynamics into a linear frame-
work through the action on observables, and regularizing through Markov semigroups, we obtain
a mathematically rigorous method with provable convergence properties. Rather than relying on
predetermined dimensionality reduction, our method adaptively determines relevant modes through
spectral analysis of the regularized operator. This allows us to capture rich nonlinear behaviors while
maintaining computational tractability and providing theoretical guarantees about convergence to
the true dynamics - key features lacking in current approaches.

Operator-theoretic approaches combined with data-driven learning offer a promising alternative by
identifying patterns directly from single-cell measurements while preserving the essential hetero-
geneity that drives cellular decision-making Das & Giannakis (2019); Mezić (2005). Rather than
attempting to learn all behaviors, most of which are unpredictable, we focus on identifying coherent
temporal patterns that persist for finite times–analogous to studying coherent structures in turbulent
flows Mezić (2013). The Koopman operator approach is particularly promising in this context. By
representing dynamics through the action on functions, e.g. fluorescent readouts of protein levels,
and through spectral analysis, we can identify near-resonances that shape transient responses to
perturbations like drug treatments. Our approach combines and extends several powerful concepts:

1. The Koopman operator framework, which enables study of nonlinear dynamics through
linear methods while naturally handling stochastic effects Mezić (2005); Das & Giannakis
(2019)

2. Kernel methods that transform complex data into spaces where dynamical patterns become
apparent Berry et al. (2015)

3. Regularization techniques via Markov semigroups that make infinite-dimensional problems
computationally tractable while preserving biologically relevant features Giannakis (2015)

We demonstrate our framework’s effectiveness using live-cell imaging data from cells under various
perturbations Chen et al. (2023), showing how it captures coherent temporal patterns that persist
despite high variability while highlighting condition-specific dynamics.
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2 DYNAMICAL SYSTEM REPRESENTATION

In this section, we present our Operator-Based Dynamics Framework for learning coherent tem-
poral representations from live-cell trajectory data. We define coherent temporal patterns as ro-
bust, recurring, and interpretable structures in the time evolution of the system that persist across
temporal scales and capture the intrinsic dynamical organization, including periodic cycles, stable
trends, attracting sets, and variability patterns. The results demonstrate that these coherent pat-
terns substantially improve the transferability and generalization capabilities of the models across
diverse datasets. We formulate the cellular signaling response as a dynamical system with state
space X ⊆ Rd and flow map Φ : X × T → X, where T ⊆ R denotes time. The flow map
Φ(x,∆t) = Φ∆t(x) characterizes the evolution of an initial state x ∈ X over time interval ∆t ∈ T,
describing the deterministic dynamics of the system. To account for inherent uncertainties arising
from molecular noise and environmental fluctuations, we extend beyond deterministic dynamics to
incorporate stochastic behavior. We represent the system state at time t as a random variable Xt with
an associated probability distribution over X. This probabilistic framework enables characterization
of the system evolution through state transitions over time.

To model the probabilistic evolution of the system, we introduce the transition density function
p∆t : X× X → [0,∞), which describes the probability density of transitioning from state x ∈ X at
time t to state y ∈ X at time t+∆t. For a measurable subset A ⊆ X, the probability of the system
transitioning from state x to A over time ∆t is given by:

P[Φ∆t(xt) ∈ A | xt = x] =

∫
A
p∆t(x, y)µ(dy), (1)

where µ is a measure on X, typically the Lebesgue measure when X is a subset of Rd. The proba-
bilistic evolution of densities over time can be described using the Perron-Frobenius operator (also
known as the transfer operator) P∆t. This operator acts on functions f ∈ L1(X, µ) and describes
how a probability density evolves under the dynamics induced by Φ∆t. Formally, for a measure
space (X,B, µ), where B is the Borel sigma-algebra on X, and for any measurable subset A ∈ B,
the Perron-Frobenius operator P∆t : L1(X, µ) → L1(X, µ) satisfies:∫

A
(P∆tf)(x)µ(dx) =

∫
Φ−∆t(A)

f(x)µ(dx). (2)

This equation states that the total probability mass in set A at time t + ∆t is equal to the total
probability mass in the pre-image Φ−∆t(A) at time t, where Φ−∆t denotes the backward flow over
time ∆t. The operator P∆t is linear and preserves total probability, i.e., if f is a probability density
function, so is P∆tf . Alternatively, when the transition density function p∆t(x, y) exists, the action
of the Perron–Frobenius operator can be expressed as:

(P∆tf)(y) =

∫
X
p∆t(x, y)f(x)µ(dx). (3)

Koopman Operator: Complementary to the Perron–Frobenius operator, which describes the evo-
lution of densities, the Koopman operator K∆t acts on observables (functions of the state) and cap-
tures how these observables evolve under the dynamics. Specifically, for an observable function
g ∈ L∞(X, µ), the Koopman operator K∆t : L∞(X, µ) → L∞(X, µ) is defined as:

(K∆tg)(x) = E[g(Φ(xt)) | xt = x] =

∫
X
g(y)p∆t(x, y) µ(dy). (4)

The Koopman operator is also linear, even if the underlying dynamics are nonlinear and stochastic.
It provides a linear representation of the evolution of observables under the dynamics. Moreover, the
Koopman operator is the adjoint of the Perron-Frobenius operator with respect to the inner product
in L2(X, µ), i.e., for f ∈ L1(X, µ) and g ∈ L∞(X, µ),∫

X
(K∆tg)(x)f(x)µ(dx) =

∫
X
g(x)(P∆tf)(x)µ(dx). (5)

This duality allows us to study the dynamics either through the evolution of densities (Perron-
Frobenius operator) or through the evolution of observables (Koopman operator).
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2.1 SPECTRAL ANALYSIS OF THE KOOPMAN OPERATOR

As a linear operator, the Koopman operator K∆t can be decomposed into its eigenfunctions and
eigenvalues. Specifically, we seek eigenfunctions ϕk ∈ L∞(X, µ) and corresponding eigenvalues
λk ∈ C satisfying:

K∆tϕk = λkϕk. (6)

These eigenfunctions represent modes of the system that evolve linearly over time. By approxi-
mating these eigenfunctions and eigenvalues, we can decompose complex, nonlinear, and stochastic
dynamics into a superposition of simpler, linear modes.

Pseudospectra of the Koopman: Given the stochastic and transient nature of cellular dynam-
ics and the limitations in predicting exact trajectories, we adopt a pseudospectrum approach to
identify coherent dynamical patterns that are robust to perturbations and uncertainties. The ϵ-
pseudospectrum of the Koopman operator K∆t, denoted by σϵ(K∆t), consists of all complex num-
bers λ ∈ C for which the resolvent norm is large:

σϵ(K∆t) =

{
λ ∈ C

∣∣∣∣ ∥∥∥(K∆t − λI
)−1

∥∥∥ ≥ 1

ϵ

}
. (7)

However, working directly with resolvents can be computationally challenging (Sharma et al., 2016;
Giannakis & Valva, 2024; Colbrook & Townsend, 2021; Colbrook et al., 2023). Therefore, in the
subsequent sections, we adopt an alternative approach to analyze finite-time dynamics and transient
behaviors by employing a method based on smoothing via a Markov semigroup of kernel integral
operators (Valva & Giannakis, 2024). While this approach may not yield the exact pseudospectrum
due to the regularization of the Koopman operator, the eigenfunctions of the smoothed operator
still represent coherent temporal patterns that persist over finite timescales. While this approach
yields a different spectrum from the original Koopman operator or its pseudospectrum, it effectively
captures near-resonant behaviors and coherent transient patterns in the dynamics, similar to the
pseudospectrum approach.

Identification of Coherent Dynamical Patterns Approximate eigenfunctions obtained from the
smoothing method represent coherent temporal patterns in the cellular dynamics that persist over
finite timescales. These patterns evolve nearly linearly and can be used to decompose the complex
dynamics into a sum of simpler, predictable components. For an approximate eigenfunction ϕj , the
evolution under the Koopman operator satisfies:

Kn∆tg ≈ λng, (8)

for n ∈ N. This approximation holds over finite timescales where the patterns remain coherent.
By expressing observables as linear combinations of these approximate eigenfunctions, we obtain a
spectral decomposition of the dynamics:

g(x) =
∑
j

ϕj(x)cj , (9)

where ϕj are the approximate eigenfunctions and cj are coefficients. The evolution of g is then
approximated by:

Kn∆tg(x) ≈
∑
j

λn
j ϕj(x)cj . (10)

This decomposition allows us to capture the dominant temporal patterns in the data, even when
exact trajectory prediction is impossible. The approximate eigenfunctions ϕj correspond to modes
that represent collective behaviors of the system, providing insights into the mechanisms underlying
cellular responses.

2.2 LEARNING THE SPECTRAL COMPONENTS OF THE DYNAMICS

To extract coherent temporal patterns from live-cell trajectory data, we employ a data-driven ap-
proach to approximate the Koopman operator. Before detailing the approximation method, we first
describe the data and the experimental conditions under which it was collected.
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Experimental Conditions Let {Ck}Kk=1 denote the different experimental conditions under which
live-cell imaging data were collected. Each condition Ck represents a specific perturbation or treat-
ment applied to the cells, such as varying doses of an inhibitor or other perturbations. For each con-
dition, we observe Nk cell trajectories, where each trajectory consists of time-series measurements
over T time points. The measurements are denoted by {x(i,k)

t }Tt=0 for the i-th cell in condition Ck,
where x

(i,k)
t ∈ Rd represents the state vector of observable quantities (e.g., fluorescence intensities

corresponding to signaling molecule activities) at time t.

Delay-Coordinate Embedding To capture the underlying dynamics of the system and obtain a
data-informed geometry suitable for constructing a Markov operator, we employ delay-coordinate
embedding. This method reconstructs the phase space of the dynamical system using time-
delayed observations of the measured variables, effectively unfolding the dynamics into a higher-
dimensional space (Takens, 1996). For each trajectory, we construct a delay-coordinate map
FQ : X → RQd defined by

FQ(xt) =
[
x⊤
t , x

⊤
t−∆t, x

⊤
t−2∆t, . . . , x

⊤
t−(Q−1)∆t

]⊤
, (11)

where Q is the number of delays and ∆t is the sampling interval. The delay-coordinate embedding
captures the temporal structure of the data, allowing us to reconstruct the dynamics even when only
a few variables are measured.

Kernel Function and Integral Operator Using the embedded data, we define a kernel function
k : RQd × RQd → R+ to quantify the similarity between points. We employ a self-tuning kernel
that adapts to the local data density (Berry & Harlim, 2016):

k(x, y) = exp

(
−∥x− y∥2

σ(x)σ(y)

)
, (12)

where ∥ · ∥ denotes the Euclidean norm, and σ(x) is a local bandwidth parameter. This kernel
captures local structures while being robust to variations in data density.

We then construct an integral operator K acting on functions f : RQd → R:

(Kf)(x) =

∫
RQd

k(x, y)f(y) dµ(y), (13)

where µ is the empirical measure derived from the data.

Markov Operator and Eigenvalue Problem To analyze the dynamics in probability spaces, we
normalize the kernel to construct a Markov operator. The normalization involves computing the
degree function

d(x) =

∫
RQd

k(x, y) dµ(y), (14)

and then normalizing the kernel:

k̃(x, y) =
k(x, y)

d(x)
. (15)

The normalized kernel defines a Markov operator P :

(Pf)(x) =

∫
RQd

k̃(x, y)f(y) dµ(y). (16)

This Markov operator P forms the basis for constructing the Markov semigroup Pτ , parameterized
by τ > 0, which we will use for smoothing in our spectral approximation. In discrete form, for N
data points xi

N
i=1, the Markov matrix P has entries:

Pij =
Kij

(
∑N

k=1 Kikq
−1/2
k )q

1/2
j

, qi =

N∑
k=1

Kik (17)

5
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We compute the eigenvalues γj and corresponding eigenvectors φj of P by solving the eigenvalue
problem:

Pφj = λjφj . (18)

The eigenvalues are real and satisfy 1 = γ1 ≥ γ2 ≥ · · · ≥ γN ≥ −1. The leading eigenvector φ1

corresponds to the stationary distribution of the Markov chain. These eigenvectors φj will serve as
the basis for our Galerkin approximation of the smoothed Koopman operator.

Sparse Representation To handle large datasets efficiently, we construct a k-nearest neighbor
graph to sparsify the kernel matrix. For each data point xi, we connect it to its k nearest neighbors
based on the Euclidean distance in the embedded space. The kernel function is then applied only to
these neighboring pairs, resulting in a sparse kernel matrix K and, consequently, a sparse Markov
matrix P . This sparsity reduces computational complexity and storage requirements, making the
method scalable to large datasets. While the Markov operator P captures the dynamics of the system,
direct spectral analysis may be sensitive to noise and perturbations. To address this, we introduce
a smoothing approach using a Markov semigroup, which will be detailed in the following Galerkin
approximation section.

Markov Semigroup for Smoothing To enhance the robustness of our spectral analysis to noise
and perturbations, we introduce a Markov semigroup Pτ . This semigroup is generated by the
Markov operator P and is defined for τ ≥ 0 as:

Pτ = eτ(P−I), (19)

where I is the identity operator. The semigroup satisfies the properties: P0 = I , Pτ1Pτ2 = Pτ1+τ2
for all τ1, τ2 ≥ 0 and strongly continuous at 0, i.e. limτ→0+ |Pτf − f | = 0 for all f in the domain
of P .

The parameter τ controls the amount of smoothing: as τ increases, Pτ becomes increasingly diffu-
sive, smoothing out fine-scale features in the data.

Galerkin Approach and Smoothing by Markov Semigroup To approximate the Koopman op-
erator and its eigenfunctions, we employ a Galerkin method (Rowley et al., 2009; Klus, 2020) in-
corporating smoothing by a Markov semigroup of kernel integral operators (Valva & Giannakis,
2024). We project the smoothed Koopman operator onto the subspace spanned by the leading L
eigenvectors of the Markov operator P , denoted as {φj}Lj=1. The smoothing process is achieved
through the application of the Markov semigroup Pτ , parameterized by τ > 0. We approximate the
eigenfunctions of the smoothed operator as linear combinations:

ϕτ =
L∑

j=1

cjφj . (20)

The coefficients cj are determined by enforcing that the action of the smoothed Koopman operator
on ϕτ is approximated within the chosen subspace. Specifically, we consider the finite-dimensional
approximation of the smoothed Koopman operator Kτ , defined by:

Kτ = G−1Aτ , (21)

where G is the Gram matrix and Aτ is the smoothed covariance matrix, with entries:

Gij = ⟨φi, φj⟩, Aτ,ij = ⟨φi, Pτ/2KPτ/2φj⟩. (22)

Here, Pτ/2 represents the action of the Markov semigroup, which smooths the Koopman operator.
The inner product ⟨·, ·⟩ is approximated using the empirical data as before.

To compute the entries of Aτ , we approximate the action of the smoothed Koopman operator on
the basis functions using the time-series data and the kernel integral operator. Assuming that xn+1

follows xn in the data, we have:

6
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Algorithm 1 Koopman Eigenfunction Approximation

Require: Time series {xk} ∈ Rd, delays Q, neighbors knn, Markov eigenfunctions l ≤ N , regularization
θ ≥ 0, output dim l′ ≤ l

Ensure: Koopman eigenvalues {λk}l
′
k=1 ∈ C, frequencies {ωk}l

′
k=1 ∈ R, eigenfunctions {ψk}l

′
k=1 ∈ CN

1: Compute pairwise distances d2Q(xi, xj) =
1
Q

∑Q−1
k=0 ∥ xi−k − xj−k ∥2

2: Retain knn nearest neighbors for each point i in set Nknn(xi)
3: Symmetrize distances by augmenting if xi ∈ Nknn(xj) but xj /∈ Nknn(xi)
4: Compute bandwidth ϵ(xi, xj) (Berry & Harlim, 2016)
5: Form kernel matrix Kij = exp(−d2Q(xi, xj)/ϵ)
6: Compute normalized matrix Pij = Kij/(

∑
kKikq

−1/2
k )q

1/2
j , qi =

∑
kKik

7: Find l largest eigenvalues γk and eigenfunctions φk of P
8: Form Galerkin matrices Aij = ⟨φi, V ξj⟩ − θ ⟨φi,∆ξj⟩, Gij = ⟨φi, ξj⟩
9: Solve Ac = λGc for coefficients ck and eigenvalues λk

10: Compute eigenfunctions ψi =
∑l

j=1 cjiφj

11: Calculate Dirichlet energies E(ψi) = ⟨ψi,∆ψi⟩ /∥ψi∥2
12: Order (λk, ψk) by increasing E(ψk)
13: Compute frequencies ωk = Im(λk)

(Pτ/2KPτ/2φj)(xn) ≈
∫

k̃τ/2(xn, y)φj(yn+1)dµ(y), (23)

where k̃τ/2 is the normalized kernel function associated with Pτ/2. Thus, the entries of Aτ become:

Aτ,ij =
1

N

N−1∑
n=1

φi(xn)

∫
k̃τ/2(xn, y)φj(yn+1)dµ(y). (24)

Solving the generalized eigenvalue problem Aτ c = λGc, yields approximations of the eigenvalues
λ and eigenfunctions ϕτ of the smoothed Koopman operator. This approach allows us to extract
coherent dynamical patterns that are robust to perturbations and noise, while still capturing the
essential features of the underlying dynamics.

Computational Considerations This approach enables efficient handling of large datasets
through computational resource optimization. In Algorithm 1, the most computationally intensive
operations comprise the kernel matrix Kij calculation (step 5) and the solution of two eigenvalue
problems: one for P (step 7) and another for the Galerkin solution (step 9). Through the imple-
mentation of sparse representations—specifically by moderating the nearest neighbors knn—and
restricting the number of eigenfunctions l, we reduce the computational complexity of the eigen-
value problems while preserving the essential system dynamics. The effectiveness of working with
a limited number of modes stems from the extracted eigenfunctions representing intrinsic dynamical
patterns, allowing accurate system behavior capture with minimal modes. Furthermore, the kernel
matrix Kij computation scales efficiently with data size through techniques such as random Fourier
features (Giannakis et al., 2023). This computational framework achieves substantially faster train-
ing times compared to contemporary deep learning and neural network methods while maintaining
robust performance in dynamic system characterization (Tavasoli et al., 2023).

3 RESULTS

In this section, we apply our spectral operator-based framework to live-cell imaging data to extract
coherent temporal patterns in cellular dynamics. We begin by describing the dataset and performing
a preliminary analysis to understand the divergence of cellular trajectories under different experi-
mental conditions. We then demonstrate how our framework captures these dynamics and evalu-
ate the representation performance in reconstructing and predicting ERK activity trajectories. The
pseudo-code used to generate the Koopman results is reported in Algorithm 1.

7
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Datasets The methodology was applied to a live-cell imaging dataset featuring retinal pigment
epithelial (RPE) cells engineered with a doxycycline (DOX)-inducible BRAFV600E oncogene (Chen
et al., 2023). The BRAFV600E mutation activates the mitogen-activated protein kinase (MAPK) sig-
naling pathway, resulting in elevated extracellular signal-regulated kinase (ERK) activity, which
regulates cell proliferation and differentiation.

The engineered cells expressed both the ERK activity reporter EKAREN5 and a cell cycle indi-
cator (mCherry-dE2F PIP), enabling concurrent monitoring of ERK signaling dynamics and cell
cycle progression. Live-cell imaging conducted at 10-minute intervals across four days captured the
temporal evolution of ERK activity within individual cells.

To examine ERK inhibition effects on cellular dynamics, the experimental design incorporated vary-
ing concentrations of the ERK inhibitor SCH772984 (ERKi). The analysis focused on two experi-
mental conditions:

1. DOX + Low ERKi: DOX-induced cells treated with low-concentration ERK inhibitor
2. DOX + High ERKi: DOX-induced cells treated with high-concentration ERK inhibitor

These experimental conditions facilitated investigation of ERK inhibition level effects on ERK ac-
tivity dynamics and cellular responses.
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Figure 1: (top) Kernel operator
matrix showing block-diagonal
structure, indicating distinct dy-
namical regimes. (bottom) The
first two principal Koopman
modes extracted from the data.

Kernel Operator and Block Structure Using the delay-
coordinate embedding with Q = 5 frames delays, we constructed
the kernel matrix for the DOX + Low ERKi condition. The
self-tuning kernel function captured the similarities between data
points in the embedded space, and the resulting kernel matrix
exhibited a distinct block-diagonal structure, as shown in Fig-
ure 1(above). The block-diagonal structure of the kernel matrix
suggests the presence of distinct dynamical regimes or attractors
in the cellular state space. This implies that cells transition be-
tween different states over time, and these transitions are captured
by the coherent patterns in the data.

Principal Koopman Modes The extracted principal Koopman
modes reveal dominant temporal patterns in ERK signaling dy-
namics at single-cell resolution. Figure 1(bottom) illustrates the
first two Koopman modes obtained under the Low ERKi condi-
tion. The first Koopman mode characterizes a smooth tempo-
ral transition, indicating systematic state changes within individ-
ual cells. This transition pattern captures the progressive ERK
activity suppression following ERK inhibitor introduction. The
mode reveals the gradual shift from elevated to suppressed ERK
activity states, consistent with established mechanisms of cellu-
lar signaling pathway adaptation to external perturbations (Eldar
& Elowitz, 2010). This collective behavior demonstrates proba-
bilistic state transitions in response to external signals—a char-
acteristic feature of stochastic differentiation systems. The sec-
ond Koopman mode exhibits periodic oscillations between positive and negative values. This pat-
tern indicates intrinsic cyclical dynamics within the ERK signaling network, potentially arising
from molecular fluctuations in low copy number species (Elowitz et al., 2002). These oscillations
may correspond to cell cycle phases, regulatory feedback loops generating transient responses, and
mRNA half-life effects that contribute to temporal variability in protein expression and signaling
dynamics.

Model ability to Reconstruct and Predict Utilizing a sparse representation with only the 10
smoothest modes, we constructed a model to represent the individual cell ERK activity trajecto-
ries. This approach acknowledges the inherent stochasticity in cellular signaling by focusing on the
most significant modes that capture essential dynamics while filtering out less predictable variations.
We evaluated the model’s performance on both the training set (Low ERKi condition) and unseen
data—including data after frame 400 in the Low ERKi condition (with one frame every 10 minutes).
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TRAINING SET PERFORMANCE Figure 2 (the left plot) compares the model predictions with the
observed ERK activity data for a randomly chosen cell under the Low ERKi condition. The model
effectively captures the overall trends and key fluctuations in ERK activity, demonstrating a close
match with the observed trajectory. This indicates that the dominant Koopman modes effectively
encapsulate both the deterministic response to the inhibitor and the stochastic variations arising from
intrinsic noise. By reconstructing the dynamics using a limited number of modes, the framework
demonstrates its capacity to distill complex, noisy biological data into interpretable and predictive
components.
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Figure 2: Performance examples of model prediction for ERK activity trajectories in the Low ERKi
condition (left, training set) and High ERKi condition (right, test set).

GENERALIZATION TO UNSEEN DATA We applied the model trained on the Low ERKi condition
to the High ERKi condition without retraining, as shown in Figure 2 (right). The model predictions
(red) align well with the observed data (green), capturing the general behavior of ERK activity
under a higher level of inhibition. Despite the increased perturbation, the principal Koopman modes
learned from the Low ERKi data remain relevant, suggesting that the fundamental dynamics of ERK
signaling persist across different inhibition levels. This model transfer property is absent in modern
approaches like PLDS, as illustrated in Figure 2.

This generalization implies that the Koopman eigenfunctions encapsulate conserved patterns in the
cellular response, reflecting core mechanisms of how cells adapt to varying degrees of external
stress. The persistence of these modes across conditions indicates that our framework effectively
identifies the underlying structures governing the stochastic and nonlinear dynamics of ERK signal-
ing. By capturing these essential features, the model enhances its applicability to various experimen-
tal conditions, offering a robust tool for understanding and predicting cellular behavior in response
to different perturbations.

COMPARISON OF DIFFERENT METRICS A comprehensive performance comparison of multiple
metrics against contemporary approaches, specifically CODEX (Jacques et al., 2021) and PLDS
(Chen et al., 2017), is presented in Table 1. The accurate prediction of cell dynamics requires
capturing intricate temporal behaviors for understanding complex biological processes. Although
CODEX demonstrates lower average error through effective population-level averaging, its limited
representation of detailed dynamic variations reduces applicability in scenarios demanding high-
fidelity transient behavior analysis. The inconsistency in CODEX performance becomes evident
when examining predictions across LowERKi and HighERKi conditions in Table 1. While CODEX
should theoretically achieve higher accuracy on the seen dataset (LowERKi) compared to the unseen
dataset (HighERKi), the results contradict this expected pattern, raising concerns about methodolog-
ical consistency.

The Koopman-based method demonstrates superior performance in capturing fine-grained dynam-
ics, as illustrated through single-cell trajectories in Figure 2, enabling deeper insights into cellular
behavior and enhanced predictive accuracy for precision-critical applications. The PLDS approach
(Boots, 2009), implemented according to Chen et al. (2017), attempts reconstruction and forecasting

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

unlike CODEX, but exhibits limitations in transient capture due to inherent stability constraints, as
evidenced in both numerical results and Figure 2. Additionally, while functional Principal Compo-
nent Analysis (fPCA) represents a common analytical approach, its exclusion from Table 1 stems
from inherent limitations in predictive capability beyond observed time periods.

Table 1: Performance Metrics comparison in heldout data for LowERKi and unseen data for High-
ERKi Tests

Metric Koopman CODEX (Jacques et al., 2021) PLDS (Chen et al., 2017)
LowERKi HighERKi LowERKi HighERKi LowERKi HighERKi

RMSE 1.00(0.37) 1.16(0.26) 1.04(0.42) 0.82(0.31) 1.45(0.48) 1.70(0.46)
MAE 0.78(0.27) 1.00(0.28) 0.81(0.33) 0.67(0.26) 1.18(0.43) 1.42(0.43)
MAPE (%) 448(1742) 382(465) 672(2074) 387(418) 1233(4482) 870(150)
R-squared -1.08(3.20) -4.31(6.06) -1.16(2.68) -1.70(4) -7.50(24.34) -11.44(15.39)
DTW Distance 62(23) 317(96) 61(26) 50(21) 68(33) 295(105)

4 CONCLUSION

In this paper, we proposed a spectral operator-based framework that extracts coherent temporal
patterns from live-cell trajectory data to characterize cellular responses to perturbations. The re-
sults demonstrate the existence of conserved temporal patterns within cellular dynamics, persisting
through inherent biological stochasticity and variability. Our approach adopts a probabilistic repre-
sentations and by approximating robust Koopman eigenfunctions, captures fundamental dynamical
aspects that remain consistent across diverse external conditions, enabling deeper insights into com-
plex biological processes. The framework presents notable advantages over functional data anal-
ysis and deep learning architectures. It generates interpretable representations through Koopman
eigenfunctions that correspond to meaningful temporal patterns, contrasting with black-box model
approaches. Furthermore, the framework demonstrates robust performance with limited variables
measured in live-cell imaging, effectively addressing data constraints inherent to biological exper-
iments. Through the integration of conserved dynamical pattern detection and stochasticity char-
acterization, this approach advances the understanding of cellular decision-making and adaptation
mechanisms.
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