
Petuum: A New Platform for
Distributed Machine Learning on Big Data

Eric P. Xing1, Qirong Ho2, Wei Dai1, Jin Kyu Kim1, Jinliang Wei1, Seunghak Lee1, Xun Zheng1, Pengtao Xie1, Abhimanu

Kumar1, and Yaoliang Yu1

1School of Computer Science, Carnegie Mellon University

2Institute for Infocomm Research, A*STAR, Singapore

{epxing,wdai,jinkyuk,jinlianw,seunghak,xunzheng,pengtaox,yaoliang}@cs.cmu.edu,{hoqirong,abhimanyu.kumar}@gmail.com

ABSTRACT
How can one build a distributed framework that allows ef-
ficient deployment of a wide spectrum of modern advanced
machine learning (ML) programs for industrial-scale prob-
lems using Big Models (100s of billions of parameters) on Big
Data (terabytes or petabytes)? Contemporary paralleliza-
tion strategies employ fine-grained operations and schedul-
ing beyond the classic bulk-synchronous processing paradigm
popularized by MapReduce, or even specialized operators
relying on graphical representations of ML programs. The
variety of approaches tends to pull systems and algorithms
design in different directions, and it remains difficult to find
a universal platform applicable to a wide range of different
ML programs at scale. We propose a general-purpose frame-
work that systematically addresses data- and model-parallel
challenges in large-scale ML, by leveraging several funda-
mental properties underlying ML programs that make them
different from conventional operation-centric programs: er-
ror tolerance, dynamic structure, and nonuniform conver-
gence; all stem from the optimization-centric nature shared
in ML programs’ mathematical definitions, and the iterative-
convergent behavior of their algorithmic solutions. These
properties present unique opportunities for an integrative
system design, built on bounded-latency network synchro-
nization and dynamic load-balancing scheduling, which is ef-
ficient, programmable, and enjoys provable correctness guar-
antees. We demonstrate how such a design in light of ML-
first principles leads to significant performance improvements
versus well-known implementations of several ML programs,
allowing them to run in much less time and at considerably
larger model sizes, on modestly-sized computer clusters.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed Systems; G.3 [Probability and
Statistics]: Probabilistic algorithms; G.4 [Mathematical
Software]: Parallel and vector implementations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD 2015
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783323.

General Terms
Design, Theory, Algorithms, Experimentation, Performance

Keywords
Machine Learning, Big Data, Big Model, Distributed Sys-
tems, Theory, Data-Parallelism, Model-Parallelism

1. INTRODUCTION
Machine learning (ML) is becoming a primary mechanism

for extracting information from data. However, the surging
volume of Big Data from Internet activities and sensory ad-
vancements, and the increasing needs for Big Models for
ultra high-dimensional problems have put tremendous pres-
sure on ML methods to scale beyond a single machine, due
to space and time bottlenecks. For example, the Clueweb
2012 web crawl1 contains > 700m web pages as 27TB of
text, while photo-sharing sites such as Flickr, Instagram and
Facebook are anecdotally known to possess 10s of billions of
images, again taking up TBs of storage. It is highly ineffi-
cient, if possible, to use such big data sequentially in a batch
or scholastic fashion in a typical iterative ML algorithm. On
the other hand, state-of-the-art image recognition systems
have now embraced large-scale deep learning models with
billions of parameters [17]; topic models with up to 106 top-
ics can cover long-tail semantic word sets for substantially
improved online advertising [26, 31]; and very-high-rank ma-
trix factorization yields improved prediction on collaborative
filtering problems [35]. Training such big models with a sin-
gle machine can be prohibitively slow, if possible.

Despite the recent rapid development of many new ML
models and algorithms aiming at scalable application [9, 28,
15, 36, 1, 5], adoption of these technologies remains gen-
erally unseen in the wider data mining, NLP, vision, and
other application communities for big problems, especially
those built on advanced probabilistic or optimization pro-
grams. We believe that, from the scalable execution point
of view, a main reason that prevents many state-of-the-art
ML models and algorithms from being more widely applied
at Big-Learning scales is the difficult migration from an aca-
demic implementation, often specialized for a small, well-
controlled computer platform such as desktop PCs and small
lab-clusters, to a big, less predictable platform such as a cor-
porate cluster or the cloud, where correct execution of the
original programs require careful control and mastery of low-
level details of the distributed environment and resources
through highly nontrivial distributed programming.

1http://www.lemurproject.org/clueweb12.php

http://www.lemurproject.org/clueweb12.php

Figure 1: The scale of Big ML efforts in recent liter-

ature. A key goal of Petuum is to enable larger ML

models to be run on fewer resources, even relative to

highly-specialized implementations.

Many platforms have provided partial solutions to bridge
this research-to-production gap: while Hadoop [27] is a pop-
ular and easy to program platform, the simplicity of its
MapReduce abstraction makes it difficult to exploit ML prop-
erties such as error tolerance (at least, not without consid-
erable engineering effort to bypass MapReduce limitations),
and its performance on many ML programs has been sur-
passed by alternatives [32, 20]. One such alternative is
Spark [32], which generalizes MapReduce and scales well
on data while offering an accessible programming interface;
yet, Spark does not offer fine-grained scheduling of com-
putation and communication, which has been shown to be
hugely advantageous, if not outright necessary, for fast and
correct execution of advanced ML algorithms [7]. Graph-
centric platforms such as GraphLab [20] and Pregel [21] effi-
ciently partition graph-based models with built-in schedul-
ing and consistency mechanisms; but ML programs such
as topic modeling and regression either do not admit ob-
vious graph representations, or a graph representation may
not be the most efficient choice; moreover, due to limited
theoretical work, it is unclear whether asynchronous graph-
based consistency models and scheduling will always yield
correct execution of such ML programs. Other systems pro-
vide low-level programming interfaces [23, 19], that, while
powerful and versatile, do not yet offer higher-level general-
purpose building blocks such as scheduling, model partition-
ing strategies, and managed communication that are key to
simplifying the adoption of a wide range of ML methods. In
summary, existing systems supporting distributed ML each
manifest a unique tradeoff on efficiency, correctness, pro-
grammability, and generality.

In this paper, we explore the problem of building a dis-
tributed machine learning framework with a new angle to-
ward the efficiency, correctness, programmability, and gen-
erality tradeoff. We observe that, a hallmark of most (if
not all) ML programs is that they are defined by an ex-
plicit objective function over data (e.g., likelihood, error-
loss, graph cut), and the goal is to attain optimality of
this function, in the space defined by the model parame-
ters and other intermediate variables. Moreover, these al-
gorithms all bear a common style, in that they resort to an
iterative-convergent procedure (see Eq. 1). It is noteworthy
that iterative-convergent computing tasks are vastly differ-

ent from conventional programmatic computing tasks (such
as database queries and keyword extraction), which reach
correct solutions only if every deterministic operation is cor-
rectly executed, and strong consistency is guaranteed on the
intermediate program state — thus, operational objectives
such as fault tolerance and strong consistency are absolutely
necessary. However, an ML program’s true goal is fast, effi-
cient convergence to an optimal solution, and we argue that
fine-grained fault tolerance and strong consistency are but
one vehicle to achieve this goal, and might not even be the
most efficient one.

We present a new distributed ML framework, Petuum,
built on an ML-centric optimization-theoretic principle, as
opposed to various operational objectives explored earlier.
We begin by formalizing ML algorithms as iterative-convergent
programs, which encompass a large space of modern ML
such as stochastic gradient descent and coordinate descent
for determining optimality or fixed-point in optimization
programs [3, 12], MCMC and variational methods for graph-
ical models [13, 15], proximal optimization and ADMM for
structured sparsity problems [6, 4], among others. To our
knowledge, no existing ML platform has considered such a
wide spectrum of ML algorithms, which exhibit diverse rep-
resentation abstractions, model and data access patterns,
and synchronization and scheduling requirements. So what
are the shared properties across such a “zoo of ML algo-
rithms”? We believe that the key lies in recognizing a clear
dichotomy between data (which is conditionally independent
and persistent throughout the algorithm) and model (which
is internally coupled, and is transient before converging to
an optimum). This inspires a simple yet statistically-rooted
bimodal approach to parallelism: data parallel and model
parallel distribution and execution of a big ML program over
a cluster of machines. This dichotomous parallel approach
keenly exploits the unique statistical nature of ML algo-
rithms, particularly three properties: (1) Error tolerance —
iterative-convergent algorithms are often robust against lim-
ited errors in intermediate calculations; (2) Dynamic struc-
tural dependency — during execution, the changing corre-
lation strengths between model parameters are critical to
efficient parallelization; (3) Non-uniform convergence — the
number of steps required for a parameter to converge can be
highly skewed across parameters. The core goal of Petuum is
to execute these iterative updates in a manner that quickly
converges to an optimum of the ML program’s objective
function, by exploiting these three statistical properties of
ML, which we argue are fundamental to efficient large-scale
ML in cluster environments.

This design principle contrasts that of several existing
frameworks discussed earlier. For example, central to Spark [32]
is the principle of perfect fault tolerance and recovery, sup-
ported by a persistent memory architecture (Resilient Dis-
tributed Datasets); whereas central to GraphLab is the prin-
ciple of local and global consistency, supported by a ver-
tex programming model (the Gather-Apply-Scatter abstrac-
tion). While these design principles reflect important as-
pects of correct ML algorithm execution — e.g., atomic re-
coverability of each computing step (Spark), or consistency
satisfaction for all subsets of model variables (GraphLab) —
some other important aspects, such as the three statistical
properties discussed above, or perhaps ones that could be
more fundamental and general, and which could open more
room for efficient system designs, remain unexplored.

To exploit these properties, Petuum introduces three novel
system objectives grounded in the aforementioned key prop-
erties of ML programs, in order to accelerate their con-
vergence at scale: (1) Petuum synchronizes the parameter
states with a bounded staleness guarantee, which achieves
provably correct outcomes due to the error-tolerant nature
of ML, but at a much cheaper communication cost than con-
ventional per-iteration bulk synchronization; (2) Petuum of-
fers dynamic scheduling policies that take into account the
changing structural dependencies between model parame-
ters, so as to minimize parallelization error and synchro-
nization costs; and (3) Since parameters in ML programs
exhibit non-uniform convergence costs (i.e. different num-
bers of updates required), Petuum prioritizes computation
towards non-converged model parameters, so as to achieve
faster convergence.

To demonstrate this approach, we show how a data-parallel
and a model-parallel algorithm can be implemented on Petuum,
allowing them to scale to large data and model sizes with
improved algorithm convergence times. Figure 1 offers a
glimpse of the model scalability achievable on Petuum, where
we show a range of Petuum ML programs at large model
scales (up to a trillion parameters), on relatively modest
clusters (10-100 machines) that are within reach of most
ML practitioners. The experiments section provides more
detailed benchmarks on a range of ML programs: topic mod-
eling, matrix factorization, deep learning, Lasso regression,
and distance metric learning. These algorithms are only a
subset of the full open-source Petuum ML library2, which in-
cludes more algorithms not explored in this paper: random
forests, K-means, sparse coding, MedLDA, SVM, multi-class
logistic regression, with many others being actively devel-
oped for future releases.

2. PRELIMINARIES: ON DATA AND
MODEL PARALLELISM

We begin with a principled formulation of iterative-convergent
ML programs, which exposes a dichotomy of data and model,
that inspires the parallel system architecture (§3), algorithm
design (§4), and theoretical analysis (§5) of Petuum. Con-
sider the following programmatic view of ML as iterative-
convergent programs, driven by an objective function:
Iterative-Convergent ML Algorithm: Given data D
and loss L (i.e., a fitness function such as RMS loss, like-
lihood, margin), a typical ML problem can be grounded
as executing the following update equation iteratively, until
the model state (i.e., parameters and/or latent variables) A
reaches some stopping criteria:

A(t) = F (A(t−1),∆L(A(t−1), D)) (1)

where superscript (t) denotes iteration. The update function
∆L() (which improves the loss L) performs computation on
data D and model state A, and outputs intermediate results
to be aggregated by F (). For simplicity, in the rest of the
paper we omit L in the subscript with the understanding
that all ML programs of our interest here bear an explicit
loss function that can be used to monitor the quality of con-
vergence and solution, as oppose to heuristics or procedures
not associated such a loss function.

In large-scale ML, both data D and model A can be very
large. Data-parallelism, in which data is divided across ma-
chines, is a common strategy for solving Big Data problems,

2Petuum is available as open source at http://petuum.org.

Data Parallel Model Parallel

Figure 2: The difference between data and model par-

allelism: data samples are always conditionally indepen-

dent given the model, but there are some model param-

eters that are not independent of each other.

whereas model-parallelism, which divides the ML model, is
common for Big Models. Below, we discuss the (different)
mathematical implications of each parallelism (see Fig. 2).

2.1 Data Parallelism
In data-parallel ML, the data D is partitioned and as-

signed to computational workers (indexed by p = 1..P); we
denote the p-th data partition by Dp. We assume that the
function ∆() can be applied to each of these data subsets
independently, yielding a data-parallel update equation:

A(t) = F (A(t−1),
∑P
p=1 ∆(A(t−1), Dp)). (2)

In this definition, we assume that the ∆() outputs are aggre-
gated via summation, which is commonly seen in stochastic
gradient descent or sampling-based algorithms. For exam-
ple, in distance metric learning problem which is optimized
with stochastic gradient descent (SGD), the data pairs are
partitioned over different workers, and the intermediate re-
sults (subgradients) are computed on each partition and are
summed before applied to update the model parameters.
Other algorithms can also be expressed in this form, such as
variational EM algorithms A(t) =

∑P
p=1 ∆(A(t−1), Dp). Im-

portantly, this additive updates property allows the updates
∆() to be aggregated at each local worker before transmis-
sion over the network, which is crucial because CPUs can
produce updates ∆() much faster than they can be (indi-
vidually) transmitted over the network. Additive updates
are the foundation for a host of techniques to speed up
data-parallel execution, such as minibatch, asynchronous
and bounded-asynchronous execution, and parameter servers.
Key to the validity of additivity of updates from different
workers is the notion of independent and identically dis-
tributed (iid) data, which is assumed for many ML programs,
and implies that each parallel worker contributes “equally”
(in a statistical sense) to the ML algorithm’s progress via
∆(), no matter which data subset Dp it uses.

2.2 Model Parallelism
In model-parallel ML, the model A is partitioned and as-

signed to workers p = 1..P and updated therein in paral-
lel, running update functions ∆(). Unlike data-parallelism,
each update function ∆() also takes a scheduling function

S
(t−1)
p (), which restricts ∆() to operate on a subset of the

model parameters A:

A(t) = F
(
A(t−1), {∆(A(t−1), S(t−1)

p (A(t−1)))}Pp=1

)
, (3)

where we have omitted the data D for brevity and clarity.

S
(t−1)
p () outputs a set of indices {j1, j2, . . . , }, so that ∆()

only performs updates on Aj1 , Aj2 , . . . — we refer to such
selection of model parameters as scheduling.

http://petuum.org

Unlike data-parallelism which enjoys iid data properties,
the model parameters Aj are not, in general, independent
of each other (Figure 2), and it has been established that
model-parallel algorithms can only be effective if the parallel
updates are restricted to independent (or weakly-correlated)
parameters [18, 5, 25, 20]. Hence, our definition of model-
parallelism includes a global scheduling mechanism that can
select carefully-chosen parameters for parallel updating.

The scheduling function S() opens up a large design space,
such as fixed, randomized, or even dynamically-changing
scheduling on the whole space, or a subset of, the model
parameters. S() not only can provide safety and correctness
(e.g., by selecting independent parameters and thus mini-
mize parallelization error), but can offer substantial speed-
up (e.g., by prioritizing computation onto non-converged pa-
rameters). In the Lasso example, Petuum uses S() to select
coefficients that are weakly correlated (thus preventing di-
vergence), while at the same time prioritizing coefficients far
from zero (which are more likely to be non-converged).

2.3 Implementing Data-
and Model-Parallel Programs

Data- and model-parallel programs are stateful, in that
they continually update shared model parameters A. Thus,
an ML platform needs to synchronize A across all running
threads and processes, and this should be done in a high-
performance non-blocking manner that still guarantees con-
vergence. Ideally, the platform should also offer easy, global-
variable-like access toA (as opposed to cumbersome message-
passing, or non-stateful MapReduce-like functional inter-
faces). If the program is model-parallel, it may require fine
control over parameter scheduling to avoid non-convergence;
such capability is not available in Hadoop, Spark nor GraphLab
without code modification. Hence, there is an opportunity
to address these considerations via a platform tailored to
data- and model-parallel ML.

3. THE PETUUM FRAMEWORK
A core goal of Petuum is to allow easy implementation of

data- and model-parallel ML algorithms. Petuum provides
APIs to key systems that make this task easier: (1) a pa-
rameter server system, which allows programmers to access
global model state A from any machine via a convenient
distributed shared-memory interface that resembles single-
machine programming, and adopts a bounded-asychronous
consistency model that preserves data-parallel convergence
guarantees, thus freeing users from explicit network synchro-
nization; (2) a scheduler, which allows fine-grained control
over the parallel ordering of model-parallel updates ∆() —
in essence, the scheduler allows users to define their own ML
application consistency rules.

3.1 Petuum System Design
ML algorithms exhibit several principles that can be ex-

ploited to speed up distributed ML programs: dependency
structures between parameters, non-uniform convergence of
parameters, and a limited degree of error tolerance [14, 7,
18, 33, 19, 20]. Petuum allows practitioners to write data-
parallel and model-parallel ML programs that exploit these
principles, and can be scaled to Big Data and Big Model
applications. The Petuum system comprises three compo-
nents (Fig. 3): scheduler, workers, and parameter server,
and Petuum ML programs are written in C++ (with Java
support coming in the near future).

Sched

Client

Sched

Client

Sched

Client

Scheduler

PS

Client

Worker

PS

Client

PS server

Sched

Client

PS serverWorker

PS

Client

….
ML App Code ML App Code

Consistency

Controller

Consistency

Controller

Dependency/

Priority Mgr.

Network Layer

parameter exchange channel

scheduling control channel

Data
Partition

Data
Partition

Model
Partition

Model
Partition

Scheduling
Data

Figure 3: Petuum scheduler, workers, parameter servers.

Scheduler: The scheduler system enables model-parallelism,
by allowing users to control which model parameters are
updated by worker machines. This is performed through
a user-defined scheduling function schedule() (correspond-

ing to S
(t−1)
p ()), which outputs a set of parameters for each

worker — for example, a simple schedule might pick a ran-
dom parameter for every worker, while a more complex
scheduler (as we will show) may pick parameters according
to multiple criteria, such as pair-wise independence or dis-
tance from convergence. The scheduler sends the identities
of these parameters to workers via the scheduling control
channel (Fig. 3), while the actual parameter values are de-
livered through a parameter server system that we will soon
explain; the scheduler is responsible only for deciding which
parameters to update. In Section 5, we will discuss theoret-
ical guarantees enjoyed by model-parallel schedules.

Several common patterns for schedule design are worth
highlighting: the simplest is a fixed-schedule (schedule_fix()),
which dispatches parameters A in a pre-determined order (as
is common in existing ML implementations). Static, round-
robin schedules (e.g. repeatedly loop over all parameters)
fit the schedule_fix() model. Another type of schedule is
dependency-aware (schedule_dep()) scheduling, which
allows re-ordering of variable/parameter updates to accel-
erate model-parallel ML algorithms such as Lasso regres-
sion. This type of schedule analyzes the dependency struc-
ture over model parameters A, in order to determine their
best parallel execution order. Finally, prioritized schedul-
ing (schedule_pri()) exploits uneven convergence in ML,
by prioritizing subsets of variables Usub ⊂ A according to
algorithm-specific criteria, such as the magnitude of each
parameter, or boundary conditions such as KKT.

Because scheduling functions schedule() may be compute-
intensive, Petuum uses pipelining to overlap scheduling com-
putations schedule() with worker execution, so workers are
always doing useful computation. The scheduler is also re-
sponsible for central aggregation via the pull() function
(corresponding to F ()), if it is needed.
Workers: Each worker p receives parameters to be up-
dated from schedule(), and then runs parallel update func-
tions push() (corresponding to ∆()) on data D. Petuum in-
tentionally does not specify a data abstraction, so that any
data storage system may be used — workers may read from
data loaded into memory, or from disk, or over a distributed
file system or database such as HDFS. Furthermore, workers
may touch the data in any order desired by the program-
mer: in data-parallel stochastic algorithms, workers might
sample one data point at a time, while in batch algorithms,
workers might instead pass through all data points in one
iteration. While push() is being executed, the model state
A is automatically synchronized with the parameter server
via the parameter exchange channel, using a distributed
shared memory programming interface that conveniently re-

// Petuum Program Structure

schedule() {
// This is the (optional) scheduling function
// It is executed on the scheduler machines
A_local = PS.get(A) // Parameter server read
PS.inc(A,change) // Can write to PS here if needed
// Choose variables for push() and return
svars = my_scheduling(DATA,A_local)
return svars

}

push(p = worker_id(), svars = schedule()) {
// This is the parallel update function
// It is executed on each of P worker machines
A_local = PS.get(A) // Parameter server read
// Perform computation and send return values to pull()
// Or just write directly to PS
change1 = my_update1(DATA,p,A_local)
change2 = my_update2(DATA,p,A_local)
PS.inc(A,change1) // Parameter server increment
return change2

}

pull(svars = schedule(), updates = (push(1), ..., push(P))) {
// This is the (optional) aggregation function
// It is executed on the scheduler machines
A_local = PS.get(A) // Parameter server read
// Aggregate updates from push(1..P) and write to PS
my_aggregate(A_local,updates)
PS.put(A,change) // Parameter server overwrite

}

Figure 4: Petuum Program Structure.

sembles single-machine programming. After the workers fin-
ish push(), the scheduler may use the new model state to
generate future scheduling decisions.
Parameter Server: The parameter servers (PS) pro-
vide global access to model parameters A (distributed over
many machines), via a convenient distributed shared mem-
ory API that is similar to table-based or key-value stores. To
take advantage of ML-algorithmic principles, the PS imple-
ments Stale Synchronous Parallel (SSP) consistency [14, 7],
which reduces network synchronization costs, while main-
taining bounded-staleness convergence guarantees implied
by SSP. We will discuss these guarantees in Section 5. Un-
like PS-only systems that only support data-parallelism [19],
Petuum’s combined scheduler-and-PS design allows for both
data- and model-parallel algorithms, which run asynchronously
and enjoy provable speedup guarantees with more machines.

Fault tolerance is handled by checkpoint-and-restart, which
is suitable for up to 100s of machines; a more sophisticated
strategy for 1000s of machines is part of future work. To fur-
ther improve network performance, Petuum can be config-
ured to obey bandwidth limits and a logical network topol-
ogy (e.g. ring, grid or fat-tree).

3.2 Programming Interface
Figure 4 shows a basic Petuum program, consisting of

a central scheduler function schedule(), a parallel update
function push(), and a central aggregation function pull().
The model variables A are held in the parameter server,
which can be accessed at any time from any function via
the PS object. The PS object can be accessed from any func-
tion, and has 3 functions: PS.get() to read a parameter,
PS.inc() to add to a parameter, and PS.put() to overwrite
a parameter. With just these operations, the SSP consis-
tency model automatically ensures parameter consistency
between all Petuum components; no additional user pro-
gramming is necessary. Finally, we use DATA to represent
the data D; as noted earlier, this can be any 3rd-party data
structure, database, or distributed file system.

4. PETUUM PARALLEL ALGORITHMS
Now we turn to development of parallel algorithms for

large-scale distributed ML problems, in light of the data
and model parallel principles underlying Petuum. We focus
on a new data-parallel Distance Metric Learning algorithm,
and a new model-parallel Lasso algorithm, but our strategies
apply to a broad spectrum of other ML problems as briefly
discussed at the end of this section. We show that with
the Petuum system framework, we can easily realize these
algorithms on distributed clusters without dwelling on low
level system programming, or non-trivial recasting of our
ML problems into representations such as RDDs or vertex
programs. Instead our ML problems can be coded at a high
level, more akin to Matlab or R.

4.1 Data-Parallel Distance Metric Learning
Let us first consider a large-scale Distance Metric Learning

(DML) problem. DML improves the performance of other
ML programs such as clustering, by allowing domain experts
to incorporate prior knowledge of the form “data points x,
y are similar (or dissimilar)” [29] — for example, we could
enforce that “books about science are different from books
about art”. The output is a distance function d(x, y) that
captures the aforementioned prior knowledge. Learning a
proper distance metric [8, 29] is essential for many distance
based data mining and machine learning algorithms, such as
retrieval, k-means clustering and k-nearest neighbor (k-NN)
classification. DML has not received much attention in the
Big Data setting, and we are not aware of any distributed
implementations of DML.

DML tries to learn a Mahalanobis distance matrix M
(symmetric and positive-semidefinite), which can then be
used to measure the distance between two samples D(x, y) =
(x− y)TM(x− y). Given a set of “similar” sample pairs S =

{(xi, yi)}|S|i=1, and a set of“dissimilar”pairsD = {(xi, yi)}|D|i=1,
DML learns the Mahalanobis distance by optimizing

minM
∑

(x,y)∈S
(x− y)TM(x− y)

s.t. (x− y)TM(x− y) ≥ 1,∀(x, y) ∈ D, and M � 0
(4)

where M � 0 denotes that M is required to be positive
semidefinite. This optimization problem tries to minimize
the Mahalanobis distances between all pairs labeled as sim-
ilar while separating dissimilar pairs with a margin of 1.

This optimization problem is difficult to parallelize due to
the constraint set. To create a data-parallel optimization
algorithm and implement it on Petuum, we shall relax the
constraints via slack variables (similar to SVMs). First, we
replace M with LTL, and introduce slack variables ξ to relax
the hard constraint in Eq.(4), yielding

minL
∑

(x,y)∈S
‖L(x− y)‖2 + λ

∑
(x,y)∈D

ξx,y

s.t. ‖L(x− y)‖2 ≥ 1− ξx,y, ξx,y ≥ 0, ∀(x, y) ∈ D
(5)

Using hinge loss, the constraint in Eq.(5) can be eliminated,
yielding an unconstrained optimization problem:

minL
∑

(x,y)∈S
‖L(x−y)‖2 +λ

∑
(x,y)∈D

max(0, 1−‖L(x−y)‖2) (6)

Unlike the original constrained DML problem, this relax-
ation is fully data-parallel, because it now treats the dissim-
ilar pairs as iid data to the loss function (just like the similar
pairs); hence, it can be solved via data-parallel Stochastic
Gradient Descent (SGD). SGD can be naturally parallelized

// Data-Parallel Distance Metric Learning

schedule() { // Empty, do nothing }

push() {
L_local = PS.get(L) // Bounded-async read from param server
change = 0
for c=1..C // Minibatch size C
(x,y) = draw_similar_pair(DATA)
(a,b) = draw_dissimilar_pair(DATA)
change += DeltaL(L_local,x,y,a,b) // SGD from Eq 7

PS.inc(L,change/C) // Add gradient to param server
}

pull() { // Empty, do nothing }

Figure 5: Petuum DML data-parallel pseudocode.

over data, and we partition the data pairs onto P machines.
Every iteration, each machine p randomly samples a mini-
batch of similar pairs Sp and dissimilar pairs Dp from its
data shard, and computes the following update to L:

4Lp =
∑

(x,y)∈Sp 2L(x− y)(x− y)T (7)

−
∑

(a,b)∈Dp 2L(a− b)(a− b)T · I(‖L(a− b)‖2 ≤ 1)

where I(·) is the indicator function.
Figure 5 shows pseudocode for Petuum DML, which is

simple to implement because the parameter server system
PS abstracts away complex networking code under a simple
get()/read() API. Moreover, the PS automatically ensures
high-throughput execution, via a bounded-asynchronous con-
sistency model (Stale Synchronous Parallel) that can provide
workers with stale local copies of the parameters L, instead
of forcing workers to wait for network communication. In
Section 5, we will review the strong consistency and conver-
gence guarantees provided by the SSP model.

Since DML is a data-parallel algorithm, only the par-
allel update push() needs to be implemented (Figure 5).
The scheduling function schedule() is empty (because ev-
ery worker touches every model parameter L), and we do
not need aggregation push() for this SGD algorithm. In our
next example, we will show how schedule() and push() can
be used to implement model-parallel execution.

4.2 Model-Parallel Lasso
Lasso is a widely used model to select features in high-

dimensional problems, such as gene-disease association stud-
ies, or in online advertising via `1-penalized regression [11].
Lasso takes the form of an optimization problem:

minβ `(X,y,β) + λ
∑
j |βj |, (8)

where λ denotes a regularization parameter that determines
the sparsity of β, and `(·) is a non-negative convex loss func-
tion such as squared-loss or logistic-loss; we assume that X
and y are standardized and consider (8) without an inter-
cept. For simplicity but without loss of generality, we let
`(X,y,β) = 1

2
‖y−Xβ‖22; other loss functions (e.g. logis-

tic) are straightforward and can be solved using the same ap-
proach [5]. We shall solve this via a coordinate descent (CD)
model-parallel approach, similar but not identical to [5, 25].

The simplest parallel CD Lasso , shotgun [5], selects a ran-
dom subset of parameters to be updated in parallel. We now
present a scheduled model-parallel Lasso that improves upon
shotgun: the Petuum scheduler chooses parameters that are
“nearly independent” (to be elaborated shortly), thus guar-
anteeing convergence of the Lasso objective. In addition, it
prioritizes these parameters based on their distance to con-
vergence, thus speeding up optimization.

// Model-Parallel Lasso

schedule() {
for j=1..J // Update priorities for all coeffs beta_j

c_j = square(beta_j) + eta // Magnitude prioritization
(s_1, ..., s_L’) = random_draw(distribution(c_1, ..., c_J))
// Choose L<L’ pairwise-independent beta_j
(j_1, ..., j_L) = correlation_check(s_1, ..., s_L’)
return (j_1, ..., j_L)

}

push(p = worker_id(), (j_1, ..., j_L) = schedule()) {
// Partial computation for L chosen beta_j; calls PS.get(beta)
(z_p[j_1], ..., z_p[j_L]) = partial(DATA[p], j_1, ..., j_L)
return z_p

}

pull((j_1, ..., j_L) = schedule(),
(z_1, ..., z_P) = (push(1), ..., push(P))) {

for a=1..L // Aggregate partial computation from P workers
newval = sum_threshold(z_1[j_a], ..., z_P[j_a])
PS.put(beta[j_a], newval) // Overwrite to parameter server

}

Figure 6: Petuum Lasso model-parallel pseudocode.

Why is it important to choose independent parameters via
scheduling? Parameter dependencies affect the CD update
equation in the following manner: by taking the gradient of
(8), we obtain the CD update for βj :

β
(t)
j ← S(xTj y−

∑
k 6=j xTj xkβ

(t−1)
k , λ), (9)

where S(·, λ) is a soft-thresholding operator, defined by S(βj , λ) ≡
sign(β) (|β| − λ). In (9), if xTj xk 6= 0 (nonzero correlation)

and β
(t−1)
j 6= 0 and β

(t−1)
k 6= 0, then a coupling effect is cre-

ated between features βj and βk. Hence, they are no longer
conditionally independent given the data: βj 6⊥ βk|X,y. If
the j-th and the k-th coefficients are updated concurrently,
parallelization error may occur, causing the Lasso problem
to converge slowly (or even diverge outright).

Petuum’s schedule(), push() and pull() interface is read-
ily suited to implementing scheduled model-parallel Lasso.
We use schedule() to choose parameters with low depen-
dency, and to prioritize non-converged parameters. Petuum
pipelines schedule() and push(); thus schedule() does
not slow down workers running push(). Furthermore, by
separating the scheduling code schedule() from the core
optimization code push() and pull(), Petuum makes it
easy to experiment with complex scheduling policies that
involve prioritization and dependency checking, thus facili-
tating the implementation of new model-parallel algorithms
— for example, one could use schedule() to prioritize ac-
cording to KKT conditions in a constrained optimization
problem, or to perform graph-based dependency checking
like in Graphlab [20]. In Section 5, we show that the above
Lasso schedule schedule() is guaranteed to converge, and
gives us near optimal solutions by controlling errors from
parallel execution. The pseudocode for scheduled model par-
allel Lasso under Petuum is shown in Figure 6.

4.3 Other Algorithms
We have implemented other data/model-parallel algorithms

on Petuum — we briefly mention a few, while noting that
many others are included in the Petuum open-source library.
Topic Model (LDA): For LDA, the key parameter is the
“word-topic” table, that needs to be updated by all worker
machines. We adopt a simultaneous data-and-model-parallel
approach to LDA, and use a fixed schedule function sched-

ule_fix() to cycle disjoint subsets of the word-topic ta-
ble and data across machines for updating (via push() and
pull()), without violating structural dependencies in LDA.

(c)(a) (b)

Figure 7: Key properties of ML algorithms: (a) Non-

uniform convergence; (b) Error-tolerant convergence; (c)

Dependency structures amongst variables.

Matrix Factorization (MF): High-rank decompositions
of large matrices for improved accuracy [35] can be solved
by a model-parallel approach, and we implement it via a
fixed schedule function schedule_fix(), where each worker
machine only performs the model update push() on a dis-
joint, unchanging subset of factor matrix rows.
Deep Learning (DL): We implemented two types on Petuum:
a fully-connected Deep Neural Network (DNN) using cross-
entropy loss, and a Convolutional NN (CNN) for image clas-
sification based off the open-source Caffe project. We adopt
a data-parallel strategy schedule_fix(), where each worker
uses its data subset to perform updates push() to the full
model A. This data-parallel strategy may be amenable to
MapReduce, Spark and GraphLab, though we are not aware
of DL implementations on them.

5. PRINCIPLES AND THEORY
Our iterative-convergent formulation of ML programs, and

the explicit notions of data and model parallelism, make
it convenient to explore three key ML program properties
— error-tolerant convergence, non-uniform convergence, de-
pendency structures (Fig. 7) — and to analyze how Petuum
exploits these properties in a theoretically-sound manner to
speed up ML program completion at Big Learning scales.

Some of these properties have been successfully used in
bespoke, large-scale implementations of popular ML algo-
rithms: topic models [31, 19], matrix factorization [30, 16],
and deep learning [17]. It is notable that MapReduce-style
systems (such as Hadoop [27] and Spark [32]) often do not
fare competitively against these custom-built ML implemen-
tations, and one of the reasons is that the key ML properties
are difficult to harness under a MapReduce-like abstraction.
Other abstractions may offer a limited degree of opportu-
nity — for example, vertex programming [20] permits graph
dependencies to influence model-parallel execution.

5.1 Error tolerant convergence
Data-parallel ML algorithms are often robust against mi-

nor errors in intermediate calculations; as a consequence,
they still execute correctly even when their model parame-
ters A experience synchronization delays (i.e. the P work-
ers only see old or stale parameters), provided those de-
lays are strictly bounded [22, 14, 7, 36, 1, 16]. Petuum
exploits this error-tolerance to reduce network communi-
cation/synchronization overheads substantially, by imple-
menting the Stale Synchronous Parallel (SSP) consistency
model [14, 7] on top of the parameter server system, which
provides all machines with access to parameters A.

The SSP consistency model guarantees that if a worker
reads from parameter server at iteration c, it is guaranteed
to receive all updates from all workers computed at and
before iteration c − s − 1, where s is the staleness thresh-
old. If this is impossible because some straggling worker is

more than s iterations behind, the reader will stop until the
straggler catches up and sends its updates. For stochastic
gradient descent algorithms (such as in the DML program),
SSP has very attractive theoretical properties [7], which we
partially re-state here:

Theorem 1 (adapted from [7]). SGD under SSP,

convergence in probability: Let f(x) =
∑T
t=1 ft(x) be a

convex function, where the ft are also convex. We search for
a minimizer x∗ via stochastic gradient descent on each com-
ponent ∇ft under SSP, with staleness parameter s and P
workers. Let ut := −ηt∇tft(x̃t) with ηt = η√

t
. Under suit-

able conditions (ft are L-Lipschitz and bounded divergence
D(x||x′) ≤ F 2), we have

P
[
R[X]
T
− 1√

T

(
ηL2 + F2

η
+ 2ηL2µγ

)
≥ τ

]
≤ exp

{
−Tτ2

2η̄T σγ+ 2
3
ηL2(2s+1)Pτ

}
where R[X] :=

∑T
t=1 ft(x̃t)−f(x∗), and η̄T = η2L4(lnT+1)

T
=

o(1) as T →∞.

This means that R[X]
T

converges to O(T−1/2) in probabil-
ity with an exponential tail-bound; convergence is faster
when the observed staleness average µγ and variance σγ are
smaller (SSP ensures µγ , σγ are as small as possible). Dai
et al. also showed that the variance of x can be bounded,
ensuring reliability and stability near an optimum [7].

5.2 Dependency structures
Naive parallelization of model-parallel algorithms (e.g. co-

ordinate descent) may lead to uncontrolled parallelization
error and non-convergence, caused by inter-parameter de-
pendencies in the model. Such dependencies have been thor-
oughly analyzed under fixed execution schedules (where each
worker updates the same set of parameters every iteration)
[25, 5, 24], but there has been little research on dynamic
schedules that can react to changing model dependencies or
model state A. Petuum’s scheduler allows users to write dy-

namic scheduling functions S
(t)
p (A(t)) — whose output is a

set of model indices {j1, j2, . . . }, telling worker p to update
Aj1 , Aj2 , . . . — as per their application’s needs. This enables
ML programs to analyze dependencies at run time (imple-
mented via schedule()), and select subsets of independent
(or nearly-independent) parameters for parallel updates.

To motivate this, we consider a generic optimization prob-
lem, which many regularized regression problems — includ-
ing the Petuum Lasso example — fit into:
Definition: Regularized Regression Problem (RRP)

minw∈Rd f(w) + r(w), (10)

where r(w) =
∑
i r(wi) is separable and f has β-Lipschitz

continuous gradient in the following sense:

f(w + z) ≤ f(w) + z>∇f(w) + β
2
z>X>Xz, (11)

where X = [x1, . . . ,xd] are d feature vectors. W.l.o.g.,
we assume that each feature vector xi is normalized, i.e.,
‖xi‖2 = 1, i = 1, . . . , d. Therefore |x>i xj | ≤ 1 for all i, j.

In the regression setting, f(w) represents a least-squares
loss, r(w) represents a separable regularizer (e.g. `1 penalty),
and xi represents the i-th feature column of the design (data)
matrix, each element in xi is a separate data sample. In par-
ticular, |x>i xj | is the correlation between the i-th and j-th

feature columns. The parameters w are simply the regres-
sion coefficients.

In the context of the model-parallel equation (3), we can
map the model A = w, the data D = X, and the update
equation ∆(A,Sp(A)) to

w+
jp
← arg min

z∈R
β
2

[z − (wjp − 1
β
gjp)]2 + r(z), (12)

where S
(t)
p (A) has selected a single coordinate jp to be up-

dated by worker p — thus, P coordinates are updated in
every iteration. The aggregation function F () simply allows
each update wjp to pass through without change.

The effectiveness of parallel coordinate descent depends

on how the schedule S
(t)
p () selects the coordinates jp. In

particular, naive random selection can lead to poor conver-
gence rate or even divergence, with error proportional to
the correlation |x>jaxjb | between the randomly-selected co-
ordinates ja, jb [25, 5]. An effective and cheaply-computable

schedule S
(t)
RRP,p() involves randomly proposing a small set

of Q > P features {j1, . . . , jQ}, and then finding P features
in this set such that |x>jaxjb | ≤ θ for some threshold θ, where
ja, jb are any two features in the set of P . This requires at
most O(B2) evaluations of |x>jaxjb | ≤ θ (if we cannot find P
features that meet the criteria, we simply reduce the degree
of parallelism). We have the following convergence theorem:

Theorem 2. SRRP () convergence: Let ε := d(EP2)(ρ−1)

d2(EP−1)
≈

(EP−1)(ρ−1)
d

< 1, then after t steps, we have

E[F (w(t))− F (w?)] ≤ Cdβ

E[P (1− ε)]
1

t
, (13)

where F (w) := f(w) + r(w) and w? is a minimizer of F .
EP is the average degree of parallelization over all itera-
tions — we say “average” to account for situations where
the scheduler cannot select P nearly-independent parameters
(e.g. consider a problem where all dimensions are correlated
with each other). For most real-world data sets, this is not
a problem, and EP is equal to the number of workers.

For reference, the Petuum Lasso scheduler uses SRRP (), aug-
mented with a prioritizer we will describe soon.

In addition to asymptotic convergence, we show that SRRP ’s
trajectory is close to ideal parallel execution:

Theorem 3. SRRP () is close to ideal execution: Let
Sideal() be an oracle schedule that always proposes P ran-

dom features with zero correlation. Let w
(t)
ideal be its param-

eter trajectory, and let w
(t)
RRP be the parameter trajectory of

SRRP (). Then, for constants C,m,L, P̂ ,

E[|w(t)
ideal −w

(t)
RRP |] ≤

2dPm

(t+ 1)2P̂
L2X>XC. (14)

Proofs for both theorems are in an online supplement3.
SRRP () is different from Scherrer et al. [25], who pre-

cluster all M features before starting coordinate descent,
in order to find “blocks” of nearly-independent parameters.
In the Big Data and especially Big Model setting, feature
clustering can be prohibitive — fundamentally, it requires
O(M2) evaluations of |x>i xj | for all M2 feature combina-
tions (i, j), and although greedy clustering algorithms can
mitigate this to some extent, feature clustering is still im-
practical when M is very large, as seen in some regression

3http://petuum.github.io/papers/kdd15_supp.pdf

problems [11]. The proposed SRRP () only needs to evaluate
a small number of |x>i xj | every iteration, and we explain
next, the random selection can be replaced with prioritiza-
tion to exploit non-uniform convergence in ML problems.

5.3 Non-uniform convergence
In model-parallel ML programs, it has been empirically

observed that some parameters Aj can converge in much
fewer/more updates than other parameters [18]. For in-
stance, this happens in Lasso because the model enforces
sparsity, so most parameters remain at zero throughout the
algorithm, with low probability of becoming non-zero again.
Prioritizing Lasso parameters according to their magnitude
greatly improves convergence per iteration, by avoiding fre-
quent (and wasteful) updates to zero parameters [18].

We call this non-uniform ML convergence, which can be

exploited via a dynamic scheduling function S
(t)
p (A(t)) whose

output changes according to the iteration t — for instance,
we can write a scheduler Smag() that proposes parameters
with probability proportional to their current magnitude

(A
(t)
j)2. This Smag() can be combined with the earlier de-

pendency structure checking, leading to a dependency-aware,
prioritizing scheduler. Unlike the dependency structure is-
sue, prioritization has not received as much attention in the
ML literature, though it has been used to speed up the
PageRank algorithm, which is iterative-convergent [34].

The prioritizing schedule Smag() can be analyzed in the
context of the Lasso problem. First, we rewrite it by dupli-
cating the original J features with opposite sign, as in [5]:

F (β) := minβ
1
2
‖y−Xβ‖22 + λ

∑2J
j=1 βj . Here, X contains

2J features and βj ≥ 0, for all j = 1, . . . , 2J .
Theorem 4 (Adapted from [18]). Optimality of

Lasso priority scheduler: Suppose B is the set of in-
dices of coefficients updated in parallel at the t-th iteration,

and δβ
(t)
j is the change in βj from iteration t − 1 to t. Let

ρ be a sufficiently small constant such that ρδβ
(t)
j δβ

(t)
k ≈

0, for all j 6= k ∈ B. Then, the sampling distribution

p(j) ∝ (δβ
(t)
j)2 approximately maximizes a lower bound on

EB[F (β(t))− F (β(t) + δβ(t))].

This theorem shows that a prioritizing scheduler speeds up
Lasso convergence by decreasing the objective as much as
possible every iteration. For efficiency, the pipelined Petuum

scheduler system approximates p(j) ∝ (δβ
(t)
j)2 with infor-

mation from iteration t − 1; we use p′(j) ∝ (β
(t−1)
j)2 + η.

This is necessary because δβ
(t)
j is available only after itera-

tion t. Finally, the constant η serves as a prior, to ensure all
βj ’s have a non-zero probability of being updated.

6. PERFORMANCE
Petuum’s ML-centric system design supports a variety

of ML programs, and improves their performance on Big
Data in the following senses: (1) Petuum implementations of
DML and Lasso achieve significantly faster convergence rate
than baselines (i.e., DML implemented on single machine,
and Shotgun [5]); (2) Petuum ML implementations can run
faster than other platforms (e.g. Spark, GraphLab4), be-
cause Petuum can exploit model dependencies, uneven con-
vergence and error tolerance; (3) Petuum ML implementa-
tions can reach larger model sizes than other platforms, be-
cause Petuum stores ML program variables in a lightweight
4We omit Hadoop, as it is well-established that Spark and
GraphLab significantly outperform it [32, 20].

http://petuum.github.io/papers/kdd15_supp.pdf

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 200 400 600 800 1000

O
b

je
ct

iv
e

Time (second)

Petuum Distance Metric Learning

1 machine

2 machines

3 machines

4 machines

0.05	

0.07	

0.09	

0.11	

0.13	

0.15	

0.17	

0.19	

0.21	

0	
 200	
 400	
 600	
 800	
 1000	
 1200	
 1400	

O
bj
ec
&v

e	

Time	
 (second)	

Lasso	

Petuum	
 Lasso	

Shotgun	

Figure 8: Left: Petuum DML convergence curve with

different number of machines from 1 to 4. Right: Lasso

convergence curve by Petumm Lasso and Shotgun.

fashion (on the parameter server and scheduler); (4) for ML
programs without distributed implementations, we can im-
plement them on Petuum and show good scaling with an in-
creasing number of machines. We emphasize that Petuum is,
for the moment, primarily about allowing ML practitioners
to implement and experiment with new data/model-parallel
ML algorithms on small-to-medium clusters; Petuum cur-
rently lacks features that are necessary for clusters with
≥ 1000 machines, such as automatic recovery from machine
failure. Our experiments are therefore focused on clusters
with 10-100 machines, in accordance with our target users.
Experimental settings We used 3 clusters with varying
specifications, to show Petuum’s adaptability to different
hardware: “Cluster-1” machines have 2 AMD cores, 8GB
RAM, 1Gbps Ethernet; “Cluster-2” machines have 64 AMD
cores, 128GB RAM, 40Gbps Infiniband; “Cluster-3” ma-
chines have 16 Intel cores, 128GB RAM, 10Gbps Ethernet.

LDA was run on 128 Cluster-1 nodes, using 3.9m English
Wikipedia abstracts with unigram (V = 2.5m) and bigram
(V = 21.8m) vocabularies. MF and Lasso were run on 10
Cluster-2 nodes, respectively using the Netflix data and a
synthetic Lasso dataset withN = 50k samples and 100m fea-
tures/parameters. CNN was run on 4 Cluster-3 nodes, using
a 250k subset of Imagenet with 200 classes, and 1.3m model
parameters. The DML experiment was run on 4 Cluster-
2 nodes, using the 1-million-sample Imagenet [10] dataset
with 1000 classes (220m model parameters), and 200m sim-
ilar/dissimilar statements. In all experiments, we sharded
the data over local hard disks.
Performance of Distance Metric Learning and Lasso
We investigate Petuum’s DML and Lasso performance: Fig-
ure 8 shows the convergence of Petuum and baselines, using
a fixed model size (21504× 1000 distance matrix for DML;
100M features for Lasso). For DML, increasing the machine
count consistently increases the convergence speed. Petuum
DML achieves 3.8 times speedup with 4 machines and 1.9
times speedup with 2 machines, with potential to continue
scaling well with more machines. For Lasso, given the same
number of machines, Petuum achieved a significantly faster
convergence rate than Shotgun (which randomly selects a
subset of parameters to be updated). In the initial stage,
Petuum lasso and Shotgun show similar convergence rates
because Petuum updates every parameter in the first iter-
ation to “bootstrap” the scheduler (at least one iteration
is required to initialize all parameters). After this initial
stage, Petuum dramatically decreases the Lasso objective
compared to Shotgun, by taking advantage of dependency
structures and non-uniform convergence via the scheduler.
Platform Comparison Figure 9 (left) compares Petuum
to popular ML platforms (Spark and GraphLab) and well-
known cluster implementations (YahooLDA [2]). For two
common ML programs of LDA and MF, we show the rel-
ative speedup of Petuum over the other platforms’ imple-

0

1

2

3

4

5

6

LDA Matrix Fact.

R
e

la
ti

ve
 S

p
e

e
d

u
p

Platforms vs Petuum

P
e

tu
u

m

G
ra

p
h

La
b

 (
o

u
t

o
f

m
e

m
o

ry
)

P
et

u
u

m

Y
ah

o
o

LD
A

G
ra

p
h

La
b

 (
o

u
t

o
f

m
em

o
ry

)

Sp
ar

k

0

0.5

1

1.5

2

2.5

3

3.5

4

Deep Learning: CNN Distance Metric Learning

R
e

la
ti

ve
 S

p
e

e
d

u
p

Single-machine vs Petuum
Ideal Linear Speedup

P
e

tu
u

m
 C

af
fe

 4
 m

ac
h

O
ri

gi
n

al
 C

af
fe

 1
 m

ac
h

P
e

tu
u

m
 D

M
L

4
 m

ac
h

X
in

g2
0

0
2

 1
 m

ac
h

Figure 9: Left: Petuum performance: relative speedup

vs popular platforms (larger is better). Across ML pro-

grams, Petuum is at least 2-10 times faster than popu-

lar implementations. Right: Petuum is a good platform

for writing cluster versions of existing single-machine al-

gorithms, achieving near-linear speedup with increasing

number of machines (Caffe CNN and DML).

Figure 10: Left: LDA convergence time: Petuum vs

YahooLDA (lower is better). Petuum’s data+model-

parallel LDA converges faster than YahooLDA (data-

parallel-only), and scales to more parameters (larger vo-

cab size, number of topics). Right panels: Matrix Fac-

torization convergence time: Petuum vs GraphLab vs

Spark. Petuum is fastest and the most memory-efficient,

and is the only platform that could handle Big MF mod-

els with rank K ≥ 1000 on the given hardware budget.

mentations. In general, Petuum is between 2-6 times faster
than other platforms; the differences help to illustrate the
various data/model-parallel features in Petuum. For MF,
Petuum uses the same model-parallel approach as Spark
and GraphLab, but it performs twice as fast as Spark, while
GraphLab ran out of memory. On the other hand, Petuum
LDA is nearly 6 times faster than YahooLDA; the speedup
mostly comes from scheduling S(), which enables correct,
dependency-aware model-parallel execution.
Scaling to Larger Models We show that Petuum sup-
ports larger ML models for the same amount of cluster
memory. Figure 10 shows running time versus model size,
given a fixed number of machines — the left panel compares
Petuum LDA and YahooLDA; PetuumLDA converges faster
and supports LDA models that are> 10 times larger5, allow-
ing long-tail topics to be captured. The right panels compare
Petuum MF versus Spark and GraphLab; again Petuum is
faster and supports much larger MF models (higher rank)
than either baseline. Petuum’s model scalability is the re-
sult of two factors: (1) model-parallelism, which divides the
model across machines; (2) a lightweight parameter server
system with minimal storage overhead (from using simple
arrays and hashmaps). Compared to Petuum, we observed
that GraphLab’s vertex representation and Spark’s RDD
representation consumed ∼ 10x and ∼ 2-3x memory (re-
spectively) to store model variables (Figure 10).
Fast Cluster Implementations of New ML Programs
We show that Petuum facilitates the development of new
ML programs without existing cluster implementations. In

5LDA model size equals vocab size times number of topics.

Figure 9 (right), we present two instances: first, a clus-
ter version of the open-source Caffe CNN toolkit, created
by adding ∼ 600 lines of Petuum code. The basic data-
parallel strategy was left unchanged, so the Petuum port
directly tests Petuum’s efficiency. Compared to the orig-
inal single-machine Caffe with no network communication,
Petuum achieves approaching-linear speedup (3.1-times speedup
on 4 machines) due to the parameter server’s SSP consis-
tency for managing network communication. Second, we
compare the Petuum DML program against the original
DML algorithm proposed in [29] (denoted by Xing2002),
which is optimized with SGD on a single-machine (with par-
allelization over matrix operations). The intent is to show
that a fairly simple data-parallel SGD implementation of
DML (the Petuum program) can greatly speed up execu-
tion over a cluster. The Petuum implementation converges
3.8 times faster than Xing2002 on 4 machines — this pro-
vides evidence that Petuum enables data/model-parallel al-
gorithms to be efficiently implemented over clusters.

7. CONCLUSION
Petuum is a system for writing data- and model-parallel

iterative-convergent ML programs, which takes advantage of
their properties to speed up convergence: limited error toler-
ance, dependency structures between parameters, and non-
uniform parameter convergence. We have shown promising
results on 100+ machines, though several important prac-
tical issues remain to be addressed: fault tolerance strate-
gies for 1000s of machines, a standard interface for access-
ing input data, integration with the Hadoop/YARN ecosys-
tem, and out-of-core model storage for memory-limited sit-
uations. We are investigating these as future work.

8. ACKNOWLEDGMENTS
We thank Garth Gibson, Greg Ganger, Phillip Gibbons, and

members of the Parallel Data Lab and Intel Science and Tech-

nology Center for Cloud Computing, for the insights and discus-

sions during this project. This work is supported by the follow-

ing grants to Eric P. Xing: NSF IIS 1447676, 1111142, 1218282,

1115313; NIH R01GM087694, P30DA035778, R01GM093156.

9. REFERENCES
[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic

optimization. In NIPS, 2011.

[2] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J.
Smola. Scalable inference in latent variable models. In WSDM,
2012.

[3] L. Bottou. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010, pages
177–186. Springer, 2010.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3:1–124, 2011.

[5] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel
coordinate descent for l1-regularized loss minimization. In
ICML, 2011.

[6] X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. Xing. Smoothing
proximal gradient method for general structured sparse
learning. In UAI, 2011.

[7] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing.
High-performance distributed ml at scale through parameter
server consistency models. In AAAI. 2015.

[8] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon.
Information-theoretic metric learning. In Proceedings of the
24th international conference on Machine learning, pages
209–216. ACM, 2007.

[9] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng.
Large scale distributed deep networks. In NIPS 2012, 2012.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database. In CVPR,
2009.

[11] H. B. M. et. al. Ad click prediction: a view from the trenches.
In KDD, 2013.

[12] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise
coordinate optimization. Annals of Applied Statistics,
1(2):302–332, 2007.

[13] T. L. Griffiths and M. Steyvers. Finding scientific topics.
PNAS, 101(Suppl 1):5228–5235, 2004.

[14] Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons,
G. Gibson, G. R. Ganger, and E. P. Xing. More effective
distributed ml via a stale synchronous parallel parameter
server. In NIPS, 2013.

[15] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic
variational inference. JMLR, 14, 2013.

[16] A. Kumar, A. Beutel, Q. Ho, and E. P. Xing. Fugue:
Slow-worker-agnostic distributed learning for big models on big
data. In AISTATS, 2014.

[17] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado,
J. Dean, and A. Ng. Building high-level features using large
scale unsupervised learning. In ICML, 2012.

[18] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing.
On model parallelism and scheduling strategies for distributed
machine learning. In NIPS. 2014.

[19] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
OSDI, 2014.

[20] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud. PVLDB,
2012.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale
graph processing. In ACM SIGMOD International Conference
on Management of data, 2010.

[22] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A
lock-free approach to parallelizing stochastic gradient descent.
In NIPS, 2011.

[23] R. Power and J. Li. Piccolo: building fast, distributed programs
with partitioned tables. In OSDI. USENIX Association, 2010.

[24] P. Richtárik and M. Takáč. Parallel coordinate descent methods
for big data optimization. arXiv:1212.0873, 2012.

[25] C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin.
Feature clustering for accelerating parallel coordinate descent.
NIPS, 2012.

[26] Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin, L. Wang,
Y. Gao, J. Zeng, Q. Yang, et al. Towards topic modeling for big
data. arXiv:1405.4402, 2014.

[27] T. White. Hadoop: The definitive guide. O’Reilly Media, Inc.,
2012.

[28] S. A. Williamson, A. Dubey, and E. P. Xing. Parallel markov
chain monte carlo for nonparametric mixture models. In ICML,
2013.

[29] E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng. Distance
metric learning with application to clustering with
side-information. In NIPS, 2002.

[30] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon. Scalable coordinate
descent approaches to parallel matrix factorization for
recommender systems. In ICDM, 2012.

[31] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing,
T.-Y. Liu, and W.-Y. Ma. Lightlda: Big topic models on
modest compute clusters. In WWW. 2015.

[32] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
HotCloud, 2010.

[33] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed
framework for prioritized iterative computations. In SOCC,
2011.

[34] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed
framework for prioritizing iterative computations. IEEE
Transactions on Parallel and Distributed Systems,
24(9):1884–1893, 2013.

[35] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the netflix prize. In
Algorithmic Aspects in Information and Management, 2008.

[36] M. Zinkevich, J. Langford, and A. J. Smola. Slow learners are
fast. In NIPS, 2009.

	Introduction
	Preliminaries: On Data and Model Parallelism
	Data Parallelism
	Model Parallelism
	Implementing Data- and Model-Parallel Programs

	The Petuum Framework
	Petuum System Design
	Programming Interface

	Petuum Parallel Algorithms
	Data-Parallel Distance Metric Learning
	Model-Parallel Lasso
	Other Algorithms

	Principles and Theory
	Error tolerant convergence
	Dependency structures
	Non-uniform convergence

	Performance
	Conclusion
	Acknowledgments
	References

