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ABSTRACT

Recent advancements in text-to-image models, particularly diffusion models, have
shown significant promise. However, compositional text-to-image models fre-
quently encounter difficulties in generating high-quality images that accurately
align with input texts describing multiple objects, variable attributes, and intricate
spatial relationships. To address this limitation, we employ large vision-language
models (LVLMs) for multi-dimensional assessment of the alignment between gen-
erated images and their corresponding input texts. Utilizing this assessment, we
fine-tune the diffusion model to enhance its alignment capabilities. During the in-
ference phase, an initial image is produced using the fine-tuned diffusion model.
The LVLM is then employed to pinpoint areas of misalignment in the initial im-
age, which are subsequently corrected using the image editing algorithm until no
further misalignments are detected by the LVLM. The resultant image is conse-
quently more closely aligned with the input text. Our experimental results vali-
date that the proposed methodology significantly improves text-image alignment
in compositional image generation, particularly with respect to object number,
attribute binding, spatial relationships, and aesthetic quality.

1 INTRODUCTION

Recently, text-to-image models have made great progress, of which diffusion models are remarkable.
Compositional text-to-image generation is a more advanced task, which understands and generates
images with multiple objects which have variable attributes and complex spatial relationships. Al-
though diffusion models can generate high-quality images, compositional text-to-image generation
still struggles to generate images aligned with input texts. These limitations manifest inaccuracies
in object number, attribute binding, spatial relationships between objects and aesthetic quality, as
shown in Figure 1. These inaccuracies are caused by the compositional complexity of the input text
and the cross-attention mechanism in the diffusion model.

Several studies (Agarwal et al., 2023; Chefer et al., 2023) have attempted to resolve issues related to
attribute binding by manipulating the attention mechanism within diffusion models. However, these
approaches often fall short of comprehensively addressing jointly the interrelated challenges of ob-
ject number, attribute binding, spatial relationships between objects, and aesthetic quality. Besides,
the evaluation of the alignment of the generated image and input text is not fully explored. Several
techniques, such as CLIPScore (Hessel et al., 2021) or BLIP (Li et al., 2022), fall short in capturing
compositional alignment accurately. While there are methodologies like T2I-CompBench (Huang
et al., 2023) that introduce compositional evaluation methods, these are primarily applied to fine-
tune diffusion models during the training phase. This approach fails to exploit the full potential
of compositional evaluation methods, leaving room for enhancing the overall alignment between
generated images and input texts in the inference period.

Parallel to these developments, Large Language Models (LLMs), such as GPT-4, LLama, and Vi-
cuna, have emerged as influential tools in both academia and industry. Building upon LLMs, Large
Vision-Language Models (LVLMs) have been developed to integrate visual features with language
representations, endowing LLMs with multimodal capabilities. Notable models such as MiniGPT-
4 (Zhu et al., 2023), LLama-Adapter (Zhang et al., 2023a), and Bard (Google, 2023) have demon-
strated remarkable zero-shot learning, visual perception and reasoning abilities.

1



Under review as a conference paper at ICLR 2024

a. Object number
Input text: three black cats and a white dog Input text: a white dog and a black cat

Input text: a suitcase on the right of a cow

b. Attribute binding

c. Spatial relationship d. Aesthetic quality 
Input text: a cat and a dog

Figure 1: Illustrating Limitations in Compositional Text-to-Image Generation. (a) Object Num-
ber: The discrepancy between the quantity of objects in the image (e.g., cat and dog) and the input
text is evident. (b) Attribute Binding: The attributes of objects depicted do not correspond with
the input text; for instance, the cat’s color is black and white, contrasting with the specified black.
(c) Spatial Relationship: The arrangement of objects does not conform to the input text, with the
suitcase not situated to the right of the cow as described. (d) Aesthetic Quality: The representation
of the object is distorted, deviating from conventional aesthetic standards.

Leveraging these advancements, our work incorporates the LVLM to augment the capabilities of
compositional text-to-image generation. Specifically, we first utilize LVLMs for evaluation. To
capture the compositional feature in alignment, we evaluate the alignment of generated images with
input texts mainly in terms of four dimensions: object number, attribute binding, spatial relationship,
and aesthetic quality. We employ the LVLM to formulate questions derived from the input text and
subsequently input the generated image and questions into the LVLM. The responses obtained serve
as LVLM-assessed metrics to evaluate alignment. Following this, we employ Reward Feedback
Learning (ReFL) during the training phase to fine-tune diffusion models based on these metrics,
thereby enhancing compositional text-to-image generation. To fully utilize the evaluation method,
during the inference stage, the LVLM is re-engaged to identify and correct errors in the generated
images. An iterative process governed by the LVLM uses image-editing algorithms to eliminate
misalignments until the generated image is fully compliant with the input text. Our empirical results
substantiate that our approach significantly amplifies the accuracy and fidelity of compositional
image generation.

In conclusion, the key contributions of our study include:

• We leverage LVLMs to assess the alignment between generated images and input texts,
focusing on object number, attribute binding, spatial relationships, and aesthetic quality
within compositional text-to-image models.

• We enhance image-text alignment by fine-tuning the diffusion models through LVLM-
based evaluations during the training period.

• We design an LVLM-guided iterative correction process to systematically rectify any mis-
alignments in the generated images during the inference period.

Through these contributions, our work establishes a robust and plug-and-play framework for im-
proving compositional text-to-image diffusion models.
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2 RELATED WORK

Text-to-Image Generation. The aim of text-to-image generation is to produce images based on
input textual descriptions. Significant advances in generative models, such as generative adversarial
networks (GANs (Goodfellow et al., 2014)), auto-regressive models (Vaswani et al., 2017), and
diffusion models (Ho et al., 2020), have paved the way for a plethora of works in this domain.
GANs were initially employed for this purpose Reed et al. (2016), and numerous subsequent GAN-
based models sought to enhance visual fidelity and caption congruence (Zhang et al., 2017; 2018;
Xu et al., 2018; Li et al., 2019; Dong et al., 2017; Zhu et al., 2019; Tao et al., 2020; Ye et al., 2021;
Kang et al., 2023; Sauer et al., 2023). However, GANs are not without challenges, particularly in
terms of mode-collapse and training instability.

To address these issues, researchers have investigated the use of Transformer-based auto-regressive
models for text-to-image generation (Ramesh et al., 2021; Ding et al., 2021; Esser et al., 2021a;
Ding et al., 2022; Zhang et al., 2021; Lee et al., 2022; Chang et al., 2023), combined with a discrete
VAE (Van Den Oord et al., 2017; Razavi et al., 2019; Esser et al., 2021b) for image tokenization and
Transformers (Vaswani et al., 2017) for modeling the joint distribution of textual and image tokens.
This often follows a two-stage methodology: initially, a discrete VAE tokenizes the input image, and
subsequently, a multi-layer Transformer integrates text and image tokens.

Diffusion models have also been embraced for text-to-image generation (Nichol et al., 2021; Ho
et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022; Xu et al., 2022; Zhang
et al., 2023b). For instance, GLIDE (Nichol et al., 2021) innovatively conditions the diffusion model
on an input caption, building upon earlier works in the diffusion model sphere (Dhariwal & Nichol,
2021; Ho & Salimans, 2022). Moreover, DALL-E 2 (Ramesh et al., 2022) enhances the GLIDE
model by conditioning on a supplemental CLIP image embedding for heightened diversity. Some
endeavors, like Stable Diffusion (Rombach et al., 2022), emphasize computational efficiency by
first representing input images as low-dimension latent codes. Nevertheless, challenges such as
alignment with human preferences and textual input continue to persist.

Alignment of Text-to-Image Generation Models. Efforts have been made to align text-to-image
generation models with human preferences and aesthetic standards (Hao et al., 2022; Lee et al.,
2023; Wu et al., 2023; Xu et al., 2023; Dong et al., 2023a; Fang et al., 2023). For instance, Lee et al.
(2023) concentrates on text alignment, using a reward model trained on human-annotated datasets
to refine the text-to-image model. Similarly, ImageReward (Xu et al., 2023) offers a universal hu-
man preference reward model that encompasses text-image alignment, body problems, aesthetics,
toxicity, and biases.

Promptist Hao et al. (2022) introduces prompt adaptation by training a language model to enhance
the original prompt. This method leverages both the CLIP model and an aesthetic predictor as reward
models, and fine-tunes in a supervised manner within a reinforcement learning framework. Alterna-
tively, given the inefficiencies and instabilities associated with Reinforcement Learning from Human
Feedback (RLHF (Ouyang et al., 2022)), Dong et al. (2023a) proposes reward ranked finetuning to
better align generative models.

Despite the strides made in aligning text-to-image generation models with human preferences and
aesthetic standards, complexities still arise when dealing with intricate prompts delineating multiple
objects, diverse attributes, and elaborate spatial relations. Addressing these challenges, our work
innovatively integrates large vision-language models (LVLMs) with diffusion models, presenting
a refined approach for enhancing text-image alignment, especially in the realm of compositional
image generation.

3 METHOD

3.1 PRELIMINARY

Latent Diffusion Models. Recently, diffusion models, exemplified by DALL-E and Midjourney,
have gained widespread adoption in the field of text-to-image generation. These generative models
aim to create desired data by denoising from a Gaussian distribution xT ∼ N(0, 1). Initially, the
diffusion models define a forward process by constructing a Markov chain of variables x1, x2, ..., xT
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from the target distribution x0 ∼ q(x0) by iteratively adding Gaussian noise based on a predefined
schedule βt:

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI). (1)
Subsequently, the target distribution is transformed to a Gaussian distribution at step T . The diffu-
sion models are tasked with learning the reverse process to approximate the true posterior q(xt−1|xt)
by denoising from Gaussian distribution xT ∼ N (0, 1):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σt), (2)
where µθ represents the mean, computed using neural networks. This reverse process generates the
desired sample x0 at last. In contrast, latent diffusion models execute the aforementioned forward
and reverse processes in the latent space rather than the pixel space. This adaptation aims to mitigate
the computational cost and enhance semantic generation. These models employ the Variational
Autoencoder (VAE) to encode to the latent space z0 = f(x0). They can be used in text-to-image
generation by inputting a prompt T to generate the corresponding image:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t, T ), σt). (3)
The training loss is derived from the variational lower bound (VLB) loss, which can be simplified as

L(θ) = Et∼[1,T ],z0,ϵt [||ϵt − ϵ(zt, t, T )||22]. (4)
Stable Diffusion is based on latent diffusion models, which allows latent diffusion models to be ver-
satile and efficient in generating high-quality, semantically coherent images from textual prompts.
This method serves as the baseline for our study.

ImageReward. Latent Diffusion Models (LDMs) have shown significant potential as generative
models. One of the highlighted challenges in the realm of LDMs is their direct optimization. The
ReFL (Xu et al., 2023) methodology, as discussed in prior works, offers a potential solution to this
optimization challenge.

LDMs follow a sequential denoising process, which in experiments, expands up to 40 steps. A
significant observation from the ReFL approach highlights the behavior of model scores during
these denoising steps:

• Early Stages (Steps 1 to 15): In this phase, the model scores remain uniformly low for all
generated outputs.

• Intermediate Stages (Steps 15 to 30): Here, while high-quality generations become evi-
dent, it’s still early to conclusively gauge the final quality of all generations based on the
present model scores.

• Late Stages (Steps 30 onwards): At this juncture, there’s a discernible distinction in gen-
erations based on their respective model scores.

These observations suggest that model scores after the 30th denoising step could be potentially
reliable indicators for enhancing LDMs, even if they aren’t derived from the final step.

The ReFL algorithm, as elucidated in the referenced literature, aims to harness these model scores as
feedback to back-propagate and refine the LDMs. This stands in contrast to traditional methodolo-
gies where only the gradient from the final denoising step is retained – an approach found to yield
instability.

For effective fine-tuning, there is a balance established between the ReFL loss and the pre-training
loss, a strategy to counter rapid overfitting and ensure a more stable fine-tuning process. The corre-
sponding loss functions are illustrated as:

Lreward = λEyi∼Y(ϕ(r(yi, gθ(yi)))) (5)

Lpre = E(yi,xi)∼D(EE(xi),yi,ϵ∼N (0,1),t[∥ϵ− ϵθ(zt, t, τθ(yi))∥22]) (6)

Here, θ denotes the parameters of the LDM, and gθ(yi) represents the generated image of the LDM
using parameters θ corresponding to prompt yi. Our approach synergistically combines large vision-
language models with diffusion models, wherein the LVLM evaluates the generation outcomes,
subsequently guiding the ReFL training of the diffusion model. This integration of LVLMs and dif-
fusion models via ReFL underpins a pioneering methodology for enhancing text-image coherence,
especially for intricate prompts. This strategy is pivotal to our research and establishes the advanced
framework upon which our study is built.
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3.2 OVERVIEW

In this study, we introduce a comprehensive framework that leverages LVLMs to enhance compo-
sitional text-to-image generation. The Figure 2 provided illustrates a schematic representation of
our proposed framework, which integrates three core components: LVLM-based Evaluation, Model
Fine-tuning, and LVLM-guided Image Editing. Each component strategically utilizes the capabili-
ties of LVLMs to optimize the generation process.

Initially, we deploy the LVLM to assess the alignment between generated images and input texts.
The LLMs analyze the input texts and formulate questions aimed at capturing compositional features
inherent in the texts. The generated images, along with these questions, are then fed into the LVLM,
which produces answers serving as evaluative metrics for alignment assessment. Subsequent to the
LVLM-based evaluation, we employ Reward Feedback Learning (ReFL) to fine-tune the diffusion
models. This process aims to optimize the models based on the evaluative metrics derived from
LVLM evaluation during the training period, thereby enhancing alignment between the images gen-
erated and the input texts. To fully harness the potential of the LVLM, we incorporate it during the
inference stage as well. Specifically, the LVLM is used to identify any misalignment between the
generated images and the input texts. Upon detection of misalignments, the LVLM is used to guide
the correction process with image-editing algorithms until the generated images are fully aligned
with the input texts, ensuring no misalignment remains.

Diffusion 
Model

Input text: a 
white dog and a 
black cat

LLM
Question-answer 
pairs: {Is the cat 
black?, Yes}

LVLM Answer: 
No

Accuracy 
computation

Answer 
Accuracy

1. LVLM-based Evaluation

2. Model Fine-tuning

zT zt

…

LVLM-based 
Evaluation

x
0

Answer 
Accuracy

Gradient 
Decentz0

…

3.  LVLM-guided Editing

Diffusion 
Model LVLM Editing

Input text: a white 
dog and a black 
cat

Parameter 
Update

DDPM Sampling

Loss Function

zt-1

Figure 2: Overview of the Proposed Methodology. Our methodology is structured around three
core components: (1) LVLM-based Evaluation: Drawing inspiration from TIFA, we initially em-
ploy LLM to formulate question-answer pairs grounded in the input text. Subsequently, the LVLM
is utilized to procure answers by processing the formulated questions alongside the image. A com-
parative analysis of answers derived from both image and text is then undertaken to calculate the
answer accuracy, serving as our evaluative metric. (2) Model Fine-tuning: The LVLM-based evalu-
ation metric is incorporated as a weight within the diffusion loss function, facilitating the fine-tuning
of the diffusion model. The objective is to guide the diffusion model’s focus towards enhancing an-
swer accuracy. (3) LVLM-guided Editing: In the inference phase, the LVLM is deployed to identify
misalignments between image and text. Subsequent to this identification, image-editing algorithms
are applied iteratively to rectify the image until no alignment is detected.
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3.3 LVLM-BASED EVALUATION

To evaluate the alignment of generated images in compositional text-to-image synthesis, we inte-
grate Large Vision-Language Models (LVLMs) into the Text-to-Image Faithfulness evaluation with
Question Answering (TIFA (Hu et al., 2023)) framework. This framework assesses various elements
such as objects, shapes, materials, attributes, and spatial relationships in the images by formulating
specific prompts. The evaluation process unfolds as follows:

Text Analysis. The initial step involves analyzing the input text T . In adherence to TIFA guidelines,
we employ LLMs to generate question-answer pairs {Qi, Ai}Ni=1 derived from the input text T ,
thereby utilizing the zero-shot, in-context, and reasoning capabilities of LLMs. These generated
pairs encapsulate the compositional information present in the text, encompassing aspects like object
number, attribute binding and spatial relationship.

LVLM-based Question Answering: Based on the TIFA framework, the LVLM is used to answer
the formulated questions. Upon generating question-answer pairs Qi, Ai

N
i=1 from the given text T ,

both the questions Qi and the generated image I are input into the LVLM. The LVLM, through
reasoning on the generated image I , produces the answers Ãi.

Accuracy Computation: For each pair of text and image T, I , we compare the answers derived
from text Qi and the image Q̃i. The accuracy is computed as:

ACC(T, I) =

n∑
i=1

1[Qi = Q̃i]. (7)

By doing so, the LVLM facilitates a nuanced and detailed evaluation in terms of the answer ac-
curacy of how well the generated images align with the input text, examining the fidelity of the
representation across object number, attribute binding and spatial relationship.

3.4 MODEL FINE-TUNING

To refine the alignment between text and image within diffusion models, we adopt a strategy known
as Reward Feedback Learning (ReFL (Xu et al., 2023)). ReFL is employed to fine-tune diffusion
models based on the LVLM-based evaluation during the training phase. The rewards in ReFL are
used to backpropagate and update the diffusion parameters after a predetermined range of steps,
because the latter steps yield clearer images, conducive for use in the LVLM, thereby enhancing the
stability of the training process. During our model fine-tuning, we first sample plenty of text-image
pairs from the diffusion model, subsequently employing the previously mentioned answer accuracy
to assess each pair. However, the LVLM-based evaluation is non-differential. Different from ReFL,
the answer accuracy serves as the weight of the loss function for fine-tuning the diffusion model.
Higher answer accuracy indicates improved alignment between image and text, thus the optimization
process prioritizes these instances. The loss function is formulated as:

L′(θ) = E(T,I)[ACC(T, I) · ||ϵ− ϵ(zt, t, T )||22], (8)

where (T, I) represents a sample of text-image pairs generated from the diffusion model, and
ACC(T, I) is the answer accuracy derived from LVLM-based evaluation. The algorithm is depicted
in Algorithm 1.

After the fine-tuning on sampled image-text pairs, the diffusion model is optimized with a focus on
enhancing the answer accuracy in subsequently generated text-image pairs.

3.5 LVLM-GUIDED EDITING

To maximize the utility of LVLM-based evaluation, we incorporate it not only during the training
period but also in the inference period. We note that despite the significant improvement in the
alignment between text and image through fine-tuning, discrepancies can still arise during inference.
To address this, we iteratively correct any misalignment in the initially generated image during the
inference phase. For example, if the LVLM identifies a color discrepancy between an object in
the generated image and the corresponding input text, an editing algorithm is activated to adjust
the object’s color to align with the text description. In this process, we first generate an initial
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Algorithm 1 Training Procedure

Input: Fine-tuning text {Tj}nj=1, text-image pairs sampled from datasets {T̃j , Ĩj}nj=1, number of
diffusion step T , step range [t1, t2], diffusion model Dθ

1: for j = 1, ..., n do
2: Compute L(θ, T̃j , Ĩj) based on Eq. 4
3: θ←θ + α1

L(θ)
θ

4: t ←Random(t1, t2)
5: zt ∼ N (0, 1)
6: for i = T, ..., t+ 1 do
7: zi−1←Dθ(zi)
8: end for
9: zi−1←Dθ(zi)

10: z0←z0(zi−1)
11: x0 ←VAE Decoder(z0)
12: Compute ACC(x0, Ij) based on Eq. 7 and L′(θ) based on Eq. 8
13: θ←θ + α2

L′(θ)
θ

14: end for
15: return network parameters θ

image from the diffusion model, which has been fine-tuned using ReFL. Subsequently, the LVLM
is employed to pinpoint instances of misalignment between text and image, such as disparities in
object number, attribute binding, spatial relationships and aesthetic quality. Upon identification of
misalignments, the LVLM is utilized to guide the process of rectifying the discrepancies by image-
editing algorithms until alignment is achieved. Throughout this process, we leverage the editing
capabilities of diffusion models. Initially, we employ the Segment Anything Model (SAM) to isolate
all objects and backgrounds in the initial image. Following this, a diffusion-based inpainting model
is used to modify the relevant objects or the background to achieve congruence with the input text.
We delineate the correction of four types of misalignment as follows:

Object Number. When the LVLM discerns a discrepancy in the object number in the initial image
compared to the input text, it categorizes the variance as either excess or deficit. If the object count
exceeds the text description, SAM identifies specific objects, and the inpainting model eliminates
the surplus entities. Conversely, if there are fewer objects, SAM targets the background, and the
inpainting model introduces additional objects in the background.

Attribute Binding. The LVLM identifies instances where an object’s attributes do not align with
the descriptions provided in the input text. For instance, if the input text describes “a white dog”
while the image depicts a black dog, the LVLM recognizes the color inconsistency. Subsequently,
the SAM and LVLM are used to generate a mask for the incorrectly colored dog, and a painting
algorithm is employed to replace the black dog with a white one, thus ensuring attribute coherence.

Spatial Relationship. When discrepancies in the spatial relationships among multiple objects are
identified, the SAM and LVLM are utilized to select the mask of the incorrectly positioned object.
Subsequently, we employ the inpainting algorithm to first remove the mislocated object, followed
by adding it back in a location that is in alignment with the input text.

Aesthetic Quality. If the LVLM identifies that an object within the image is distorted and thus
falls short of human performance standards, our initial step is to employ SAM for segmenting the
distorted object. Subsequently, an inpainting algorithm is utilized to substitute the distorted object
with a normalized version. This approach leverages the capability of the diffusion model, which
finds generating singular objects to be a more manageable task.

4 EXPERIMENT

In this section, we conduct experiments to validate our proposed method. Initially, we outline the im-
plementation specifics in Section 4.1. Subsequently, we visualize the results from the LVLM-based
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Evaluation and LVLM-based Editing in Section 4.2. Additionally, we also conduct comparative
assessment between the baseline and the fine-tuned model in Section 4.2.

4.1 IMPLEMENTATION DETAIL

LVLM-based Evaluation. In alignment with the TIFA approach, we employ LLama2 to generate
question-answer pairs. We then use the Bard, a state-of-the-art LVLM proposed by Google, to
process questions alongside the generated image, thereby producing the answers.

Model Fine-tuning. Adhering to the ReFL methodology, we source text-image pairs from LAION-
5B and extract input text from DiffusionDB for training data. The model is fine-tuned in half-
precision with a learning rate set to 10−5, while maintaining a batch size of 64 for each. The sample
step range [T1,T2] is defined as [1, 10]. A key distinction in our approach is that we do not directly
optimize the answer accuracy, as it is non-differential. Instead, we focus on optimizing a weighted
diffusion loss function, where the answer accuracy serves as the weight.

LVLM-based Editing. Bard is once again employed as the guiding LVLM for the image editing
process. To rectify any misalignment identified by the Bard, we amalgamate the capabilities of SAM
and the Blended Diffusion model, utilizing them as the image-editing algorithm.

4.2 EXPERIMENTAL RESULTS

LVLM-based Evaluation. We utilize Bard to generate answers by inputting both questions and the
corresponding image. Illustrative examples of this process are presented in Figure 3, showcasing
instances where images are generated based on the input text “a black dog is standing on a beach.”

Prompt: Answer the multiple-
choice question. Question: what 
animal is in the picture? Choices: 
dog, cat, bird, fish

Bard:
The animal in the picture is a dog.
The image shows a silhouette of a dog standing on a beach. 
The dog has four legs, a tail, and a pointed head. This is 
characteristic of many dog breeds, and the overall shape of the 
dog in the picture is consistent with a dog.
The other choices are less likely. Cats have four legs and a 
tail, but they typically have a more rounded head and body. 
Birds have two legs and wings, and fish have fins and no legs.

Prompt: Answer the multiple-
choice question. Question: what 
animal is in the picture? Choices: 
dog, cat, bird, fish

Bard:
Answer: dog
The image shows a black dog lying on a sandy beach. The dog 
has a short coat, a long tail, and floppy ears. Its head is resting 
on its paws, and it looks like it is enjoying the sun.
I am confident that the animal in the picture is a dog because I 
have seen many pictures of dogs before, and this dog has all of 
the physical characteristics of a dog. Additionally, the dog is 
lying in a position that is typical of dogs, and it looks relaxed 
and happy.

Prompt: Answer the multiple-
choice question. Question: what 
color is the dog? Choices: black, 
white, red, blue

Bard:
The dog is black.

Prompt: Answer the multiple-
choice question. Question: what 
color is the dog? Choices: black, 
white, red, blue

Bard:
The dog is black.

Figure 3: The answers produced by Bard. The images are generated with the text “a black dog is
standing on a beach”.

Model Fine-tuning. A comparative analysis is conducted between the results derived from Stable
Diffusion and those from the fine-tuned model on the dataset from T2ICompBench. The visual
representation of these results can be observed in Figure 4. The CLIPScore attributed to the fine-
tuned model is 0.3032, which is larger than the 0.3010 score associated with Stable Diffusion.

LVLM-based Editing. Employing Bard, we identify misalignments within the generated images
and subsequently utilize SAM and Blended Diffusion to rectify these discrepancies. Illustrative
examples of this process are presented in Figure 5.
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Stable Diffusion

Fine-tuned Model

Input Text The black chair is 
on top of the blue 
rug

The black chair was 
next to the silver 
table

The black headphones 
were next to the green 
phone

The black chair 
was on the left of 
the white table

The green plant was 
on the left of the 
white lamp

Figure 4: The images generated by Stable Diffusion and the fine-tuned model.

Input text: a white dog 
and a black cat

Input text: four black 
dogs

Input text: a 
suitcase on the 
right of a cow

Bard:
Object number:
•Object name: dog, number in the image: 4, number in the image description: 3
Discrepancy:
The image description states that there are three black dogs in the image, but there are actually 
four black dogs in the image.
Other discrepancies:
•Attribute binding: None
•Spatial relationships: None
•Aesthetic quality: None

Bard:
Given the image description: "a white dog and a black cat" and the image you sent of a black and 
white dog sitting next to a white dog, the following discrepancies can be identified:
Object number:
•Object number: cat, 0 in the image, 1 in the image description
Attributes:
•Attribute binding: dog, white, black and white
Spatial relationships:
None
Aesthetic quality:
None

Bard:
Image description: "a suitcase on the right of a cow"
Object number
•No discrepancy. There are exactly one suitcase and one cow in the image.
Attributes
•No discrepancy. The suitcase is brown and the cow is black and white.
Spatial relationships
•Discrepancy. In the image, the suitcase is on the left of the cow, not on the right.
Aesthetic quality
•No discrepancy. The suitcase and cow are not distorted in the image.

a. Object number b. Attribute binding

c. Spatial relationship d. Aesthetic quality 

Input text: a cat 
and a dog

Bard:
Image Description: a cat and a dog
Image: A black and white cat standing next to a dog. The cat is distorted.
Object Number:
None. The image description and the image both show one cat and one dog.
Attribute Binding:
None. The image description and the image both show a black and white cat and a dog. However, 
the image also shows that the cat is distorted.
Spatial Relationships:
None. The image description and the image both show the cat standing next to the dog.
Aesthetic Quality:
Cat: distorted

Figure 5: Visualization of LVLM-guided Editing.

5 CONCLUSION

Limitations. The efficacy of our method is constrained by the performance of the LVLMs. The cur-
rent version of Bard is still not very accurate. Nevertheless, given the rapid advancements in the field
of LVLMs, we will refine our approach in alignment with the development of more sophisticated
LVLMs.

Conclusion. In this paper, our primary objective is to enhance the quality of composable image
generation using LVLMs. Our methodology consists of three key components. Initially, we leverage
LVLMs to assess the alignment between the generated image and the input text. Following this, we
fine-tune the diffusion models utilizing LVLM-based evaluations. In the subsequent inference phase,
we deploy LVLMs to detect any discrepancies between the text and the image, and an image-editing
algorithm is engaged to amend these misalignments. Our empirical investigations substantiate the
effectiveness of our approach in improving compositional image generation.
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A ADDITIONAL RELATED WORK

Large Vision-Language Models (LVLMs). Driven by the increasing diversity of large-scale data,
developing powerful LVLMs has gained significant attention and progress in recent years. Early ef-
forts, such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and follow-up works (Li et al.,
2021; Dong et al., 2023b; Zhang et al., 2022), adopt vision-language contrastive pre-training on
extensive web-scale data, emerging superior generalization performance for zero-shot evaluation.
With the popularity of large language models (LLMs) (OpenAI, 2023a;b), recent LVLMs tend to
incorporate pre-trained LLMs with visual understanding capabilities. With advanced training strate-
gies, BLIP series (Li et al., 2022; 2023) learn a Q-Former network to bridge between frozen image
encoders and LLMs, which exhibit robust visual reasoning power. Trained by image-text interleaved
data, Flamingo (Alayrac et al., 2022) obtains impressive few-shot learning capacity and enriches the
display form of vision-language reasoning.

In contrast to the powerful but close-source GPT-4 (OpenAI, 2023b) and Bard (Google, 2023), a new
branch of LVLMs is based on the open-source LLaMA (Touvron et al., 2023), and endows it with
image understanding ability by visual instruction tuning. Therein, LLaMA-Adapter series (Zhang
et al., 2023a; Gao et al., 2023; Han et al., 2023) introduce zero-initialized attention mechanisms,
and conduct multi-modal parameter-efficient fine-tuning. LLaVA (Liu et al., 2023) introduces a
high-quality visual instruction dataset to fully fine-tune the entire LLaMA, while MiniGPT-4 (Zhu
et al., 2023) only adopts a projection layer for vision-language alignment. There are also many
inspiring LVLM works for exploring different tuning strategies (Ye et al., 2023), collecting more
diverse datasets (Chen et al., 2023), and incorporating multi-modality (Guo et al., 2023).

In this paper, as the first work, we leverage the robust vision-language reasoning of LVLMs to en-
hance compositional text-to-image generation. We select Bard developed by Google to first provide
answers based on visual questioning, and then point out the misalignment between text prompts and
generated images. Experiments have shown the effectiveness of our approach for unleashing the
potential of LVLMs for improving compositional text-to-image generation.

B ADDITIONAL VISULIZATION

A more detailed comparison of the results between Stable Diffusion and the fine-tuned model is
illustrated in Figure 6, where the images generated from the fine-tuned model exhibit a higher degree
of alignment with the input text.

Stable Diffusion

Fine-tuned Model

Input Text The black chair is 
on top of the blue 
rug

The striped rug 
was on top of the 
brown carpet

The white cat is 
lying on the 
brown sofa

The soft towel was 
on top of the hard 
counter

The white shirt 
was on the black 
hanger

Figure 6: The images generated by Stable Diffusion and the fine-tuned model.
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