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Abstract001

Procedural texts, such as recipes and instruc-002
tion manuals, are crucial for understanding pro-003
cesses involving multiple entities over time. En-004
tity state tracking, which monitors the states of005
specific entities at each time step, is a key task006
in this domain. However, existing benchmarks007
heavily rely on manually annotated datasets,008
limiting scalability. We propose a novel task009
of step image generation in recipes, using step010
images as visual supervision for tracking en-011
tity states in procedural text without relying on012
manually annotated data. By generating step013
images, we can visualize the entity states in014
each step. For this task, we collect high-quality015
multimodal recipe datasets, theSpruceEats. Ad-016
dressing the limitation of existing two-stage017
methods in achieving deep interaction between018
text and image, this paper introduces an ex-019
plicit state modeling approach based on multi-020
modal generative models. Experiments on theS-021
pruceEats dataset demonstrate that our method022
enhance entity state tracking and image gen-023
eration quality compared to existing methods,024
improving the CLIP similarity metric by 10.2%025
compared to existing methods.026

1 Introduction027

Procedural texts, which describe processes involv-028

ing one or more entities over time, such as recipes029

and instruction manuals, are widely spread and use-030

ful. The key task for procedural text comprehen-031

sion is entity state tracking, which aims to monitor032

specific entities’ states at each time step, described033

by multiple attributes such as existence or location.034

Popular datasets like ProPara(Dalvi et al., 2018)035

and RECIPE(Bosselut et al., 2018) provide bench-036

marks for this task. However, their reliance on037

manual annotations limits scalability due to sub-038

stantial human resource requirements.039

To address this, we propose to leverage the rich040

recipe data available online, particularly those with041

step images, to explore procedural text understand- 042

ing without annotated data. Recipes, with their 043

structured format comprising titles, descriptions, 044

ingredient lists, and steps, serve as an excellent re- 045

source. Step images visually depict the entity states 046

described in the text, providing visual supervision 047

for entity state tracking. 048

We introduce a novel task of step image gener- 049

ation in recipes. As show in Figure 1, in a recipe, 050

given textual inputs such as titles, descriptions, in- 051

gredient lists, and sequential step descriptions, our 052

goal is to generate corresponding images for each 053

step. By generating step images, we can visualize 054

the entity states in each step. This task requires 055

tracking the entities’ states throughout the process 056

to accurately generate images. To facilitate this, we 057

collected a high-quality multimodal recipe dataset, 058

theSpruceEats, containing 6,635 English recipes 059

and 56,832 step images, verified by professional 060

chefs and with consistent image quality. 061

The task of step image generation involves the 062

generation of interleaved text and image. Current 063

approaches (Li et al., 2023) typically adopt a two- 064

stage method involving language models for gen- 065

erating image captions, followed by image genera- 066

tion models like Stable Diffusion (Rombach et al., 067

2022). However, these methods rely on captions as 068

intermediaries and may not capture deep dependen- 069

cies between text and images effectively. 070

To overcome these limitations, we utilize multi- 071

modal generative models like SEED-LLaMA (Ge 072

et al., 2024) and LaVIT (Jin et al., 2024) to achieve 073

unified modeling of procedural text and image, as 074

well as the generation of step images. In these mul- 075

timodal large models, images are tokenized into a 076

sequence of image tokens, allowing them to inter- 077

act and be deeply modeled alongside text tokens 078

in large pre-trained language models like LLaMA 079

(Touvron et al., 2023). During image generation, 080

the model first generates image tokens using the 081

large language model and then decodes these to- 082
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Step Image Generation

Input:
• Title
• Description
• Ingredients
• Textual description of

Steps

Output:
• Step images

Title: Plum Chutney
Description: One of fall's most bountiful fruits are plums…
Ingredients: 1 piece fresh ginger, 6 cardamom pods, 1 cup dates…

1. Gather the ingredients. 2. Start by thinly slicing the 
peeled ginger…

3. Place the cardamom pods 
into a pestle…

…

Figure 1: The definition of recipe step generation task and an example from theSpruceEats dataset.

kens into images.083

For step image generation task, we first proposes084

two base methods: single-step image generation085

and step-by-step image generation. The single-step086

image generation method generates step images087

based on the textual descriptions of a recipe and088

the corresponding steps. The step-by-step image089

generation method incorporates previous steps and090

their step images to produce the current steps image.091

Moreover, we introduce an enhancement through092

explicit state modeling. This approach involves093

generating detailed textual descriptions of step im-094

ages before generating corresponding image tokens.095

This method not only aligns more closely with pre-096

training tasks, thus enhancing image generation097

quality, but also but also breaks down complex rea-098

soning into sequential steps similar to "chain of099

thought"(Wei et al., 2022), thereby reducing infer-100

ence difficulty.101

Experiments on theSpruceEats dataset show sig-102

nificant improvements on entity state tracking and103

image generation quality compared to existing two-104

stage methods, with a 10.2% increase in CLIP sim-105

ilarity. The multi-step image generation method106

outperforms the single-step method, achieving a107

1.69% improvement in CLIP similarity compared108

to single-step methods. Furthermore, explicit state109

modeling enhances the quality of step image gen-110

eration, with a 2.43% increase in CLIP similarity111

metric for single-step image generation after incor-112

porating explicit state modeling.113

Our contributions are two-fold: 1) We propose114

a challenging task of step image generation in115

recipes, leveraging step images to advance proce-116

dural text understanding, and collect a high-quality117

multimodal recipe dataset, theSpruceEats; 2) We118

propose explicit state modeling based on multi- 119

modal generative models for this task, enhancing 120

step image generation quality and entity state track- 121

ing. 122

2 Related Work 123

Entity state tracking is the key task in procedural 124

text understanding. Currently, the commonly used 125

datasets for entity state tracking tasks are ProPara 126

and RECIPE. The former includes scientific texts 127

that describe natural phenomena, such as the pro- 128

cess of photosynthesis or fossil formation, with the 129

tracking goals mainly focusing on the location and 130

existence of entities. It contains 488 procedural 131

texts. The latter primarily comprises cooking guide 132

texts, where the tracking of ingredients involves 133

attributes such as location, temperature, and com- 134

position. It includes 875 manually annotated cook- 135

ing guides. The annotation of these two datasets 136

involves a significant amount of entity state infor- 137

mation at each step, requiring substantial human 138

resources, making it challenging to expand the data 139

scale. 140

Early methods for these datasets, such as 141

ProGlobal(Dalvi et al., 2018), KG-MRC(Das et al., 142

2019), NCET(Gupta and Durrett, 2019), and 143

IEN(Tang et al., 2020), were based on two-layer 144

RNNs to model the step-document two-level hi- 145

erarchy of procedural texts. They then obtained 146

the state of each entity at each step by classifica- 147

tion. Subsequent methods introduced Transformer 148

models for procedural text modeling. For instance, 149

REAL(Huang et al., 2021) used BERT(Devlin 150

et al., 2019) as an encoder and employed an 151

entity-action-location network to infer entity states. 152

TSLM(Rajaby Faghihi and Kordjamshidi, 2021) 153
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proposed a time series language model that incorpo-154

rated temporal encoding into the Transformer’s in-155

put encoding to model the process. However, these156

methods did not consider multimodal information157

and could not utilize the entity state information158

contained in step images to aid state tracking.159

3 Dataset160

Existing multimodal recipe datasets in-161

clude Recipe1M+(Marin et al., 2019) and162

RecipeQA(Yagcioglu et al., 2018). However,163

Recipe1M+ does not contain images of cooking164

steps, making it unsuitable for research on step165

image generation task. Although RecipeQA con-166

tains step image data, this dataset is not collected167

from professional recipe websites; instead, the168

recipes are mostly user-uploaded content, with169

considerable noise in both text and images, making170

it less suitable for learning step image generation.171

To address this, we presents a high-quality172

multimodal recipe dataset, theSpruceEats, col-173

lected from the professional recipe website174

thespruceeats.com. This dataset includes En-175

glish recipes from various regions and categories,176

most of which are verified by professional chefs,177

ensuring the quality of the recipes. The step images178

in this dataset mostly feature uniform backgrounds179

and shooting angles, clearly demonstrating the state180

of various entities in each step of the recipe, elimi-181

nating the interference of noise such as background,182

shooting angle, and watermarks, making it more183

suitable for learning step image generation.184

This dataset contains 6,635 recipes and 56,832185

step images. Some statistical data of the dataset186

are shown in Table 1. The theSpruceEats dataset187

was split into training, validation, and test sets in188

an 8:1:1 ratio.189

Avg. Title Length 4.2 words
Avg. Description Length 23.4 words

Avg. Ingredient List Length 49.9 words
Avg. Number of Steps 8.57 steps

Avg. Step Length 20.99 words
Avg. Total Length 257.4 words

Table 1: Statistics of theSpruceEats dataset.

4 Method190

To generate step images in recipes, we use multi-191

modal generative models, which integrate text and192

image generation, as the base model for unified193

modeling and generation of procedural text and 194

images. Different training and inference methods 195

are proposed. Firstly, we introduces two methods: 196

single-step image generation and step image gen- 197

eration. Since the task of directly generating step 198

images from recipe text significantly differs from 199

the pre-training tasks of the base model, an im- 200

proved method based on explicit state modeling is 201

proposed, which first generates image captions and 202

then generates the images. 203

4.1 Single-Step Image Generation 204

In single-step image generation methods, the model 205

generates images based on the textual descriptions 206

of a recipe and the corresponding steps. Specifi- 207

cally, as shown in Figure 2, for a step st, the title 208

of the recipe, description, ingredient list, textual 209

deccription of steps are concatenated together, and 210

the following instruction is added: 211

Generate an image for the step <st>. 212

as input to the model, requiring the model to gen- 213

erate the token sequence corresponding to the step 214

image. 215

4.2 Step-by-Step Image Generation 216

In single-step image generation methods, all the 217

step images are generated independently of each 218

other, relying solely on textual information to gen- 219

erate the images. However, there are dependencies 220

between the step images of different steps; entities 221

in the images of previous steps often reappear or 222

appear in a changed state in the images of subse- 223

quent steps. Therefore, we proposes step-by-step 224

image generation method, where previously gen- 225

erated step images are incorporated as conditions 226

when generating images for the current step. 227

Specifically, as shown in Figure 2, for a step st, 228

the title, description, and ingredient list and text 229

and images of steps 1 to t − 1 are concatenated 230

along with the following instruction: 231

Generate an image for this step. 232

as the model’s input, requiring the model to gen- 233

erate the token sequence corresponding to the step 234

image. During the inference process, the image 235

part in the input will be replaced with the step im- 236

ages generated in the previous steps. 237

4.3 Explicit State Modeling 238

In both single-step image generation and step im- 239

age generation methods, the model implicitly mod- 240

els the state of entities at each step, requiring it 241
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[input text]
Plum Chutney
Description: One of fall’s most bountiful fruits…
Ingredients: 1 piece fresh ginger…
Steps: 1. Gather the ingredients.
…
[prompt]
Generate an image for the step:
Start by thinly slicing…

Single-Step Image Generation

[input text and image]
Plum Chutney
Description: One of fall’s most bountiful fruits…
Ingredients: 1 piece fresh ginger…
Steps: 1. Gather the ingredients.
<Image 1>
2. Start by thinly slicing the peeled ginger…
[prompt]
Generate an image for this step.

Step-by-Step Image Generation

Explicit State Modeling

[step image]

For single-step image generation:
[input text]
Plum Chutney
Description: One of fall’s most bountiful fruits…
Ingredients: 1 piece fresh ginger…
Steps: 1. Gather the ingredients.
…
[prompt]
For the step Start by thinly slicing…
generate an image caption and an image

[caption]
A cutting board with
chopped garlic and a knife. 
[step image]

For single-step image generation:
[input text and image]
Plum Chutney
Description: One of fall’s most bountiful fruits…
Ingredients: 1 piece fresh ginger…
Steps: 1. Gather the ingredients.
<Image 1>
2. Start by thinly slicing the peeled ginger…
[prompt]
Generate an image caption and image for this step.

Figure 2: Illustration of proposed methods. On the top left, the single-step image generation method generates
images based on the textual descriptions of a recipe and the corresponding steps. On the top right, the step-by-step
image generation method incorporates previous steps and their images to produce the current step’s image. At the
bottom, the explicit state modeling approach enhances image generation by first generating an image caption which
describes entity states before creating the final image.

to directly generate an image corresponding to the242

current state of the entity from the step description.243

However, during the model’s pre-training, most of244

the training data is often in the form of (image cap-245

tion, image) pairs, which significantly differ from246

the correspondence between step description and247

step image. To reduce the gap between the train-248

ing task and the pre-training task, and inspired by249

the "chain of thought" method, we proposes an im-250

proved method based on explicit state modeling on251

the basis of the aforementioned methods.252

In explicit state modeling method, we introduces253

the image caption of the step image as an explicit254

modeling of the entity states. Since most images255

in the theSpruceEats dataset do not contain image256

captions, we uses the pre-trained SEED-LLaMA257

model to generate image captions for the images258

in the dataset. For an image, the model inputs the259

image tokens and the prompt:260

Generate a detailed caption for this im-261

age.262

then the model autoregressively generates the im-263

age caption.264

After introducing the image caption of the step265

image, the explicit state modeling method requires266

the model to first generate the image caption of267

the step image when generating the step image,268

which is also an explicit modeling of the current 269

entity states. Then, based on the input and the 270

generated image caption, the model performs the 271

task of generating the image. 272

For the single-step image generation method, in 273

explicit state modeling method, as shown in Figure 274

2, for a step st, the title of the recipe, description, 275

ingredient list, and operation steps are concatenated 276

together, and the following instruction is added: 277

For the step <st> generate an image cap- 278

tion and an image. 279

This serves as the input to the model, requiring the 280

model to generate the token sequences of the image 281

caption and the step image. 282

For the step-by-step image generation method, 283

in the improved method based on explicit state 284

modeling, as shown in Figure 2, for a step st, the 285

title of the recipe, description, and ingredient list 286

are concatenated together, and the text of steps 1 287

to t − 1 and their corresponding step images are 288

added, along with the prompt: 289

Generate an image caption and image for 290

this step. 291

This serves as the input, requiring the model to 292

generate the token sequences of image caption and 293

the step image. During inference, the image parts 294
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CLIP Sim. FID (↓)
Baseline Method (Two-Stage) 52.40 32.55
Single-Step Image Generation (LaVIT) 61.13 28.61
+ Explicit State Modeling 61.62 27.23
Single-Step Image Generation (SEED-LLaMA) 60.20 44.54
+ Explicit State Modeling 62.63 34.70
Step-by-Step Image Generation (SEED-LLaMA) 61.60 39.96
+ Explicit State Modeling 62.32 31.38
Golden Image Tokens (SEED-LLaMA) 67.51 28.45
Golden Image Tokens (LaVIT) 68.53 26.55

Table 2: Experimental Results of Baseline Methods and Ours.

in the input will also be replaced by the previously295

generated step images.296

5 Experiments297

5.1 Experimental Settings298

For the single-step image generation method and299

its improved version with explicit modeling, we300

selected SEED-LLaMA-8B and LaVIT-7B as the301

base models. For the step image generation method302

and its improved version with explicit modeling,303

we chose the pre-trained SEED-LLaMA-8B model.304

This is because the SEED-LLaMA model has been305

pre-trained on image-text interleaved datasets like306

MMC4(Zhu et al., 2023) and OBELICS(Laurençon307

et al., 2023), making it more suitable for the step308

image generation task. In contrast, LaVIT has not309

been pre-trained on similar data and may struggle310

to adapt to the step image generation task through311

fine-tuning on a smaller dataset.312

For the aforementioned base model, this pa-313

per employs full-parameter fine-tuning for train-314

ing. During training, the loss function is computed315

on the validation set, and training stops when the316

loss on the validation set ceases to decrease. The317

training hyperparameters are shown in Table 3, and318

each method’s model training takes approximately319

15 hours on 4 A40 GPUs.320

When generating images, the model first gener-321

ates image tokens, using a top-p sampling strategy322

with p set to 0.5. For decoding images using the323

diffusion model, the diffusion steps are set to 20.324

In evaluating the model, this paper compares the325

generated step images with real step images. Ad-326

ditionally, the paper evaluates by generating im-327

ages using gold standard image tokens as an upper328

bound on model performance.329

SEED-LLaMA-8B LaVIT-7B
Learning Rate 1e− 4 1e− 5

Optimizer AdamW
Weight Decay 0.05 0.1
Input Length 1024
Batch Size 128 512

Table 3: Hyperparameter Settings

5.2 Baseline Methods 330

To compare with the proposed methods, we 331

adopted a two-stage method from existing work as 332

the baseline. In the first stage, we used the Vicuna- 333

7B(Zheng et al., 2023) model to generate image 334

captions. For a given step st, we concatenated the 335

recipe title, description, ingredient list, and opera- 336

tion steps, and added the following instruction: 337

Generate a detailed image caption for the 338

step <st>. 339

This served as input, prompting the model to gener- 340

ate an image caption. In the second stage, we used 341

the Stable Diffusion 2.1 model for text-to-image 342

generation. 343

For the Vicuna-7B model in the first stage, 344

we used image captions generated by the SEED- 345

LLaMA model as the supervision signal and fine- 346

tuned it with the same hyperparameters as the 347

SEED-LLaMA. For the Stable Diffusion 2.1 model 348

in the second stage, we fine-tuned it using the 349

SEED-LLaMA model’s image captions as text in- 350

put. We trained it on the training set images with a 351

learning rate of 1e− 4 and a batch size of 512 for 352

5,000 steps. During inference, we used the image 353

captions generated by the Vicuna-7B model and 354

input these captions into the Stable Diffusion 2.1 355

model for image generation, setting the diffusion 356

steps to 20. 357
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Prec. Rec. F1
Single-step Image Generation (LaVIT) 62.0 52.3 56.7
+ Explicit State Modeling 71.2 62.2 66.4
Single-step Image Generation (SEED-LLaMA) 55.2 48.3 51.5
+ Explicit State Modeling 76.2 64.6 69.9
Step-by-step Image Generation (SEED-LLaMA) 64.8 56.4 60.3
+ Explicit State Modeling 75.1 67.2 71.0

Table 4: Human Evaluation Results of State Tracking.

Step Single-step Generation Step-by-step Generation Ground Truth

Step 8

Drain on 
prepared paper 
towels or a 
baking rack.

Step 9

Sprinkle warm 
doughnuts with 
powdered 
sugar.

Figure 3: Comparison of single-step image generation and step-by-step image generation.

5.3 Evaluation Metrics358

To evaluate how well the generated step images359

model the entitiy states in the steps, we assessed360

the similarity between the model-generated step361

images and the real step images. Referring to the362

work of (Koh et al., 2023) and (Ge et al., 2024), we363

used similarity metrics based on the CLIP(Radford364

et al., 2021) model.365

To evaluate the quality of the step images them-366

selves, we employed the Fréchet Inception Dis-367

tance (FID)(Heusel et al., 2018) metric.368

6 Results369

6.1 Quantitative Results370

Baseline Method v.s. Ours Table 2 presents371

the CLIP similarity and FID metrics for the base-372

line and our proposed methods. Compared to the373

two-stage baseline, our methods significantly im-374

prove the CLIP similarity metric. Specifically, fine-375

tuning the SEED-LLaMA model with explicit state376

modeling in single-step image generation increases377

the CLIP similarity by over 10%. This indicates378

that multimodal generative models enhances the379

modelling of procedural text and images, thereby380

improving step image generation. 381

Single-Step v.s. Step-by-Step The step-by-step 382

method outperforms the single-step method in both 383

CLIP similarity and FID metrics. The step-by-step 384

method’s superior modeling and image generation 385

quality likely result from incorporating informa- 386

tion from previous images and sequential model- 387

ing, aligning better with the temporal nature of 388

procedural texts. 389

Explicit State Modeling The FID metrics show 390

that explicit state modeling significantly enhances 391

image generation quality for both single-step and 392

step methods. Generating an image caption be- 393

fore the image may make the task more similar 394

to pre-training tasks, better utilizing the model’s 395

pre-trained text-to-image generation capabilities. 396

For single-step generation, explicit state modeling 397

improves CLIP similarity by 2.43%, possibly due 398

to the "chain of thought" effect from generating a 399

caption first. 400

Comparison of Base Models In single-step im- 401

age generation and with explicit state modeling, 402

LaVIT produces higher quality images (lower FID) 403
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Step Single-step Generation + Explicit State Modelling Ground Truth

(a)

In a large bowl combine 
the peanut butter, sugar, 
and egg. Stir until smooth 
and creamy.

(b)

Continue cooling 
completely on a wire rack . 
Enjoy.

(c)
Reduce heat to medium 
and cook for an additional 
10 to 15 minutes.

Figure 4: Comparison of single-step generation method and method with explicit state modeling.

and better tracks entity states (higher CLIP simi-404

larity) compared to SEED-LLaMA. LaVIT’s use405

of longer token sequences captures more details,406

improving image quality. However, with explicit407

state modeling, SEED-LLaMA’s CLIP similarity408

surpasses LaVIT’s, likely due to SEED-LLaMA’s409

instruction tuning, which generates more detailed410

image titles, better guiding image generation.411

Comparison to Golden Image Tokens Despite412

improvements, current methods still show a signifi-413

cant gap in entity state modeling and image quality414

compared to images generated with gold standard415

image tokens, likely due to insufficient training416

data.417

6.2 Entity State Tracking Analysis418

To further analyze the effectiveness of entity state419

tracking of various methods, this paper sampled 20420

cooking guides from the test set, consisting of a421

total of 138 step images, and manually evaluated422

the entity state tracking effectiveness of the step423

images generated by each method. For the gen-424

erated images and the real images, the number of425

entities with correct states in the generated images426

and the total number of entities in the generated427

images and real images were manually counted to428

calculate Precision, Recall, and F1 scores.429

Referring to existing works on the evaluation of430

state tracking in cooking guides (Amini et al., 2020;431

Zhang et al., 2021), this paper only considered 432

whether the positional attributes were correct when 433

evaluating whether the entity states were correct. 434

When counting the number of entities, the same 435

type of entity was counted only once. The results of 436

the manual evaluation of state analysis are shown 437

in Table 4, where Precision, Recall, and F1 are 438

calculated using micro-averaging. The evaluation 439

results show that explicit state modeling methods 440

can significantly improve the entity state tracking 441

effect, and the entity state tracking effect of the 442

step-by-step image generation method is better than 443

that of the single-step image generation method, 444

which confirms the conclusions of the automatic 445

evaluation of the entity state tracking effect of each 446

method. In addition, the recall of each method is 447

significantly lower than the precision, indicating 448

that the model tends to generate a smaller number 449

of entities when generating images. 450

6.3 Case Study 451

Single-step v.s. Step-by-step In the single-step 452

image generation method, each step’s image is gen- 453

erated independently, potentially causing inconsis- 454

tencies where later images don’t reflect information 455

from earlier ones. The step-by-step image gener- 456

ation method addresses this issue. Figure 3 illus- 457

trates that in the single-step method, a baking rack 458

present in an earlier step might be missing in a sub- 459

sequent one. In contrast, the step-by-step method 460
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Step LaVIT SEED-LLaMA Ground Truth

The smoothie will 
keep in the 
refrigerator or 
a vacuum-
sealed container for a 
few hours.

Step LaVIT
+ Explicit State Modelling

SEED-LLaMA
+ Explicit State Modelling Ground Truth

Add the ground beef 
and mix gently with 
your hands until 
everything is just 
incorporated. Do not 
overmix. Image Caption:

A bowl filled with ground 
beef and spices.

Image Caption:
A bowl containing the
mixture of ground beef and 
spices.

Figure 5: Comparison of base models.

allows the model to retain the baking rack informa-461

tion from the previous step, even if not explicitly462

mentioned in the current step’s text.463

Explicit Entity Modeling This paper manu-464

ally evaluated images generated by a single-step465

method versus an improved method with explicit466

entity modeling. In 68% of 100 image pairs, the467

improved method yielded better results. The ad-468

vantages include: 1) Correct Entity States: Explicit469

modeling improves accuracy in 17.6% of cases470

by accurately depicting entity states, such as ac-471

curately producing a mixture in a bowl in Figure472

4(a); 2) No Missing Entities: It reduces omissions,473

correctly generating all entities like a wire rack in474

23.5% of cases, such as including the wire rack in475

Figure 4(a); 3) High Image Quality: Leveraging476

pre-training capabilities, it enhances image quality477

in 58.8% of cases, such as producing undistorted478

chicken wings in Figure 4(c).479

Comparison of Base Models This paper com-480

pared SEED-LLaMA and LaVIT base models in481

both single-step and improved methods. Figure482

5 shows that in the single-step method, LaVIT483

better captures details like drink color, container484

shape, and background due to longer image to-485

ken sequences. In the improved method, SEED-486

LLaMA generates more specific image titles, accu-487

rately depicting ingredient states, whereas LaVIT488

fails to do so, resulting in incorrect images. This 489

indicates that SEED-LLaMA, after instruction fine- 490

tuning, excels in generating accurate captions and 491

step images. 492

7 Conclusion 493

In this paper, we introduced a novel task of step 494

image generation in recipes, leveraging the step 495

images as visual supervision for entity state track- 496

ing. By generating step images, we can visualize 497

the entity states in each step. For this task, we 498

collect a high-quality multimodal recipe dataset, 499

theSpruceEats. Based on multimodal generative 500

models, we proposed methods for both single-step 501

and step-by-step image generation, incorporating 502

explicit state modeling. Experiments on theS- 503

pruceEats dataset show that our methods enhance 504

entity state tracking and image generation quality 505

compared to existing methods. 506

Limitations 507

Our proposed method only involves the training of 508

large language models and does not integrate the to- 509

kenization and diffusion modules of images into the 510

joint training. This may result in sub-optimal qual- 511

ity of the generated images. If this issue can be ad- 512

dressed, there is potential for improving the quality 513

of the step images generated by the model. More- 514
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over, our proposed method is still far from truly515

reproducing the step images in real data. There are516

deficiencies in generating all entities and restoring517

entity states. In the future, there is significant room518

for improvement in terms of model design, training519

methods, and data scale.520
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