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Abstract

Procedural texts, such as recipes and instruc-
tion manuals, are crucial for understanding pro-
cesses involving multiple entities over time. En-
tity state tracking, which monitors the states of
specific entities at each time step, is a key task
in this domain. However, existing benchmarks
heavily rely on manually annotated datasets,
limiting scalability. We propose a novel task
of step image generation in recipes, using step
images as visual supervision for tracking en-
tity states in procedural text without relying on
manually annotated data. By generating step
images, we can visualize the entity states in
each step. For this task, we collect high-quality
multimodal recipe datasets, theSpruceEats. Ad-
dressing the limitation of existing two-stage
methods in achieving deep interaction between
text and image, this paper introduces an ex-
plicit state modeling approach based on multi-
modal generative models. Experiments on theS-
pruceEats dataset demonstrate that our method
enhance entity state tracking and image gen-
eration quality compared to existing methods,
improving the CLIP similarity metric by 10.2%
compared to existing methods.

1 Introduction

Procedural texts, which describe processes involv-
ing one or more entities over time, such as recipes
and instruction manuals, are widely spread and use-
ful. The key task for procedural text comprehen-
sion is entity state tracking, which aims to monitor
specific entities’ states at each time step, described
by multiple attributes such as existence or location.
Popular datasets like ProPara(Dalvi et al., 2018)
and RECIPE(Bosselut et al., 2018) provide bench-
marks for this task. However, their reliance on
manual annotations limits scalability due to sub-
stantial human resource requirements.

To address this, we propose to leverage the rich
recipe data available online, particularly those with

step images, to explore procedural text understand-
ing without annotated data. Recipes, with their
structured format comprising titles, descriptions,
ingredient lists, and steps, serve as an excellent re-
source. Step images visually depict the entity states
described in the text, providing visual supervision
for entity state tracking.

We introduce a novel task of step image gener-
ation in recipes. As show in Figure 1, in a recipe,
given textual inputs such as titles, descriptions, in-
gredient lists, and sequential step descriptions, our
goal is to generate corresponding images for each
step. By generating step images, we can visualize
the entity states in each step. This task requires
tracking the entities’ states throughout the process
to accurately generate images. To facilitate this, we
collected a high-quality multimodal recipe dataset,
theSpruceEats, containing 6,635 English recipes
and 56,832 step images, verified by professional
chefs and with consistent image quality.

The task of step image generation involves the
generation of interleaved text and image. Current
approaches (Li et al., 2023) typically adopt a two-
stage method involving language models for gen-
erating image captions, followed by image genera-
tion models like Stable Diffusion (Rombach et al.,
2022). However, these methods rely on captions as
intermediaries and may not capture deep dependen-
cies between text and images effectively.

To overcome these limitations, we utilize multi-
modal generative models like SEED-LLaMA (Ge
et al., 2024) and LaVIT (Jin et al., 2024) to achieve
unified modeling of procedural text and image, as
well as the generation of step images. In these mul-
timodal large models, images are tokenized into a
sequence of image tokens, allowing them to inter-
act and be deeply modeled alongside text tokens
in large pre-trained language models like LLaMA
(Touvron et al., 2023). During image generation,
the model first generates image tokens using the
large language model and then decodes these to-
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Figure 1: The definition of recipe step generation task and an example from theSpruceEats dataset.

kens into images.

For step image generation task, we first proposes
two base methods: single-step image generation
and step-by-step image generation. The single-step
image generation method generates step images
based on the textual descriptions of a recipe and
the corresponding steps. The step-by-step image
generation method incorporates previous steps and
their step images to produce the current steps image.
Moreover, we introduce an enhancement through
explicit state modeling. This approach involves
generating detailed textual descriptions of step im-
ages before generating corresponding image tokens.
This method not only aligns more closely with pre-
training tasks, thus enhancing image generation
quality, but also but also breaks down complex rea-
soning into sequential steps similar to "chain of
thought"(Wei et al., 2022), thereby reducing infer-
ence difficulty.

Experiments on theSpruceEats dataset show sig-
nificant improvements on entity state tracking and
image generation quality compared to existing two-
stage methods, with a 10.2% increase in CLIP sim-
ilarity. The multi-step image generation method
outperforms the single-step method, achieving a
1.69% improvement in CLIP similarity compared
to single-step methods. Furthermore, explicit state
modeling enhances the quality of step image gen-
eration, with a 2.43% increase in CLIP similarity
metric for single-step image generation after incor-
porating explicit state modeling.

Our contributions are two-fold: 1) We propose
a challenging task of step image generation in
recipes, leveraging step images to advance proce-
dural text understanding, and collect a high-quality
multimodal recipe dataset, theSpruceEats; 2) We

propose explicit state modeling based on multi-
modal generative models for this task, enhancing
step image generation quality and entity state track-
ing.

2 Related Work

Entity state tracking is the key task in procedural
text understanding. Currently, the commonly used
datasets for entity state tracking tasks are ProPara
and RECIPE. The former includes scientific texts
that describe natural phenomena, such as the pro-
cess of photosynthesis or fossil formation, with the
tracking goals mainly focusing on the location and
existence of entities. It contains 488 procedural
texts. The latter primarily comprises cooking guide
texts, where the tracking of ingredients involves
attributes such as location, temperature, and com-
position. It includes 875 manually annotated cook-
ing guides. The annotation of these two datasets
involves a significant amount of entity state infor-
mation at each step, requiring substantial human
resources, making it challenging to expand the data
scale.

Early methods for these datasets, such as
ProGlobal(Dalvi et al., 2018), KG-MRC(Das et al.,
2019), NCET(Gupta and Durrett, 2019), and
IEN(Tang et al., 2020), were based on two-layer
RNNs to model the step-document two-level hi-
erarchy of procedural texts. They then obtained
the state of each entity at each step by classifica-
tion. Subsequent methods introduced Transformer
models for procedural text modeling. For instance,
REAL(Huang et al.,, 2021) used BERT(Devlin
et al., 2019) as an encoder and employed an
entity-action-location network to infer entity states.
TSLM(Rajaby Faghihi and Kordjamshidi, 2021)



proposed a time series language model that incorpo-
rated temporal encoding into the Transformer’s in-
put encoding to model the process. However, these
methods did not consider multimodal information
and could not utilize the entity state information
contained in step images to aid state tracking.

3 Dataset

Existing multimodal recipe datasets in-
clude RecipelM+(Marin et al., 2019) and
RecipeQA(Yagcioglu et al., 2018). However,
Recipel M+ does not contain images of cooking
steps, making it unsuitable for research on step
image generation task. Although RecipeQA con-
tains step image data, this dataset is not collected
from professional recipe websites; instead, the
recipes are mostly user-uploaded content, with
considerable noise in both text and images, making
it less suitable for learning step image generation.

To address this, we presents a high-quality
multimodal recipe dataset, theSpruceEats, col-
lected from the professional recipe website
thespruceeats.com. This dataset includes En-
glish recipes from various regions and categories,
most of which are verified by professional chefs,
ensuring the quality of the recipes. The step images
in this dataset mostly feature uniform backgrounds
and shooting angles, clearly demonstrating the state
of various entities in each step of the recipe, elimi-
nating the interference of noise such as background,
shooting angle, and watermarks, making it more
suitable for learning step image generation.

This dataset contains 6,635 recipes and 56,832
step images. Some statistical data of the dataset
are shown in Table 1. The theSpruceEats dataset
was split into training, validation, and test sets in
an 8:1:1 ratio.

Avg. Title Length 4.2 words
Avg. Description Length 23.4 words
Avg. Ingredient List Length  49.9 words

Avg. Number of Steps 8.57 steps
Avg. Step Length 20.99 words
Avg. Total Length 257.4 words

Table 1: Statistics of theSpruceEats dataset.

4 Method

To generate step images in recipes, we use multi-
modal generative models, which integrate text and
image generation, as the base model for unified

modeling and generation of procedural text and
images. Different training and inference methods
are proposed. Firstly, we introduces two methods:
single-step image generation and step image gen-
eration. Since the task of directly generating step
images from recipe text significantly differs from
the pre-training tasks of the base model, an im-
proved method based on explicit state modeling is
proposed, which first generates image captions and
then generates the images.

4.1 Single-Step Image Generation

In single-step image generation methods, the model
generates images based on the textual descriptions
of a recipe and the corresponding steps. Specifi-
cally, as shown in Figure 2, for a step sy, the title
of the recipe, description, ingredient list, textual
deccription of steps are concatenated together, and
the following instruction is added:

Generate an image for the step <s;>.

as input to the model, requiring the model to gen-
erate the token sequence corresponding to the step
image.

4.2 Step-by-Step Image Generation

In single-step image generation methods, all the
step images are generated independently of each
other, relying solely on textual information to gen-
erate the images. However, there are dependencies
between the step images of different steps; entities
in the images of previous steps often reappear or
appear in a changed state in the images of subse-
quent steps. Therefore, we proposes step-by-step
image generation method, where previously gen-
erated step images are incorporated as conditions
when generating images for the current step.

Specifically, as shown in Figure 2, for a step s,
the title, description, and ingredient list and text
and images of steps 1 to ¢ — 1 are concatenated
along with the following instruction:

Generate an image for this step.

as the model’s input, requiring the model to gen-
erate the token sequence corresponding to the step
image. During the inference process, the image
part in the input will be replaced with the step im-
ages generated in the previous steps.

4.3 Explicit State Modeling

In both single-step image generation and step im-
age generation methods, the model implicitly mod-
els the state of entities at each step, requiring it


thespruceeats.com

Single-Step Image Generation

[input text]

Plum Chutney

Description: One of fall’s most bountiful fruits...
Ingredients: 1 piece fresh ginger...

Steps: 1. Gather the ingredients.

[prompt]
Generate an image for the step:
Start by thinly slicing...

[step image]

Step-by-Step Image Generation

[input text and image]
Plum Chutney
Description: One of fall’s most bountiful fruits...
Ingredients: 1 piece fresh ginger...
« Steps: 1. Gather the ingredients.
<Image 1>
2. Start by thinly slicing the peeled ginger...
[prompt]
Generate an image for this step.

Explicit State Modeling

For single-step image generation: [caption] For single-step image generation:
[input text] A cutting board with [input text and image]
Plum Chutney chopped garlic and a knife. =~ Plum Chutney

Description: One of fall’s most bountiful fruits...
Ingredients: 1 piece fresh ginger...
Steps: 1. Gather the ingredients.

[prompt]
For the step Start by thinly slicing...
generate an image caption and an image

[step image]

Description: One of fall’s most bountiful fruits...
Ingredients: 1 piece fresh ginger...

Steps: 1. Gather the ingredients.

<Image 1>

2. Start by thinly slicing the peeled ginger...
[prompt]

Generate an image caption and image for this step.

Figure 2: Illustration of proposed methods. On the top left, the single-step image generation method generates
images based on the textual descriptions of a recipe and the corresponding steps. On the top right, the step-by-step
image generation method incorporates previous steps and their images to produce the current step’s image. At the
bottom, the explicit state modeling approach enhances image generation by first generating an image caption which

describes entity states before creating the final image.

to directly generate an image corresponding to the
current state of the entity from the step description.
However, during the model’s pre-training, most of
the training data is often in the form of (image cap-
tion, image) pairs, which significantly differ from
the correspondence between step description and
step image. To reduce the gap between the train-
ing task and the pre-training task, and inspired by
the "chain of thought" method, we proposes an im-
proved method based on explicit state modeling on
the basis of the aforementioned methods.

In explicit state modeling method, we introduces
the image caption of the step image as an explicit
modeling of the entity states. Since most images
in the theSpruceEats dataset do not contain image
captions, we uses the pre-trained SEED-LLaMA
model to generate image captions for the images
in the dataset. For an image, the model inputs the
image tokens and the prompt:

Generate a detailed caption for this im-
age.

then the model autoregressively generates the im-
age caption.

After introducing the image caption of the step
image, the explicit state modeling method requires
the model to first generate the image caption of
the step image when generating the step image,

which is also an explicit modeling of the current
entity states. Then, based on the input and the
generated image caption, the model performs the
task of generating the image.

For the single-step image generation method, in
explicit state modeling method, as shown in Figure
2, for a step sy, the title of the recipe, description,
ingredient list, and operation steps are concatenated
together, and the following instruction is added:

For the step <s¢> generate an image cap-
tion and an image.

This serves as the input to the model, requiring the
model to generate the token sequences of the image
caption and the step image.

For the step-by-step image generation method,
in the improved method based on explicit state
modeling, as shown in Figure 2, for a step s;, the
title of the recipe, description, and ingredient list
are concatenated together, and the text of steps 1
to t — 1 and their corresponding step images are
added, along with the prompt:

Generate an image caption and image for
this step.

This serves as the input, requiring the model to
generate the token sequences of image caption and
the step image. During inference, the image parts



CLIP Sim. FID ({)
Baseline Method (Two-Stage) 52.40 32.55
Single-Step Image Generation (LaVIT) 61.13 28.61
+ Explicit State Modeling 61.62 27.23
Single-Step Image Generation (SEED-LLaMA) 60.20 44.54
+ Explicit State Modeling 62.63 34.70
Step-by-Step Image Generation (SEED-LLaMA) 61.60 39.96
+ Explicit State Modeling 62.32 31.38
Golden Image Tokens (SEED-LLaMA) 67.51 28.45
Golden Image Tokens (LaVIT) 68.53 26.55

Table 2: Experimental Results of Baseline Methods and Ours.

in the input will also be replaced by the previously
generated step images.

5 Experiments

5.1 Experimental Settings

For the single-step image generation method and
its improved version with explicit modeling, we
selected SEED-LLaMA-8B and LaVIT-7B as the
base models. For the step image generation method
and its improved version with explicit modeling,
we chose the pre-trained SEED-LLaMA-8B model.
This is because the SEED-LLaMA model has been
pre-trained on image-text interleaved datasets like
MMC4(Zhu et al., 2023) and OBELICS(Laurengon
et al., 2023), making it more suitable for the step
image generation task. In contrast, LaVIT has not
been pre-trained on similar data and may struggle
to adapt to the step image generation task through
fine-tuning on a smaller dataset.

For the aforementioned base model, this pa-
per employs full-parameter fine-tuning for train-
ing. During training, the loss function is computed
on the validation set, and training stops when the
loss on the validation set ceases to decrease. The
training hyperparameters are shown in Table 3, and
each method’s model training takes approximately
15 hours on 4 A40 GPUs.

When generating images, the model first gener-
ates image tokens, using a top-p sampling strategy
with p set to 0.5. For decoding images using the
diffusion model, the diffusion steps are set to 20.
In evaluating the model, this paper compares the
generated step images with real step images. Ad-
ditionally, the paper evaluates by generating im-
ages using gold standard image tokens as an upper
bound on model performance.

SEED-LLaMA-8B  LaVIT-7B

Learning Rate le —4 le—5
Optimizer AdamW
Weight Decay 0.05 0.1
Input Length 1024
Batch Size 128 512

Table 3: Hyperparameter Settings

5.2 Baseline Methods

To compare with the proposed methods, we
adopted a two-stage method from existing work as
the baseline. In the first stage, we used the Vicuna-
7B(Zheng et al., 2023) model to generate image
captions. For a given step s;, we concatenated the
recipe title, description, ingredient list, and opera-
tion steps, and added the following instruction:

Generate a detailed image caption for the
step <s¢>.

This served as input, prompting the model to gener-
ate an image caption. In the second stage, we used
the Stable Diffusion 2.1 model for text-to-image
generation.

For the Vicuna-7B model in the first stage,
we used image captions generated by the SEED-
LLaMA model as the supervision signal and fine-
tuned it with the same hyperparameters as the
SEED-LLaMA. For the Stable Diffusion 2.1 model
in the second stage, we fine-tuned it using the
SEED-LLaMA model’s image captions as text in-
put. We trained it on the training set images with a
learning rate of 1le — 4 and a batch size of 512 for
5,000 steps. During inference, we used the image
captions generated by the Vicuna-7B model and
input these captions into the Stable Diffusion 2.1
model for image generation, setting the diffusion
steps to 20.



Prec. Rec. Fl
Single-step Image Generation (LaVIT) 62.0 523 56.7
+ Explicit State Modeling 71.2 622 664
Single-step Image Generation (SEED-LLaMA) 55.2 48.3 51.5
+ Explicit State Modeling 76.2 64.6 699
Step-by-step Image Generation (SEED-LLaMA) | 64.8 56.4 60.3
+ Explicit State Modeling 75.1 672 71.0

Table 4: Human Evaluation Results of State Tracking.

Step

Single-step Generation

Drain on
prepared paper
towels or a
baking rack.

Step 8

Sprinkle warm
doughnuts with
powdered
sugar.

Step 9

Step-by-step Generation Ground Truth

Figure 3: Comparison of single-step image generation and step-by-step image generation.

5.3 Evaluation Metrics

To evaluate how well the generated step images
model the entitiy states in the steps, we assessed
the similarity between the model-generated step
images and the real step images. Referring to the
work of (Koh et al., 2023) and (Ge et al., 2024), we
used similarity metrics based on the CLIP(Radford
et al., 2021) model.

To evaluate the quality of the step images them-
selves, we employed the Fréchet Inception Dis-
tance (FID)(Heusel et al., 2018) metric.

6 Results

6.1 Quantitative Results

Baseline Method v.s. Ours Table 2 presents
the CLIP similarity and FID metrics for the base-
line and our proposed methods. Compared to the
two-stage baseline, our methods significantly im-
prove the CLIP similarity metric. Specifically, fine-
tuning the SEED-LLaMA model with explicit state
modeling in single-step image generation increases
the CLIP similarity by over 10%. This indicates
that multimodal generative models enhances the
modelling of procedural text and images, thereby

improving step image generation.

Single-Step v.s. Step-by-Step The step-by-step
method outperforms the single-step method in both
CLIP similarity and FID metrics. The step-by-step
method’s superior modeling and image generation
quality likely result from incorporating informa-
tion from previous images and sequential model-
ing, aligning better with the temporal nature of
procedural texts.

Explicit State Modeling The FID metrics show
that explicit state modeling significantly enhances
image generation quality for both single-step and
step methods. Generating an image caption be-
fore the image may make the task more similar
to pre-training tasks, better utilizing the model’s
pre-trained text-to-image generation capabilities.
For single-step generation, explicit state modeling
improves CLIP similarity by 2.43%, possibly due
to the "chain of thought" effect from generating a
caption first.

Comparison of Base Models In single-step im-
age generation and with explicit state modeling,
LaVIT produces higher quality images (lower FID)



Step Single-step Generation

In a large bowl combine
the peanut butter, sugar,
and egg. Stir until smooth
and creamy.

(@)

Continue cooling
completely on a wire rack .

®) Enjoy.

Reduce heat to medium
(c) and cook for an additional
10 to 15 minutes.

Ground Truth

+ Explicit State Modelling

Figure 4: Comparison of single-step generation method and method with explicit state modeling.

and better tracks entity states (higher CLIP simi-
larity) compared to SEED-LLaMA. LaVIT’s use
of longer token sequences captures more details,
improving image quality. However, with explicit
state modeling, SEED-LLaMA’s CLIP similarity
surpasses LaVIT’s, likely due to SEED-LLaMA’s
instruction tuning, which generates more detailed
image titles, better guiding image generation.

Comparison to Golden Image Tokens Despite
improvements, current methods still show a signifi-
cant gap in entity state modeling and image quality
compared to images generated with gold standard
image tokens, likely due to insufficient training
data.

6.2 Entity State Tracking Analysis

To further analyze the effectiveness of entity state
tracking of various methods, this paper sampled 20
cooking guides from the test set, consisting of a
total of 138 step images, and manually evaluated
the entity state tracking effectiveness of the step
images generated by each method. For the gen-
erated images and the real images, the number of
entities with correct states in the generated images
and the total number of entities in the generated
images and real images were manually counted to
calculate Precision, Recall, and F1 scores.
Referring to existing works on the evaluation of
state tracking in cooking guides (Amini et al., 2020;

Zhang et al., 2021), this paper only considered
whether the positional attributes were correct when
evaluating whether the entity states were correct.
When counting the number of entities, the same
type of entity was counted only once. The results of
the manual evaluation of state analysis are shown
in Table 4, where Precision, Recall, and F1 are
calculated using micro-averaging. The evaluation
results show that explicit state modeling methods
can significantly improve the entity state tracking
effect, and the entity state tracking effect of the
step-by-step image generation method is better than
that of the single-step image generation method,
which confirms the conclusions of the automatic
evaluation of the entity state tracking effect of each
method. In addition, the recall of each method is
significantly lower than the precision, indicating
that the model tends to generate a smaller number
of entities when generating images.

6.3 Case Study

Single-step v.s. Step-by-step In the single-step
image generation method, each step’s image is gen-
erated independently, potentially causing inconsis-
tencies where later images don’t reflect information
from earlier ones. The step-by-step image gener-
ation method addresses this issue. Figure 3 illus-
trates that in the single-step method, a baking rack
present in an earlier step might be missing in a sub-
sequent one. In contrast, the step-by-step method
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spices.

Ground Truth

Ground Truth

Figure 5: Comparison of base models.

allows the model to retain the baking rack informa-
tion from the previous step, even if not explicitly
mentioned in the current step’s text.

Explicit Entity Modeling This paper manu-
ally evaluated images generated by a single-step
method versus an improved method with explicit
entity modeling. In 68% of 100 image pairs, the
improved method yielded better results. The ad-
vantages include: 1) Correct Entity States: Explicit
modeling improves accuracy in 17.6% of cases
by accurately depicting entity states, such as ac-
curately producing a mixture in a bowl in Figure
4(a); 2) No Missing Entities: It reduces omissions,
correctly generating all entities like a wire rack in
23.5% of cases, such as including the wire rack in
Figure 4(a); 3) High Image Quality: Leveraging
pre-training capabilities, it enhances image quality
in 58.8% of cases, such as producing undistorted
chicken wings in Figure 4(c).

Comparison of Base Models This paper com-
pared SEED-LLaMA and LaVIT base models in
both single-step and improved methods. Figure
5 shows that in the single-step method, LaVIT
better captures details like drink color, container
shape, and background due to longer image to-
ken sequences. In the improved method, SEED-
LLaMA generates more specific image titles, accu-
rately depicting ingredient states, whereas LaVIT

fails to do so, resulting in incorrect images. This
indicates that SEED-LLaMA, after instruction fine-
tuning, excels in generating accurate captions and
step images.

7 Conclusion

In this paper, we introduced a novel task of step
image generation in recipes, leveraging the step
images as visual supervision for entity state track-
ing. By generating step images, we can visualize
the entity states in each step. For this task, we
collect a high-quality multimodal recipe dataset,
theSpruceEats. Based on multimodal generative
models, we proposed methods for both single-step
and step-by-step image generation, incorporating
explicit state modeling. Experiments on theS-
pruceEats dataset show that our methods enhance
entity state tracking and image generation quality
compared to existing methods.

Limitations

Our proposed method only involves the training of
large language models and does not integrate the to-
kenization and diffusion modules of images into the
joint training. This may result in sub-optimal qual-
ity of the generated images. If this issue can be ad-
dressed, there is potential for improving the quality
of the step images generated by the model. More-



over, our proposed method is still far from truly
reproducing the step images in real data. There are
deficiencies in generating all entities and restoring
entity states. In the future, there is significant room
for improvement in terms of model design, training
methods, and data scale.
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