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Abstract

Deep neural networks face persistent challenges in defending against backdoor
attacks, leading to an ongoing battle between attacks and defenses. While existing
backdoor defense strategies have shown promising performance on reducing attack
success rates, can we confidently claim that the backdoor threat has truly been
eliminated from the model? To address it, we re-investigate the characteristics of
the backdoored models after defense (denoted as defense models). Surprisingly, we
find that the original backdoors still exist in defense models derived from existing
post-training defense strategies, and the backdoor existence is measured by a novel
metric called backdoor existence coefficient. It implies that the backdoors just lie
dormant rather than being eliminated. To further verify this finding, we empirically
show that these dormant backdoors can be easily re-activated during inference stage,
by manipulating the original trigger with well-designed tiny perturbation using uni-
versal adversarial attack. More practically, we extend our backdoor re-activation to
black-box scenario, where the defense model can only be queried by the adversary
during inference stage, and develop two effective methods, i.e., query-based and
transfer-based backdoor re-activation attacks. The effectiveness of the proposed
methods are verified on both image classification and multimodal contrastive learn-
ing (i.e., CLIP) tasks. In conclusion, this work uncovers a critical vulnerability that
has never been explored in existing defense strategies, emphasizing the urgency of
designing more robust and advanced backdoor defense mechanisms in the future.

1 Introduction

The pervasive application of Deep Neural Networks (DNNs) across safety-critical domains like facial
recognition and autonomous driving [23, 36] has underlined their significance and profound impact
in industrial and academic spheres. Despite their transformative potential, DNNs are known to be
vulnerable to malicious threats [5, 27], which compromise the integrity and reliability of advanced
systems. One of the representative threats is backdoor attacks [18, 31], where an adversary pre-defines
a "trigger" and embeds it within limited training data such that the backdoored model will misclassify
trigger-containing inputs into specific target categories while appropriately processing benign inputs.

A successful backdoor attack consists of two stages: (1) the embedding of the backdoor within the
model during training; and (2) its subsequent activation during inference stage [62]. To identify [14]
and mitigate the harmful impacts of backdoor attacks, substantial efforts have been made ranging
from dataset segmentation [7, 50], trigger inversion [53, 56], model pruning [64, 71], and fine-tuning
based defenses [30, 67]. While these existing defense mechanisms aim at decreasing the attack
success rates (ASR) [59] of corresponding backdoored models, a fundamental question arises: can
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we confidently claim that the backdoor threat has truly been eliminated from the model? In this
work, we use the term defense model(s) to denote those models which have initially been poisoned
to backdoored models and subsequently defended using some defensive techniques, for convenience.

Backdoored models 
without defense

Backdoored models 
after defense

Clean model

Figure 1: Comparative analysis of back-
door existence coefficient and backdoor
activation rate across different models.

To answer above question, we introduce an innovative con-
cept, backdoor existence coefficient (BEC) to quantify the
extent of backdoor presence within models. Using BEC,
we can re-investigate the backdoor existence in existing de-
fense models [30, 58, 67]. Specifically, the BEC measures
the similarity of activation among backdoor-related neurons
in the poisoned samples between the backdoored model and
its corresponding defense model. Fig. 1 presents the rela-
tionship between BEC and backdoor activation (indicated
by ASR) across three different attack and defense methods
for comparison. In this figure, distinct shapes and colors de-
note various attack and defense methods, respectively. As
depicted in the figure, even though the ASRs decline nearly
to zero which implies that defense models perform com-
parably to clean models, the BECs in the defense models
remain significantly high. This notable observation implies
that the original backdoors just lie dormant rather than being eliminated in defense models.

Inspired by above observations, we pose a question: Since the original trigger fails to activate
the original backdoor, is it possible to unearth a variant of the original trigger that is capable of
re-activating the backdoor? Given that in real-world scenarios where the adversary cannot modify
the defense model, our objective is to modify the original trigger, thereby facilitating backdoor
re-activation in defense models during inference stage. To verify this feasibility, we formulate
the backdoor re-activation task as constrained optimization problem with the goal of searching for
a minimal universal adversarial perturbation on the original trigger. Consequently, this general
technique can be seamlessly combined with any prevailing backdoor attacks to re-activate backdoor
effect in defense models in their inference time. To demonstrate the real-world threat posed by
backdoor re-activation attack, we also expand our method to black-box and transfer attack scenarios,
where adversaries are limited to querying the model without access to its internal mechanisms.
Nowadays, multimodal contrastive learning (MMCL) has impressed us with its performance across
a range of tasks and backdoor threats in MMCL have also been broadly studied. In this work,
we consider both image classification and multimodal tasks, demonstrating the universality and
adaptability of our approach. Extensive experimental results on nine different attacks and eight
state-of-the-art defenses across four benchmark datasets and three model architectures demonstrate
the effectiveness of our method. Our work reveals a new vulnerability in existing defense strategies,
emphasizing the need for more robust and advanced defense mechanisms in the future.

Our main contributions are threefold: 1) We re-investigate existing defense methods, and reveal that
the original backdoor still exists in the model even after defense, though it cannot be activated by
the original trigger. 2) We develop a novel optimization problem to re-activate the original backdoor
during inference by perturbing the original trigger, under white-box, black-box, and transfer attack
scenarios. 3) We demonstrate the effectiveness of the proposed method with extensive experiments
on both image classification and the emerging multi-modal contrastive learning tasks.

2 Related work

Backdoor attacks. Backdoor attacks [15, 16, 22, 48, 55, 59, 75] are a significant security threat
in DNNs. As summarized by Wu et al. [60, 62], a successful backdoor attack consists of two
components: backdoor injection during pre-training or training stage, and backdoor activation during
inference stage. Backdoor injection could be divided into data poisoning attack at pre-training stage
and training-controllable attack at training stage. During a data poisoning attack, an adversary releases
a poisoned dataset to plant backdoors. Representative works include BadNets [18], Blended [10], LF
[68], SSBA [31], and Trojan [37]. For training-controllable attack [70], an adversary takes control of
the training process to optimize triggers and inject backdoors. Notable examples are Input-Aware [40]
and WaNet [41]. In inference stage, the adversary uses the poisoned samples to activate backdoors in
the backdoored model, thereby achieving a successful attack.
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While backdoor attacks are prevalent in supervised learning, backdoor threats also exist in domain
of multi-modal contrastive learning (MMCL) [32, 33]. Carlini et al. [6] are the pioneers to unveil
backdoor threats in MMCL, demonstrating that as few as 0.0001% of images can trigger a successful
attack. More recently, sophisticated approaches have been introduced [2]. For instance, TrojanVQA
[52] is designed for the multi-modal visual question answering task, while BadCLIP [35] shows that
their attack can persist in effectiveness against backdoor defenses.

While a variety of attack methods have been proposed, they primarily focus on enhancing attack
success rate during backdoor injection stage and employ the same trigger to activate backdoors in
inference stage. They did not consider that the model might be fine-tuned or defended by users, and
the original triggers fail to activate backdoors in inference stage. Although Qi et al. [42] attempted to
enhance backdoor signal during inference stage, they did not consider defensive techniques in depth,
and their attack lacks universality. In this work, we focus on a general backdoor attack method during
inference time, researching on how to re-activate the dormant backdoors in defense models.

Backdoor defenses. A range of works [21, 24, 29, 39, 69] focusing on backdoor defenses have
been put forward to address the threat of backdoor attacks. Considering defense stages, four main
categories emerge: pre-processing defenses, training-stage defenses, post-training defenses, and
inference stage defenses [61]. Pre-processing defenses [7, 24, 76] aim to filter out poisoned samples
from poisoned dataset. Training-stage strategies [9, 21, 29, 57] consider that the defender has access
to both training samples and the model, and mitigates backdoor effects during training process.
They leverage discrepancies between poisoned and benign samples to filter out suspicious instances.
Post-training defenses [11, 39, 54, 69, 73] focus on removing backdoor effect from backdoored
models through pruning potential backdoor neurons [64], backdoor triggers reversion and unlearning
[53], or enhancing fine-tuning processes for backdoor mitigation [72]. Inference stage defenses aim
at preventing backdoor activation with samples detection or samples recovery techniques [76]. In
the domain of MMCL, there are a range of works [3, 34, 65]. CleanCLIP [3] is the first to defend
the MMCL model using MMCL loss and self-supervised learning within each modality with clean
samples. Additionally, RoCLIP [66] introduces a robust pre-training approach, which focuses on
disrupting the link between poisoned image-caption pairs. In this work, we focus on backdoor
re-activation attack and thus mainly consider our attack against post-training backdoor defenses.

3 Methodology

In this section, we introduce our threat model and methods for image classification task for clarity.
For the formulation and methods for multimodal contrastive learning, please refer to Appendix A.

3.1 Threat model

Notations. For the image classification task, the training dataset isD = {(x(i), y(i))}ni=1 ⊆ X ×Y ,
where X ⊂ Rd and Y = {1, . . . ,K} are input space and label set, respectively. Given an input x,
we define a deep neural network with L layers as:

f(x) = f (L) ◦ f (L−1) ◦ · · · ◦ f (1)(x), (1)

where f (l) is the function in the lth layer of the network, 1 ≤ l ≤ L. The feature map of the lth layer
is denoted as m(l)(x) ∈ Rcl×hl×wl , and fk(x) represents the logit of the kth class.

Before introducing our methods, we first outline the pipeline of backdoor attack and defense. As
summarized in [62] and shown in Tab. 1, the whole pipeline of backdoor attack and defense involves
four stages:

I. Pre-training stage: An adversary conducts data poisoning backdoor attack, which involves
revising a small fraction of D to generate poisoned dataset Dp = {(x(i)

ξ , t)}np

i=1 by injecting a
trigger ξ into the image and changing the corresponding label into target label t.

II. Training stage: An adversary controls the training process to inject backdoors into model fθA .

III. Post-training stage: A defender receives the poisoned model, and can gather some benign
samples to remove the backdoor effect from the model, denoted as fθD .
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Table 1: Illustration of the pipeline of backdoor attack and defense.

Stage Task description Input/Output Goal

Reference Clean model training D/fθC fθC(x) = y, fθC(xξ) ̸= t
I: Pre-training & II: Training Backdoor injection D/fθA ,Dp fθA(x) = y, fθA(xξ) = t
III: Post-training Backdoor defense fθA /fθD fθD(x) = y, fθD(xξ) ̸= t
IV: Inference Backdoor re-activation x, ξ, fθD /fθD(xξ′) fθD(x) = y, fθD(xξ′) = t

IV. Inference stage: With the defense model fθD , the original trigger fails to activate the backdoor,
i.e., fθD(xξ) ̸= t. The goal is to re-activate backdoors, i.e., fθD(xξ′) = t, where ξ′ = ξ +∆ξ.

Existing backdoor attacks primarily focus on achieving high attack success rates (ASR) in backdoor
injection stages (I and II), with little consideration for the defensive impact in stage III. Given the
failures of xξ in attacking fθD , our work focuses on the backdoor re-activation attack in stage IV.

3.2 Backdoor existence coefficient

While the model performance in Tab. 1 suggests that fθD and fθC are analogous, we argue that in
terms of the backdoor effect, fθD and fθA are actually more closely aligned, which indicates the
persistent existence of backdoor in model fθD . To verify this, we need a metric to measure the quantity
of backdoor existence within a model. An effective indicator should be capable of quantifying the
similarity of backdoor effect between backdoored model fθA and the target defense model fθD across
the entire models. To achieve this, we propose a new metric, Backdoor Existence Coefficient (BEC),
which is calculated through the following three steps:

1. Backdoor neuron identification: Firstly, we need to identify backdoor-related neurons. Zheng
et al. [71] proposed Trigger-activated Change (TAC) to quantify the correlation between
backdoor impact and neurons (see Appendix C for details). With this metric, backdoor-related
neurons in fθA are identified for each layer. Thus, the feature maps corresponding to these
neuron indices are selected for each model, denoted as m̃

(l)
A (xξ), m̃

(l)
D (xξ), and m̃

(l)
C (xξ),

respectively. Denote the feature maps across dataset Dp as m̃(l)(Dp) ∈ Rnp×(c̃l×hl×wl).
2. Backdoor effect similarity metric: In order to measure the backdoor effect similarity between

models, we employ Centered Kernel Alignment (CKA) [25] (see Appendix C for details) to
quantify the similarity between these matrices. The similarity in backdoor effects between fθD

and fθA , calculated through the use of corresponding features, can be computed as:

S
(l)
D,A(Dp) = CKA

(
m̃

(l)
D (Dp), m̃

(l)
A (Dp)

)
, (2)

and S
(l)
C,A(Dp) is computed accordingly.

3. Backdoor existence coefficient computation: The BEC is the average of normalized backdoor
effect similarity across all layers. By assigning the BEC of fθA a value of 1 and fθC a value of
0, the computation can proceed as follows:

ρBEC(fθD , fθA , fθC ;Dp) =
1

N

N∑
l=1

S
(l)
D,A(Dp)− S

(l)
C,A(Dp)

S
(l)
A,A(Dp)− S

(l)
C,A(Dp)

∈ [0, 1]. (3)

Remark. S(l)
A,A(Dp) = 1. The second and third arguments in ρBEC serve as two reference models

to measure the backdoor existence of the model corresponding to the first argument fθD . Denote
ρBEC(fθD , fθA , fθC ;Dp) as ρBEC(fθD) for simplicity. The higher the value ρBEC(fθD), the stronger the
existence of backdoors in the model. We utilize BEC to signify backdoor existence and employ ASR
to quantify the extent of backdoor activation. As shown in Fig. 1, the BEC remains consistently high
across various defenses, despite backdoor activation being low.

3.3 Backdoor re-activation attack

Motivated by the fact analyzed above that the original backdoor still exists in the defense model fθD ,
here we explore the possibility to re-activate the backdoor during inference. Since the adversary cannot
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modify fθD during inference, one feasible solution is to modify the original trigger ξ. Specifically, we
propose to pursue a new trigger ξ′ by perturbing ξ, i.e., ξ′ = ξ +∆ξ, such that ξ′ could re-activate
the original backdoor, i.e., fθD(xξ′) = t. In the following, we will present how to obtain a successful
trigger perturbation ∆ξ under white-box, black-box, and transfer attack scenarios, respectively.

White-box backdoor re-activation attack. In white-box scenario, the adversary has access to
the parameters of f but cannot manipulate them. In this case, we could obtain ∆ξ by solving the
constrained optimization problem min∥∆ξ∥p≤ρ Ltot(∆ξ;Dp, f), where

Ltot(∆ξ;Dp, f) =
∑

(xξ,t)∈Dp

LCE(f(xξ+∆ξ
), t)− λ log

(
1−max

k ̸=t

efk(xξ+∆ξ
)∑N

i=1 e
fi(xξ+∆ξ

)

)
, (4)

where ∥ · ∥p means ℓp norm, ρ is the perturbation bound, LCE is cross-entropy loss, and λ > 0 is a
hyper-parameter. This problem can be easily solved using project gradient descent (PGD) [38].

Black-box backdoor re-activation attack. Although the re-activation attack under the white-box
scenario is easy to implement, it may be impractical. Thus, we also consider the practical black-
box scenario, where the adversary lacks information to the defense model and can only query the
model and obtain the predicted score. Consequently, the above problem (4) is no longer directly
optimized by the PGD algorithm. Inspired by existing black-box adversarial attacks [1, 8], we
propose a novel random search based optimization algorithm. Specifically, we extend the query-based
black-box adversarial attack method Square Attack [1] that was designed for optimizing sample-
specific perturbation, to solve problem (4), dubbed Universal Square Attack. Its overall procedure is
summarized in Alg. 1 in Appendix.

Transfer-based backdoor re-activation attack. In addition to the query-based black-box attack,
we also explore transfer-based attack scenario. In this scenario, the adversary trains a backdoored
model fθA and releases it to downstream users. The user receives model fθA , and obtains a defense
model fθD based on fθA by some post-training defense. Thus, the adversary does not know the exact
defense method, but has full information about the original trigger ξ and model fθA which has same
model architecture as fθD . The adversary also has restricted query limits. Consequently, leveraging
transfer attacks becomes a viable strategy for attacking. The main idea is that the adversary can
imitate defense process to get some defense models fθDi

themselves, where i = 1, . . . ,M . Then
these defense models can serve as surrogate models to generate perturbation ∆ξ as follows:

∆∗
ξ = argmin

∥∆ξ∥p≤ρ

M∑
i=1

Ltot(∆ξ;Dp, fθDi
). (5)

Overall, we propose a universal backdoor re-activation attack that aims to enhance the performance
of existing backdoor attack methods during inference. We have explored three scenarios—white-box
attack (WBA), query-based black-box attack (BBA), and transfer attack (TA). Besides, we would like
to emphasize again that the proposed attack can be naturally extended to multi-modal learning tasks,
other than the classification task demonstrated above. The details are presented in Appendix A.

4 Experiments

4.1 Implementation details

Models and datasets. For image classification task, we evaluate all our attacks on three benchmark
datasets CIFAR-10 [26], Tiny ImageNet [28], and GTSRB [49] over two network architectures,
PreAct-ResNet18 [20] and VGG19-BN [47]. We utilize the setup in BackdoorBench [59]. For
MMCL task, we use the open-sourced CLIP model from OpenAI [44] as the pre-trained model.
Following the setting of CleanCLIP [3], the model is poisoned on the CC3M dataset [45] and
subsequently tested through zero-shot evaluation on ImageNet-1K validation set [13].

Backdoor attacks. For image classification task, we adopt seven widely used backdoor attacks
including: (1) five data poisoning attack: BadNets [18], Blended [10], LF [68], SSBA [31], and
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Trojan [37]; and (2) two training-controllable attacks: Input-Aware [40] and WaNet [41]. We follow
the default attack configuration as in BackdoorBench [59] and the 0th label is set to be the target
label. For MMCL task, we adopt four backdoor attacks including: BadNets, Blended, SIG [4], and
TrojanVQA [52]. In data poisoning phase, 1500 samples out of 500K image-text pairs from CC3M
dataset are poisoned and the target label is banana as in [3].

Backdoor defenses. For image classification task, we adopt six state-of-the-art post-training defense
methods: NC [53], NAD [30], i-BAU [67], FT-SAM [72] , SAU [58], and FST [39]. For MMCL task,
we consider two defense methods: (1) FT [3]: fine-tuning the model with multimodal contrastive loss
using clean dataset; and (2) CleanCLIP [3]: a fine-tuning defense method for CLIP models. All the
detailed introduction about the above attack and defense methods can be found in Appendix D.

Implementation details. At backdoor injection phase, the poisoning ratio is set to 10%, following
the configuration in BackdoorBench [59]. At defense phase, 5% clean samples are given to defend
models. At backdoor re-activation phase, we consider defense models as our target model. The
adversary is given 2% (i.e., 1000) poisoned samples to conduct attacks. We consider both ℓ∞ and ℓ2
norm attacks, and the perturbation bounds are set to 0.05 and 2, respectively. The loss hyper-parameter
λ is 1 for all our experiments. For query-based black-box attack, the maximum query limit is 10,000
for each image. For transfer attack, the adversary is given 10% poisoned samples to conduct backdoor
re-activation attack. The ℓ2 norm bound is set to 1 for transfer attack. We simply assume three
surrogate models can be used and we just divided these defenses into two groups: (1) NC, NAD,
i-BAU; and (2) FT-SAM, SAU, FST. Specifically, we generate perturbation in each group and test the
ASRs in the other group. All the ASRs are tested on testing dataset. For MMCL tasks, we assume the
adversary lacks knowledge of the downstream task. Therefore, attacks are executed in the upstream
task for both white-box and transfer attacks and subsequently tested in downstream zero-shot task.
More details about the implementations can be found in Appendix D. We have provided the PyTorch2

implementation of our method on Github.

4.2 Main results

Backdoor re-activation attack. Tab. 2 shows the performance of our backdoor re-activation attack
under white-box attack (WBA) and query-based black-box attack (BBA) settings in comparison with
ASRs of original backdoored models (No Defense) and defense models (Defense). By observing
the table, the following profound insights emerge: (1) Compared to defense models, our attacks
show a striking level of efficacy. Both our WBA and BBA have exhibited an impressively absolute
improvement of 76.94% and 42.95% on average, respectively when compared against defense
mechanisms, which shows the effectiveness of our re-activation attack method. (2) The close
performance of our WBA compared to "No Defense" underscores the efficacy of our backdoor
re-activation mechanism, affirming the recoverability of the backdoors in defense models. By setting
WBA as an upper bound for backdoor recovery, the more realistic BBA reveals substantial attack
performance. Despite a gap between the two approaches, we posit that this disparity can be lessened
through a sophisticated black-box attack strategy. (3) In terms of specific defenses, our attack against
SAU and FST exhibits relatively poor ASRs. This suggests that SAU’s backdoor removal efficiency
is significant, which aligns with the subsequent analysis of Fig. 3. In contrast, FST’s BBA seems
comparatively subdued. It may be attributed to the reinitialized FC layers, effectively cutting backdoor
activations. These insights serve as valuable pointers for crafting defense strategies in the future.

Backdoor re-activation attack via transfer attack. In this experiment, we group these defenses
into two distinct groups: (1) weak group (NC, NAD, i-BAU) and (2) strong group (FT-SAM, SAU,
FST) to better to observe the impact of defense methods on the performance of transfer-based
re-activation attacks (TA). Two key findings emerged from results in Tab. 3: (1) Transfer attacks
generally exhibit strong performance in comparison with results in Tab. 2. The ensemble attack
strategies applied on the weak group demonstrate better attack effectiveness on strong defense models
than that in BBAs. (2) Utilizing ensemble strategies on strong defense methods results in remarkably
effective ASRs on weak defense models, surpassing even the efficacy of WBA in Tab. 2. This
outcome raises concerns: if adversaries simulate stronger defenses to derive substitute models for
launching transfer attacks, it could lead to serious security threats.

2https://github.com/JulieCarlon/Backdoor-Reactivation-Attack
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Table 2: Performance (%) of backdoor re-activation attack on both white-box (WBA) and black-
box (BBA) scenarios with ℓ∞-norm bound ρ = 0.05 against different defenses with CIFAR-10 on
PreAct-ResNet18. The best results are highlighted in boldface.

Attacks No Defense
NC [53] NAD [30] i-BAU [67] FT-SAM [72] SAU [58] FST [39]

Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA

BadNets [18] 93.79 2.01 96.78 27.91 1.96 94.78 49.66 4.48 97.42 54.37 1.63 94.71 51.23 1.30 93.10 37.91 1.46 97.93 42.69
Blended [10] 99.76 99.76 99.93 99.13 47.64 99.82 14.14 26.83 99.63 85.80 12.17 99.56 87.29 5.20 98.37 73.06 0.20 99.62 82.97

Input-Aware [40] 99.30 0.70 92.04 54.33 0.92 93.80 70.44 0.02 21.78 19.56 1.07 96.19 80.16 1.26 85.39 22.26 0.00 90.72 44.65
LF [68] 99.06 99.06 99.41 80.51 75.47 99.41 17.01 11.99 99.04 75.48 6.43 97.40 89.28 2.49 90.74 23.08 5.43 98.18 1.16

SSBA [31] 97.07 97.07 99.90 94.38 70.77 99.72 88.53 2.89 91.29 70.71 4.06 92.80 69.18 2.16 89.86 38.59 0.54 94.11 52.71
Trojan [37] 99.99 2.76 95.26 45.57 5.77 96.38 60.87 0.54 89.58 40.18 4.12 96.18 69.88 1.39 87.61 47.37 8.93 97.28 80.47
WaNet [41] 98.90 98.90 100.00 99.64 0.73 96.21 77.65 0.88 94.67 75.91 0.96 94.95 78.66 0.82 95.33 60.36 0.26 97.56 82.22

Avg 98.26 57.18 97.62 71.64 29.04 97.16 54.04 6.80 84.77 60.29 4.35 95.97 75.10 2.09 91.48 43.23 2.40 96.49 55.27

Table 3: Attack performance (%) on target models of transfer-based re-activation attack (TA) with
ℓ2-norm bound ρ = 1 against different defenses with CIFAR-10 on PreAct-ResNet18.

Attack No Defense
NC [53] NAD [30] i-BAU [67] FT-SAM [72] SAU [58] FST [39]

Defense TA Defense TA Defense TA Defense TA Defense TA Defense TA

BadNets [18] 93.79 2.01 95.43 1.96 98.42 4.48 97.90 99.17 97.42 1.30 90.17 1.46 96.21
Blended [10] 99.76 99.76 100.00 47.64 99.98 26.83 99.83 98.64 99.63 5.20 93.36 0.20 24.07

Input-Aware [40] 99.30 0.70 99.98 0.92 99.98 0.02 99.77 96.92 21.78 1.26 15.56 0.00 95.28
LF [68] 99.06 99.06 99.93 75.47 99.84 11.99 98.35 93.85 99.04 2.49 96.62 5.43 80.09

SSBA [31] 97.07 97.07 99.27 70.77 99.38 2.89 20.44 98.06 91.29 2.16 95.03 0.54 76.21
Trojan [37] 99.99 2.76 99.76 5.77 99.09 0.54 96.18 96.57 89.58 1.39 83.67 8.93 21.79
WaNet [41] 98.90 98.90 99.72 0.73 99.86 0.88 83.79 98.90 94.67 0.82 89.49 0.26 98.69

Avg 98.26 57.18 99.16 29.04 99.51 6.80 85.18 97.44 84.77 2.09 80.55 2.40 70.33

Effectiveness of attacks on CLIP models. Tab. 4 lists the performance of our backdoor re-
activation attack under white-box attack (WBA) and transfer-based attack (TA) on the CLIP model.
Our attacks yield significant improvements, with ASR enhancements of 34.87% and 43.35% on
average, respectively, compared to defense models. The results for TA and WBA are very close. One
possible reason is that the similarity between the FT and CleanCLIP methods leads to strong transfer
performance. We advocate for the development of stronger defenses on CLIP to combat attacks. Due
to space constraints, attack results and analysis on Tiny ImageNet (Tab. 12) and GTSRB (Tab. 13)
datasets, and results on VGG19-BN models (Tab. 14) are provided in Appendix E.

4.3 Ablation study

Influence of norm bound and norm type. We studied the impact of norm type and norm bound
on the attack performance. The results are shown in (a) and (b) of Fig. 2. It can be observed that it is
difficult to achieve high success rates under smaller norm bounds. However, when the norm bound is
sufficiently large, the attack effectiveness converges and approaching nearly 100% for both ℓ∞-norm
and ℓ2-norm types against all defense models.

Influence of the size of poisoned samples. We investigated the impact of the size of poisoned
samples on attack performance for Blended attack. As shown in (c) and (d) of Fig. 2, increasing the
number of training samples in WBA shows significant improvement in attack results. However, in

Table 4: Performance (%) of our attack on both white-
box (WBA) and transfer-based (TA) attacks with ℓ∞-norm
bound ρ = 0.05 against different defenses with ImageNet-
1K on CLIP. Best results are highlighted in boldface.

Attack No Defense
FT [3] CleanCLIP [3]

Defense WBA TA Defense WBA TA

BadNets [18] 96.65 64.60 82.05 82.73 17.29 57.76 47.30
Blended [10] 97.71 49.77 96.57 98.64 18.57 89.61 72.65

SIG [4] 77.71 30.91 92.56 87.99 21.68 87.04 82.55
TrojanVQA [52] 98.21 82.07 97.14 97.46 49.82 87.43 78.25

Avg 92.57 56.84 92.08 91.71 26.84 80.46 70.19

Table 5: Our attacks (%) on defense
models in comparison with clean ones
with ℓ∞-norm bound ρ = 0.05 under
different model structures and datasets.

Setup
Clean Model Defense Model
WBA BBA WBA BBA

Res18+CIFAR-10 85.00 56.98 93.92 59.93
Res18+Tiny 39.76 14.02 71.04 40.81

Res18+GTSRB 53.33 50.87 67.14 61.81
VGG+CIFAR-10 68.80 43.60 85.15 51.04

Avg 61.72 41.37 79.31 53.40
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Figure 2: (a) and (b) show attack results under different norm types p and bounds ρ for WBA. (c) and
(d) show attack results under different number of poisoned samples for WBA and BBA.
Table 6: Detection performance (TPR %) on dif-
ferent ⟨model, poisoned samples⟩ pairs.
Attack ↓ Detection ↓ fA,Dp fD,FT-SAM,Dp fD,FT-SAM,Dp,∆ξ fD,SAU,Dp fD,SAU,Dp,∆ξ

BadNets
SCALE-UP 39.6 79.6 68.6 79.5 49.5

SentiNet 37.7 3.6 2.2 0.2 0.9
STRIP 88.3 0.7 5.5 10.3 6.5

Trojan
SCALE-UP 92.6 84.9 73.1 81.6 55.4

SentiNet 2.9 1.1 1.05 2.1 1.5
STRIP 99.9 1.9 29.8 4.2 1.2

Table 7: Performance (%) against test-time de-
fenses.

Defense→ SCALE-UP SCALE-UP STRIP STRIP ZIP ZIP
Attack ↓ ASR ACC ASR ACC ASR ACC

BadNets 29.8 53.7 83.4 9.3 23.6 80.7
Blended 34.1 46.2 49.2 9.2 48.1 81.5

the BBA setting, the ASRs remains relatively stable and does not exhibit significant enhancements
with the increase of training samples. This suggests that the difficulty in BBA lies in finding a good
universal perturbation, especially when dealing with a large number of training samples. However, the
successful attacks with minimal samples also highlight the significant potency of the attack method.

Attacks performance against clean models. To demonstrate the specific vulnerability of defense
models, we contrast the performance of our attacks on the defense models in comparison with clean
models. Tab. 5 provides a summary of our method’s performance across all backdoor attacks and
defense methods, in comparison of the ASRs on clean models. It can be observed that, although some
effectiveness is achieved on the clean models, the vulnerability of defense models is significantly
higher than that of the clean model, with this gap being more pronounced in particular defenses. This
indicates that defense models are indeed more fragile in comparison with clean models.

4.4 Further analysis

Backdoor existence analysis. We provide more experimental demonstration on the existence of
backdoors in defense models. We employ our BEC metric to quantify the existence of backdoors
in all defense models and visualize the relationship between BEC and backdoor activation rates, as
depicted in (a) of Fig. 3. We observe that backdoors persist across defense models, albeit with low
backdoor activation rates. The BECs in SAU, SAM, and i-BAU are relatively low, while FST exhibits
a notably high BEC. This contrast may stem from the former’s optimization objectives resembling
adversarial training, whereas the latter primarily disrupts activations through layers re-initialization.

Relationship between BECs and ASRs. We validate the relationship between the ASR of re-
activation attack (WBA) and the residual of backdoors. We computed the Pearson Correlation
Coefficients (PPC) between BECs of different defense models and their white-box ASRs among all
attacks, as shown in (b) of Fig. 3. It is evident that in most cases, there is a strong correlation between
the two. In other words, the more backdoors remain in models, the easier it is for attacks to succeed.
Therefore, our metrics can serve as an indicator of backdoored model security.

Feature map visualization. Here we visualize the feature maps between different models to directly
observe their similarities. Fig. 3 (c) displays the visualizations of activations from the final four
convolutional layers of three models, sorted in descending order according to backdoored model’s
TAC value, with each subplot arranged from top to bottom. It can be observed that the defense model
and backdoored model exhibit similar patterns: highlighting activations in backdoor-related neurons.
This directly indicates the persistence of backdoors within defense models.
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Figure 3: (a).Visualization of the correlation between backdoor activation rate and BEC. (b). Pearson
correlation coefficients of ASR and BEC under different attacks. (c). Visualization of feature maps.

Attack against test-time detection and defenses. Given that our attack is conducted during the
test phase, it is essential to assess whether it can evade backdoor detection and defenses at test phase.
To this end, we test three test-time backdoor detection methods: SCALE-UP [19], SentiNet [12], and
STRIP [17], as well as three test-time defenses: STRIP [17], ZIP [46], and SCALE-UP [19].

The detection task requires two input arguments, including the model and the query datasets. We
evaluate five pairs, including ⟨the original backdoored model fA, the original poisoned dataset Dp⟩,
⟨the defense model with FT-SAM fD,FT-SAM,Dp⟩, ⟨fD,FT-SAM, the re-activation dataset Dp,∆ξ⟩,
⟨the defense model with SAU fD,SAU,Dp⟩, ⟨fD,SAU, the re-activation dataset Dp,∆ξ⟩. The result in
Tab. 6 shows that our attacks do not markedly increase the TPR compared to the other two pairs.
More detection performance on our BBA and TA are shown in Tab. 18 in Appendix.

Tab. 7 shows the defense results. It shows that our attack maintains a certain level of ASR against ZIP.
However, for SCALE-UP and STRIP, there is a significant drop in ASR. Meanwhile, the model’s
ACC is also notably low. This experiment highlights the potential for future attack method designs
aimed at evading test-time defenses. Possible strategies could include techniques to better align with
feature distributions of clean data and to avoid triggering excessively strong activations.

Table 8: Results (%) against adaptive defense.
Defense→ FST [39] FT-SAM [72] i-BAU [67] SAU [58]

Noise ↓ ACC ASR ACC ASR ACC ASR ACC ASR

0.00 92.61 82.97 92.88 87.29 89.43 85.80 91.75 73.06
0.01 91.64 82.24 92.13 90.89 88.85 77.88 91.31 71.99
0.02 88.35 70.89 89.53 88.04 86.15 79.02 88.38 84.11
0.03 82.59 73.03 84.84 86.36 81.32 75.83 83.33 67.42
0.04 75.87 56.76 78.04 81.60 75.51 72.72 76.19 54.40
0.05 67.15 58.17 70.12 74.57 68.09 72.28 67.95 56.74

Attack against adaptive defense. Consider-
ing defenders are aware of adversary’ strate-
gies, they can introduce random perturbations
for queries so as to disrupt the adversary’s ability.
We assess both adversary’s ASR and the model
accuracy on clean samples under varying per-
turbation bound. As depicted in Tab. 8, minor
noise has slight impact on ASR. However, with
larger noise amplitudes, despite failed attacks,
the model’s accuracy is significantly affected.

4.5 Comparison among OBA, RBA, and gUAA

To verify that our re-activation attack method finds a highly correlated backdoor with the original
backdoor, and to distinguish it from general universal adversarial perturbation attack (gUAA), we
systematically compare the original backdoor attack (OBA), our re-activation attack (RBA), and
gUAA from three key perspectives.

Table 9: CKA scores between OBA, RBA, and gUAA.
Defense⇒ i-BAU FT-SAM
Attack ↓ SRBA,OBA SgUAA,OBA SRBA,gUAA SRBA,OBA SgUAA,OBA SRBA,gUAA

BadNets 0.607 0.192 0.170 0.599 0.194 0.169
Blended 0.712 0.196 0.192 0.712 0.197 0.193

To facilitate the understanding of our
analysis, we firstly clarify the definitions
and settings. OBA refers to an existing
backdoor attack following the standard
backdoor injection and activation pro-
cess; RBA means that, given the defense model, we aim to re-activate the injected backdoor of
OBA by searching for a new trigger ξ′, starting from original trigger ξ, based on some original
poisoned samples Dp; gUAA refers to a targeted universal adversarial perturbation attack (same class
as OBA and RBA) where, given fθD , we aim to find a perturbation starting from clean samples Dc.
The searched UAP is denoted as ∆, and the perturbed dataset as Dc,∆. Our analyses are as follows:
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Table 10: ASR (%) of RBA and gUAA with differ-
ent query numbers.

Attack+Defense Query number⇒ 1000 3000 5000 7000

Blended+i-BAU
RBA 77.3 89.3 92.1 94.6

gUAA 14.2 41.4 49.5 56.4

Blended+FT-SAM
RBA 41.1 77.4 79.8 85.6

gUAA 16.3 42.2 56.5 65.5

Table 11: ASR (%) of OBA, RBA, and gUAA
under different l∞-norm of random noise.

Norm⇒ 0 0.03 0.06 0.09

OBA Blended+NAD 99.8 99.8 99.6 97.3
LF+NAD 99.1 98.9 98.4 98.6

RBA Blended+NAD 99.8 99.7 98.7 84.0
LF+NAD 99.4 99.1 98.1 96.6

gUAA Blended+NAD 95.5 92.7 79.4 35.4
LF+NAD 96.5 89.5 55.8 16.7

• Activation mechanism of backdoor effect: We analyze the backdoor activation
mechanism in each attack. As demonstrated in Sec. 3.2, we adopt the CKA met-
ric to measure backdoor effect similarity between models. Here we calculate the
following three CKA scores: SRBA,OBA = 1

N

∑N
l=1 CKA(m̃

(l)
D (Dp,∆ξ

), m̃
(l)
A (Dp)),

SgUAA,OBA = 1
N

∑N
l=1 CKA(m̃

(l)
D (Dc,∆), m̃

(l)
A (Dp)), SRBA,gUAA =

1
N

∑N
l=1 CKA(m̃

(l)
D (Dp,∆ξ

), m̃
(l)
D (Dc,∆)). As shown in Tab. 9, SRBA,OBA ≫ SgUAA,OBA ≈

SRBA,gUAA across all attack-defense pairs. This demonstrates that the backdoor activation
mechanisms between RBA and OBA are highly similar, and both differ significantly
from that of gUAA.

• Starting from the original trigger ξ, it is easier and faster to find a new trigger ξ′ that
achieves a high attack success rate (ASR): As shown in Tab. 10, given the same query
numbers, the ASR of RBA is much higher than that of gUAA, and RBA increases in speed
faster than gUAA. This indicates that RBA is much closer to OBA than gUAA.

• Compared to ∆, both the original trigger ξ and the new trigger ξ′ are more robust to
random noise: We discovered that the robustness to random noise can distinguish the trigger
of an intended backdoor from the trigger of a natural backdoor (i.e., gUAP). Specifically, we
perturb ξ, ξ′, and ∆ with the same level of random noise and record the ASR of these attacks.
As shown in Tab. 10, both OBA and RBA are more robust than gUAA. This confirms that
RBA produces an intended backdoor trigger similar to OBA, rather than a gUAP.

In conclusion, our analyses verify that our RBA method finds a backdoor highly correlated with
the original backdoor, rather than a less correlated one (new backdoor) or a general UAP (natural
backdoor). Thus, we assert that our RBA effectively re-activates the original backdoor.

5 Conclusion

This paper illuminates the false sense of security in backdoor defenses and proposes a new threat to
enhance existing backdoor attacks in inference-time. Our pioneering introduction of the backdoor
existence coefficient unveils the residual presence of backdoors within defense models. Moreover,
we propose a novel optimization problem to re-activate these dormant backdoors and craft distinct
algorithms tailored specifically to white-box, black-box, and transfer attack scenarios. The proposed
method can be integrated with existing backdoor attacks to boost their attack success rate during
the inference stage. The efficacy of our method is evidenced through exhaustive evaluation on both
image classification and multi-modal contrastive learning tasks. The threat revealed by this study
underscores the pressing need for designing advanced defense mechanisms in the future.

Limitations and future work. Despite the efficacy of our proposed method, its effectiveness is
limited when confronted with defenders that inject noise into each query. Promising future work
is to devise more sophisticated attacks that can bypass this defenses. Another limitation is that if
defenders aim to decrease both ASR and BEC, our attacks will become challenging, even though
directly optimizing the BEC is not feasible. This serves as another direction for our future work.

Broader Impacts. As deep neural networks sourced from untrusted origins face significant risks
from backdoor attacks, this study provides a meaningful exploration into the false security in backdoor
defense models. This could spark further advancements in backdoor defenses. Nonetheless, the
potential misuse by ill-intended entities should be cautiously considered.
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Appendix

Structure of Appendix. We provide more analysis and experimental results in Appendix, which
includes: (1) Formulation of multi-modal contrastive learning, backdoor attacks and our re-activation
attack for MMCL in Appendix A. (2) More description and algorithms details in Appendix B. (3)
Introduction of TAC and CKA in Appendix C. (4) Experimental implementation details in Appendix
D. (5) More experimental results in Appendix E. (6) Running time analysis in Appendix F. (7)
Visualization in Appendix G. (8) Additional experimental results in Appendix H.

A Backdoor multi-modal contrastive learning

A.1 Formulation of multi-modal contrastive learning task.

For multi-modal contrastive learning task, the training dataset is image-text pairs D =
{(v(i), t(i))}ni=1 ⊆ V × T , where V ⊂ Rdv and T ⊂ Rdt are image space and text space, re-
spectively. For the network, we choose CLIP as our primary MMCL model for the attack. CLIP
is composed of a visual encoder fθv : V → Rd and a textual encoder fθt : T → Rd, each with
parameters θv and θt representing their respective encoders. Denote the image embedding and text
embedding as v

(i)
e = fθv (v

(i)), t
(i)
e = fθt(t

(i)), respectively, for convenience. Given a batch of
training pairs {(v(i), t(i))}n1

i=1, CLIP is optimized using the InfoNCE loss [63] as follows:

min
{θv,θt}

−
n1∑
i=1

log
exp

(
v
(i)
e · t(i)e /τ

)
∑n1

j=1 exp
(
v
(i)
e · t(j)e /τ

) , (6)

where τ is the temperature parameter. Given an input image v(i), denote the output text of the model
be hΘ(v

(i)) for convenience, where Θ = {θv,θt}.

A.2 Backdoor attacks for multi-modal contrastive learning.

For MMCL task, backdoor attacks could also be divided into data poisoning attack and training
controllable attack. For data poisoning attack, an adversary creates poisoning pairs (v(i) + ξ, T ) by
patching a backdoor trigger ξ on the image v(i) and revising the corresponding label into the target
label T (for example, "a photo of banana" in [3] and in our work). In training controllable backdoor
attack, the adversary can control the training process to inject backdoors into the model. The goal of
the adversary is to train a poisoned model such that hΘA(v

(i)) = t(i) and hΘA(v
(i) + ξ) = T . And

the goal of the defender is to purify the poisoned model such that the new model performs normally
as: hΘD(v

(i)) = t(i) and hΘD(v
(i) + ξ) ̸= T in inference time. Denote the encoder of poisoned

image and the target label as (v(i)
ξ )e and Te, respectively for convenience. Our goal is to search for a

perturbation ∆∗
ξ onto the original trigger ξ such that hΘD(v

(i) + ξ +∆∗
ξ) = T

Existing backdoor attacks primarily focus on achieving high attack success rates (ASR) in backdoor
injection stages (I and II), with little consideration for the defensive impact in stage III. Given the
failures of v(i) + ξ in attacking hΘD , our work focuses on the re-activation attack in stage IV (please
refer to Sec. 3.2 for formal definition of different stages of backdoors).

A.3 Re-activation attacks for multi-modal contrastive learning.

In this section we introduce our optimization formulation to learn the new trigger ξ′ = ξ+∆ξ. Since
CLIP uses multi-modal contrastive learning instead of supervised learning to train the model, we also
optimize the perturbation ∆ξ by optimizing it with multi-modal contrastive learning loss. Given a
number of np pairs (v(i)

ξ , T ) from the poisoned dataset Dp and nc pairs (v(j), t(j)) ∈ Dc from the
clean dataset Dc, the optimization problem is formulated as follows:

∆∗
ξ = argmin

∥∆ξ∥p≤ρ

−
∑

(v
(i)
ξ ,T )∈Dp

log
exp

(
(v

(i)
ξ )e · Te/τ

)
exp

(
(v

(i)
ξ )e · Te/τ

)
+
∑

(v(j),t)∈Dc
exp

(
(v

(i)
ξ )e · t(j)e /τ

) , (7)
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Algorithm 1 Black-box Backdoor Re-Activation Attack via Universal Square Attack (BBA) [1]
1: Input: Defense model f , training dataset Dp, image shape c, h, w, norm p, perturbation bound

ρ, target label t ∈ 1, . . . ,K, number of iterations N , termination condition ϵ.
2: Output: Perturbation ∆∗

ξ as in Eq. 4.
3: x̂← x+ init(∆ξ) for x ∈ Dp, l∗ ← Ltot(Dp,∆ξ).
4: for i = 0, ..., N − 1 do
5: if ASR > 1− ϵ then return ∆ξ.
6: else
7: h(i) ← side length of the square to modify (according to some schedule [1]);
8: ∆new

ξ ∼ P
(
ρ, h(i), w, c,∆ξ, x̂,x

)
for x ∈ Dp (see Appendix B for details);

9: x̂new ← Project x̂+∆new
ξ onto

{
z ∈ Rd : ∥z − x∥p ≤ ρ

}
∩ [0, 1]d for x ∈ Dp;

10: lnew ← Ltot(x̂new , t) for x ∈ Dp;
11: if lnew < l∗ then ∆ξ ← ∆new

ξ , l∗ ← lnew , compute ASR;
12: i← i+ 1;
13: end if
14: end for
15: return ∆∗

ξ.

where ∥·∥p means ℓp norm, and ρ is the perturbation bound. This problem can be solved using project
gradient descent (PGD) [38] algorithm. Then the optimized ∆∗

ξ is attached to poisoned samples and
the ASR is the probability of successful attacks out of the total number of new poisoned samples.

B Algorithms details

In this work, we provide some description and details of our attack algorithms.

White-box attack setting. As shown in Eq. 4, this is a constrained optimization problem, which
can be solved by using the classical project gradient descent (PGD) [38] algorithm to solve it. The
main idea of PGD involves updating the perturbation using stochastic gradient descent in the initial
step. Subsequently, in the following stage, the perturbation is constrained within the ρ-ball employing
ℓp norm projection. We provide the algorithm description in Alg. 2. For additional insights, please
refer to [38] for more details.

Black-box attack setting. In this work, to solve our optimization problem in black-box setting,
we utilize a randomized search strategy as emphasized in Square Attack [1]. Square Attack utilizes
a randomized search scheme where it selects localized square-shaped updates at random positions.
This approach ensures that in each iteration, the perturbation is positioned near the boundary of the
feasible set. A significant difference between our attack and Square Attack lies in their objective:
Square Attack searches for a perturbation for each image, terminating the query upon successful
attack, while our objective is to discover a highly generalizable universal perturbation to restore the
effectiveness of the backdoor utility. Therefore, we extend it to a universal Square Attack approach:

1. Firstly, initialize a universal perturbation.

2. In each iteration, we randomly update our perturbation following the strategy in Square
Attack. Apply the perturbation onto the image and then query the model with the new
images.

3. Compare the loss: if the current loss is lower than the best loss, update the perturbation;
otherwise, do not update and restart the search.

The above three steps represent the main concept of our algorithm. Details on the specific square
update technique can be found in work [1].

Transfer attack setting. The main idea of the transfer attack is to compute the averaged loss across
models for each mini-batch. The detailed algorithm is shown in Alg. 3.
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Algorithm 2 White-box Backdoor Re-Activation Attack (WBA)
1: Input: Defense model f , training dataset Dp, norm p, perturbation bound ρ, target label

t ∈ 1, . . . ,K, number of iterations N .
2: Output: Perturbation ∆∗

ξ as in Eq. 4.
3: initialize(∆ξ).
4: for i = 0, ..., N − 1 do
5: for mini-batch B = {(xi

ξ, t)}bi=1 ⊂ Dp do
6: Given f and input {(xi

ξ +∆ξ, t)}bi=1, compute the loss l of Eq. 4;
7: Update ∆ξ by minimizing l via PGD algorithm;
8: end for
9: end for

10: return ∆∗
ξ.

Algorithm 3 Re-Activation Attack via Transfer Attack (TA)
1: Input: Surrogate models fm,m = 1, · · · ,M , training dataset Dp, norm p, perturbation bound

ρ, target label t ∈ 1, . . . ,K, number of iterations N .
2: Output: Perturbation ∆∗

ξ as in Eq. 5.
3: initialize(∆ξ).
4: for i = 0, ..., N − 1 do
5: for mini-batch B = {(xi

ξ, t)}bi=1 ⊂ Dp do
6: l = 0;
7: for m = 0, ...,M − 1 do
8: Given fm and input {(xi

ξ +∆ξ, t)}bi=1, compute the total loss lm of Eq. 5;
9: l← l + lm;

10: end for
11: Update ∆ξ by minimizing l via PGD algorithm;
12: end for
13: end for
14: return ∆∗

ξ.

C Introduction of TAC and CKA

We provide the detailed introduction of Trigger-activated Change (TAC) [71] and Centered Kernel
Alignment (CKA) [25] in this section.

Trigger-activated Change. To measure the correlation of neurons with backdoors, Zheng et al.
[71] proposed the TAC metric to quantify the correlation between the impact of backdoors and
neurons. Given the poisoned dataset Dp = {(x(i)

ξ , y(i))}, let the original clean dataset of Dp to be

Dc, i.e., Dc = {(x(i), y(i))|x(i)
ξ ∈ Dp}. Then the TAC can be computed as follows:

TAC
(l)
k (Dp,Dc) =

1

|Dp|
∑

(xξ,x)∈(Dp,Dc)

∥∥∥f (l)
k (x)− f

(l)
k (xξ)

∥∥∥
2
, (8)

where k is the index of channel of the lth layer. A higher TAC value assigned to a neuron indicates a
stronger association with backdoors. In this work, with this metric, we first assign each neuron with a
TAC value. In order to select neurons relevant to backdoors and considering their sparsity nature,
the top 10% of neurons based on their descending TAC values are chosen as the backdoor related
neurons. Then the Backdoor Existence Coefficient can be computed accordingly.

Centered Kernel Alignment. The Centered Kernel Alignment (CKA) [25] measures the similarity
between representations, which utilizes HSIC to measure the independence between two distributions.
It quantifies how well neural networks preserve similarity relations in the data across different layers.
It is a valuable tool in feature analysis and understanding DNNs especially for high-dimensional
features. In this work we employ CKA to quantify the similarity between features in different
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networks. As the work [25] shows, the Centered Kernel Alignment (CKA) is defined as follows: Let
X ∈ Rn×d and Y ∈ Rn×d be two representations from neural networks, where n represent number
of samples and d is the feature dimension. The empirical estimator of Hilbert-Schmidt Independence
Criterion (HSIC) is defined as:

HSIC(K,L) =
1

(n− 1)2
tr(KHLH), (9)

where H is the centering matrix Hn = In − 1
n11

T. The K and H are linear kernels: Kij =

k(xi,yj) = xT
i yi, Lij = l(xi,yj) = xT

i yi as defined in [25]. Then the Centered Kernel Alignment
is defined as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
. (10)

More details could be found in [25].

D Experimental implementation details

In this section, we delve into the implementation details, covering the evaluation datasets, specifics of
the attacks and defenses compared, and implementation of our proposed methods. All experiments
are executed five times with varying random seeds and the averaged results are displayed in this work.

D.1 Datasets

For image classification task, we use three benchmark datasets: CIFAR-10 [26], Tiny ImageNet [28],
and GTSRB [49] to assess the performance of our approach, following the benchmarks outlined in
[59]. For MMCL task, a subset of CC3M dataset [45] is selected for backdoor injection and the
poisoned models are tested through zero-shot evaluation on ImageNet-1K validation set [13]. All
dataset splits are aligned in our experiments.

• CIFAR-10: Total number of 60,000 images distributed among ten classes, with 5,000 images
per class in the training set and 1,000 images per class in the testing set. Each image in
CIFAR-10 is sized 32× 32 pixels.

• Tiny ImageNet: A subset of ImageNet [13] containing 200 classes, 500 training samples
and 50 testing samples per class. Each image in Tiny ImageNet is sized 64× 64 pixels.

• GTSRB: A total of 39,209 training images and 12,630 testing images among 43 classes.
Each image in GTSRB is sized 32× 32 pixels.

• CC3M: The CC3M dataset has about 3300K, 15K, 12K image-text pairs for the training,
validation, and testing dataset, respectively. Each image in CC3M is sized 224× 224 pixels.
Following [3], 500K image-text pairs from the CC3M are selected in backdoor injection
phase.

• ImageNet-1K: the ImageNet-1K dataset is a subset of ImageNet dataset, which has a total
of 1000 classes. Each image in ImageNet-1K is sized 224× 224 pixels.

D.2 Backdoor attack details.

We introduce the different backdoor attack methods first, followed by the experimental settings.

Fig. 4 and 5 show the visualization of poisoned samples in comparison with clean image for different
backdoor attacks on CIFAR-10 and ImageNet-1K dataset, respectively. The attack details for image
classification task are as follows:

• BadNets [18]: BadNets is trigger-additive attack which inserts a patch of fixed pattern (a
3× 3 white square patch in our work) to replace some pixels in the image. The patch size is
3× 3 on CIFAR-10 and GTSRB, and 6× 6 on Tiny ImageNet, following BackdoorBench.

• Blended backdoor attack (Blended) [10]: Blended attack blends a pre-defined image (Hello
Kitty in our work) with the original image. The blend coefficient α is 0.2, following
BackdoorBench.
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Clean Badnet Blended InputAware

LF SSBA Trojan WaNet

Figure 4: Visualization of poisoned samples for different backdoor attacks on CIFAR-10 dataset.

Clean Badnet Blended SIG TrojanVQA

Figure 5: Visualization of poisoned samples for different backdoor attacks on ImageNet-1K dataset.

• Input-aware dynamic backdoor attack (Input-Aware) [40]: Input-Aware is a training-
controllable attack that first learns a trigger generator by adversarial training. Then the
generator is used to produce sample-specific triggers during model training.

• Low frequency attack (LF) [68]: LF first learns a universal adversarial perturbation (UAP)
and filters the high-frequency artifacts. Then the filtered UAP is the trigger and patched onto
the clean samples to generate poisoned samples.

• Sample-specific backdoor attack (SSBA) [31]: SSBA first trains an autoencoder. Then the
autoencoder is used to fuse triggers with clean samples to generate poisoned samples.

• Trojan backdoor attack (Trojan) [37]: Trojan first learns a universal adversarial perturbation
(UAP), and then patches it onto the clean samples to generate poisoned samples.

• Warping-based poisoned networks (WaNet) [41]: WaNet first defines a warping function to
perturb the clean samples to generate poisoned samples. Then the adversary controls the
training process to make sure the model learns the specific warping.

More details can be found in BackdoorBench [59].

For MMCL task, we follow CleanCLIP’s settings[3]. The attack details for MMCL task are as
follows:

• BadNets [18]: BadNets is trigger-additive attack which inserts a patch of fixed pattern (a
16× 16 random noise patch in our work) to replace some pixels in the image.

• Blended backdoor attack (Blended) [10]: Blended attack blends a pre-defined image (a
global random noise patch in our work) with the original image. The blend coefficient α is
0.2.

• SIG [4]: SIG attack designs a sine wave pattern noise as a trigger, which has a same size
with the image. The blend coefficient α is 0.2.
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• TrojanVQA [52]: TrojanVQA is a training-controllable attack in which the adversary utilizes
both modalities to generate triggers, which has a size of 16× 16.

To poison image classification task, we use a poisoned dataset with 10% poisoning ratio to train the
poisoned model. To poison the MMCL model, we start with the pre-trained CLIP model which is
trained on 400M image-text pairs. After that, a total of 500K image-text pairs within which 1500
samples are poisoned pairs is used for backdoor injection. The model is trained for 10 epochs with a
learning rate of 1e-6, and a batch size of 128.

D.3 Backdoor defense details.

We introduce the different backdoor defense methods in this section.

• Neural cleanse (NC) [53]: NC first searches for a minimal UAP to detect backdoors. If the
model is detected as a backdoor model, it purifies the model by unlearning the optimized
UAP.

• Neural attention distillation (NAD) [30]: NAD use knowledge distillation strategy which
distills the attention across the model to acquire a new clean model.

• Implicit backdoor Adversarial unlearning (i-BAU) [67]: I-BAU designs a implicit hyper-
gradient method to solve the adversarial training optimization.

• FT-SAM [72]: It utilizes sharpness-aware minimization to fine-tune the poisoned model.
• Shared adversarial unlearning (SAU) [58]: SAU first generates shared adversarial examples

and then unlearns these adversarial examples to purify the model.
• Feature shift tuning (FST) [39]: FST encourages feature shifts by re-iniltialization the linear

classifier and fine-tuning the model.
• CleanCLIP [3]: CleanCLIP use both multi-modal contrastive loss and in-modal self-

supervised loss to fine-tune the model.
• FT [3]: FT uses multi-modal contrastive loss to fine-tune the model.

More details about the implementation of defenses can be found in BackdoorBench [59]. For
CleanCLIP, we follow the work’s setting [3] that the CLIP model is trained for 10 epochs with 50
steps of warm-up using a learning rate of 4.5e-6, and a batch size of 64. A total of 10K training pairs
are selected from CC3M to train.

D.4 Backdoor re-activation attack details.

During the inference phase, we implement our re-activation attack by searching for a global universal
perturbation (same size as images) without altering model parameters. For image classification tasks,
we employ the same optimized hyperparameters to learn the perturbation across various models and
datasets. Specifically, the details are as follows:

• For white-box attack, we use the SGD optimizer with a learning rate of 0.05, update the
adversarial perturbation within the inner loops for 5 steps, and train for a total of 50 epochs.
The hyperparameter λ for the loss is fixed at 1. The training dataset is 1000 poisoned
samples that are randomly selected from the original poisoned samples. The batch size is
set to 256.

• For black-box attack, we follow the original hyperparameters as in [1]. The updated criterion
is based on the decrease in loss rather than the improvement in ASR, as we have found that
this approach yields better results.

• For transfer attack, we maintain same hyperparameters to those used in white-box attacks
except for training epochs, which is set to 100. We also use a smaller norm bound 1. The
training samples are set to 5000. For ensembling these surrogate models, we average their
losses in each mini-batch.

For MMCL task, we use the SGD optimizer with a learning rate of 0.01, update the adversarial
perturbation within the inner loop for one steps, and train for a total of 40 epochs. We use the
ℓ∞-norm with a 0.05 norm bound. We use 1500 poisoned image-text pairs and some clean reference
data for optimization.
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E Experimental results on different datasets and models

In this section, we showcase the performance of our attacks under various settings to demonstrate the
superior performance of our method.

Table 12: Performance (%) of backdoor re-activation attack on both white-box (WBA) and query-
based black-box (BBA) attacks with ℓ∞-norm bound ρ = 0.05 against different defenses with Tiny
ImageNet on PreAct-ResNet18. The best results are highlighted in boldface.

Attacks No Defense
NC [53] NAD [30] i-BAU [67] FT-SAM [72] SAU [58] FST [39]

Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA

BadNets [18] 99.90 99.90 99.93 99.97 0.27 55.58 26.21 3.61 99.40 98.44 0.21 45.96 23.73 0.28 57.88 30.87 0.02 49.96 17.15
Blended [10] 99.67 95.34 99.97 99.69 94.78 99.30 94.58 95.58 99.01 96.32 37.22 99.07 75.26 0.01 76.38 31.18 1.32 91.75 0.48

Input-Aware [40] 99.60 0.30 99.90 9.38 0.15 36.48 25.03 52.13 24.99 10.64 0.49 37.37 0.81 0.08 19.04 7.32 0.02 6.36 2.20
LF [68] 98.51 88.63 98.76 97.29 58.00 97.90 37.05 3.77 97.18 85.02 5.14 97.30 30.59 2.47 78.98 50.42 2.66 78.37 1.39

SSBA [31] 97.69 0.05 98.17 14.75 69.47 97.05 69.07 9.14 96.26 80.52 0.38 34.04 0.05 0.03 4.19 0.30 0.73 66.59 51.11
Trojan [37] 99.97 0.27 99.99 13.75 1.01 61.31 26.77 0.80 99.44 99.67 0.21 50.08 25.09 0.01 18.80 5.56 0.58 68.92 0.31
WaNet [41] 96.50 96.50 66.36 69.59 0.87 79.89 51.89 18.57 63.68 47.65 0.79 73.61 53.77 41.83 80.59 25.35 0.15 77.89 27.74

Avg 98.83 54.43 94.73 57.77 32.08 75.36 47.23 26.23 82.85 74.04 6.35 62.49 29.90 6.39 47.98 21.57 0.78 62.84 14.34

Attack performance on Tiny ImageNet dataset. Tab. 12 presents the performance of our re-
activation attack with both WBA and BBA applied on the Tiny ImageNet dataset with PreAct-
ResNet18, compared with ASRs of original attack models (No Defense) and defense models
(Defense). Careful observation and analysis of this table furnishes some important insights:

1. While not achieving the same high level efficacy as in previous experiments, our attacks
still show reasonable effectiveness against defense models. On average, our WBA and
BBA improve ASRs by 50.00% and 19.77% respectively when compared against defense
mechanisms, which is actually high than that on CIFAR-10 dataset. This highlights some
potential security vulnerabilities in these defense models, although the final ASRs is less
severe than those exposed in the previous dataset.

2. The performance of our WBA establishes the viability of our backdoor recovery mechanism
in a more challenging setting. It further verifies the latent recoverability of backdoors in
defense models. Despite the existing gap between our WBA and the more realistic BBA,
we suggest that this gap can be reduced with further optimization of our black-box attack
strategy.

3. When it comes to defense mechanisms, similar to previous observations, attacks on three
defenses FT-SAM, SAU and FST show less impressive ASRs. This can be seen as an
indication of the significant efficiency of their backdoor removal mechanism. While these
mechanisms are more effective in this dataset, these insights are still crucial for developing
future defense strategy development.

4. It’s worth mentioning some failed cases in our experiment on the Tiny ImageNet dataset.
Although our attack methods generally show promising results, the performance in some
particular instances falls short of expectations. Future work can gain valuable insights
from scrutinizing these instances more closely. Such failures in specific settings serve as a
stepping stone toward the development of more effective and robust attack strategies, such
as increasing the diversity of random searches.

Attack performance on GTSRB dataset. Tab. 13 presents the performance of our re-activation
attack with both WBA and BBA applied on the GTSRB dataset with PreAct-ResNet18, compared
with ASRs of original attack models (No Defense) and defense models (Defense). A meticulous
examination of the results in Tab. 13 provides pivotal insights:

1. Consistent with earlier experiments, our attacks display impressive effectiveness against
these defense models. In these tests, our WBA and BBA average ASRs show an improvement
of 50.58% and 45.25% respectively compared to the defense mechanisms. This achievement
exposes vulnerabilities in the current defense models that were previously unnoticed and
highlights the robustness of our attacks.

2. The effective performance of our WBA affirms the potency of our backdoor recovery
mechanism. The backdoors’ resilience and latent recoverability in defense models are
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Table 13: Performance (%) of backdoor re-activation attack on both white-box (WBA) and query-
based black-box (BBA) attacks with ℓ∞-norm bound ρ = 0.05 against different defenses with
GTSRB on PreAct-ResNet18. The best results are highlighted in boldface.

Attacks No Defense
NC [53] NAD [30] i-BAU [67] FT-SAM [72] SAU [58] FST [39]

Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA

BadNets [18] 95.02 0.02 62.43 58.59 79.94 94.66 92.57 0.00 48.04 40.93 0.17 59.43 55.15 0.01 36.11 30.01 0.02 57.49 48.30
Blended [10] 100.00 8.76 80.18 76.50 99.30 100.00 98.99 96.39 100.00 99.10 9.50 89.56 88.48 29.99 87.75 84.56 77.26 99.94 97.89

Input-Aware [40] 95.85 0.03 53.76 48.01 65.55 96.23 94.51 0.00 50.29 46.42 0.02 64.04 59.21 0.00 29.74 19.78 0.00 37.15 33.06
LF [68] 99.58 0.06 70.06 67.30 79.76 99.28 98.49 7.43 77.56 73.25 2.55 69.34 61.99 0.04 44.43 27.14 0.82 71.95 67.21

SSBA [31] 99.77 2.43 66.97 63.22 96.95 99.69 97.37 0.18 36.30 30.70 0.70 57.14 53.65 1.95 37.13 31.36 32.55 92.99 91.29
Trojan [37] 100.00 0.36 64.14 60.00 0.10 55.46 48.33 0.00 33.51 18.68 0.11 62.82 61.14 0.06 55.44 49.81 1.95 79.16 74.30
WaNet [41] 98.20 0.15 89.03 77.65 0.04 82.73 80.42 0.26 56.68 44.98 0.00 63.94 56.61 0.08 41.61 30.97 0.00 65.74 57.96

Avg 98.35 1.69 69.51 64.47 60.23 89.72 87.24 14.90 57.48 50.58 1.86 66.61 62.32 4.59 47.46 39.09 16.08 72.06 67.14

further substantiated. Additionally, the performance gap between our WBA and the more
realistic BBA suggests room for further enhancement of our black-box attack strategy.

3. Concerning the defense mechanisms, the ASRs against i-BAU and SAU continue to be
relatively less impressive. The indication of these defense mechanisms’ efficiency in
backdoor removal remains constant. Despite the improved effectiveness witnessed in the
GTSRB dataset, these results works as reference for the design of more robust defense
strategies in the future.

Table 14: Performance (%) of backdoor re-activation attack on both white-box (WBA) and query-
based black-box (BBA) attacks with ℓ∞-norm bound ρ = 0.05 against different defenses with
CIFAR-10 on VGG19-BN. The best results are highlighted in boldface.

Attacks No Defense
NC [53] NAD [30] i-BAU [67] FT-SAM [72] SAU [58]

Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA Defense WBA BBA

BadNets [18] 94.43 5.08 95.31 34.57 5.77 94.80 64.86 3.13 92.69 39.68 1.29 68.77 24.84 4.28 85.84 66.59
Blended [10] 99.50 99.50 99.72 98.52 86.98 99.78 78.47 51.67 99.94 88.22 8.23 98.56 75.13 7.81 96.81 62.33

Input-Aware [40] 97.02 97.02 99.34 97.37 14.04 83.38 19.13 78.93 99.38 97.41 3.41 79.14 27.47 1.19 60.07 27.07
LF [68] 13.83 1.26 91.66 15.38 3.07 88.88 43.07 6.66 69.79 7.27 2.17 0.73 0.76 1.56 79.07 25.54

SSBA [31] 95.10 95.10 98.23 87.69 52.22 98.79 26.60 12.37 95.82 72.07 1.84 59.81 25.17 3.03 67.79 33.77
Trojan [37] 100.00 100.00 100.00 100.00 5.18 95.00 58.59 2.69 85.93 38.76 5.13 78.03 2.34 0.19 41.67 21.95
WaNet [41] 96.49 96.49 99.97 69.32 10.23 97.27 68.97 2.40 92.67 62.94 1.10 92.21 68.22 1.72 93.48 56.47

Avg 85.20 70.64 97.75 71.83 25.35 93.99 51.38 22.55 90.89 58.05 3.31 68.18 31.99 2.83 74.96 41.96

Attack performance on VGG19-BN network. Tab. 14 presents the performance of our re-
activation attack with both WBA and BBA applied on the CIFAR-10 dataset with VGG19-BN
architecture, compared with ASRs of original attack models (No Defense) and defense models
(Defense). Detailed analysis of the results provides the following key takeaways:

1. Our attacks display remarkable potency against the VGG19-BN network, with both our
WBA and BBA demonstrating impressive average ASRs. Specifically, our WBA achieves
a significantly high ASR, further emphasizing the backdoor’s recoverability, even in this
more complex network architecture. As for BBA, although its ASR doesn’t reach the same
level as WBA, it presents a commendable rate, denoting a successful real-world adversarial
scenario.

2. The superior performance of our WBA attests to the robust and tenacious nature of our
backdoor recovery mechanism, showcasing our approach’s adaptability and effectiveness
across different network structures. The observable gap in ASR between WBA and BBA
can be an impetus for refining the black-box attack strategy.

Attack performance with different norm types under different backdoor attacks. In (a) and
(b) of Fig. 3 in the main script, we display the ASR results under different norm types and bounds
using Blended attack model. Here, we do more experiments on different attacks and the results are
shown in Fig. 6. As can be seen from the figure, our re-activation attack demonstrates a consistent
trend across various attack models, showing stable high ASRs when the bound approaches 2 and 0.05
for ℓ2-norm and ℓ∞-norm attacks, respectively.
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Figure 6: (a) and (b) show the ASR results under different norm type p and bound ρ for BadNets. (c)
and (d) show the ASR results under different norm type p and bound ρ for LF. (e) and (f) show the
ASR results under different norm type p and bound ρ for SSBA.

F Running time analysis

Table 15: Running time analysis.

Set up (min.) Res18+CIFAR10 Res18+Tiny Res18+GTSRB VGG+CIFAR10 CLIP+CC3M

WBA 2.5 4.4 1.7 2.3 32.5
BBA 20.1 36.8 10.4 30.0 N/A
TA 11.3 23.5 8.4 14.8 32.5

In this section, we conduct an analysis of algorithm complexity based on running time statistics.
Except for the initial training phase for attack and defense, all our re-activation attacks are trained on
a single 3090Ti GPU. We provide a comparative view of the running times. Since the running time of
our attack is only related to trainning dataset and network, while independent with specific backdoor
attack or defense methods, we didn’t specify the particular method, as the running time is consistent
across methods. As displayed in Tab. 15, our attack achieves impressive speed. This can be attributed
primarily to our attack requiring a smaller number of training samples, and our approach’s efficiency
in computing adversarial samples, needing only a few inner-loop iterations to achieve satisfactory
performance. As a result, the training speed is expedited. Unlike in traditional adversarial attacks,
our attack will require no further training once the optimal UAP solution is found. This condition
poses a considerable threat in reality. It is noted that "N/A" appears for BBA on the CLIP models
and CC3M dataset in the table, as we did not conduct black-box attacks for the CLIP models. For
query-based black-box attack, the attacker cannot directly access the target model (such as weights or
gradients) and CLIP models only return the final matching score or ranking results. This limits the
ability of query-based black-box attacks. Moreover, there are no relevant studies for reference. Thus,
we marked related result as "N/A". Additionally, we want to emphasize that BBA requires a large
number of queries to the target model to achieve satisfactory attack performance, whereas TA only
needs a single query to launch an attack. Clearly, TA is both more efficient and practical compared to
BBA.
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G Visualization

In this section, we provide two visualization techniques to showcase the existence of backdoors:
feature map visualization and t-SNE visualization.

Feature maps visualization. We visualize the feature maps, i.e., the features after all convolutional
layers, of LF attack and different defense models. We rank these features in descending order of
the TAC value of the attack model, meaning that, in each image’s subplot from top to bottom, it
illustrates a sort from high to low of backdoor effect. From Figures7 to 12, we can make the following
observations:

• In the attack model, the highlighted part of the feature maps (the upper sections of each
subplot) indicates the existence of a backdoor in the model.

• The highlighted corresponding section in the defense model suggests that the defense model
is still sensitive to backdoor samples. This sensitivity manifests as an ability to primarily
activate neurons related to the backdoor, even when presented with such samples.

• We have also visualized the feature maps of the clean model and have found that no such
phenomenon exists in the clean model. This comparison indicates a stark difference in
behavior between the defense model and the clean model.
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Figure 7: Sorted feature map visualization for all convolutional layers on PreAct-ResNet18 with the
features in descending order of TAC values for LF backdoor attack.

T-SNE visualization. We attempt to observe the backdoor effect in defense models by visualizing
the features of poisoned and clean samples via t-SNE visualization [51]. As illustrated in Figures
13 to 15, black dots denote poisoned samples while different colors signify various classes of clean
samples. Several observations can be drawn from these figures:

• Across these attacks, the backdoor samples are clustered in the feature space.
• In the defense models, numerous backdoor samples still cluster together, indicating that the

backdoor traits of these samples continue to dominate the network’s recognition of backdoor
images, even though these are no longer classified into the target class.
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Figure 8: Sorted feature map visualization for all convolutional layers on PreAct-ResNet18 with the
features in descending order of TAC values for NAD defense against LF backdoor attack.

Thus, viewing from the t-SNE visualization, we may also infer that backdoors still exist within these
defense models.

H Additional experimental results

H.1 Attack performance against recent defenses

To test the attack performance against recent defenses, we evaluate the performance against two
defense methods: SEAM [74] and CT [43], respectively. The evaluations are conducted on CIFAR-10
dataset with PreAct-ResNet18 network, and the results are shown in Table 16. It is found that both
SEAM and CT are vulnerable to the proposed re-activation attack. We would like to emphasize that
we have not claimed all post-training defenses are vulnerable to re-activation attacks. The primary
objectives of our work are: (1) to reveal this new threat, which has been validated against several
classic post-training defenses, and (2) to provide effective tools for evaluating the vulnerability of
both existing and future post-training defenses. Therefore, future post-training defense strategies
should take this threat into account and aim to mitigate the proposed re-activation attack.

Table 16: ASR (%) of our attack against SEAM and CT.

Post-training defense→ SEAM CT
Original attack ↓,Re-activation attack→ No re-activation WBA BBA No re-activation WBA BBA

BadNets 5.33 97.53 33.51 0.00 99.58 92.21
Blended 6.79 98.40 69.79 1.34 100.00 99.00

Input-Aware 1.27 92.10 48.59 70.95 99.96 85.80
LF 13.22 97.61 65.63 3.28 99.63 99.23
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Figure 9: Sorted feature map visualization for all convolutional layers on PreAct-ResNet18 with the
features in descending order of TAC values for NC defense against LF backdoor attack.

H.2 Transfer attack across model architectures

In the previously discussed transfer-based re-activation attack, we considered a scenario where the
attacker is the publisher of the backdoored model. Here, we explore a more strict scenario, where
the attacker is only the publisher of the poisoned dataset and has no knowledge of the defender’s
model architecture or training process. Therefore, when carrying out a transfer-based re-activation
attack, the adversary can perform a transfer attack across different model architectures. We study this
problem as follows.

• Threat model: Here we present a more strict setting where the adversary can only manip-
ulate the training dataset, while having no access to the training and post-training stages.
Thus, the adversary only knows the original trigger ξ, but has no knowledge of fθA or fθD .
Compared to the previous threat model, one major challenge is the unknown architecture
of the target model fD.

• Main attack steps: Compared to the steps in the previous setting, there is one additional
step where the adversary must first train a backdoored model f ′

θA
based on Dp, which has a

different architecture than fθD . All remaining steps are the same as those in the previous
setting.

• Experimental results: As shown in Table 17, although the transfer attack across model
architectures does not achieve as high ASR as the transfer attack with the same architecture
(i.e., the results in Table 3 of the main manuscript), it still demonstrates a certain degree of
backdoor transferability. This is an intriguing phenomenon worthy of further exploration.

H.3 More experimental results on test-time detection

In Table 6 of the main manuscript, we analyzed the performance of our WBA attack against test-time
detection. Here, we present additional experimental results, focusing on more backdoor attack
methods, and evaluating the performance of our WBA, BBA, and TA attacks. As shown in Tab. 18,
our three kinds of attacks do not markedly increase the TPR compared the defense models. These
findings provide insights to develop more stealthy re-activation backdoor attacks in the future.
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Figure 10: Sorted feature map visualization for all convolutional layers on PreAct-ResNet18 with the
features in descending order of TAC values for FST defense against LF backdoor attack.

Table 17: Transfer re-activation attack preformance (ASR %) against the target model PreAct-
ResNet18, using different architectures of source models.

Source Model WideResNet28-2 ResNet18 VGG19-BN
Attack ↓ Defense→ i-BAU FT-SAM SAU i-BAU FT-SAM SAU i-BAU FT-SAM SAU

BadNets 95.6 84.1 60.0 53.4 30.9 26.5 89.2 71.7 48.6
Blended 98.5 98.5 83.2 79.1 75.5 64.1 97.9 92.8 90.1

Table 18: ASR of our three attack methods against three test-time backdoor detection methods.

Attack↓ Detection↓ Backdoored↓ FT-SAM (Defense) WBA (Ours) BBA (Ours) TA (Ours) SAU (Defense) WBA (Ours) BBA (Ours) TA (Ours)

BadNets
SCALE-UP 0.3955 0.7959 0.6858 0.6225 0.8222 0.7949 0.4954 0.4648 0.5924

SentiNet 0.3770 0.0000 0.0000 0.0000 0.0000 0.0018 0.0000 0.0011 0.0000
STRIP 0.8834 0.0073 0.0553 0.0027 0.2576 0.1033 0.0647 0.0144 0.0760

Blended
SCALE-UP 0.6077 0.5420 0.6577 0.5358 0.7635 0.7500 0.7138 0.6398 0.6942

SentiNet 0.0292 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STRIP 0.5946 0.0076 0.5007 0.0007 0.7727 0.0086 0.0742 0.0002 0.1087

Input-aware
SCALE-UP 0.6106 0.9323 0.8058 0.7891 0.8843 0.8632 0.6387 0.6216 0.5810

SentiNet 0.4030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STRIP 0.0085 0.0369 0.2380 0.0199 0.6853 0.0368 0.0536 0.0108 0.0682

LF
SCALE-UP 0.8663 0.8480 0.8355 0.7652 0.8913 0.4286 0.2748 0.5714 0.3308

SentiNet 0.0002 0.0000 0.0000 0.0000 0.0000 0.9829 0.9080 0.9322 0.9700
STRIP 0.8438 0.0141 0.2911 0.0127 0.2872 0.2484 0.2011 0.1743 0.6934

SSBA
SCALE-UP 0.4744 0.8082 0.7217 0.6903 0.8555 0.8505 0.7188 0.7187 0.7646

SentiNet 0.0186 0.0000 0.0000 0.0000 0.0000 0.2827 0.1029 0.2611 0.2022
STRIP 0.7567 0.0060 0.2668 0.0612 0.6591 0.1099 0.0249 0.0810 0.2030

Trojan
SCALE-UP 0.9264 0.8491 0.7311 0.6765 0.8838 0.8160 0.5536 0.4644 0.5326

SentiNet 0.0292 0.0110 0.0105 0.0000 0.0000 0.0211 0.0147 0.0089 0.0044
STRIP 0.9999 0.0194 0.2984 0.0143 0.7993 0.0419 0.0116 0.0150 0.0009

Wanet
SCALE-UP 0.5012 0.9070 0.8207 0.8137 0.8888 0.7568 0.6980 0.6607 0.7655

SentiNet 0.1757 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
STRIP 0.0086 0.0404 0.2231 0.0112 0.6535 0.1651 0.1580 0.0277 0.2799
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Figure 11: Sorted feature map visualization for all convolutional layers on PreAct-ResNet18 with the
features in descending order of TAC values for FT-SAM defense against LF backdoor attack.

Figure 12: Sorted feature map visualization for all convolutional layers on PreAct-ResNet18 with the
features in descending order of TAC values for clean model.
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Figure 13: Comprison of T-SNE visualization between Blended attack model and different defense
models on CIFAR-10.

Figure 14: Comprison of T-SNE visualization between LF attack model and different defense models
on CIFAR-10.

Figure 15: Comprison of T-SNE visualization between Trojan attack model and different defense
models on CIFAR-10.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The main claims presented in the abstract and introduction offer a precise
overview of what was accomplished and investigated in the research, providing an accurate
reflection of the paper’s scope and contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: The paper discusses the limitations of the work. See the "Limitations and
future work" section for details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed information on the experimental setup for the
reproduction of experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided the code via an anonymous website.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: We outline all details related to the training and test processes, including data
splits, hyperparameters, their selection process, and the types of optimizers used, thereby
providing a comprehensive understanding of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have considered the randomness and run the experiments multi times for
main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have clearly reported the resources used for experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed it in "Broader Impacts" section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our work has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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