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Abstract001

Large Language Models excel in generative002
tasks but exhibit inefficiencies in structured003
text selection, particularly in extractive ques-004
tion answering. This challenge is magnified in005
resource-constrained environments, where de-006
ploying multiple specialized models for differ-007
ent tasks is impractical. We propose a Learning-008
to-Defer framework that allocates queries to009
specialized experts, ensuring high-confidence010
predictions while optimizing computational ef-011
ficiency. Our approach integrates a principled012
allocation strategy with theoretical guarantees013
on optimal deferral that balances performance014
and cost. Empirical evaluations on SQuADv1,015
SQuADv2, and TriviaQA demonstrate that our016
method enhances answer reliability while sig-017
nificantly reducing computational overhead,018
making it well-suited for scalable and efficient019
EQA deployment.020

1 Introduction021

Large Language Models (LLMs) have revolution-022

ized Natural Language Processing, achieving state-023

of-the-art performance across a wide range of tasks,024

including machine translation, summarization, and025

question answering (Touvron et al., 2023; Jiang026

et al., 2023; OpenAI et al., 2024). Their strong027

generalization capabilities stem from extensive pre-028

training on diverse corpora, allowing them to gen-029

erate fluent and contextually relevant responses.030

However, while LLMs perform well on open-ended031

and generative tasks, they often struggle in struc-032

tured scenarios that demand precise, extractive rea-033

soning. A notable example is extractive question034

answering (EQA), where models must retrieve ex-035

act spans from a given context rather than generate036

free-form responses (Chen et al., 2017; Alqifari,037

2019; Lan et al., 2020). In this setting, LLMs fre-038

quently exhibit hallucinations—producing plausi-039

ble yet incorrect spans that deviate from the source040

text (Sadat et al., 2023).041

This challenge is further exacerbated in 042

resource-constrained environments, such as mo- 043

bile devices, IoT systems, and on-device assistants 044

(Merenda et al., 2020), where computational effi- 045

ciency is paramount. Deploying large LLMs in 046

such settings is impractical due to their substan- 047

tial memory and energy requirements. A natural 048

solution is to use smaller LLMs, which offer a 049

more efficient alternative. However, while these 050

models perform well in general settings, they often 051

fail on high-precision tasks such as EQA, where ex- 052

act information retrieval is required. This trade-off 053

between efficiency and accuracy creates a funda- 054

mental bottleneck: increasing model size improves 055

task performance but is infeasible for small-device 056

deployment, while reducing model size preserves 057

efficiency but degrades reliability on critical tasks. 058

Addressing this limitation requires a selective ap- 059

proach—one that retains the efficiency of small 060

LLMs while ensuring robust performance on spe- 061

cialized tasks. 062

To this end, we propose a Learning-to-Defer 063

framework (Madras et al., 2018; Mozannar and 064

Sontag, 2021; Verma et al., 2022; Mao et al., 065

2023a), which adaptively delegates queries to spe- 066

cialized offline models, optimizing both accuracy 067

and efficiency. Rather than relying solely on a 068

small LLM—which may produce unreliable an- 069

swers for complex queries—our method dynami- 070

cally defers difficult cases to more capable, task- 071

specific models. This strategy enables efficient, 072

on-device processing for the majority of queries 073

while leveraging specialized models only when nec- 074

essary. We establish theoretical guarantees on 075

the optimality of our learned allocation strategy, 076

ensuring that queries are directed to the agent with 077

the highest confidence. Empirically, we evaluate 078

our approach on multiple EQA benchmarks, includ- 079

ing SQuADv1 (Rajpurkar et al., 2016), SQuADv2 080

(Rajpurkar et al., 2018), and TriviaQA (Joshi et al., 081

2017), demonstrating that our method significantly 082
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improves reliability while maintaining low compu-083

tational overhead.084

2 Related Work085

Model Cascades. Model cascades (Viola and086

Jones, 2001; Jitkrittum et al., 2024; Saberian and087

Vasconcelos, 2014) sequentially pass a given query088

to the next model in the cascade based on a scor-089

ing criterion and a predefined threshold. The de-090

velopment of these criteria depends on the trade-091

off between cost and performance. While exist-092

ing approaches have explored applying cascades to093

LLMs, they are not specifically designed for EQA094

(Kolawole et al., 2024; Yue et al., 2023). Addi-095

tionally, many existing methods employ criteria096

that may not easily support cascades composed097

of specialist EQA models and free-form LLMs,098

which produces different output structures (Varsh-099

ney and Baral, 2022). Moreover, increasing the100

number of LLMs in the cascade inevitably leads101

to higher inference latency, and the optimal model102

is not always selected immediately. A refinement103

of traditional cascades is Agreement-Based Cas-104

cading (Narasimhan et al., 2024), which leverages105

ensembles at each level of the cascade to determine106

whether a query should be forwarded to the next107

stage. This approach improves robustness but still108

inherits the limitations of sequential inference.109

Query Routing. Query routing (Ding et al.,110

2024; Ong et al., 2024; Kag et al., 2023; Ding111

et al., 2022) aims to balance cost and quality by112

leveraging the strengths of a more expensive yet113

stronger LLM alongside a cheaper but weaker one.114

Typically, a lightweight routing model is trained to115

assign queries directly to either the small or large116

model based on predicted task difficulty and the117

desired quality level. These routing strategies are118

particularly useful for optimizing performance in119

edge-based LLM deployments. However, most ex-120

isting approaches are constrained to binary routing121

decisions, where only two models are available for122

handling a task.123

Our Contribution. We introduce a novel setting124

that integrates both the multi-model nature of cas-125

cades and the direct allocation strategy of routers.126

Our goal is to determine an optimal direct alloca-127

tion of EQA queries across multiple models with128

varying point-wise performance and cost trade-offs.129

The distinctions between existing approaches and130

our proposed method are illustrated in Figure 5.131

To the best of our knowledge, our approach is 132

the first to address this specific problem setting. By 133

enabling more fine-grained cost optimization and 134

routing queries to multiple specialized models, po- 135

tentially including non-LLM models, our method 136

enhances adaptability and allows for more effective 137

handling of diverse tasks. 138

3 Preliminaries 139

Extractive QA Setting. We consider an extrac- 140

tive question-answering (EQA) system, which 141

takes as input a question q and a corresponding 142

context c and extracts an answer a directly from c. 143

Formally, the input is denoted as x = (q, c) ∈ X , 144

where each instance x has an associated ground 145

truth label y ∈ Y . The label consists of the start 146

and end token indices, expressed as y = (ys, ye), 147

such that the extracted answer is always a contigu- 148

ous substring of c. Consequently, the label space 149

is defined as Y = Ys × Ye. For brevity, we define 150

a data point as z = (x, y) ∈ Z . When referencing 151

individual label components, we use zs = (x, ys) 152

and ze = (x, ye), corresponding to the start and 153

end token labels, respectively. Following previ- 154

ous studies (Devlin et al., 2018; Liu et al., 2019; 155

Lan et al., 2020), we assume that the start and end 156

token labels are conditionally independent given 157

x ∈ X . Furthermore, we assume that the data 158

points are independently and identically distributed 159

(i.i.d.) under an underlying distribution D over Z 160

(Mohri et al., 2012). 161

To model the answer extraction process, we de- 162

fine a backbone w ∈ W as a feature extractor that 163

maps an input x to a latent representation t = w(x), 164

such that w : X → T . The extracted representa- 165

tion t is then processed by a classifier h ∈ H, 166

which consists of two components, h = (hs, he), 167

each responsible for predicting the start and end 168

positions of the answer span. Specifically, for 169

i ∈ {s, e}, each classifier head hi is a scoring 170

function hi : T × Y i → R, producing predic- 171

tions according to hi(t) = argmaxy∈Yi hi(t, y). 172

The full prediction model, denoted as g ∈ G, is 173

defined as the composition of the feature extrac- 174

tor and classifier, i.e., g(x) = h ◦ w(x), where 175

gs(x) and ge(x) are the start and end predictions, 176

respectively. The function space is then given by 177

G = {g | g(x) = h ◦ w(x), w ∈ W, h ∈ H}. 178

Typically, EQA systems are trained using a true 179

multiclass 0-1 loss, which measures the number 180

of mispredictions made by the model across the 181

2



start and end token positions. Formally, this loss182

function is defined as ℓs,e
01 : G×Z → {0, 1, 2}, and183

takes the form:184

ℓs,e
01(g, z) =

∑
i∈{s,e}

ℓ01(g
i, zi). (1)185

This loss penalizes the model by counting the num-186

ber of incorrect start or end token predictions, pro-187

viding a discontinuous but interpretable measure188

of model performance.189

Consistency in Classification: Let i ∈ {s, e}.190

The primary goal is to learn a classifier gi ∈ Gi191

that minimizes the true error Eℓ01(gi), defined as192

Eℓ01(gi) = Ezi [ℓ01(g
i, zi)]. The Bayes-optimal er-193

ror is given by EBℓ01(G
i) = infgi∈Gi Eℓ01(gi). How-194

ever, directly minimizing Eℓ01(gi) is challenging195

due to the non-differentiability of the true multi-196

class 0-1 loss ℓ01 (Zhang, 2002; Steinwart, 2007;197

Awasthi et al., 2022).198

To address this, the cross-entropy multiclass sur-199

rogate family, denoted by Φν
01 : Gi×X×Y i → R+,200

provides a convex upper bound to ℓ01. This family201

is parameterized by ν ≥ 0 and includes widely202

used surrogate losses such as MAE for ν = 2203

(Ghosh et al., 2017) and log-softmax (Mohri et al.,204

2012) for ν = 1, defined as:205

Φν
01 =


1

1−ν

(
Ψ(gi, zi)1−ν− 1

)
ν ̸= 1,

log
(
Ψ(gi, zi)

)
ν = 1,

(2)206

with Ψ(gi, x, yi) =
∑

y′∈Yi eg
i(x,y′)−gi(x,yi). The207

corresponding surrogate error is EΦν
01
(gi) =208

Ezi [Φ
ν
01(g

i, zi)], with its optimal value given by209

E∗Φν
01
(Gi) = infgi∈Gi EΦν

01
(gi).210

A crucial property of a surrogate loss is Bayes-211

consistency, ensuring that minimizing the surrogate212

error also minimizes the true error (Zhang, 2002;213

Steinwart, 2007; Bartlett et al., 2006; Tewari and214

Bartlett, 2007). Formally, Φν
01 is Bayes-consistent215

with respect to ℓ01 if, for any sequence {gik}k∈N ⊂216

Gi, the following holds for the true and surrogate217

excess risk:218

EΦν
01
(gik)− E∗Φν

01
(Gi) k→∞−−−→ 0

=⇒ Eℓ01(gik)− EBℓ01(G
i)

k→∞−−−→ 0.
(3)219

This assumption holds under Gi = Giall, but not nec-220

essarily for restricted hypothesis classes like Gilin221

or GiReLU (Long and Servedio, 2013; Awasthi et al.,222

2022). To mitigate this limitation, Awasthi et al.223

(2022) proposed Gi-consistency bounds, which de- 224

pend on a non-decreasing function Γ : R+ → R+ 225

and take the form: 226

EΦν
01
(gi)− E∗Φν

01
(Gi) + UΦν

01
(Gi) ≥

Γ
(
Eℓ01(gi)− EBℓ01(G

i) + Uℓ01(Gi)
)
,

(4) 227

where the minimizability gap Uℓ01(Gi) quantifies 228

the difference between the best-in-class general- 229

ization error and the expected pointwise minimum 230

error 231

Uℓ01(Gi) = EBℓ01(G
i)−Ex

[
inf

gi∈Gi
Eyi|x[ℓ01(g

i, zi)]
]
. 232

Notably, this minimizability gap vanishes when 233

Gi = Giall (Steinwart, 2007; Awasthi et al., 2022). 234

In the asymptotic limit, inequality (4) ensures the 235

recovery of Bayes-consistency, aligning with (3). 236

4 Optimal Allocation for EQA systems 237

In this section, we formalize the problem of al- 238

locating queries x ∈ X among multiple agents, 239

including the main model g and J expert mod- 240

els. Crucially, we demonstrate that our formula- 241

tion facilitates the learning of an optimal allocation 242

strategy, thereby ensuring asymptotic optimality in 243

performance. 244

4.1 Formulating the Allocation Problem 245

Setting: We consider a main model g ∈ G and 246

J distinct experts, each available on demand. We 247

collectively refer to the main model g and the J 248

experts as agents. The agent space is defined as 249

A = {0}∪[J ], where the cardinality is |A| = J+1, 250

representing the total number of agents in the sys- 251

tem. We assume that all agents have been pre- 252

trained offline, and our focus is on the allocation 253

of queries among them (Mao et al., 2023a, 2024; 254

Montreuil et al., 2024, 2025). When an expert 255

Mj is queried for an input x, it generates two out- 256

puts: a start span ms
j(x) ∈ Ys and an end span 257

me
j(x) ∈ Ye. These experts may be human anno- 258

tators, AI models, or other decision-making sys- 259

tems capable of predicting both spans. We aggre- 260

gate the predictions of all experts into the variable 261

m(x) = (m1(x), . . . ,mJ(x)) ∈M. 262

True Deferral Loss: To learn allocations among 263

multiple agents, we define a rejector r ∈ R that 264

determines the agent to which a given query x ∈ X 265

should be assigned. We decompose this rejector 266

into two components: the start rejector rs ∈ Rs 267
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and the end rejector re ∈ Re. Each rejector ri ∈268

Ri for i ∈ {s, e} is defined as ri : X × A → R269

and assigns the query according to the rule ri(x) =270

argminj∈A ri(x, j). To learn these rejectors r ∈271

R, we introduce the true deferral loss, adapted272

from (Mao et al., 2023a) for standard classification273

tasks.274

Definition 1 (True Deferral Loss). Given an input275

x ∈ X and a rejector r ∈ R, the true deferral loss276

is defined as277

ℓdef =
∑

i∈{s,e}

J∑
j=0

cj(g
i(x),mi

j(x), z
i)1{ri(x)=j},278

where the cost function cj quantifies the penalty as-279

sociated with agent misclassification. Specifically,280

the cost incurred when relying on the main model281

g is defined as c0(g
i(x), zi) = 1{gi(x)̸=yi}. Sim-282

ilarly, the cost of consulting expert j is given by283

cj>0(m
i
j(x), z

i) = αjc0(m
i
j(x), z

i) + βj , where284

αj ≥ 0 and βj ≥ 0 accounts for the additional ex-285

pense of querying expert j. Notably, setting αj = 0286

corresponds to evaluating the main model g against287

an oracle (a perfectly correct expert) while still in-288

curring an additional querying cost (Chow, 1970;289

Cortes et al., 2016).290

The rejector function ri ∈ R determines the291

allocation of queries. If ri(x) = 0, the query is292

assigned to the main model g, which produces the293

prediction gi(x). Otherwise, if ri(x) = j for j >294

0, the query is deferred to expert j, yielding the295

prediction mi
j(x).296

An important question remains: how is the297

deferral decision made? The rejector ri(x) must298

balance predictive accuracy and the cost of expert299

consultation. An effective deferral strategy should300

minimize overall prediction errors while limiting301

unnecessary expert queries.302

4.2 Optimality of the Allocation303

Ideally, the query x ∈ X should be allocated to the304

agent with the highest confidence in its prediction305

(Madras et al., 2018), thereby improving the relia-306

bility and trustworthiness of the system. To formal-307

ize this decision-making process, we analyze the308

optimal risk associated with our true deferral loss309

and characterize the Bayes-rejector, which defines310

the optimal rejection strategy in our framework.311

Given the conditional probability distribution312

D(·|X = x), we denote the main model’s confi-313

dence as ηi0(x) = D(gi(x) ̸= yi|X = x), and the314

confidence of expert j as ηij(x) = αjD(mi
j(x) ̸=315

yi|X = x) + βj . We introduce the following 316

Lemma 1: 317

Lemma 1 (Bayes-Rejector). Given an input x ∈ X 318

and any distribution D, the optimal rejection rule 319

that minimizes the risk associated with the true 320

deferral loss is given by: 321

rB,i(x) =

0, if inf
gi∈Gi

ηi0(x) ≤ min
j∈[J ]

ηij(x),

j∗, otherwise,
322

with j∗ = argminj∈[J ] η
i
j(x). 323

We provide a proof of this relationship in Appendix 324

C. Lemma 1 suggests that minimizing the true 325

deferral loss defined in Definition 1 leads to an 326

optimal decision rule that compares agents’ con- 327

fidence levels. If the main model exhibits higher 328

confidence than the most reliable expert, i.e., if 329

ηi0(x) ≤ minj∈[J ] η
i
j(x), the query x ∈ X is as- 330

signed to the main model g. Conversely, if there 331

exists an expert j with the lowest expected risk, the 332

query is deferred to this expert. This deferral mech- 333

anism ensures that queries are allocated to the most 334

confident agent in the system, thereby enhancing 335

the reliability and trustworthiness of the allocation 336

process. 337

Current issue: Learning the Bayes-rejector is 338

a well-established NP-hard problem (Zhang and 339

Agarwal, 2020; Steinwart, 2007; Bartlett et al., 340

2006; Mohri et al., 2012), primarily due to the dis- 341

continuity of the true deferral loss. This challenge 342

is prevalent in machine learning, where optimizing 343

discontinuous loss functions is notoriously diffi- 344

cult (Cortes et al., 2016; Mao et al., 2023b). In 345

the following subsection, we present an approach 346

to accurately approximate this deferral rule while 347

preserving theoretical guarantees. 348

4.3 Accurate Approximation of the True 349

Deferral Loss 350

To effectively approximate the true deferral loss 351

while preserving the optimality of the decision rule 352

in Lemma 1, we leverage key concepts from consis- 353

tency theory, as defined in Preliminaries 3. A stan- 354

dard approach in statistical learning is to introduce 355

a surrogate loss that serves as a differentiable proxy 356

for a target loss—in this case, the true deferral loss. 357

Our goal is to construct a surrogate loss that is 358

both Bayes-consistent and (G,R)-consistent, en- 359

suring that minimizing this loss results in a learned 360

rejector r∗,i that closely approximates the Bayes- 361

rejector defined in Lemma 1. This guarantees that, 362
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as the surrogate loss is minimized, the learned363

decision rule asymptotically approaches the op-364

timal rejection strategy.365

Formulating the Surrogate Deferral Loss. To366

construct this surrogate loss, we introduce a new367

hypothesis ri ∈ Ri, where r : X × A → R. The368

first dimension is set to a zero-scoring function,369

r i(x, 0) = 0, and is compared against the remain-370

ing scores, defined as r i(x, j) = −ri(x, j) for371

expert indices j ∈ [J ]. We leverage the cross-372

entropy multiclass surrogate family, denoted by373

Φν
01 : R

i ×X ×A → R+, for the true multiclass374

loss. Adapting the approach introduced by Mao375

et al. (2023a) to our setting, we define the surrogate376

deferral loss as a proxy for the true deferral loss.377

This formulation enables a structured comparison378

between the rejection model and the expert alterna-379

tives. We now introduce the following definition:380

Definition 2 (Surrogate Deferral Loss). Given an381

input x ∈ X and any distribution D, the surrogate382

loss for the true deferral loss is defined as:383

Φν
def =

∑
i∈{s,e}

J∑
j=0

τj(g
i(x),mi

j(x), z
i)Φν

01(r
i, x, j),384

where τj = 1− cj for j ∈ A.385

This surrogate formulation ensures that minimiz-386

ing Φν
def aligns with the objective of minimizing387

the true deferral loss, while maintaining desirable388

optimization properties such as differentiability389

and convexity under suitable conditions. A key390

advantage of this surrogate loss is that it enables391

gradient-based optimization, making it compatible392

with standard deep learning frameworks (Bartlett393

et al., 2006).394

To further analyze the properties of Φν
def,395

we study its Bayes consistency and its (G,R)-396

consistency, ensuring that a minimizer of the surro-397

gate loss recovers a rejector r∗,i that closely approx-398

imates the Bayes-optimal rejector. In the following399

subsection, we derive theoretical guarantees for400

the surrogate loss and discuss its implications for401

model training.402

4.4 Theoretical Guarantees of the Surrogate403

Deferral Loss404

Proving Consistency Properties: In the previ-405

ous subsection, we introduced the surrogate de-406

ferral loss as a proxy for approximating the true407

deferral loss. Our goal is to establish that minimiz-408

ing the surrogate excess risk EΦν
def
(r)− E∗Φν

def
(R) +409

UΦν
def
(R) leads to minimizing the true excess risk 410

Eℓdef(r, g)−EBℓdef
(R,G)+Uℓdef(R,G). Establishing 411

this relationship implies that the learned rejector r∗ 412

will closely approximate the Bayes-optimal rejec- 413

tor rB , thereby ensuring an optimal allocation of 414

queries, as stated in Lemma 1. 415

Theorem 1 ((R,G)–consistency). Given an input 416

x ∈ X and any distributionD. Suppose there exists 417

a non-decreasing, concave function Γν : R+ → 418

R+ for ν ≥ 0, such that theR-consistency bounds 419

hold for any distribution D: 420

EΦν
01
(r)− E∗Φν

01
(R) + UΦν

01
(R) ≥

Γν(Eℓ01(r)− EBℓ01(R) + Uℓ01(R)),
421

then for any (g, r) ∈ G × R, any distribution D 422

and any x ∈ X , 423

Eℓdef(g, r)− E
B
ℓdef

(G,R) + Uℓdef(G,R) ≤

Γ
ν
(
EΦν

def
(r)− E∗Φν

def
(R) + UΦν

def
(R)

)
+
∑

i∈{s,e}

(
Ec0(gi)− EBc0(G

i) + Uc0(Gi)
)
,

424

with the expected cost vector 425

τ i = {Eyi|x[τ
i
j ]}j∈A and Γ

ν
(u) = 426(∑

i∈{s,e} ∥τ i∥1
)
Γν
(

u∑
i∈{s,e} ∥τ i∥1

)
. 427

The proof of Theorem 1, along with additional 428

bounds for ν ≥ 0, is provided in Appendix D. It 429

is reasonable to assume that at the end of training, 430

the surrogate deferral excess risk has been mini- 431

mized, leading to the bound EΦν
def
(r)− E∗Φν

def
(R) + 432

UΦν
def
(R) ≤ ϵ0. Since the model g has been trained 433

offline, it is mild to assume that the c0-excess risk 434

satisfies
∑

i∈{s,e}

(
Ec0(gi)−EBc0(G

i)+Uc0(Gi)
)
≤ 435

ϵ1. This result implies that the left-hand side is 436

bounded above, yielding the inequality 437

Eℓdef(g, r)− E
B
ℓdef

(G,R) + Uℓdef(G,R) ≤ ϵ1

+
( ∑

i∈{s,e}

∥τ i∥1
)
Γ
ν
(ϵ0).

(5) 438

By leveraging properties of Γν , we have established 439

that minimizing the surrogate deferral loss effec- 440

tively leads to minimizing the true deferral loss. 441

Using standard arguments from statistical learn- 442

ing theory (Steinwart, 2007; Mao et al., 2023b; 443

Awasthi et al., 2022), Theorem 1 further implies 444

Bayes-consistency when considering the hypothe- 445

sis spacesR = Rall and G = Gall. 446
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Rejector

Rejector Framework

Optimal Decision
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Expert 1

Expert J

...

Available Agents

Predicted Answer

Figure 1: Inference Step of Our Approach: The input data is processed through the rejector framework, which
predicts both start and end spans. Based on the optimal rule defined in Equation 2, the query is assigned to an agent
that subsequently predicts the answer.

Implications: Our theoretical guarantees estab-447

lish that the learned rejector ri follows the same448

optimal deferral rule as defined in Lemma 1.449

Specifically, the learned rule is given by ri(x) =450

argminj∈A ri(x, j). This deferral rule indepen-451

dently allocates the start and end extraction de-452

cisions. However, in scenarios where the query453

x ∈ X must be deferred to a single agent, an opti-454

mal unified deferral rule ⊥∗ (x) is applied:455

Lemma 2 (Optimal Deferral Rule for Single Al-456

location). Let x ∈ X and any distribution D. As-457

signing the query to a single agent leads to the458

following optimal decision rule:459

⊥∗ (x) = argmin
j∈A

∑
i∈{s,e}

r∗,i(x, j).460

At the optimum, r∗,i follows the deferral rule pre-461

scribed in Lemma 1. Consequently, the following462

equivalence holds:463

⊥∗ (x) ≈


0, if

∑
i∈{s,e}

ηi0(x) ≤ min
j∈[J ]

∑
i∈{s,e}

ηij(x),

j, otherwise.
464

This formulation ensures that allocation is directed465

to the most confident agent across both the start466

and end spans, thereby preserving optimality in the467

allocation process.468

5 Evaluation469

In this section, we evaluate our approach on470

three widely used question-answering benchmarks:471

SQuADv1 (Rajpurkar et al., 2016), SQuADv2 (Ra-472

jpurkar et al., 2018), and TriviaQA (Joshi et al.,473

2017). Our experiments demonstrate that while474

LLMs generally perform well on broad question- 475

answering tasks, they struggle with EQA. There- 476

fore, incorporating a system where experts are 477

available on demand significantly improves the 478

overall performance of the system. Settings of 479

our experiment can be found in E.2. We ensure 480

the reproducibility of our results by making our im- 481

plementation publicly available. We provide algo- 482

rithms for both training and inference in Appendix 483

1 and 2. 484

Agents: In the context of small devices, we select 485

Llama-3.2-1B as our primary model (Touvron et al., 486

2023), as it offers strong performance across vari- 487

ous tasks while remaining computationally feasible 488

for low-resource settings. To showcase the ease 489

of integrating our approach into existing LLMs, 490

we use the publicly available Llama-3.2-1B base 491

weights without additional training. We use two ex- 492

pert models with distinct computational capacities: 493

M1, ALBERT-Base and M2, is the more compu- 494

tationally demanding ALBERT-XXL (Lan et al., 495

2020). Although the specialist models from the AL- 496

BERT family offer lower computational cost and 497

superior performance on EQA tasks, they lack the 498

generality of Llama-3.2-1B, making them unsuit- 499

able to be the on-device/main model g that should 500

have task-agnostic performance. 501

Cost: We model our agents’ costs for i ∈ 502

{s, e} as c0(g
i(x), yi) = 1{gi(x)̸=yi}, leading to 503

cj>0(m
i(x), yi) = c0(m

i(x), yi) + βj , with βj ≥ 504

0. Frequent expert queries can significantly in- 505

crease latency and resource consumption, making 506

the model less suitable for real-time or resource- 507

constrained environments. The consultation cost 508

βj penalizes experts to prevent excessive query- 509
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Figure 2: Comparison between the Exact Match metric and the Expert Allocation: (a) TriviaQA, (b) SQuADv1, (c)
SQuADv2.

ing, reflecting the fact that querying across a set of510

offline experts should be done while considering511

the cost-performance tradeoff. Across the experts,512

we choose the ratio R = GFLOPs (M2)
20 GFLOPs (M1)

and let513

β2 = Rβ1. This represents how the cost should514

scale with the relative computational complexity of515

the expert models.516

Rejector: To efficiently allocate queries among517

the system’s agents, we employ a highly518

lightweight architecture specifically designed for519

small-device deployment (Fig. 6). We utilize Tiny-520

BERT architecture (Devlin et al., 2018) to train521

our rejector. This contains only 4.39M parame-522

ters —just 0.35% of the main Llama-3.2-1B model,523

making it suitable for low-compute deployment.524

Benchmark: We chose to benchmark our per-525

formance using vote-based ensembles (Breiman,526

1996; Trad and Chehab, 2024). This closely mirrors527

our setting by providing supports multiple different528

models while providing direct allocation. How-529

ever, ensembles do so by querying all models in530

parallel. We are interested in observing the dif-531

ference in efficiency between our direct allocation532

and such a approach. We also benchmark against533

a larger model from the Llama-3 family, Llama-534

3-8B (Grattafiori et al., 2024), highlighting that535

our method, which utilizes the more compact 1B536

variant, not only matches but often outperforms537

the larger model. This is particularly significant in538

emphasizing that our smaller 1B model overcomes539

the challenges of deploying a higher performing540

8B model on edge devices whilst facing no perfor-541

mance loss. When prompting both Llama-3.2-1B542

and Llama-3-8B, we employ few-shot demonstra-543

tions (Brown et al., 2020), with the specific demon-544

strations detailed in E.1.545

Metrics: We measure performance on EQA us- 546

ing Exact Match (EM). We emphasis specialist 547

models, although stronger in performance, are not 548

suitable candidates for g. GLOPs/EM ratio is an- 549

other metric which measures the computational 550

cost we are paying for a performance gain. This 551

is important in displaying the efficiency of our al- 552

location strategy. We track allocation ratios, this 553

represents the percentage of queries allocated to 554

the experts, displaying how r is effectively taking 555

cost into consideration when developing allocation 556

decisions Lastly, we also take True Positive/False 557

Positive Rate (TPR/FPR) into consideration. A TP 558

outcome occurs when the model is incorrect and 559

we successfully defer to an accurate expert. An FP 560

outcome occurs when the query is allocated to an 561

incorrect expert while the model is correct. 562

Results: Expert allocation refers to the percent- 563

age deferrals to experts, be it M1 or M2. Each 564

expert allocation corresponds to a β1 cost selection, 565

the relationship between the two is displayed in 566

4. Additionally, we report detailed experimental 567

results within E.2. 568

Performance: From Figure 2, we observe that 569

our approach is able to outperform or match the 570

Llama 3 family models across all datasets with ap- 571

propriate expert allocation. This emphasizes the 572

importance of having a system that allows for ex- 573

pert involvement. It also shows that our approach 574

can improves performance of smaller edge-based 575

LLM on EQA tasks whilst allowing for perfor- 576

mance comparable to a otherwise larger LLM. 577

Efficiency: From Figure 3, we observe that with 578

the exception of ALBERT-Base, our approach 579

maintains the best computational efficiency across 580

all datasets. We observe from 4 that our approach 581
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Figure 4: Combined Allocation Percentage across benchmarks: (a) TriviaQA, (b) SQuADv1, (c) SQuADv2.

is able to defer to the cheaper ALBERT-Base by582

increasing β1. We note that when β1 is set to ex-583

tremes of 0.5 and 0, we are able to create scenar-584

ios to discourage allocations to g and M2 respec-585

tively. While not significant from a performance586

standpoint, this observation proves that our rejector587

framework is able to successfully learn the cost dis-588

tribution and factor this in when allocating queries,589

resulting in a more efficient system. Although we590

use GFLOPs to develop our ratio and evaluate the591

approach, it would be interesting for users of our592

approach to experiment with supplementing or de-593

veloping β cost distributions based on network la-594

tency & cloud-related cost. Metrics which could595

better mirror real world deployment requirements.596

6 Conclusion597

In this work, we introduced a novel Learning-to-598

Defer framework for extractive question answering599

that dynamically allocates queries to the most suit-600

able agent, optimizing both accuracy and computa-601

tional efficiency. By leveraging theoretical guaran-602

tees, our method effectively balances performance603

and cost, making it well-suited for deployment604

in resource-constrained environments. Empirical605

evaluations on standard EQA benchmarks, includ- 606

ing SQuADv1, SQuADv2, and TriviaQA, demon- 607

strated that our approach enhances reliability while 608

reducing computational overhead, outperforming 609

larger LLMs and ensemble methods in both effec- 610

tiveness and efficiency. 611

Limitations 612

Despite the demonstrated effectiveness of our 613

Learning-to-Defer framework for optimal query 614

allocation in EQA, several limitations remain. 615

Task Generalization and Theoretical Guaran- 616

tees: Our framework is specifically designed for 617

extractive question answering, where answers cor- 618

respond to contiguous spans in a given context. The 619

structured nature of EQA enables well-defined loss 620

functions and confidence-based allocation criteria, 621

allowing us to establish theoretical guarantees on 622

optimal query allocation. However, these guaran- 623

tees do not directly extend to more complex NLP 624

tasks such as generative QA, multi-hop reasoning, 625

or open-domain retrieval, where outputs are not 626

constrained to predefined spans. The lack of struc- 627

tured outputs in these tasks introduces additional 628

8



challenges in defining optimal deferral strategies629

and ensuring theoretical consistency. Future work630

should explore whether similar optimality guaran-631

tees can be formulated for these broader settings,632

potentially requiring new loss functions and defer-633

ral mechanisms.634

Deferral Cost Estimation: The deferral mech-635

anism relies on predefined cost parameters βj to636

regulate expert consultation. However, there is637

currently no explicit and effective method to dy-638

namically track how query allocation varies across639

agents in response to changes in these cost parame-640

ters.641
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A Current Approaches 1098

LLM1 LLM2 LLM3 Router

LLMweak LLMstrong

Router

LLM M1 M2

Figure 5: From left to right: Model Cascades, Query Routing, Learning-To-Defer (Ours), we support the multi-
model nature of Model Cascades while allowing for direct inferences in Query Routing approaches.

B Approach Details 1099

B.1 Training Algorithm 1100

Algorithm 1 Training

Input: Dataset {(xk, ys
k, y

e
k)}Kk=1, multi-task model g ∈ G, experts m ∈ M, rejectors r = (rs, re),

number of epochs EPOCH, batch size BATCH, learning rate λ, surrogate parameter ν.
Initialization: Initialize rejectors parameters θ = (θs, θe).
for i = 1 to EPOCH do

Shuffle dataset {(xk, ys
k, y

e
k)}Kk=1.

for each mini-batch B ⊂ {(xk, ys
k, y

e
k)}Kk=1 of size BATCH do

Extract input-output pairs z = (x, ys, ye) ∈ B.
Query model g(x) and experts m(x). {Agents have been trained offline and fixed}
Evaluate costs c0(g(x), z) and cj>0(m(x), z). {Compute costs}
Compute the regularized empirical risk minimization:
ÊΦdef(r; θ) =

1
BATCH

∑
z∈B

[
Φν

def(r, g,m, z)
]
.

Update parameters θ:
θ ← θ − λ∇θÊΦdef(r; θ). {Gradient update}

end for
end for
Return: trained rejector model r∗.

B.2 Inference Algorithm 1101

Algorithm 2 Inference

Query: Input x ∈ X for x = (q, c) with a question q and a context c.
Evaluation: Rejectors r∗(x) = (rs,∗(x), re,∗(x))
Allocation: Allocate the query using the optimal rule ⊥∗ (x) = argminj∈A

∑
i∈{s,e} r

∗,i(x, j).
Output: Prediction from the main model g(x) if (⊥∗ (x) = 0) or m⊥∗(x)(x) otherwise.

C Proof Lemma 1 1102

Lemma 1 (Bayes-Rejector). Given an input x ∈ X and any distribution D, the optimal rejection rule 1103

that minimizes the risk associated with the true deferral loss is given by: 1104

rB,i(x) =

0, if inf
gi∈Gi

ηi0(x) ≤ min
j∈[J ]

ηij(x),

j∗, otherwise,
1105

with j∗ = argminj∈[J ] η
i
j(x). 1106
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Question
and Context

TinyBERT
Feature Extractor CLS extraction Classification Head

Rejector

Rejection Score

Figure 6: Rejector Architecture: The input data is processed through a TinyBERT embedding (Devlin et al., 2018),
which serves as a feature extractor. The extracted CLS token is then used by the classification head to predict the
allocation.

Question
and Context

Start
Rejector

End
Rejector

Rejector Framework

Optimal Decision
⊥∗

LLM

Expert 1

Expert J

...

Available Agents

Predicted Answer

Figure 7: Inference Step of Our Approach: The input data is processed through the rejector framework, which
predicts both start and end spans. Based on the optimal rule defined in Equation 2, the query is assigned to an agent
that subsequently predicts the answer.

Proof. Leveraging the true deferral loss for a single i ∈ {s, e}, we can formalize the conditional risk1107

associated with the true deferral loss:1108

Cℓdef(g
i, ri,mi, zi) = Eyi|x

[
cj(g

i(x),mi
j(x), z

i)1{ri(x)=j}

]
= D(hi(x) ̸= yi|X = x)Iri(x)=0 +

J∑
j=1

Eyi|x[cj(m
i
j(x), z

i)]Iri(x)=j

= D(hi(x) ̸= yi|X = x)Iri(x)=0 +
J∑

j=1

(
αjD(mi

j(x) ̸= yi|X = x) + βj

)
Iri(x)=j

1109

Now, let’s study this quantity at its optimum.1110

inf
ri∈Ri,gi∈Gi

Cℓdef(g
i, ri,mi, zi) = inf

ri∈Ri,gi∈Gi

(
Eyi|x

[
cj(r

i(x),mi
j(x), z

i)1{gi(x)=j}

])
= min

{
inf

gi∈Gi
D(gi(x) ̸= yi|X = x),min

j∈[J ]
αjD(mi

j(x) ̸= yi|X = x) + βj

}1111

It is then easy to observe, that the Bayes-rejector follows this form:1112

rB,i(x) =

0, if inf
gi∈Gi

ηi0(x) ≤ min
j∈[J ]

ηij(x),

argminj∈[J ] η
i
j(x), otherwise.

1113

with ηij>0(x) = D(mi
j(x) ̸= yi|X = x) + βj and ηi0(x) = D(gi(x) ̸= yi|X = x).1114

D Proof Theorem 11115

Theorem 1 ((R,G)–consistency). Given an input x ∈ X and any distribution D. Suppose there exists a1116

non-decreasing, concave function Γν : R+ → R+ for ν ≥ 0, such that theR-consistency bounds hold for1117

14



any distribution D: 1118

EΦν
01
(r)− E∗Φν

01
(R) + UΦν

01
(R) ≥

Γν(Eℓ01(r)− EBℓ01(R) + Uℓ01(R)),
1119

then for any (g, r) ∈ G ×R, any distribution D and any x ∈ X , 1120

Eℓdef(g, r)− E
B
ℓdef

(G,R) + Uℓdef(G,R) ≤

Γ
ν
(
EΦν

def
(r)− E∗Φν

def
(R) + UΦν

def
(R)

)
+
∑

i∈{s,e}

(
Ec0(gi)− EBc0(G

i) + Uc0(Gi)
)
,

1121

with the expected cost vector τ i = {Eyi|x[τ
i
j ]}j∈A and Γ

ν
(u) =

(∑
i∈{s,e} ∥τ i∥1

)
Γν
(

u∑
i∈{s,e} ∥τ i∥1

)
. 1122

Proof. Proving Theorem 1 requires the following lemma 3, introducing the consistency property for a 1123

general distribution. 1124

Lemma 3 (Ri-consistency bound). Given an input x ∈ X and any distribution D. Suppose there exists a 1125

non-decreasing, concave function Γν : R+ → R+ for ν ≥ 0, such that theRi-consistency bounds hold 1126

for any distribution D: 1127

EΦν
01
(ri)− E∗Φν

01
(Ri) + UΦν

01
(Ri) ≥ Γν(Eℓ01(ri)− EBℓ01(R

i) + Uℓ01(Ri)), 1128

or in a similar way for pi ∈ ∆|A|, 1129∑
j∈A

pij1{ri(x)̸=j} − inf
ri∈Ri

∑
j∈A

pij1{ri(x)̸=j} ≤ Γν
(∑

j∈A
pijΦ

ν
01(r

i, x, j)− inf
ri∈Ri

∑
j∈A

pijΦ
ν
01(r

i, x, j)
)

1130

Let denote a cost for j ∈ A = {0, . . . , J}: 1131

c i,∗j =

{
infgi∈G Eyi|x[c0(g

i(x), zi)] if j = 0

Eyi|x[cj(m
i
j(x), z

i)] otherwise
1132

Let’s recall a previous established results proven in C. 1133

C∗,iℓdef
(gi, ri,mi, zi) = min

{
inf

gi∈Gi
D(gi(x) ̸= yi|X = x),min

j∈[J ]
αjD(mi

j(x) ̸= yi|X = x) + βj

}
= min

j∈A
c i,∗j

1134

Therefore, we can introduce the calibration gap ∆Ciℓdef
:= Ciℓdef

− C∗,iℓdef
: 1135

∆Ciℓdef
= Ciℓdef

−min
j∈A

c i,∗j

= Ciℓdef
−min

j∈A
cij +

(
min
j∈A

cij −min
j∈A

c i,∗j

) (6) 1136

We now define the first term A = Ciℓdef
−minj∈A cij and the second term B = minj∈A cij −minj∈A c i,∗j , 1137

such that ∆Ciℓdef
= A+B. It is important to notice that: 1138

min
j∈A

cij = inf
ri∈R

∑
j∈A

cij1{ri(x)=j} = inf
ri∈R

∑
j∈A

τ ij1{ri(x)̸=j} (7) 1139

It follows by definition of the conditional risk: 1140

A =
∑
j∈A

τ ij1{ri(x)̸=j} − inf
ri∈R

∑
j∈A

τ ij1{ri(x) ̸=j} (8) 1141
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We normalize the cost vector τ i using the ℓ1-norm:1142

pi =
τ i

∥τ i∥1
∈ ∆|A|, (9)1143

where ∥τ i∥1 denotes the ℓ1-norm, ensuring that pi lies within the probability simplex ∆|A| =1144 {
pi ∈ R|A| | pij ≥ 0,

∑
j p

i
j = 1

}
. Then,1145

A = ∥τ i∥1
(∑

j∈A
pij1{ri(x)̸=j} − inf

ri∈R

∑
j∈A

pij1{ri(x)̸=j}

)
≤ ∥τ i∥1Γν

(∑
j∈A

pijΦ
ν
01(r

i, x, j)− inf
ri∈R

∑
j∈A

pijΦ
ν
01(r

i, x, j)
)

(using Lemma 3)

= ∥τ i∥1Γν
( 1

∥τ i∥1

[∑
j∈A

τ ijΦ
ν
01(r

i, x, j)− inf
ri∈R

∑
j∈A

τ ijΦ
ν
01(r

i, x, j)
])

= ∥τ i∥1Γν
(∆Cidef(r

i)

∥τ i∥1

)
(10)1146

Now, we have the following relationship:1147

B = min
j∈A

cij −min
j∈A

ci,∗j ≤ Eyi|x[c0(g
i(x), zi)]− inf

gi∈Gi
Eyi|x[c0(g

i(x), zi)] (11)1148

Injecting B, it follows:1149

∆Ciℓdef
(ri, gi) ≤ ∥τ i∥1Γν

(∆Cidef(r
i)

∥τ i∥1

)
+ Eyi|x[c0(g

i(x), zi)]− inf
gi∈Gi

Eyi|x[c0(g
i(x), zi)] (12)1150

Applying the summation:1151

∆Cℓdef(r, g) ≤
∑

i∈{s,e}

[
∥τ i∥1Γν

(∆Cidef(r
i)

∥τ i∥1

)
+ Eyi|x[c0(g

i(x), zi)]− inf
gi∈Gi

Eyi|x[c0(g
i(x), zi)]

]
(13)1152

Using the fact that the function Γ is concave and that the start and end are conditionally independent1153

given x:1154

∆Cℓdef (r, g) ≤
( ∑
i∈{s,e}

∥τ i∥1
)
Γν

(
∆Cdef(r)∑
i∈{s,e} ∥τ i∥1

)
+
∑

i∈{s,e}

[
Eyi|x

[
c0
(
gi(x), zi

)]
− inf

gi∈Gi
Eyi|x

[
c0
(
gi(x), zi

)]]
(14)1155

Then, applying the expectation Ex[·] to recover the excess risk Ex[∆Cℓ] := Eℓ − EBℓ + Uℓ, we show the1156

desired results:1157

Eℓdef(g, r)− E
B
ℓdef

(G,R) + Uℓdef(G,R) ≤ Γ
ν
(
EΦν

def
(r)− E∗Φν

def
(R) + UΦν

def
(R)

)
+
∑

i∈{s,e}

(
Ec0(gi)− EBc0(G

i) + Uc0(Gi)
)
,

(15)1158

with Γ
ν
(u) =

(∑
i∈{s,e} ∥τ i∥1

)
Γν
(

u∑
i∈{s,e} ∥τ i∥1

)
and from Mao et al. (2023b), it follows for ν ≥ 01159

the inverse transformation Γν(u) = T −1,ν(u):1160
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T ν(u) =



21−ν

1−ν

[
1−

(
(1+u)

2−ν
2 +(1−u)

2−ν
2

2

)2−ν
]

ν ∈ [0, 1)

1+u
2 log[1 + u] + 1−u

2 log[1− u] ν = 1

1
(ν−1)nν−1

[(
(1+u)

2−ν
2 +(1−u)

2−ν
2

2

)2−ν

− 1

]
ν ∈ (1, 2)

1
(ν−1)nν−1u ν ∈ [2,+∞).

1161

1162

E Experiments 1163

E.1 Few-Shot Demonstrations 1164

We present the few-shot demonstrations used to prompt the Llama-3 family of models. Datasets such as 1165

SQuADv2 contain questions where no answer is found within the provided context. In these cases, we 1166

aim for the model to return no output, which we represent using the symbol ’?’. 1167

1. Demonstration 1: 1168

Context:"The Eiffel Tower is located in Paris, France." 1169

Question: "Where is the Eiffel Tower?" 1170

Output: "Paris, France" 1171

2. Demonstration 2: 1172

Context: "Albert Einstein developed the theory of relativity in the early 20th century." 1173

Question: "What did Albert Einstein develop?" Output: "the theory of relativity" 1174

3. Demonstration 3: 1175

Context: "Marie Curie won the Nobel Prize in Physics in 1903 and in Chemistry in 1911." 1176

Question: "What year was Marie Curie born?" 1177

Output: "?" 1178

4. Demonstration 4: 1179

Context: "The Great Wall of China was built to protect against invasions. It stretches over 1180

13,000 miles." 1181

Question: "Who built the Great Wall of China?" 1182

Output: "?" 1183

E.2 Agent Training and Performance Details 1184

We train our models using a single NVIDIA H-100 GPU. Additionally, we take the results across 4 1185

independent experimental runs. We train both ALBERT-Base and ALBERT-XXL offline, we will publicly 1186

release the weights for these agents. We do not train Llama-3.2-1B or Llama-3-8B from scratch. Instead, 1187

we utilize the publicly available weights from meta-llama on HuggingFace out of the box. For each 1188

dataset, we use the following hyperparameters on an NVIDIA H100 GPU: 1189

Experts Batch Size Epochs Learning Rate Warm-up Scheduler Max Length Stride

ALBERT-Base 32 2 5e-5 0.1 linear 384 128

ALBERT-XXL 32 2 5e-5 0.1 linear 384 128

Table 1: Hyperparameters for SQuADv1, SQuADv2, and TriviaQA.

We report the following performance metrics for our agents on the test set being a subsample of the 1190

validation set (3000 inputs): 1191
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Agents SQuADv1 SQuADv2 TriviaQA

ALBERT-Base 84.20/90.63 77.10/79.54 86.63/90.86

ALBERT-XXL 89.37/94.91 84.07/86.57 91.63/94.21

Llama-3.2-1B 49.93/60.12 35.00/38.79 41.30/48.02

Llama-3-8B 67.80/80.22 59.47/66.47 48.47/56.66
Ensemble 84.60/90.80 81.06/84.19 88.84/91.78

Table 2: Exact Match (EM) and F1 scores for each dataset.

Llama-3.2-1B ALBERT-Base ALBERT-XXL Llama-3-8B Rejector Ensemble

Parameters (M) 1240 11.10 206 8030 4.39 1457.1

GFLOPs 373.66 32.68 928.08 2,680.06 0.15 1,334.42

Table 3: Computational efficiency of different models. We compare the number of parameters (in millions) and
computational cost (in GFLOPs) for processing a sequence of length L = 384. The Rejector model is significantly
more lightweight, with only 4.39M parameters and 0.15 GFLOPs, making it well-suited for deployment in resource-
constrained environments.
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