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Sleep Staging Using Plausibility Score: A Novel
Feature Selection Method Based on

Metric Learning
Tao Zhang , Zhonghui Jiang, Dan Li, Xiao Wei, Bing Guo, Wu Huang , and Guobiao Xu

Abstract—As an effective method, feature selection can
reduce computational complexity and improve classifica-
tion performance. A number of criteria exist for feature
selection using labeled data, unlabeled data and pairwise
constraints, most of which are based on the Euclidean dis-
tance. In this paper, we propose a filter method for feature
selection with pairwise constraints, aiming to jointly evalu-
ate a feature subset based on metric learning. Two criteria
are designed based on the well-known Kullback-Leibler di-
vergence for measuring the difference between must-link
constraints and cannot-link constraints that can indicate
the feature subset discrimination based on Keep It Simple
and Straightforward (KISS) metric learning and Cross-view
Quadratic Discriminant Analysis (XQDA) metric learning. To
address the challenging feature selection problem, we for-
mulate a sequential search algorithm guided by indicators
that are simplified from the proposed criteria. Furthermore,
we conducted several experiments on sleep staging based
on electroencephalogram (EEG) recordings from the Sleep-
EDF Database Expanded. The experimental results demon-
strate the effectiveness of the proposed method compared
with nine representative feature selection methods. On the
data set from healthy volunteers and the data set from
volunteers that had mild difficulty falling asleep, the clas-
sification average accuracies achieve 97.66% and 93.57%
by using the proposed method, respectively.

Index Terms—Euclidean metric, feature selection, KISS
metric learning, plausibility scores, sleep staging, XQDA
metric learning.

I. INTRODUCTION

IN CLASSIFICATION, it is generally known that a tremen-
dous number of features would result in the curse of dimen-

sionality and unexplainability [1]. As an effective method, fea-
ture selection aims to select a useful subset of original features to
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reduce dimensionality and improve classification performance
[2], [3]. Typically, feature selection methods can be divided into
three categories: filter methods [4]–[8], wrapper methods [9] and
embedded methods [10]. The results of filter methods depend
only on the characteristics of the data. In contrast, wrapper
methods require the participation of classification algorithms.
Embedded methods combine the former two methods. Normally,
wrapper methods are more accurate than filter methods, but their
computational costs are often more expensive than those of filter
methods.

In supervised filter methods, label information and pairwise
constraints have been explored and applied for feature selection
[1], [3]–[8]. Pairwise constraints as a type of side information
specify whether a pair of instances belongs to the same class or
different classes. In many cases, obtaining pairwise constraints
is easier than obtaining class labels. Recently, pairwise con-
straints as another alternative have been emphasized for feature
selection in [6], which showed that a constraint score based on
less information can be similar to or even better than a Fisher
Score based on full information. In addition to focusing on
supervised information, some studies focus on two strategies that
have been frequently employed to evaluate a subset of features.
The first strategy is evaluating every feature independently, e.g.,
the Fisher score [1], ReliefF [5] and constraint score [6]. In
this case, all candidate features are ranked, and the features
with high ranking scores are selected. However, this strategy
neglects the combination effects and redundancy of features,
thereby preventing further optimization. To solve this problem,
the second strategy proposes to integrally evaluate a feature
subset, e.g., the generalized Fisher score [7] and the trace ratio
criterion [4]. The disadvantage of the second strategy is that a
more complicated and expensive algorithm is often required for
feature selection.

In addition to feature selection, how to define a distance
over inputs would obviously impact the performance of some
classifiers, such as nearest-neighbor classifiers and support
vector machines. Thus, distance metric learning was introduced
aiming to make additional improvements in classification and
clustering [11]. In recent decades, some state-of-the-art Maha-
lanobis metric learning algorithms have been proposed, such as
Neighbourhood Components Analysis (NCA) [12], Large Mar-
gin Nearest Neighbor (LMNN) classification [13], Information-
Theoretic Metric Learning (ITML) [14], Keep It Simple and
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Straightforward (KISS) metric learning [15] and Cross-view
Quadratic Discriminant Analysis (XQDA) [16]. Goldberger
et al. proposed NCA by using the k-nearest neighbors (KNN)
classification algorithm [12]. In this work, the Mahalanobis
metric is obtained by gradually optimizing the leave-one-out
performance of data training. Weinberger et al. proposed
LMNN to learn a good Mahanalobis distance metric in
KNN classification [13]. By using LMNN, the distances
between similarly labeled instances decrease, and those
between differently labeled instances grow to a certain
extent. Davis et al. formulated the ITML and showed that it
closely relates to the Kullback-Leibler divergence between
two multivariate Gaussians [14]. To avoid over-fitting, ITML
learns a Mahalanobis distance metric as close as possible to
the Euclidean metric under the given constraint conditions.
For a large-scale data set, the computational costs of some
metric learning algorithms, e.g., the LMNN algorithm, are very
expensive. Kostinger et al. proposed the KISS metric learning,
which can efficiently obtain a Mahalanobis distance over
large-scale inputs without tedious iteration [15]. This method
is realized based on a likelihood-ratio test. Liao et al. extended
the KISS metric learning method and proposed XQDA [16].
By using XQDA, the dimension of the feature subspace can be
reduced.

The method of applying a metric learning algorithm in multi-
class classification can be global or class-dependent [17]. The
class-dependent methods learn different distance metrics for
different classes, and the global method learns a single distance
metric over all classes. In addition, the weight metrics can
be full or sparse [17]–[19]. Full weight matrices are the most
flexible models for learning, but their computational cost may
be expensive. To solve this problem, the weight matrices were
considered sparse or even diagonal. Nevertheless, some sparse
weight matrices are competitive in some cases, e.g., the class-
dependent diagonal weight matrices for time series classification
[17]. The disadvantage of diagonal weight matrices is that the
combination effects and redundancy of features are neglected.
To address the problem, some sparse weight matrices with more
parameters, e.g., the block diagonal weight matrices [18] and
the shrinkage weight matrices [17], were proposed.

Classification of sleep stages is important in sleep studies and
disorder diagnosis. In addition to the conventional discrimina-
tion of wakefulness and sleep, the Rechtschaffen and Kales stan-
dard (R&K) [20] enables the sleep stages of humans to be recog-
nized as six different types: wakefulness, NREM stages (S1, S2,
S3 and S4) and REM stages. At present, some machine learning
algorithms are used for automatic sleep staging by using a set
of features extracted from electroencephalogram (EEG), elec-
trooculogram (EOG) and/or electromyogram (EMG) signals,
which include the time-domain features, the frequency-domain
features and the non-linear features [21]–[27]. To reduce the
dimension of high-dimensional data, a variety of feature selec-
tion algorithms have been developed based on these biomedical
signals [25]–[30]. On the other hand, Phan et al. noted that the
Euclidean distance would not be the best distance metric over
inputs for sleep staging and introduced the LMNN algorithm
into the classification task [31]. Therefore, both metric learning

Fig. 1. Artificial data with features X1, X2, and X3. The 6-class data
are divided into training data (asterisk) and test data (circle). Based
on the training data, X2 and X3 are selected by ReliefF [5] and Fisher
score (FS) [1], and X1 and X2 are selected by our methods PS1 or the
PS2. The Accuracy (ACC) in each case is obtained by using the 1-NN
classifier. Our methods are much better than ReliefF and FS based on
KISS metric or XQDA metric.

and feature selection have been regarded as effective methods to
improve sleep staging performance. However, a feature selection
method may not match a learned Mahalanobis distance metric
if they are used simultaneously, because the feature selection
method is probably developed based on the Euclidean distance.
The mismatch in some cases may reduce the effectiveness of
feature selection.

To address this problem, in this work, we focus on how to
select an optimal feature subset based on distance metric learning
for sleep staging. We propose a filter method called the Plausibil-
ity Score for feature selection, using pairwise constraints rather
than more expensive label information. Two feature selection
criteria will be designed based on a well-known conception,
the Kullback-Leibler (KL) divergence, for evaluating an infor-
mation divergence of occurrence between a pair of samples
belonging to the same class (must-link constraint) and a pair
of samples belonging to different classes (cannot-link con-
straint). This information divergence indicates the feature subset
discrimination based on an appropriate Mahalanobis distances
learned by either of two comparatively low computational cost
algorithms, the KISS and the XQDA metric learning algorithms
[15], [16]. Subsequently, we will adopt a novel sequential search
strategy to solve the complicated feature selection problems. The
goal of the proposed method is recognizing the optimal feature
set based on KISS and XQDA metrics that would be difficult to
achieve by using other methods, illustrated in Fig. 1. In previous
work, KISS and XQDA metric learning algorithms were mainly
used in the person re-identification field rather than in the health
care field. In these experiments, we plan to investigate the feature
selection problem based on these metric learning algorithms for
sleep staging. The effectiveness of our methods is validated by
the experimental results.

The rest of the content is organized as follows. We derive
the feature selection criteria based on the KL divergence and
propose the feature selection algorithm in Section 2. We conduct

Authorized licensed use limited to: Kunming Univ of Science and Tech. Downloaded on November 23,2021 at 03:16:42 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: SLEEP STAGING USING PLAUSIBILITY SCORE 579

the experiments on sleep staging in Section 3 and discuss the
experimental results in Section 4. Finally, we conclude the work
in Section 5.

II. PROPOSED PLAUSIBILITY SCORE

In this section, we first revisit KISS and XQDA metric learn-
ing. Afterwards, we design two feature selection criteria based
on the KL divergence and formulate a feature selection algorithm
based on the proposed criteria.

A. KISS and XQDA Metric Learning

Kostinger et al. proposed the KISS metric learning for large-
scale metric learning [15]. This method came from a view of
statistical inference that whether an instance pair is similar can
be determined by the likelihood-ratio test [15]

L (Δij) = log

(
P (Δij |D )

P (Δij |U )

)
. (1)

where

P (Δij |D ) =
1
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exp

(
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)
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exp
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ijΣ
−1
U Δij

)
.

(3)

In Eq. 1, Δij = xi − xj where xi,xj ∈ Rd×1 correspond to
two arbitrary instances i and j, respectively, and Δij ∈ U and
Δij ∈ D denote the instances i and j sharing the same and dif-
ferent labels, respectively. In Eqs. 2 and 3,ΣD =

∑
Δij∈D(xi −

xj)(xi − xj)
T and ΣU =

∑
Δij∈U (xi − xj)(xi − xj)

T are
the covariance matrics in the likelihoods P (Δij |D) and
P (Δij |U), respectively, which are proven to have zero means.
Therefore, Eq. 1 can be simplified to

L (Δij) =
1

2

[
ΔT

ij

(
Σ−1

U − Σ−1
D

)
Δij + log

( |ΣU |
|ΣD|

)]
, (4)

where the second term in the right part is a constant. Suppose
that M is obtained by re-projecting Σ−1

U − Σ−1
D onto the cone of

positive semi-definite matrices; the distance based on the KISS
metric is obtained from the first term in the right part of Eq. 4,

d2M,KISS (xi,xj) = ΔT
ijMΔij . (5)

Liao et al. extended KISS metric learning and proposed the
XQDA [16]. Similar to Principal Component Analysis (PCA),
the XQDA strategy searches for some useful components in
initial feature spaces. XQDA is supervised, however, and the
supervised information includes Δij ∈ U and Δij ∈ D. The
difference between U and D projecting to a one-dimensional
space was assessed by the variance ratio of two Gaussian distri-
butions and used as a criterion to evaluate the components. The
component selection problem was introduced as follows:

w1 = argmax
w

wTΣDw, s.t.wTΣUw = 1. (6)

In Eq. 6, the optimal solution w1 is the eigenvector of matrix
Σ−1

U ΣD corresponding to its maximum eigenvalue. The solution
w2 orthogonal to w1 is the eigenvector corresponding to the
second largest eigenvalue, et cetera. A series of components
W = {w1,w2,w3, ...} are selected as the new subspace. If
some eigenvalues are less than 1, their corresponding eigenvec-
tors would not provide useful information for discrimination.
Therefore, these eigenvectors are not included in W . Finally,
the distance based on the XQDA metric is

d2M,XQDA (xi,xj) = ΔT
ijW

(
Σ

′−1
U − Σ

′−1
D

)
WTΔij , (7)

where Σ
′
U = WTΣUW and Σ

′
D = WTΣDW .

B. Feature Selection Criteria

Based on the KISS metric or the XQDA metric, the dis-
crimination of a feature subset can be indicated by the differ-
ence between P (Δij |D) and P (Δij |U). Therefore, to find the
feature subsets with high discrimination, we can make simple
changes to the KL divergence and enable it to measure this
difference. Suppose that n-feature subset W is selected from
initial d-feature set S. Let KLW

D,U denotes the KL divergence
DKL(P (Δij |D,W )‖P (Δij |U,W )) that

KLW
D,U =

∫
P (Δij |D,W ) log
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)
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= EΔij∼PD,W

(
log

(
P (Δij |D,W )
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))
,

(8)

where P (Δij |D,W ) and P (Δij |U,W ) are the P (Δij |D) and
P (Δij |U) in Eqs. 2 and 3 under the feature subset W , respec-
tively, and EΔij∼PD,W

(·) is the expectation of a random variable
obeying the probability distribution with P (Δij |D,W ). Recall
that the means ofP (Δij |D,W ) andP (Δij |U,W ) are zero; the
KL divergence can be simply calculated as

KLW
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where ΣD,W and ΣU,W are the ΣD and ΣU with the feature set
W , respectively. By means of the relationship between the trace
and the eigenvalues that tr(Σ−1

U,WΣD,W ) =
∑n

l=1 λl
W and the
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relationship between the determinant and the eigenvalues that
log |Σ−1

U,WΣD,W | = log(
∏n

l=1 λl
W ) =

∑n
l=1 log λl

W , where all
of λl

W are the eigenvalues of matrix Σ−1
U,WΣD,W , the KL diver-

gence can be expressed as

KLW
D,U =

1

2

n∑
l=1

(
λl
W − log λl

W − 1
)
. (10)

It is demonstrable that the KL divergence in Eq. 10 increases
as λl

W increases if each λl
W > 1 and increases as λl

W decreases
if each λl

W < 1 (here log refers to the natural logarithm). In
addition, as every λl

W = 1, the KL divergence is zero, and
the probability distributions of Δij ∈ U and Δij ∈ D are the
same.

Based on the KL divergence, we will design two feature
selection criteria according to two aspects. On the one hand, we
hope that the plausibility scores increase as each λl

W increases,
because a large λl

W indicates a high degree of discrimination
[16]. On the other hand, we consider both cases that the compo-
nents of feature subspace corresponding to λl

W < 1 contribute
and do not contribute to the discrimination. We design the first
plausibility score (PS1) as

score1(W ) =
1

2

n∑
l=1

(
Λl
W − log Λl

W − 1
)

(11)

where

Λl
W =

{
λl
W λl

W ≥ 1

1 λl
W < 1,

(12)

and design the second plausibility score (PS2) as

score2(W ) =
1

2

n∑
l=1

λl
W − log(λl

W + 1). (13)

Equation 11 implies that the λl
W < 1 have no influence on

score1(W ), indicating that the components of feature subspace
corresponding to them have no contributions for discriminating.
In contrast, Eq. 13 implies that the λl

W < 1 have influence on the
score2(W ), which increases as eachλl

W < 1 increases. Because
W with a low value of score1(W ) or score2(W ) would be not
useful for discriminating, the feature selection problem is how
to select a feature subset W ⊂ S to maximize score1(W ) or
score2(W ) while giving the number of features n.

C. Feature Selection Algorithm

Generally, selecting the optimal subset of features is NP-hard,
which remains an open problem. Compared with independently
selecting features, designing efficient selection algorithms for
jointly selecting features causes more difficulties. In practice,
one often settles for second best, i. e., searching a subopti-
mal solution using heuristic algorithms [7], [32]–[34]. For our
problem, it is not easy to maximize PS1 and PS2 by using
some methods such as those that require calculating gradient.
Instead, we propose a simple and effective local search method
to address this problem. In this method, a simplified version
of the two plausibility scores is proposed to guide the search
order. Specifically, feature subsets with higher simplified PS1 or

simplified PS2 are searched preferentially. Finally, the algorithm
is terminated by limiting the number of iterations, and the feature
set that has the highest PS1 or PS2 among all the searched feature
sets is selected. For the two simplified plausibility scores, the
features are supposed to be mutually independent, and thus the
two covariance matrices ΣU,W and ΣD,W in the two simplified
plausibility scores are diagonal.

Theorem: Suppose that ΣU,W and ΣD,W are the diagonal
matrices, score1(W ) in Eq.11 can be written as

SIMscore1(W ) =
1

2

n∑
l=1

(
Λl
W − log Λl

W − 1
)

(14)

where

Λl
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⎧⎪⎨
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σl,D
W

σl,U
W

σl,D
W

σl,U
W

≥ 1

1
σl,D
W

σl,U
W

< 1,
(15)

and score2(W ) in Eq.13 can be written as

SIMscore2(W ) =
1

2

n∑
l=1

σl,D
W

σl,U
W

− log

(
σl,D
W

σl,U
W

+ 1

)
, (16)

where σl,D
W and σl,U

W are the variances ofΔij ∈ D andΔij ∈ U
under feature l, respectively.

Proof: Suppose that ul and dl are the lth diagonal elements
of the diagonal matricesΣU,W andΣD,W , respectively. Because
ΣU,W and ΣD,W are the covariance matrices of n features,
ul and dl are equal to the variances σl,U

W and σl,D
W , respec-

tively. In addition, it can be easily proved that λl
W = dl/ul

with arbitrary l ∈ {1, 2, ..., n}. Therefore,SIMscore1(W ) and
SIMscore2(W ) are obtained by replacing λl

W with σl,D
W /σl,U

W

in score1(W ) and score2(W ), respectively.
As a feature subset W i is searched, how to search the next

one W i+1 is equal to solving the problem

W i+1 = arg max
W⊂S

SIMscore1(2)(W )

s.t. SIMscore1(2)(W ) < SIMscore1(2)(W
i)

|W | = n, (17)

where SIMscore1(2)(W ) denotes the SIMscore1(W ) or
the SIMscore2(W ),and |W | denotes the cardinal number of
W . The first searched subset W 1 is obtained by assembling
the features with the n-largest SIMscore1 or SIMscore2
at the single-feature level. Because SIMscore1(2)(W

i) is
known, Problem 17 is a typical integer linear program-
ming problem that can be efficiently solved by Cut Gen-
eration [36], Branch and Bound [37], Relaxation Induced
Neighborhood Search (RINS) [38] and Diving Heuristic
[39]. Here, we plan to solve the problem with the Diving
Heuristic. The algorithm procedure is formally presented in
Algorithm 1.
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Fig. 2. Overview of sleep staging using Plausibility Score-based fea-
ture selection.

Algorithm 1: Feature Selection Based on The Proposed PS1
or PS2.
Input: Feature set S, pairwise constraints in U and D,
iteration upper bound I;
Output: Feature subset W ;
1: Calculate score1(l) (score2(l)) of each single feature

l by using Eq.11 (Eq.13), and rank these features in
descending order according to their score1(l)
(score2(l));

2: Initialize SCORE = 0;
3: Select n features with the largest score1(l)

(score2(l)) as the initial feature subset W 1;
4: for i = 1 to I do
5: Calculate score1(W

i) (score2(W
i)) by using

Eq.11 (Eq.13);
6: if score1(W i) (score2(W i))> SCORE
7: SCORE = score1(W

i) (score2(W
i));

8: W = W i;
9: end if

10: Solve Problem 17 for obtaining W i+1 according to
W i by using the Diving Heuristic [39];

11: end for

III. EXPERIMENTS AND RESULTS

In this section, we conduct experiments on sleep staging
according to the procedure shown in Fig. 2. We first introduce
the data set used in our experiments and briefly illustrate the
de-noising method. Second, we present all the features that need
to be used. Third, we introduce the experimental details and the
metric used for testing the effectiveness of the proposed method.
Finally, we present the experimental results.

A. Experimental Data and De-Noising

Two experimental data sets are obtained from the Sleep-EDF
Database Expanded that is open source for the public [40]–[42].
The first data set (Dataset I) was provided by 15 Caucasian males
and females, which were healthy volunteers from 25 to 34 years
old. The Dataset I contains PSGs of about 20 hours recorded dur-
ing day-night period from the SC* files (SC = Sleep Cassette).
The second data set (Dataset II) were provided by 15 volunteers
from 18 to 48 years old who had mild difficulty falling asleep but
were otherwise healthy. The Dataset II contains PSGs of about
9 hours recorded during night from the ST* files (ST = Sleep
Telemetry). Compared with using combinations of EEG, EOG
and EMG channels for automatic sleep staging, using a single
EEG channel is not only feasible but also has more advantages
in practical applications [23]. Thus, in these experiments, we
plan to use the data from the single EEG channel Fpz-Cz for

TABLE I
SIZES OF THE SIX CLASSES

automatic sleep staging. The sampling frequency of recordings
from the Fpz-Cz is 100 Hz. All recordings were divided into
30 second segments, and each was scored according to the R&K
standard [20] and labeled as one of the states (AWA, S1, S2, S3,
S4, REM, MVT (movement time) and UNS (unknown state)). In
these experiments, the segments labeled as AWA, S1, S2, S3, S4
or REM will be used as the labeled instances for classification
of sleep stages, and the segments labeled as MVT and UNS
are not used in our study. The size of each class is presented in
Table I.

EEG signals are weak and susceptible to external interference,
such as EMG interference, powerline interference and white
noise. These noises degrade the quality of EEG signals and
further exert adverse influence on extracted features. Here, we
use the method of wavelet decomposition for de-noising. After
re-sampling, the sampling frequency increases to 128 Hz, and
the maximum frequency of the EEG signal is 64 Hz according
to the Naquist theorem. In addition, the available information
contained in the EEG signals is present in the sub-band from
0.5 Hz to 40 Hz. Thus, we set the levels of wavelet decomposition
as seven and the coefficients of wavelets mainly contributed
by noises (<0.5 Hz and >40 Hz) as zero. We use Daubechies
wavelet (db4) as the mother wavelet that is effective for de-
noising EEG signals [44]. After that, we further de-noise the
EEG signals based on db4, using the soft-thresholding rule and
the universal threshold [45].

B. Feature Extraction

In this step, a total of 77 features that have been investigated in
previous work were extracted from one single EEG signal [23],
[35], [43], [46]–[48]. The feature set includes the time-domain
features, the frequency-domain features, the time-frequency fea-
tures and the non-linear features. All 77 features used in these
experiments are listed in Table II, whose computing methods
can be found in the corresponding references. Here we simply
introduce these features.

As conventional frequency-domain features, the relative spec-
tral powers in the sub-bands of δ (0.5-4 Hz), θ (4-8 Hz), α
(8-12 Hz), σ (12-16 Hz), β (16-30 Hz) and γ (30-40 Hz) are
extracted via the Fourier transformation of the time-domain
signal [43], [46]. The relative spectral power is calculated by
dividing the absolute power in each frequency sub-band by
the total absolute power in the 0.5-40 Hz frequency range. In
addition to the relative power, the ratios of the relative spectral
powers can also be explored as effective features [46]. In addition
to those in the frequency-domain features, the statistical features
in the time domain are commonly used [43]. Furthermore,
Bajaj et al. proposed three time-frequency features based on the
smoothed pseudo Wigner-Ville distribution (SPWVD)-based
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TABLE II
SEVENTY-SEVEN FEATURES EXTRACTED FROM THE SINGLE EEG SIGNAL

time-frequency representation of the EEG signal [48]. These
features show the effectiveness for sleep staging. Since the REM
stage involves the chin muscle and eye activity, EOG and EMG
are normally required. However, Imtiaz et al. proposed spectral
edge frequencies as features that can be used for REM detection
based on recordings from a single EEG channel [23]. In addition,
entropy-based features are important for measuring the degree
of regularity of EEG signals. Baha et al. proposed wavelet-based
features that show the frequency distribution of the signal and
the amount of transformation in the distribution of the frequency
[47]. According to this work, we plan to use the discrete wavelet
transform (DWT) for EEG signal decomposition, where the used
mother wavelet is the db4, and extract features based on the
wavelet coefficients D2(16- 32 Hz), D3(8-16 Hz), D4(4-8 Hz)
and A4(0-4 Hz) after four-level wavelet decomposition of EEG
signal segments. After extraction, the data set under each feature
is normalized using the Z-score method. To avoid that the test set
can be seen, the procedure is first normalizing the training data
and obtaining a regulation, and then using the same regulation
to normalize the test data.

C. Experimental Design

In this section, we briefly introduce how to design the ex-
periments. Five-fold cross validation is used for testing, and
the size of any class in each fold is the same. In each fold,
some instances are randomly selected from the training set, and
the pairwise constraints are created between these instances and
their k-nearest neighbors with the same and different labels. A
constraint created by any pair of instance i and j contains Δij

and Δji. In these experiments, the must-link constraints and the
cannot-link constraints are chosen as the same number, which
would be more useful than the unbalanced must-link and cannot-
constraints [6]. It should be noted that the pairwise constraints
are fixed in each fold except when the pairwise constraints
need to be discussed. In addition, features selection and metric
learning are achieved based on these must-link constraints and
cannot-link constraints that are created from the training data in
each fold.

K-NN is applied as the main classifier, whose hyperparameter
K is tuned using grid search with cross validation to better predict
the labels of the test data. The classification performance is
mainly evaluated by the classification accuracy, which is defined
as

Accuracy =
TP + TN

TP + TN + FP + FN
, (18)

where TP , TN , FP and FN are the true positive, the true
negative, the false positive and the false negative, respectively.

Besides the classification accuracy, the other two measure-
ments,F1-score and Kappa coefficient, are used for evaluation of
classification performance. F1-score is defined as the harmonic
mean of precision and recall

F1 =
2× precision× recall

precision+ recall
, (19)

where

precision =
TP

TP + FP
, (20)

and

recall =
TP

TP + FN
. (21)

Kappa coefficient is used for measuring the agreement between
two individuals, which is defined as

κ =
po − pe
1− pe

, (22)

where po is the relative observed agreement and pe is the
probability that agreement is due to chance. We independently
run the program 5 times, and the three measurements obtained
from each time are averaged as the final results, respectively.

D. Influence of Number of Iterations

To efficiently and effectively apply Algorithm 1 for selecting
an optimal feature set, the number of iterations should be set to
an appropriate value. In Fig. 3, the growth rates of the PS1 and
the PS2 versus the number of iterations with different number of
selected features are investigated based on Dataset I and Dataset
II, respectively. Figures 3(a) to 3(d) show that the trends of the
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Fig. 3. Values of PS1 and PS2 versus the number of iterations, re-
spectively. In these cases, the number of constraints is 10000.

Fig. 4. Classification accuracy versus the number of iterations by using
PS1 + KISS, PS2 + KISS, PS1 + XQDA and PS2 + XQDA, respectively.
In these cases, the number of constraints is 10000.

two scores using 5 or 10 features present rapid grow at first
and then slow grow as the number of iterations increases. These
results show that the feature set with the near-optimal PS1 and
PS2 can be found by using Algorithm 1 within a limited number
of iterations.

Further, the classification accuracies obtained by using PS1
and PS2 versus different numbers of iterations are discussed, as
shown in Fig. 4. Because our approach is built on the metric
learning, in all of the following experiments, the combinations
PS1 + KISS, PS2 + KISS, PS1 + XQDA and PS2 + XQDA will
be analyzed. In Figs. 4(a), 4(b) and 4(d), we observe that the
trends of all the accuracy curves are similar to those in Fig. 3
regardless of the slight fluctuations. In these cases, when the

number of iterations is less than 100, the performance can be
significantly improved by increasing the number of iterations.
In Figs. 4(c), all the accuracy almost stable as the number of
iterations increases. From Figs. 4(a) to 4(d), we observe that
the improvement of classification performance via increasing
the number of iterations is more obvious when 5 features are
selected. and the maximum growth rate of accuracy reaches
about 0.7%. The results suggest that, to keep the accuracy at
a high level, the number of iterations should be set large enough
in most cases.

E. Influence of Constraints

In previous work, the constraints were often created randomly,
and their effectiveness was not fully considered. Thus, we dis-
cuss the influence of some different constraint-created methods
on the classification performance. In this work, we created the
constraints between some random samples and their nearest
neighbors, which is similar to that of ReliefF. The comparison
between our created methods with different numbers of k-nearest
neighbors and the random selection method is shown in Fig. 5.
It should be noted that a fixed value on the horizontal ordinate
in Fig. 5 indicates a total number of constraints regardless of the
method.

In general, Figs. 5(a) to 5(h) show that the accuracies by
using the proposed created methods with k = 20, 50, 100 are
higher than those using the proposed created method with k = 1.
The random selection method shows different performances on
Dataset I and Dataset II. On the Dataset I, it performs best when
5 features are selected and only better than the proposed created
method with k = 1when 10 features are selected. On the Dataset
II, it performs worst in all cases. In addition, we observe that the
performances of proposed created methods withk = 20, 50, 100
are generally similar with each other. Nevertheless, the proposed
created method with k = 100 shows the performance closest to
the best while 5 features are selected on the Dataset I, and the
proposed created method with k = 50 is the best while PS1 is
used and 5 featured are selected on the Dataset II. Therefore,
in order to achieve a good and stable classification perfor-
mance, it is considerable to use the proposed constraint created
method with an appropriate k (i.e., k = 50, 100) for feature
selection.

In Fig. 5(a), 5(c), 5(e) and 5(g), on the Dataset I, the proposed
created methods with k = 20, 50, 100 show a growth trend while
10 features instead of 5 features are selected. The number of
constraints has no significant impact on the performance of the
created methods with k = 1 and the random selection method
regardless of their fluctuations. In Fig. 5(b), 5(d), 5(f) and 5(h),
on the Dataset II, all the proposed created methods show a growth
trend as the number of constraints increases, and the random
selection method does not show such trend but only the obvious
fluctuation.

F. Feature Selection Performance

In this section, we compare the proposed method with
nine widely used feature selection methods including Infinite
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Fig. 5. Comparison of different constraint-created methods using KISS metric learning. The number of iterations is 200.

Fig. 6. (a, d) Classification accuracy, (b, e) F1-score and (c, f) Kappa coefficient versus different numbers of features based on Dataset I and Dataset
II, respectively. In these cases, the number of iterations of the proposed algorithm is 200 and number of labeled data or constraints are 10000. The
constraint-created methods of 100-NN and 50-NN are used for Dataset I and Dataset II, respectively.

Latent Feature Selection (ILFS) [50], Unsupervised Discrim-
inative Feature Selection (UDFS) [51], Robust Feature Selec-
tion (RFS) [52], l1-penalized squared-loss mutual information
(l1-LSMI) [53], Fisher Score (FS) [1], minimal-redundancy-
maximal-relevance criterion (mRMR) [49], ReliefF [5], Con-
straint Score1(CS1) [6] and trace ratio criterion [4]. For the
trace ratio criterion, the subset-level Fisher score (S-FS) is
used. Among all the methods, our method and CS1 are

constraint-guided and share the same pairwise constraints in
each fold and each time.

A comparison of these feature selection methods is shown in
Fig. 6, which plots the average classification accuracies, Kappa
coefficients and average F1-scores versus different numbers of
features selected by different methods. Figures 6(a) to 6(f) show
that, on the Dataset I and Dataset II, the three measurements
obtained using PS1 + KISS, PS1 + XQDA, PS2 + KISS and
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TABLE III
COMPUTATIONAL TIMES CORRESPONDING TO 10 FEATURES AND 20 FEATURES IN FIG. 6

TABLE IV
CLASSIFICATION ACCURACIES (%) OF SIX SLEEP STAGES BASED ON DATASET I. THE NUMBER OF ITERATIONS OF THE PROPOSED ALGORITHM IS 200, AND

THE NUMBER OF LABELED DATA OR CONSTRAINTS IS 10000

TABLE V
CLASSIFICATION ACCURACIES (%) OF SIX SLEEP STAGES BASED ON DATASET II. THE NUMBER OF ITERATIONS OF THE PROPOSED ALGORITHM IS 200, AND

THE NUMBER OF LABELED DATA OR CONSTRAINTS IS 10000

PS2 + XQDA have similar trends that obviously increase as the
number of selected features increases from 2 to 10, and slightly
increase as the number of selected features increases from 10
to 20. Once the number of selected features exceeds 20, further
increasing it contributes little to the classification performance.

As shown in Figs. 6(a) to 6(f), PS1 + KISS and PS2 + KISS
can perform best in most cases on the two data sets. For instance,
Fig. 6(a) shows that, on Dataset I, PS1 + KISS and PS2 +
KISS show the two best performances as the number of selected
features exceeds 6. Figure 6(d) shows that, on Dataset II, PS2 +
KISS performs best when 4, 6 or 8 features is selected. Using
FS can achieve the highest accuracy as the number of selected
features is between 10 and 18, but obviously lower than the
proposed method as the number of selected features is 4 and 6.

In Table III, the computational time of each method is listed
corresponding to the results with 10 and 20 selected features

shown in Fig. 6. It can be seen that, despite the good overall
performance of l1-LSMI on the two data sets, its computational
time is much longer than those of other methods and is signif-
icantly affected by the number of features. The computational
times of the proposed PS1 + KISS, PS1 + XQDA, PS2 + KISS
and PS2 + XQDA are comparable with each other, which are
less than those of l1-LSMI and UDFS but more than those of
other methods.

To further analyze the performance of each method, we list
the classification accuracies obtained using different methods on
the six sleep stages, respectively, as shown in Tables IV and V. In
Tables IV and V, the highest values are shown in bold. As shown
in Table IV, on the Dataset I, the average accuracy obtained using
KISS + PS1 are the highest when 10 or 20 features are selected.
In addition, KISS + PS1 performs best on some sleep stages, and
performs second best on most of the rest. Table V shows that,
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TABLE VI
P-VALUE BETWEEN THE ACCURACIES OBTAINED BY USING KISS + PS1
AND THE ACCURACIES OBTAINED BY USING NINE EXISTING METHODS,
RESPECTIVELY. SIGNIFICANT RESULTS ARE INDICATED BY: ∗ P < 0.05

on the Dataset II, FS and KISS + PS1 perform best when 10
and 20 features are selected, respectively. On the two data sets,
the highest accuracy on REM in most cases can be obtained by
using KISS + PS1.

To compare the proposed method that performs best with
other existing methods from another angle, we use an unpaired
Student’s t-test to calculate the P-value associated with the
average classification accuracy. Table VI shows the p values
between KISS + PS1 and other nine existing methods. On the
Dataset I, the p values corresponding to FS, UDFS, ReliefF,
mRMR, ILFS and RFS with 10 selected features and all the
methods with 20 selected features are smaller than 0.01. It
indicates that the accuracies obtained by using KISS + PS1 in
Table IV are very significantly higher than those obtained by
using the corresponding methods. On the Dataset II, the p values
corresponding to FS, l1-LSMI, S-FS, ReliefF with 10 selected
features and FS, l1-LSMI, S-FS with 20 selected features exceed
0.05, indicating that the average accuracies obtained using KISS
+ PS1 in Table V are comparable with these methods, and
significantly or very significantly higher than those obtained by
using other methods.

As well as classification accuracy, the overall accuracy, Kappa
coefficient and average F1-score with 10 and 20 features based
on Dataset I and Dataset II are listed, as shown in Tables VII
and VIII, respectively. The overall accuracy here is defined as
the ratio of the number of correctly classified instances to the
number of total instances, which is different from that in Eq.
18. Tables VII and VIII show that, on the two data sets, using
KISS + PS1 can achieve the highest overall accuracies, Kappa
coefficients and average F1-scores in most cases, except for the
case while 10 features are selected based on Dataset II.

Figure 7 shows the classification accuracies obtained using
different feature selection methods versus different numbers of
constraints or labeled data. Overall, the accuracies obtained by
using the PS1 + KISS, PS1 + XQDA, PS2 + KISS and PS2 +
XQDA present rapid grow at first and then slow grow as the
number of constraints increases. Figures 7(a) and 7(b) show
that, on the Dataset I, PS1 + KISS and PS2 + KISS can achieve
the two highest accuracies among all the compared methods as
the number of constraints exceeds 6000 while using 10 and 20
features, respectively. Figures 7(c) and 7(d) show that, on the

TABLE VII
OVERALL ACCURACIES (OA)(%), KAPPA COEFFICIENTS (κ)(%) AND

AVERAGE F1-SCORE (AF1)(%) OF SIX SLEEP STAGES BASED ON DATASET
I. THE NUMBER OF ITERATIONS OF THE PROPOSED ALGORITHM IS 200, AND

THE NUMBER OF LABELED DATA OR CONSTRAINTS IS 10000

TABLE VIII
OVERALL ACCURACIES (OA)(%), KAPPA COEFFICIENTS (κ)(%) AND
AVERAGE F1-SCORE (AF1)(%) OF SIX SLEEP STAGES BASED ON

DATASET II. THE NUMBER OF ITERATIONS OF THE PROPOSED ALGORITHM IS
200, AND THE NUMBER OF LABELED DATA OR CONSTRAINTS IS 10000

Dataset II, the accuracies obtained using PS1 + KISS or PS2 +
KISS are comparable with l1-LSMI and S-FS, but slightly lower
than those obtained using FS while the number of constraints
exceeds 8000. These results indicate that, to obtain a good
performance while using the proposed feature selection method
and the proposed constraint-created method, adequate number
of constraints should be used.

Figure 8 shows the accuracies obtained using the proposed
method and different classifiers including KNN, support vector
machine (SVM), random forest (RF), back propagation neural
network (BPNN) and decision tree (DT). Overall, on both the
datasets, the SVM and RF are more competitive than the other
three classifiers. On Dataset I, the highest accuracy 97.66% is
obtained using PS1 + KISS and SVM based on 20 features, and
on Dataset II, the highest accuracy 93.57% is obtained using
PS1 + KISS and RF based on 20 features. When the number
of selected features is reduced to 10, the decline of the highest
accuracies is not obvious, only 0.39% and 0.53% on Dataset I
and on Dataset II, respectively.
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Fig. 7. Classification accuracy versus number of labeled data or con-
straints with different number of selected features on Dataset I and
Dataset II, respectively. In these cases, the number of iterations of the
proposed algorithm is 200 and number of labeled data or constraints are
10000. The constraint-created methods of 100-NN and 50-NN are used
for Dataset I and Dataset II, respectively.

IV. DISCUSSION

This work proposed a novel method for feature selection with
pairwise constraints to classify sleep stages. According to Fig. 6,
Table IV and Table V, the proposed PS1 + KISS and PS2 +
KISS are competitive while comparing them with some widely
used methods and some state-of-the-art methods. Although the
proposed method is not faster than some other methods, the
proposed PS1 + KISS and PS2 + KISS can achieve the best
performance on the two data sets in many cases.

Figure 6 shows that the performance differences of various
methods are reduced as more features are selected. The reason
may be that all these methods tend to select more similar feature
sets when the number of selected features increases. As the fea-
ture selection methods using pairwise constraints, the proposed
PS1 and PS2 combining with the metric learning performs better
than CS1, especially in the cases with less features. the difference
may result from whether the feature interaction are considered
and the distance metric learning is applied. In addition, we notice
that the classification performance using KISS metric learning is
usually better than that using XQDA metric learning. The reason
would be that using XQDA metric learning is often achieved with
dimension reduction of feature space. However, it can show the
advantage when compared to the feature spaces of the same
dimension obtained using other methods [16].

Fig. 8. Comparison of accuracies obtained using the proposed
method and different classifiers on Dataset I and Dataset II, respectively.
In these cases, the number of iterations of the proposed algorithm is 200
and number of constraints are 10000. The constraint-created methods
of 100-NN and 50-NN are used for Dataset I and Dataset II, respectively.

As an important sleep stage for the diagnosis of sleep dis-
orders, REM stage generally presents the EEG signals similar
to those of wake and S1 stages. Therefore, it is difficult to
detect REM stage only by means of EEG signals. Instead, the
combinations of EEG, EMG and/or EOG are often used to better
detect REM stage [23]. However, using only EEG channels to
detect sleep stages would be more convenient than the combi-
nations in practical applications. Tables IV and V show that our
proposed method using a single EEG channel can achieve the
highest accuracies on REM stage, which might be benefit to the
convenient diagnosis of sleep disorders.

We found that the influence of number of iterations on the
accuracies is more obvious as less features are selected (See
Fig. 4), implying that searching for the features with profitable
interaction based on KISS metric or XQDA metric is more
critical in the case. However, this does not mean that one need
to add additional iterations to achieve significant performance
improvements, and thus the number of iterations can be fixed
for the cases with different number of selected features. For
example, by fixing the number of iterations as 200, our method
can obtain higher accuracies than those obtained by CS1 that
neglects the feature interaction, and this gap is more visible as
less features are selected (See Fig. 6).

The method used for creating constraints significantly impacts
the classification performance (See Fig. 5). On the whole, the
constraint-created methods of 50-NN and 100-NN perform well
and robustly in most cases. The reason may be that they can
create adequate informative constraints for feature selection.
In comparison, the 1-NN method would tend to create less
informative constraints and the random created method would
be susceptible to noise because of its unstable performance.
Therefore, how to stably identify and search the informative con-
straints is critical for improving the classification performance.
In fact, some work has been done on this issue, e.g., the work in
[54] and [55] that aims to select the informative constraints for
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TABLE IX
COMPARISON OF CLASSIFICATION ACCURACIES REPORTED IN OTHER WORK

WITH THE PROPOSED METHOD

semi-supervised clustering. On the basis of this kind of work,
it is still possible to further improve the performance of sleep
staging by utilizing more helpful constraints for feature selection
and metric learning.

It is difficult to accurately compare the results of different
work, since different data sets were used. In particular, the degree
of imbalance in the used data sets would significantly impact
the results. Here we compare our best results with those in some
previous work using a single EEG channel for sleep staging.
For the sake of fairness and convenience, the results on the
data sets whose instances belonging to the same class account
for more than 50% and the rest are respectively compared.
Table IX shows the accuracies reported in previous work and
the proposed method on Dataset I (41079 epochs) and Dataset II
(14621 epochs). Except for [56] and Dataset II, the instances
belonging to one class (AWA stage) in [43], [21], [57], [58]
and Dataset I account for more than 50%. Compared with the
results from the five methods, the accuracy obtained using our
proposed method is the highest one on maximum amount of
data (41079 epochs). In addition, compared with the result on
Dataset II and that in [56], our proposed method can also achieve
the highest accuracy. However, to achieve the best results, 20
features have been selected and used in the proposed method.
How to use less features to achieve a good performance of sleep
staging, especially on more balanced data, is still a challenging
task.

Single features and their combinations for sleep staging have
been deeply investigated in previous work. As an example, here
we report the 15 features that are selected most frequently by
using PS1 on Dataset I and Dataset II, as shown in Table X.
One-way ANOVA is used to show whether different levels of a
factor have a significant effect on observed variables. The null
hypothesis for one-way ANOVA is that all population means are
identical. The null hypothesis is rejected when at least one mean
is significantly different from others. However, it can not indicate
which mean(s) is/are different. Thus, here a post-hoc Bonferroni
test is used to address this issue. For convenience, Table X only
shows the p-values by the post-hoc test on some sleep stage pairs.
On Dataset I, most features are significantly different between
AWA and REM, and least features are significantly different
between REM and S1. On Dataset II, all features are significantly
different between S2 and S3, and least features are significantly
different between REM and S1. This results indicate that it is
easy to confuse REM with S1. Nevertheless, without regard to

TABLE X
15 TOP SELECTED FEATURES WITH THEIR P VALUES USING PS1 ON

DATASET I AND DATASET II. A POST-HOC BONFERRONI TEST IS USED TO
OBTAIN THE SIGNIFICANCE RESULTS, WHICH IS SHOWN ONLY BETWEEN

TWO SLEEP STAGES IN SOME SLEEP STAGE PAIRS. THE OTHER
CONDITIONS ARE THE SAME AS THOSE IN FIG. 6. SIGNIFICANT RESULTS

ARE INDICATED BY: ∗ P < 0.05

the feature interaction and the influence of metric learning, many
features are significantly different in the five cases, such as the
permutation entropy (74) on both data sets.

V. CONCLUSION

In this work, we proposed a novel feature selection method
based on KISS metric learning and XQDA metric learning called
Plausibility Score. In this method, we designed two feature se-
lection criteria by making simple changes to the KL divergence,
and an effective sequential search strategy based on the proposed
criteria to find out the optimal feature subset. Subsequently, the
combinations of the proposed method and KISS metric learning
or XQDA metric learning have been used in the experiments
of sleep staging. The experimental results show that, compared
with nine representative feature selection methods, the proposed
method can perform best in many cases by using pairwise con-
straints instead of more expensive class labels. In the following
work, we plan to investigate the effectiveness of Plausibility
Score in more real-world applications.
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