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Abstract—In this work, a video coding solution with Neural-
Network (NN) enhancement is proposed for the Challenge on
Learned Image Compression (CLIC) 2025. The proposed solution
is made up of ESRGAN-based video enhancement pre-processing
and improved Enhanced Compression Model (ECM) codec, and
the team name of the solution is TCM . The improvements
of ECM include advanced Rate Control (RC) methods, frame
parallel processing, and speed optimization of NN based in-
loop Filter (NNLF). According to the pre-evaluation results, the
proposed methods achieve more than 0.53 Mean Opinion Score
(MOS) improvement compared with VTM baseline.

I. INTRODUCTION

In recent years, various video applications have developed
vigorously, and how to improve the quality of compressed
videos is a topic under continuous exploration. Reducing
video compression loss is a general approach. Over the past
few decades, various video compression tools have been
proposed, and these tools form video coding standards, such
as HEVC/H.265 [1], VVC/H.266 [2], and AVS3 [3]. More
advanced methods have also been explored based on VVC,
eventually leading to the development of Enhanced Com-
pression Model (ECM) [4]. While these advanced methods
improve the compression efficiency, they introduce significant
coding complexity. Experiments [5] show that compared with
the VVC reference software VTM11.0, the encoding time
of ECM17.0 increases about 9.9 times with random access
configuration. And the decoding complexity increases about
11.4 times. To accelerate the coding speed, Group of Pictures
(GOP) based parallel processing methods [6] are introduced.
However, these methods require extra intra frames, which
decrease the compression efficiency.

Beyond traditional video coding methods, Joint Video Ex-
ploration Team (JVET) has also explored Neural Network
(NN) based video coding methods. Among them, NN based in-
loop Filte (NNLF) were proposed to achieve better deblocking
filtering. Three series of models are proposed, with significant
difference in complexity, which are High Operating Point
(HOP), Low Complexity Operation Point (LOP) and Very
Low Complexity Operation Point (VLOP) [7]. Among these
models, LOP is the medium both in complexity and coding ef-
ficiency, and achieves YUV 8.2%, 14.9%, 13.5% Bjøntegaard
Delta Rate (BD-Rate) improvement, with 0.1 times increment

in encoding complexity and 27 times increment in decoding
complexity [8].

Besides compression efficiency, NNs have also been lever-
aged for image and video enhancement tasks [9], [10]. No-
tably, X. Wang et al. [11] proposed the Enhanced Super-
Resolution Generative Adversarial Network (ESRGAN). This
network is designed to mitigate artifacts and restore fine-
grained textures. And it won the first place in the PIRM2018-
SR Challenge.

The Challenge on Learned Image Compression 2025 (CLIC
2025) competition [12] provides a platform for the fair com-
parison of various method combinations. In this competition,
participants are required to compress a set of source videos to
a specified target bitrate within a given time, while maximizing
the Mean Opinion Score (MOS) of decoded images based
on Absolute Category Rating (ACR). Most of the source
videos are compressed videos with high bitrate. Furthermore,
decoding time has been introduced as an important metric.
Based on these requirements, we propose a high quality video
coding solution, which will be described in detail in the
following sections.

II. PROPOSED METHODS

The proposed video coding solution consists of two main
components. As shown in Fig. 1, at the encoding end,
ESRGAN-based enhancement pre-processing is firstly applied
to the source video, and then the improved ECM encoder
is applied to generate the bitstream. At the decoding end,
the bitstream is decoded, and the final reconstructed video is
generated directly. It should be noted that the pre-processing
is normally accompanied by loss of objective metrics, such as
Peak Signal-to-Noise Ratio (PSNR), but the enhanced details
benefit in MOS according to our subjective evaluations.

To further improve video quality, encoder is configured with
only one intra frame. Then an advanced Rate Control (RC)
algorithm is introduced. Moreover, the built-in NNLF tool of
ECM is enabled, which introduces significant complexity.

To deal with the complexity caused by above strategies,
Frame Parallel Processing (FPP) method is introduced to meet
the encoding time requirements. Additionally, algorithm to
reduce NNLF computation is introduced in encoder. Further-
more, implementation optimizations are performed for the
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Fig. 1. The proposed video coding solution.

Small Ad-hoc Deep-Learning Library (SADL) [13], which is
utilized both in the encoder and the decoder. The details of
these methods are presented as follows.

A. ESRGAN-based Enhancement Pre-processing

To perform video enhancement, modifications are made to
the ESRGAN. In our configuration, the original resolution is
retained for video encoding. Therefore, the upsampling layer
and subsequent layers in ESRGAN are removed.

The modified ESRGAN model is retrained based on a self-
constructed dataset. This dataset is built by integrating public
datasets such as Inter4K [14] and LDV3 [15] and generating
extra distorted videos to adjust the distortion distribution.
For realistic degradation simulation, mixed distortions are
modeled to align the training data with real-world scenarios.
Such as color-related distortions are incorporated, specifically
including random saturation shifts and contrast adjustments.
And randomized degradations are integrated, such as Poisson-
Gaussian noise, motion blur, and H.265/H.264 compression.
Notably, degradation parameters are dynamically sampled for
each batch to enhance the model’s robustness.

The modified ESRGAN is an RGB-based network, so color
format conversion between RGB and YUV is introduced in
the pre-processing stage. For the training process, to balance
pixel accuracy and semantic consistency, we use a hybrid loss
function combining L1 loss and Perceptual Loss. The model
is trained over 600,000 iterations with a batch size of 32 and a
patch size of 512x512. The initial learning rate is set to 0.0001
and halved every 10,000 iterations, using the Adam optimizer
with β1 = 0.9 and β2 = 0.99.

Since most source videos are compressed videos in CLIC
2025, compression artifacts are thoroughly accounted for in the
construction of our self-constructed dataset. This comprehen-
sive approach enables a more realistic and robust simulation
of distorted data in practical applications.

B. Advanced Rate Control Algorithm

The proposed advanced RC algorithm is based on the algo-
rithms of x265 [16]: the Constant Rate Factor (CRF) method
and block-level QP calculation method CUTree. Its frame

complexity estimation relies on block costs from downsam-
pled source frames. Specifically, in x265’s lookahead stage,
the downsampled current frame first undergoes simple inter
and intra prediction to obtain the optimal Sum of Absolute
Transformed Differences (SATD), which acts as the core block
cost for complexity calculation. On this basis, frame-level
complexity complexity i is derived by weighted averaging
SATD values from the first frame to the current frame. Then
QPs for different frames are computed with the derivation
formulas below:

qscale =
complexity1−qcomp

i

factor
, (1)

qptemp = 12 + 6 log2
qscale

0.85
, (2)

qp =


qtemp frame type is P or GPB
qtemp − offsetI frame type is I
qtemp + offsetB frame type is B

, (3)

where complexity i denotes the complexity of the i-th frame
(calculated via the weighted average of SATD as above).
factor presents the rate factor, qcomp is a model parameter,
offsetI and offsetB are parameters to control QPs of different
frame types, and qp represents the final QP value.

Some improvements are proposed on the basis of CRF. In
complex scenarios, the CRF scheme tends to assign large QPs
for some frames, which leads to significant loss of details.
To solve this problem, scene changes are considered as well
as the local complexity [17]. And (1) is improved with the
following formula:

qscale = clip(low, top,
inter cplx i

base cplx
)1−qcomp , (4)

where low and top are parameters derived from the motion
level, noise level, and flatness of a period of frames, base cplx
is a resolution-related parameter, and inter cplx i is the inter
complexity of the i-th frame.
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(a) Previous method
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(b) Proposed method

Fig. 2. The algorithm of CABAC state initialization.

C. Frame Parallel Processing

When there is only one intra frame, each sequence contains
a single GOP, and the GOP based parallel methods are not
feasible. Thus, the parallel encoding within a GOP is studied,
and the FPP method is introduced. During the encoding
process, each frame is encoded using a distinct Frame Thread
(FT). The main thread assigns frame encoding tasks to FTs and
collects the compressed bitstream. One FT can start encoding
only when all of its reference frames have finished in-loop
filtering. FTs with no dependencies can be processed at the
same time.

To reduce dependencies caused by implementation, the code
flow of ECM is reorganized in detail. The non-constant global
and static data structures are replaced with the local data
structures. The encoding process is adjusted to cache multiple
source frames during encoding. And the buffers reused by
different frames are separated into multiple copies.

In addition, dependencies caused by algorithms are studied.
Some algorithms utilize information or accumulated data of
previously coded frames, but these previous frames are not al-
ways in the reference list. For example, as Fig. 2(a) shows, the
Context-based Adaptive Binary Arithmetic Coding (CABAC)
state of each frame is initialized with the final state of the
previous frame with the same layer. In the proposed method,
as shown in Fig. 2(b), the CABAC state is initialized with the
final state of one reference frame. And which reference frame
to use is based on the slice QP and distance of candidate
reference frames.

D. Speed Optimization of NNLF

On the basis of the encoding configuration in previous
sections, LOP model is utilized because of its balance in
coding efficiency and complexity. Then the decoding time
distribution is analyzed using the Visual Studio Performance

NNLF (93.14%)

Derive MV (2.93%)
Reconstruction (2.11%)

Others (0.59%)

Other LoopFilters (1.23%)

Fig. 3. The decoding time analysis of ECM decoder.

Profiler [18]. As shown in Fig. 3, NNLF inference, which is
implemented by the SADL library, accounts for up to 93.14%
of the total decoding time. Thus, it is necessary to reduce the
NNLF inference time.

The NNLF inference is first optimized from the implemen-
tation perspective. The time consuming functions in SADL
library are analyzed. The address calculation of the tensors
is simplified via pointer movement. And additional AVX2
acceleration is implemented for some interpolation operations.

Encoding algorithms are also proposed to adaptively skip
NNLF processing for some blocks. Whether to skip NNLF
processing for a specific block is jointly determined by the
texture content and the encoding QP.

III. EXPERIMENTAL RESULTS

In this section, detailed experimental results are presented
to show the performance of the proposed methods. All exper-
iments are conducted using ECM17.0 as the baseline. Except
for the ESRGAN-based enhancement which uses the GPU,



all the encoding and decoding methods are CPU-based. The
encoding is applied on a 14-core Docker container with an
Intel Platinum 8255C CPU, and the decoding is applied on
a Docker container with an AMD EPYC 7K62 CPU using a
single thread.

A. Performance of Intra Frame Configuration

Firstly, the intra frame configuration is evaluated. The
configuration is based on Common Test Condition (CTC) [19]
and extra intra frames are removed by setting IntraPeriod to a
large value. As shown in Table I, 6.35% PSNR-YUV811 gain
is achieved by this configuration.

TABLE I
PERFORMANCE OF INTRA FRAME CONFIGURATION

Class Random Access
Y (%) U (%) V (%) YUV811 (%)

Class C -7.05 2.01 2.18 -5.22
Class D -9.31 0.55 -0.95 -7.49
Average -8.18 1.28 0.62 -6.35

B. Advanced RC Methods

The proposed RC method is compared with the default RC
algorithm in ECM with improved configuration. The result is
shown in Table II. The proposed RC method achieves 10.74%
gain in PSNR-YUV811.

TABLE II
PERFORMANCE OF ADVANCED RC METHODS

Class Random Access
Y (%) U (%) V (%) YUV811 (%) EncT (%)

Class C -8.64 -28.16 -28.08 -12.54 91.0
Class D -3.65 -30.17 -30.11 -8.95 101.6
Average -6.15 -29.17 -29.10 -10.74 96.3

C. FPP Performance

The FPP method is compared with the default ECM config-
uration in CTC. For the FPP method, the count of FTs is set to
33, and the IntraPeriod setting and RC algorithm is the same
to ECM. As shown in Table III, the proposed FPP method
can reduce the encoding time to 24.5%, with about 0.97%
PSNR-YUV811 loss.

TABLE III
FPP PERFORMANCE

Class Random Access
Y (%) U (%) V (%) YUV811 (%) EncT (%)

Class C 0.76 0.87 0.75 0.77 24.9
Class D 1.17 1.34 0.96 1.17 24.1
Average 0.97 1.11 0.86 0.97 24.5

D. NNLF Decoding Optimization

The performance of NNLF decoding optimization is ana-
lyzed. Two groups of bitstreams are used, which are generated
without and with the proposed NNLF skip algorithms. For
convenience, they are called original and optimized bitstreams.

In Table IV, FPS1 denotes the Frames Per Second (FPS) of
the original ECM using original bitstream, FPS2 is the FPS of
SADL optimization applied to ECM using original bitstream,
and FPS3 is the FPS of SADL optimization using optimized
bitstream. The results show that the decoding speed increases
to 1.45 times with SADL optimization, and increases again to
1.45 times with NNLF skip algorithms. The overall speed is
2.11 times compared with the original methods.

TABLE IV
PERFORMANCE OF NNLF DECODING OPTIMIZATION

Class QP FPS1 FPS2 FPS3 FPS2
FPS1

FPS3
FPS2

FPS3
FPS1

Class C

22 1.21 1.68 1.99 1.39x 1.19x 1.64x
27 1.23 1.77 2.21 1.43x 1.25x 1.80x
32 1.34 2.02 2.86 1.51x 1.42x 2.13x
37 1.50 2.33 4.06 1.56x 1.74x 2.71x

Class D

22 4.04 5.56 7.53 1.38x 1.35x 1.87x
27 4.28 6.05 8.37 1.41x 1.38x 1.96x
32 5.11 7.47 11.27 1.46x 1.51x 2.21x
37 6.45 9.49 16.29 1.47x 1.72x 2.53x

Average 1.45x 1.45x 2.11x

IV. SUMMARY

In this paper, we propose a video coding solution with NN
enhancement for CLIC 2025. Several methods are proposed on
the basis of the challenge requirements, including ESRGAN-
based enhancement pre-processing, advanced RC algorithms,
FPP method and speed optimization of NNLF. The proposed
methods are firstly evaluated in the pre-evaluation stage, which
shows about 0.53 MOS improvement compared with VTM
baseline. Extra improvement is made after this stage, such as
parameter fine-tuning, but the corresponding MOS result is
not available until this paper is submitted. By the way, the
team name of this work in challenge is Tencent Compression
Model (TCM). And the coding methods of this work also play
an important role in the MSU comparison [20], aiding Tencent
TVC codec be the first place in 14 tracks out of all 15 tracks.
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