
Under review as a conference paper at ICLR 2023

PERTURBATION DEFOCUSING FOR ADVERSARIAL DE-
FENSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research indicates adversarial attacks are likely to deceive neural systems,
including large-scale, pre-trained language models. Given a natural sentence, an
attacker replaces a subset of words to fool objective models. To defend against
adversarial attacks, existing works aim to reconstruct the adversarial examples.
However, these methods show limited defense performance on the adversarial
examples whilst also damaging the clean performance on natural examples. To
achieve better defense performance, our finding indicates that the reconstruction
of adversarial examples is not necessary. More specifically, we inject non-toxic
perturbations into adversarial examples, which can disable almost all malicious
perturbations. In order to minimize performance sacrifice, we employ an adver-
sarial example detector to distinguish and repair detected adversarial examples,
which alleviates the mis-defense on natural examples. Our experimental results
on three datasets, two objective models and a variety of adversarial attacks show
that the proposed method successfully repairs up to ∼ 97% correctly identified
adversarial examples with ≤∼ 2% performance sacrifice. We provide an anony-
mous demonstration1 of adversarial detection and repair based on our work.

1 INTRODUCTION

Neural networks have been employed achieved state-of-the-art performance on various tasks. How-
ever, recent research has shown their vulnerability to adversarial attacks (Szegedy et al., 2014; Good-
fellow et al., 2015). In particular, language models have shown to be vulnerable to adversarial ex-
amples (a.k.a., adversary) (Garg & Ramakrishnan, 2020; Li et al., 2020; Jin et al., 2020; Li et al.,
2021a) generated by replaced specific words in a sentence. Compared to adversarial robustness on
computer vision tasks (Alzantot et al., 2018; Ren et al., 2019; Zang et al., 2020; Zhang et al., 2021;
Jin et al., 2020; Garg & Ramakrishnan, 2020; Li et al., 2021a; Wang et al., 2022), text adversarial
defense (a.k.a. adversarial repair) has attracted less attention resulting in limited progress in adver-
sary defense. Moreover, the crux of adversarial defense, i.e., performance sacrifice, has not been
settled by existing studies.

While the prominent works tend to solve adversarial defense via adversarial training or feature re-
construction, we propose perturbation defocusing to address adversarial defense in natural language
processing. More specifically, perturbation defocusing attempts to apply non-toxic perturbations
to adversaries to repair them. Although it doesn’t seem to be an intuitive thought, it is motivated
by empirical observations that malicious perturbations rarely destroy the fundamental semantics
of a natural example. In other words, these adversaries can be easily repaired by distracting the
objective model from malicious perturbations. We validate a simple implementation of perturba-
tion defocusing with preliminary experiments: simply masking the malicious perturbations, as in
Figure 1. The experimental results in Table 1 show that masking malicious perturbations repairs
a considerable number of adversaries (achieves up to 91.05% restored accuracy on the Amazon
Polarity dataset). Unfortunately, the positions of malicious perturbations are unknown in real
adversarial defense. We employ adversarial attackers to perform perturbation defocusing as an al-
ternative. If an adversary is identified, we obtain its perturbed prediction and keep attacking this
adversary until the new prediction differs from the former. In this way, the malicious perturbations

1https://huggingface.co/spaces/anonymous8/RPD-Demo
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Original: This is among the year's most intriguing explorations of alientation.

Adversary: This is among the year's most intriguing scrutinize of alientation.

Defocusing: This is among the year's most intriguing [MASK] of alientation.

Figure 1: A real example of perturbation defocusing, which masks the perturbed words to re-
pair an adversary. “[MASK]” denotes the mask token. This virtual adversary is generated by
TEXTFOOLER.

are defocused without knowing the positions of malicious perturbations. Because adversarial at-
tackers have large search spaces of non-toxic perturbations, almost all malicious perturbations in
adversaries can be defocused in our experiments. However, there is a prerequisite that the adver-
saries must be precisely identified to prevent oriented attackers from attacking natural examples
(Bao et al., 2021) in perturbation defocusing. Hopefully, although existing adversarial attackers
emphasize the naturalness of adversaries (Zang et al., 2020; Li et al., 2021b; Le et al., 2022), our
study suggests that PLM-based models can efficiently distinguish the adversaries (refer to Figure 4),
provided that the adversarial detection objective is involved in fine-tuning processing. Thereafter,
we propose reactive perturbation defocusing (RPD) based on perturbation defocusing and adversary
detection that alleviates performance sacrifice by only repairing detected adversaries.

We deploy RPD on a PLM-based model, and it can be extended to other NLP models. We evaluate
RPD on three text classification datasets under challenging adversarial attackers. The experimental
results demonstrated that RPD is capable of repairing ∼ 97%+ of identified adversaries without
observable performance sacrifice (under ∼ 2%) on clean data (please refer to Table 6). In summary,
our contributions are mainly as follows:

a) We propose perturbation defocusing to supersede feature reconstruction-based methods for ad-
versarial defense, which almost repairs all correctly identified adversaries.

b) We integrate an adversarial detector with a PLM-based classification model. Based on multi-
attack adversary sampling, the adversarial detector can efficiently detect most of the adversaries.

c) We evaluate RPD on multiple datasets, PLMs and adversarial attackers. The experimental results
indicate that RPD has an impressive capacity to detect and repair adversaries without sacrificing
clean performance.

2 RELATED WORKS

Table 1: The experimental performance of
masking-based perturbation defocusing on adver-
saries.

Dataset
Clean

Attacker
Attacked Restored

Acc.(%) Acc.(%) Acc.(%)

SST2 92.03

BAE 45.96 59.80
PWWS 29.82 74.37

TEXTFOOLER 22.02 72.27

Amazon Polarity 96.36

BAE 56.65 78.58
PWWS 19.40 81.25

TEXTFOOLER 20.80 91.07

AGNews 91.35

BAE 81.80 71.85
PWWS 56.55 86.99

TEXTFOOLER 32.95 83.33

Existing adversarial defense studies can be
coarsely classified into three types: adversar-
ial training-based approaches (Miyato et al.,
2017; Zhu et al., 2020; Ivgi & Berant, 2021);
context reconstruction-based methods (Pruthi
et al., 2019; Liu et al., 2020b; Mozes et al.,
2021; Keller et al., 2021; Chen et al., 2021; Xu
et al., 2022; Li et al., 2022; Swenor & Kalita,
2022); and feature reconstruction-based meth-
ods(Zhou et al., 2019; Jones et al., 2020; Wang
et al., 2021a). In the meantime, some re-
search(Wang et al., 2021b) explores hybrid de-
fenses against adversarial attacks. Neverthe-
less, there are some problems that remain with the existing methods. For example, due to the issue
of catastrophic forgetting (Dong et al., 2021), adversarial training has been shown to be inadequate
for improving the robustness of PLMs in fine-tuning. On the contrary, it significantly increases the
cost of objective model training. For context reconstruction (e.g., word substitution and translation-
based reconstruction), these methods sometimes fail to identify semantically repaired adversaries
or have a tendency to introduce new malicious perturbations (Swenor & Kalita, 2022). In recent
studies, it has been recognised that feature (e.g., embedding) space reconstruction-based approaches
are more successful than context reconstruction methods like word substitution (Mozes et al., 2021;
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Bao et al., 2021). However, these feature reconstruction methods may have difficulty repairing typo
attacks (Liu et al., 2020a; Tan et al., 2020; Jones et al., 2020), sentence-level attacks(Zhao et al.,
2018; Cheng et al., 2019), and other unknown attacks. These studies usually limit the experiments
to word substitution-based attacks (typically Genetic Algorithm (Alzantot et al., 2018)). In con-
trast to prior efforts, we argue that reconstruction is not necessary for adversarial repair. Because
the fundamental semantics of an adversary generally remains in the adversary, we just need to dis-
tract objective models’ attention from malicious perturbations. Another problem with the existing
methods is that they neglect the importance of adversary detection and assume that all instances are
adversaries, resulting in numerous unsuccessful defenses. Compared to existing works, our study
focuses on reactive adversarial defense and addresses the crux of performance sacrifice brought on
by adversarial defense.

3 METHOD
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Figure 2: The framework of RPD. The dotted lines with solid arrow means the steps depends on the
existence of an adversary, while the dotted lines with triangles denotes the objectives for multitask
training. In addition to standard classification objective, RPD contains an adversary detection objec-
tive and a detached adversarial training objective.

We illustrate the framework of RPD in Figure 2, which consists two phases: multi-objective fine-
tuning and adversarial repair. In Phase #1, we fine-tune RPD based on three training objectives,
including the original classification objective. Next, we introduce each objective in following sec-
tions.

3.1 ADVERSARY DETECTOR TRAINING

Since we train the adversary detector using supervise learning, we will introduce how to sample
adversaries by adversarial attackers.

3.1.1 TEXT ADVERSARIAL ATTACK

We focus on word-level adversarial attacks in this work. Let x = (w1, w2, · · · , wn) be a natural
sentence, where wi, 1 ≤ i ≤ n, denotes a word; y is the ground truth label. The word-level
attackers replace the original words with their words (e.g., synonyms) to fool the objective model.
For example, substituting wi with ŵi will generate an adversary: x̂ = (w1, ŵ2, · · · , wn), where ŵi

is a alternative of wi. The objective model F predict x̂ as follows:

ŷ = argmaxF (·|x̂) , (1)
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where ŷ ̸= y if x̂ is a successful adversaries. The perturbations in x̂ are expected to be human-
imperceptible. However, most of existing attackers tend to introduce grammatical, syntactical errors
to a certain extent, while the features of these errors in x̂ can be easily modeled by a PLM.

3.1.2 MULTI-ATTACK ADVERSARY SAMPLING

Based on the open-source adversarial attack methods (i.e., attacker), we perform multi-attack sam-
pling (line 2− 12 in Algorithm 1) to train the adversary detector. Let Dnat be the natural examples.
∀x ∈ Dnat, we try to find a successful adversary as follows:

x̂, ŷ ←
k∑

i=1

Ai(Fs, x, y), (2)

where ← indicates the adversary search process; x̂, ŷ are the perturbed sentence and label. Note
that if the attack failed, ŷ = y but x̂ ̸= x. Ai, 1 ≤ i ≤ k, is a attacker for adversary sampling; k
is the number of sampling attackers. Fs is the surrogate classifier trained on natural examples (line
6 in Algorithm 1). The label ỹ of an example in RPD contains 3 sub-labels (for the objectives of
classification (Lcls), detached adversarial training(Ladv), adversarial detection(Ldet), respectively).
In the sampling process, ỹ is conditioned on the attack result (lines 6− 9 in Algorithm 1):

ỹ :=

{
(ϕ, y, 0) , ŷ = y
(y, ϕ, 1) , ŷ ̸= y

, (3)

where ϕ indicates the sub-label is neglected in cross-entropy loss calculation. All adversaries and
natural examples are fused to train an adversary detector. We also conduct experiments on single-
attack sampling-based RPD (denoted as S-RPD) to evaluate the significance of multi-attack sam-
pling (please refer to Table 5).

3.1.3 ADVERSARY DETECTOR OBJECTIVE

After adversary sampling, we fit the adversary detector2 on natural examples and sampled adver-
saries. Let H be the representation of an example encoded by a PLM, RPD calculate the adversarial
distribution as follows:

ι̂i =
exp (pool(H)i)∑2
j=1 exp (pool(H)j)

, (4)

where ι̂i, 1 ≤ i ≤ 2, indicates whether a sentence has been perturbed; pool is the head pooling of
PLM. The adversarial detection objective can be formulated as:

Ldet = −
2∑

i=1

ι̂i log ιi, (5)

where ιi denotes the true adversarial label. Because the adversary detector is a binary text classifier,
we adopt widely used cross-entropy to minimize Ldet.

3.2 DETACHED ADVERSARIAL TRAINING

We employ adversarial training in RPD as it has been recognized to be able to improve robust-
ness (Miyato et al., 2017; Zhu et al., 2020; Ivgi & Berant, 2021). However, we find that traditional
adversarial training may degenerate performance on natural examples. Hence, we propose the de-
tached adversarial training objective to simultaneously mitigate performance sacrifice and improve
objective model’s robustness. The detached adversarial training objective Ladv can be formulated
as:

minE(x,y)∼Dnat

[
max

x̂,ŷ←A(x,y)
Ladv(x̂, y)

]
. (6)

More specifically, the standard classifier only learns to classify natural examples, while the adversar-
ial training objective only involves the adversaries. To clarify each step, we describe the training of
RPD in Algorithm 1. The efficacy analysis of the detached adversarial training objective is available
in Table 9.

2Generally, an independent adversarial detection method also works in RPD, but the PLM-based adversary
detector is simple and efficient.
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3.3 STANDARD CLASSIFICATION TRAINING

The last objective Lcls aims at standard classification. We employ cross-entropy to optimize the
standard classifier as following:

Lcls = −
C∑
1

ŷi log yi, (7)

Lrpd := Lcls + αLdet + βLadv + λ∥Θ∥2, (8)
where ŷi, 1 ≤ i ≤ C, is the prediction of classification; C indicates the classes number. Lrpd is the
overall objective of RPD. α and β are the objective weights. In this work, α and β are set to 5 by
grid searching. λ = 10−5 is the L2 regularization parameter; Θ denotes the parameter set of RPD.

Algorithm 1: Adversarial sampling and
training of RPD

Require: Dnat, attackers {A}ki=1
Output : RPD model FR for adversary

detection
1 Train a surrogate classifier Fs on Dnat

for adversaries sampling;
2 B ← ∅;
3 for i← 1 to k do
4 forall (x, y) ∈ Dnat do
5 x̂, ŷ ← Ai(Fs, x, y);
6 if ŷ ̸= y then
7 B := B

⋃
{(x̂, (ϕ, y, 1))};

8 end
9 B := B

⋃
{(x, (y, ϕ, 0))};

10 end
11 end
12 Train FR on B using Lrpd;
13 return FR

Algorithm 2: Adversarial detection and
defense based on RPD
Input : Input examples De; attacker

APD for perturbation
defocusing

Output: The Repaired OutputsR
1 R ← ∅;
2 forall xe ∈ De do
3 ŷ, ι̂ = FR(xe);
4 if ι̂ == 1 then
5 xr ← APD(xe, ŷ);
6 ŷr, ι̂r = FR(xr);
7 R := R

⋃
{ŷr};

8 end
9 else

10 R := R
⋃
{ŷ};

11 end
12 end
13 returnR

3.4 REACTIVE PERTURBATION DEFOCUSING

In the Phase #2, RPD tries to repair the identified adversaries via perturbation defocusing (Al-
gorithm 2). Assuming that the x̂, ι̂ ← FR(x̃) denote the classification distribution and adversarial
detection distribution from RPD. If ι̂ (i.e., ι̂ is 1) indicates an adversary, the repaired example xr is
derived by:

xr ← APD(x̃, ŷ), (9)
where APD is an adversarial attacker performing perturbation defocusing. Finally, the repaired
adversaries’s output ŷr ← FR(xr) (lines 6 − 7 in Algorithm 2). Note that the adversaries repaired
by perturbation defocusing are still perturbed examples, but no more perturbation defocusing is
needed for repaired adversaries.

4 EXPERIMENTS

4.1 DATASETS AND EVALUTAION METRICS

To validate the efficacy of RPD, we conduct experiments on three classification datasets 3:
SST24, Amazon Polarity5 and AGNews6 datasets, respectively. SST2 and Amazon

3Note that attacking the PLM-based models is very expensive. In this case, we use the subsets of Amazon
Polarityand AGNews datasets in our experiments, the numbers of examples in the these subsets are 10K.
We submit the datasets as supplementary materials for reproducible evaluation.

4https://huggingface.co/datasets/sst2
5https://huggingface.co/datasets/amazon_polarity
6https://huggingface.co/datasets/ag_news
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Dataset Categories Number of Examples
Training Set Validation Set Testing Set Sum

SST2 2 6920 872 1821 9613
Amazon Polarity 2 8000 0 2000 10000

AGNews 4 7000 1000 2000 10000

Table 2: The details of experimental datasets used for evaluating RPD. We further split the original
training set into training and validation subsets for the AGNews dataset.

Polarity datasets are binary sentiment classification datasets, while AGNews is a news classi-
fication dataset containing 4 classes. Table 2 shows the dataset details. For detailed evaluation
metric clarification, please refer to Appendix A.1.3.

4.2 EXPERIMENTS SETTING

The adversarial defense experiments involve attack methods and PLM7-based classifiers. We adopt
the open-source implementations of the adversarial attack methods from TextAttack8 as candidate
attackers, following the original attack settings. We use BERT and DEBERTA as objective classifiers
to evaluate the adversarial repair performance, while DEBERTA is the base objective model used in
all ablation experiments. In Table 3, we evaluate adversarial detection and defense performance
across the whole testing set. However, we only evaluate 500 examples in the research questions due
to resource limitation. For detailed hyper-parameter settings, please refer to A.1.1.

4.3 ADVERSARIAL ATTACKERS

The attacker for perturbation defocusing is PWWS in this work, because it hardly corrupts the se-
mantics in the repaired adversaries compared to BAE and is slightly faster than TEXTFOOLER. The
attackers used for adversarial sampling are BAE, PWWS and TEXTFOOLER. We briefly introduce
these attackers as follows:

PWWS (Ren et al., 2019) is a synonym-substitution based adversarial attack method. PWWS combines
both the word saliency and the classification probability to perform word replacement.

BAE (Garg & Ramakrishnan, 2020) replaces and inserts tokens according to alternatives generated
by a masked language model (MLM). To identify the essential words, BAE employs a deletion-
based measure of word significance.

TEXTFOOLER (Jin et al., 2020) takes more constraints (e.g., prediction consistency, semantic sim-
ilarity and fluency) into consideration in generating adversaries. TEXTFOOLER adopts a gradient-
based word importance measure to locate and perturb the important words.

The other attackers used in ablation experiments are: PSO (Zang et al., 2020), IGA (Wang et al.,
2021a), DEEPWORDBUG (Gao et al., 2018), CLARE (Li et al., 2021a).

4.4 COMPARED METHODS

RPD: The baseline of RPD that adopts multi-attack sampling based on BAE, PWWS and
TEXTFOOLER. The main experimental results of RPD are listed in Table 3.

S-RPD: The variant of RPD that samples adversaries from a targeted single attack. We evaluate the
transferability of S-RPD and show the results in Table 4 and Table 8.

RAT: RAT has an adversarial classifier based on reactive adversarial training. RAT predicts adver-
saries using an adversarial classifier and predicts natural examples using a standard classifier. The
number of adversaries used in training RAT is the same as the number of RPD’s training examples.

We also compare the adversarial defense performance of RPD with other state-of-the-art methods,
such as ASCC and RIFT. Please refer to Appendix A.3 for more details.

7We use transformers to implement RPD: https://github.com/huggingface/transformers
8https://github.com/QData/TextAttack
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4.5 MAIN RESULTS

Table 3: The adversarial detection and defense performance of RPD on different objective models;
“Acc.” is an abbreviation for Accuracy. The results are the medians in five runs.

Dataset
Target Clean

Attacker
Attacked

Defender
Detection Defense Restored

Model Acc.(%) Acc.(%) Acc.(%) Acc.(%) Acc.(%)

SST2

BERT 91.76
BAE 38.93

RPD

66.86 65.02 70.40
PWWS 14.44 90.50 90.50 83.14

TEXTFOOLER 6.21 90.81 89.90 81.82

DEBERTA 94.73

BAE 45.96 70.55 69.07 77.70
PWWS 29.82 95.09 94.86 91.21

TEXTFOOLER 22.02 94.33 92.74 89.13
BAE 45.96

RAT
67.55 12.05 43.66

PWWS 29.82 94.63 15.87 34.65
TEXTFOOLER 22.02 91.76 19.61 28.17

Amazon Polarity

BERT 94.55

BAE 44.00

RPD

79.15 79.15 88.60
PWWS 4.10 95.64 95.64 91.85

TEXTFOOLER 1.25 94.94 94.94 91.60

DEBERTA 96.20

BAE 56.65 86.22 86.22 91.55
PWWS 19.40 96.25 96.25 94.65

TEXTFOOLER 20.80 95.66 95.66 92.65
BAE 56.65

RAT
89.39 33.61 75.90

PWWS 19.40 96.57 29.60 48.20
TEXTFOOLER 20.80 95.97 38.43 53.20

AGNews

BERT 91.50

BAE 74.80

RPD

43.82 43.07 83.95
PWWS 28.55 91.67 89.34 87.65

TEXTFOOLER 10.50 89.63 87.01 84.10

DEBERTA 92.12

BAE 81.80 87.66 85.15 89.15
PWWS 56.55 97.30 95.89 90.95

TEXTFOOLER 32.95 93.27 91.37 88.40
BAE 81.80

RAT
88.68 20.71 73.75

PWWS 56.55 97.29 18.75 58.25
TEXTFOOLER 32.95 90.86 34.33 59.80

The experimental findings in Table 3 show how well RPD is able to identify and defend against
adversaries. We provide both the standard classification performance and the accuracy under adver-
sarial attack of the objective models in order to intuitively demonstrate the efficacy of adversarial
detection and repair. As demonstrated in existing studies (Jin et al., 2020; Garg & Ramakrish-
nan, 2020), the objective models’ performance is generally significantly decreased by adversarial
attackers, particularly on the SST2 and Amazon Polarity datasets. For example, BERT’s per-
formance can be decreased by up to 90%+, and its accuracy on the Amazon Polarity dataset
is only 1.25% at its worst(TEXTFOOLER). In general, DEBERTA is more robust than BERT in
the majority of circumstances; its worst accuracy on Amazon Polarity dataset is 19.4%(under
PWWS attack). In a nutshell, adversarial attacks continue to be a threat to existing PLMs. Despite
having more classes, AGNews only sacrifices 11.32% and 16.7% accuracy when attacked by BAE,
which means the PLM’s robustness varies depending on the dataset domain.

Overall, RPD’s ability in terms of adversarial detection and repair is encouraging. Among all the
datasets, RPD based on multi-attack sampling performs impressively, demonstrating that PLMs (es-
pecially DEBERTA) are capable of recognising adversaries. Meanwhile, compared to previous ad-
versarial defense studies, the regression of standard classification and adversarial detection error rate
on natural examples are as low as ∼ 1% and ∼ 10%, respectively (please refer to Appendix A.2 for
details). This reduces mis-repairs on natural examples. The adversarial defense performance based
on perturbation defocusing depends on the accuracy of adversarial detection, which means detection
accuracy ≥ defense accuracy. However, because the accuracy on natural examples suffers no sig-
nificant loss, in the case of the worst detection accuracy (43.82% on AGNews dataset) of BERT, the
restored accuracy (83.95%) is still better than BERT without defense (74.8%). On the one hand, our
experimental results show reactive perturbation defocusing is able to repair ∼ 97%+ of correctly
identified adversaries without clean performance sacrifice. On the other hand, RPD can be adapted
to other models provided that the adversary detectors are deployed.

To our best knowledge, there is no reactive defense counterpart that can be directly compared with
RPD. Hence, we implement RAT based on reactive adversarial training. It can be observed that
reactive adversarial training has worse performance of adversarial repair comapred to RPD, with
∼≤ 30% defense accuracy and ∼≤ 60% restored accuracy in most situations. This means that
RAT can hardly handle challenging adversarial attacks, especially while the number of adversaries
is limited. Due to resource limitations, we show a part of the experimental results compared with
other popular proactive adversarial defense methods in Appendix A.3.
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4.6 RESEARCH QUESTIONS

We discuss more findings about RPD by answering the following research questions.

RQ1: DOES PERTURBATION DEFOCUSING REALLY REPAIR ADVERSARIES?

Our main experimental results show that perturbation defocusing is able to repair 97%+ of correctly
discriminated adversaries. To explain why PD works, we investigate the similarity between adver-
saries and repaired adversaries. We randomly select 500 natural examples from SST2, Amazon
Polarity and AGNews datasets and obtain the adversaries and repaired adversaries. We encode
these examples and calculate the output cosine similarity between adversary-natural example pairs
and repaired adversary-natural example pairs. We plot the cumulative distributions of similarity
scores on the SST2 dataset in Figure 3 (the visualizations of other datasets are available in Fig-
ure 5). The cumulative distributions on the SST2 dataset show the repaired adversaries resemble
natural examples from the perspective of predictions (∆rep ≥ 0.92), while the adversaries generally
have ∆rep ≤ −0.85. This indicates the adversaries repaired by perturbation defocusing contain
similar semantics to natural examples.
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Figure 3: The cumulative distribution of output’s cosine similarity scores towards natural examples.
∆adv and ∆rep indicate the average similarity scores of adversaries and repaired adversaries.

We also visualize the similarity of the feature space. We encode the above examples and visualize the
representations via t-SNE in Figure 4(the visualizations of other datasets are available in Figure 6).
It can be observed that the repaired adversaries are still discriminateable by PLMs because their
feature space is similar to the adversaries. However, we note that more repaired adversaries lie
in the natural example space compared to adversaries, which means repaired adversaries are more
similar to natural examples in the feature space to some extent.
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Figure 4: The cluster visualizations of natural examples, adversaries and repaired adversaries via
t-SNE.

RQ2: CAN RPD WORKS ON UNKNOWN ADVERSARIAL ATTACKS?

The most challenging obstacle for adversarial detection and repair methods is working on unknown
attacks. Because RPD relies on a simple PLM-based adversarial detector to identify adversaries, we
need to know whether it can distinguish adversaries generated by unknown adversarial attackers.
In this case, we evaluate the RPD’s performance on unknown attacks. The results are available in
Table 4(we also evaluate the transferability of S-RPD in Table 8). The experimental results in Ta-
ble 4 show that even though trained on BAE, PWWS and TEXTFOOLER, RPD is able to distinguish
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unknown adversaries, especially for PSO and DEEPWORDBUG. For example, the accuracy of re-
paired adversaries is promising (97.5% and 90.48% on SST2 and Amazon Polarity datasets).
However, there is a significant defense performance drop in the adversaries generated by CLARE. In
conclusion, RPD can identify and repair unknown adversaries.

Table 4: The adversarial detection and defense performance of RPD on unknown attacks.
Dataset

Clean
Attacker

Attacked Detection Defense Restored
Acc.(%) Acc.(%) Acc.(%) Acc.(%) Acc.(%)

SST2 94.73

PSO 7.95 87.50 87.50 82.61
IGA 7.52 92.11 88.34 73.33

DEEPWORDBUG 22.22 98.44 87.50 90.00
CLARE 1.39 62.50 59.37 57.00

Amazon Polarity 96.20

PSO 5.76 90.48 90.48 91.55
IGA 14.91 92.31 92.31 94.65

DEEPWORDBUG 43.43 87.04 85.19 86.87
CLARE 3.25 58.82 58.82 53.33

AGNews 92.12

PSO 12.07 63.46 59.62 89.15
IGA 27.51 40.74 40.74 90.95

DEEPWORDBUG 45.00 92.73 89.09 85.00
CLARE 8.46 61.54 61.54 50.00

RQ3: DOES MULTI-ATTACK SAMPLING OUTPERFORM SINGLE-ATTACK SAMPLING?

We find that multi-attack sampling may assist adversarial detectors in differentiating between hostile
cases. In order to verify our idea, we perform ablation experiments based on single-attack sampling
(i.e., S-RPD) and provide the results in Table 5. In the majority of instances, the detection accuracy
of S-RPD suffers large decreases (up to 12.6%). Consequently, the repair performance demon-
strates up to 18.21% regression. We attribute the degraded performance of adversarial detection to
two factors: a) single-attack sampling leads to fewer training data for the adversarial detector; b)
multi-attack sampling may generate more diverse adversarial patterns than single-attack sampling.
In summary, defense accuracy and restored accuracy show that single-attack sampling limits RPD’s
performance.

Table 5: The adversarial detection and defense performance of S-RPD under different attackers and
PLMs. The “Diff” measures the performance change compared to RPD.

Dataset
Target Clean

Attacker
Attacked Detection Defense Restored

Model Acc.(%) Acc.(%) Acc.(%) Diff.(%) Acc.(%) Diff.(%) Acc.(%) Diff.(%)

SST2

BERT 91.76
BAE 38.93 55.10 −11.76 53.53 −11.49 64.91 −5.49
PWWS 14.44 79.08 −11.42 78.95 −11.55 74.63 −8.51

TEXTFOOLER 6.21 80.39 −10.42 78.80 −11.10 74.08 −7.74

DEBERTA 94.73

BAE 45.96 61.42 −9.13 59.94 −9.13 72.87 −4.83
PWWS 29.82 86.59 −8.50 86.45 −8.41 84.68 −6.53

TEXTFOOLER 22.02 87.59 −6.74 85.42 −7.32 85.67 −3.46

Amazon Polarity

BERT 94.55
BAE 44.00 66.09 −13.06 66.09 −13.06 79.80 −8.80
PWWS 4.10 92.45 −3.19 92.45 −3.19 88.90 −2.95

TEXTFOOLER 1.25 87.95 −6.99 87.95 −6.99 84.75 −6.85

DEBERTA 96.20

BAE 56.65 93.56 7.34 93.56 7.34 92.75 1.20
PWWS 19.40 96.72 0.47 95.33 −0.92 88.80 −5.85

TEXTFOOLER 20.80 96.49 0.83 96.49 0.83 93.95 1.30

AGNews

BERT 91.50
BAE 74.80 25.61 −18.21 24.28 −18.79 72.90 −11.05
PWWS 28.55 81.76 −9.91 80.96 −8.38 76.65 −11.00

TEXTFOOLER 10.50 76.60 −13.03 75.35 −11.66 71.50 −12.60

DEBERTA 92.12

BAE 81.80 87.37 −0.29 84.04 −1.11 84.00 −5.15
PWWS 56.55 91.67 −5.63 89.34 −6.55 87.65 −3.30

TEXTFOOLER 32.95 89.63 −3.64 87.01 −4.36 84.10 −4.30

5 CONCLUSION

Existing approaches for adversarial defense generally result in performance sacrifices on natural
examples. In this study, we propose the RPD based on perturbation defocusing that alleviates per-
formance sacrifice by only repairing identified adversaries. Perturbation defocusing exploits ad-
versarial attacks to distract objective models from malicious perturbation and has been shown to
repair up to ∼ 97% of correctly identified adversaries among several challenging attackers. Pertur-
bation defocusing is a new perspective for future adversary repair research, which may supersede
the reconstruction-based methods. However, the adversarial defense performance of RPD depends
on the accuracy of adversarial detection, which limits RPD’s performance. In the future, we will
explore other adversarial detection methods and explicit constraints of semantic similarity in pertur-
bation defocusing to improve RPD’s defense robustness.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 HYPER-PARAMETER SETTINGS

We use the following configurations to fine-tune classifiers:
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1. The learning rates for both BERT and DEBERTA are 2× 10−5.
2. The batch size and maximum sequence modeling length are 16 and 80, respectively.
3. The dropouts are set to 0.5 for all models.
4. The loss functions of all objectives are cross-entropy.
5. The objective models and RPD models are trained with 5 epochs.
6. The optimizer used for fine-tuning objective models is AdamW.

A.1.2 EXPERIMENT ENVIRONMENT

The experiments are conducted on Cent OS 7, which is equipped with an RTX 3090 GPU and a
Core i-12900k. We use PyTorch 1.12 and a revised version of TextAttack based on v0.3.7.

A.1.3 METRIC CLARIFICATIONS

The clean accuracy and attacked accuracy denote the objective model’s original (i.e., clean) perfor-
mance and performance under attacks. The detection accuracy and defense accuracy measure the
RPD’s performance in adversarial detection and repair, which only measure adversaries. As a global
evaluation, the restored accuracy denotes the objective model’s performance on the attacked dataset
(i.e., replacing the natural examples with their adversaries in the dataset if their adversaries exist.).
We terminate an attack if it takes longer than 10 minutes and ignore the example in the metrics
calculation.

A.2 PERFORMANCE ON CLEAN DATA

The adversarial defense performance depends on the adversarial detection accuracy. In this case,
we evaluate the adversarial detection error rate and the classification accuracy on clean data with-
out defense. From the experimental results listed in Table 6, we observe that RPD achieves up
to 90+ adversarial detection accuracy, which indicates if we use RPD as a regular classifier, the
original performance will not significantly decrease. On the other hand, the classification accu-
racy of adversaries also benefits from the adversarial detection training objective, e.g., SST2 and
AGNews datasets.

Table 6: The performance of RPDon clean data
Dataset

Target Clean
Attacker

Detection Classification
Model Acc.(%) Acc.(%) Error(%) Acc.(%) Diff.(%)

SST2 DEBERTA 94.73

BAE 95.00 5.00 95.11 0.38
PWWS 97.31 2.69 95.06 0.33

TEXTFOOLER 97.03 2.97 95.99 1.26
Multi-attack 90.33 9.67 94.89 0.16

Amazon Polarity DEBERTA 96.20

BAE 95.80 4.20 95.85 −0.35
PWWS 99.01 0.99 96.92 0.72

TEXTFOOLER 98.15 1.85 96.20 0.00
Multi-attack 95.93 4.07 95.67 −0.53

AGNews DEBERTA 92.12

BAE 98.85 1.15 90.95 −1.17
PWWS 99.25 0.75 92.50 0.38

TEXTFOOLER 98.40 1.60 92.45 0.33
Multi-attack 97.60 2.40 92.70 0.58

A.3 COMPARISON WITH ASCC

From the perspective of adversarial repair, RPD achieves impressive results compared with exist-
ing methods (e.g., ASCC). The experimental results are available in Table 7. The experimental
results show that perturbation defocusing which distracts the objective model from the malicious
perturbations achieves comparable performance. We explain why perturbation defocusing works
for adversarial defense in Figure 3.
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Table 7: The adversary defense performance comparison on IMDB dataset between RPD and other
state-of-the-art defense methods under GA attack. ∗ means that due to computation resource limi-
tation, we sampled 100 adversaries generated by GA to train RPD , which is not enough (e.g., the
whole training set contains 8000 examples).

Method Dataset Model Defense Acc.(%)

ASCC IMDB BERT 70.20
RIFT IMDB BERT 77.20
RPD∗ IMDB BERT 81.31
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Figure 5: The cumulative distribution of output’s cosine similarity scores towards natural examples.
∆adv and ∆res indicate the average cosine similarity scores of adversaries and defocused adver-
saries.

A.4 FULL VISUALIZATIONS OF RQ1

A.5 TRANSFER EXPERIMENTS OF S-RPD

We show the performance of RPD in transfer experiments in Table 8. Interestingly, the stronger the
naturalness constraints cause the worse transfer ability of the adversarial detectors, e.g., PWWS and
TEXTFOOLER suffer from up to 62.7% and 62.75% adversarial detection performance and ad-
versarial repair performance drop on the BAE-based adversaries, especially on the SST2 dataset.
Therefore, we argue that it is imperative to train the detector to simultaneously consider attackers
with different constraint strengths.
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Figure 6: The t-SNE cluster visualizations of natural examples, adversaries and restored examples.
The average cosine similarity scores of the clusters are indicated below the figures.

Table 8: The transferred performance of single attack-based S-RPD models for different attackers.
Dataset

Source Target detection accuracy(%) defense accuracy(%) restored accuracy(%)
Attack Attack Ori. (%) Trans.(%) Diff.(%) Ori. (%) Trans.(%) Diff.(%) Ori. (%) Trans.(%) Diff.(%)

SST2

BAE
PWWS

61.56
77.68 16.12

60.08
77.51 17.43

72.93
80.62 7.69

TEXTFOOLER 80.82 80.82 78.70 78.70 79.13 6.20

PWWS
BAE

86.59
23.89 −62.70

86.45
23.70 −62.75

84.68
50.69 −33.99

TEXTFOOLER 78.82 78.82 77.60 77.60 76.88 −7.80

TEXTFOOLER
BAE

87.59
29.70 −57.89

85.42
29.00 −56.42

85.67
57.00 −28.67

PWWS 85.80 85.80 85.71 85.71 86.60 0.93

Amazon Polarity

BAE
PWWS

93.76
92.69 −1.07

93.76
92.61 −1.15

92.85
90.95 −1.90

TEXTFOOLER 87.25 87.25 87.25 87.25 86.90 −5.95

PWWS
BAE

96.25
50.00 −46.25

96.25
50.00 −46.25

94.65
83.55 −11.10

TEXTFOOLER 92.14 92.14 92.14 92.14 91.75 −2.90

TEXTFOOLER
BAE

96.49
50.57 −45.92

96.49
50.57 −45.92

91.95
83.15 −8.80

PWWS 94.10 94.10 94.10 94.10 92.30 0.35

AGNews

BAE
PWWS

87.14
91.40 4.26

83.81
89.74 5.93

83.90
83.85 −0.05

TEXTFOOLER 63.05 63.05 62.13 62.13 62.30 −21.60

PWWS
BAE

96.72
67.69 −29.03

95.33
64.47 −30.86

88.80
80.90 −7.90

TEXTFOOLER 87.90 87.90 85.71 85.71 80.45 −8.35

TEXTFOOLER
BAE

94.60
62.15 −32.45

91.63
59.51 −32.12

85.40
80.95 −4.45

PWWS 97.33 97.33 96.23 96.23 89.55 4.15

RQ4: DOES DETACHED ADVERSARIAL TRAINING OBJECTIVE WORK IN RPD?

To alleviate the performance sacrifice caused by adversarial training on clean data, we adopt the
detached adversarial training objective. To verify its feasibility, we employ traditional adversarial
training in RPD. The results in Table 9 show that traditional adversarial training works for perturba-
tion defocusing, while the performance drop on clean data is inevitable. We also evaluate ablated
RPD without adversarial training objective; the experimental results show that the detection accu-
racy and restored accuracy increases by ≈ 1% − 2%, this is because the adversarial detection
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objective attracts more attention while β = 0. However, restored accuracy drops ≈ 2% − 3%.
Therefore, we believe that detached adversarial training is effective in RPD.

Table 9: The experimental results of RPD based on ensemble adversarial training objective.
Dataset

Target Clean
Attacker

Attacked Detection Defense Restored
Model Acc.(%) Acc.(%) Acc.(%) Diff.(%) Acc.(%) Diff.(%) Acc.(%) Diff.(%)

SST2 DEBERTA 94.73
BAE 45.96 70.97 0.42 68.28 −0.79 77.00 −0.70
PWWS 29.82 95.72 0.63 95.65 0.79 92.04 0.83

TEXTFOOLER 22.02 92.67 −1.66 90.33 −2.41 86.99 −2.14

Amazon Polarity DEBERTA 96.20
BAE 56.65 82.86 −3.36 82.86 −3.36 89.33 −2.22
PWWS 19.40 98.32 2.07 98.32 2.07 93.20 −1.45

TEXTFOOLER 20.80 95.40 −0.26 95.40 −0.26 91.12 −1.53

AGNews DEBERTA 92.12
BAE 81.80 80.95 −6.71 80.95 −4.20 89.06 −0.09
PWWS 56.55 96.15 −1.15 96.15 0.26 88.94 −2.01

TEXTFOOLER 32.95 90.64 −2.63 90.15 −1.22 88.00 −0.40

A.6 DEPLOYMENT DEMO

We deploy an anonymous demonstration of RPD on Huggingface Space9, and we provide two
examples of this demonstration in Figure 7 to show the usage of RPD. In this demonstration, the
user may either enter a new phrase with a label or randomly choose an example from the dataset
supplied in order to execute an attack, adversarial detection, and adversarial repair.

9https://huggingface.co/spaces/anonymous8/RPD-Demo
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Figure 7: The demo snapshots of adversary detection and defense built on RPD for defending against
multi-attacks.
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