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Abstract

Language model (LM) post-training (or alignment) involves maximizing a reward function
that is derived from preference annotations. Direct Preference Optimization (DPO) is a
popular offline alignment method that trains a policy directly on preference data without
the need to train a reward model or apply reinforcement learning. However, the empirical
evidence suggests that DPO typically assigns implicit rewards that overfit, and trend towards
infinite magnitude. This frequently leads to degenerate policies, sometimes causing even
the probabilities of the preferred generations to go to zero. In this work, we analyze this
phenomenon and propose distillation to get a better proxy for the true preference distribution
over generation pairs: we train the LM such that its induced implicit reward, i.e., the scaled
log-likelihood ratio of the model to the reference model, matches an explicit reward model
trained on the preference data. Moreover, to account for uncertainty in the reward model we
are distilling from, we optimize against a family of reward models that, as a whole, is likely to
include at least one reasonable proxy for the preference distribution. Our results show that
distilling from such a family of reward models leads to improved robustness to distribution
shift in preference annotations, while preserving the simple supervised nature of DPO.

1 Introduction

Language model (LM) post-training (or alignment) aims to steer language model policies towards responses
that agree with human preferences. Early state-of-the-art approaches have focused on reward learning from
human feedback. In this paradigm, preference annotations are used to train reward models, which then guide
the optimization of the language model policy through online reinforcement learning (an approach broadly
referred to as RLHF). Recent research on offline “Direct Preference Optimization” (DPO; Rafailov et al., 2023)
and extensions thereof (Azar et al., 2024; Tang et al., 2024; Meng et al., 2024), however, has demonstrated
that it is possible to directly optimize policies on the preference data, which (a) bypasses the need for a
separate reward model, and (b) uses standard supervised techniques rather than online reinforcement learning,
which can be more difficult to optimize. These advantages have led to the the adoption of offline alignment,
and in particular offline DPO, as the post-training algorithm of choice in both smaller-scale academic settings
as well as larger-scale projects such as Llama 3 (AI@Meta, 2024) and OLMo (Groeneveld et al., 2024).

While this direct approach to preference optimization is attractive in its simplicity and efficiency, it also raises
questions about the effectiveness and robustness of the resulting policies—as well as the broader utility of an
explicit reward model beyond online reinforcement learning. In this paper, we argue that explicit reward
modeling can, in fact, offer substantial practical and theoretical benefits. In particular, we theoretically show
that relying solely on the preference data can be a precarious strategy, with few natural brakes in place to
prevent policies trained under the DPO objective from careening off towards degenerate policies when the
preference data exhibits certain idiosyncratic properties. On the other hand, explicit reward models can
easily be regularized and understood—regardless of whether they are Bradley-Terry models (Bradley and
Terry, 1952), margin-based ranking models (Zhao et al., 2023), or any other function that correlates well
with human preferences (Lee et al., 2023; Tang et al., 2024; Swamy et al., 2024).
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Taking a step back from pure direct preference optimization, we propose a method that merges the best of both
worlds for the offline setting: an efficient reward model distillation algorithm that (i) operates effectively in the
offline setting, (ii) makes minimal assumptions about the true, optimal reward we aim to maximize, and (iii)
demonstrates greater robustness to the specific distribution of prompt/response data used for policy alignment.
Drawing inspiration from prior knowledge distillation techniques (Hinton et al., 2015; Romero et al., 2015; Yang
et al., 2019; Furlanello et al., 2018), we leverage the same change of variables trick employed in DPO to express
the language model policy in terms of its implicit reward model (Rafailov et al., 2023). We then train the
policy’s implicit reward model to match our desired, explicit reward via an L2 loss that directly regresses the
pairwise differences in target rewards for any two generation pairs (x, y1) and (x, y2). We theoretically establish
the equivalence between optimizing this simple distillation loss over a sufficiently diverse offline dataset of
unlabeled examples, and optimizing the traditional online RLHF objective with reinforcement learning.

While our method adds reward modeling and reward inference back into the pipeline, it still maintains the
simplicity and efficiency of reward-model-free DPO. Specifically, in our setting, rewards for the training data
can be computed offline, once, ahead of time. This computation is completely parallelizable, and reward
inference is significantly faster than the autoregressive generation (also known as model rollout) that is done
in online settings. Consequently, this allows the policy training framework to be nearly identical to standard
DPO, modulo the structure of the data that is fed in. This is true regardless of the size of the policy model
that is trained—the policy’s implicit reward model does not need to be the same size as the explicit reward
model—or its hyper-parameters.

Our reward model distillation approach, however, is still subject to some of the same challenges facing
DPO-style learning of policies. In particular, reward model distillation requires having a reliable reward
model—but having a reliable reward requires having a reliable method for extracting a reward model from
a potentially noisy preference dataset. To address the uncertainty surrounding what the “right” reward
model to optimize against is, we also introduce a pessimistic extension to our approach. This extension
aims to maximize the worst-case improvement of our model across a plausible family of reward models (e.g.,
those sufficiently consistent with annotated preference data). This strategy aligns with that of existing work
in conservative offline reinforcement learning (Cheng et al., 2022; Kumar et al., 2020). We show that this
pessimistic objective can be equivalently expressed and optimized by adding a simple additional KL-divergence
regularization to the original distillation objective.

Empirically, we find that reward model distillation, particularly pessimistic reward model distillation, leads
to similar performance to prior direct preference optimization methods when the preference datasets used are
unbiased. When the preference datasets are biased, however, it leads to significantly better performance when
compared to DPO and the Identity Preference Optimization (IPO) framework of Azar et al. (2024), which was
introduced as a more robust alternative to DPO. To further support these empirical observations, we provide
an extensive theoretical analysis that both (i) sheds more light on the degenerative tendencies of DPO and
issues inherent to its objective, and (ii) highlights relative advantages of our explicitly regularized approaches.

2 Related work

Recent work in offline alignment has focused on DPO (Rafailov et al., 2023) as a simpler alternative for
aligning language models from preference data. Subsequent work has identified issues with DPO, including
weak regularization (Azar et al., 2024) and a tendency to decrease the probability of winning generations
during training (Pal et al., 2024). Other methods have explored various avenues for improvement. These
include analyzing the impact of noise on DPO alignment (Gao et al., 2024), proposing to update the reference
policy during training (Gorbatovski et al., 2024), and suggesting a variant of IPO with a per-context margin
(Amini et al., 2024). Additional research has focused on token-level alignment methods (Zeng et al., 2024;
Rafailov et al., 2024; Mudgal et al., 2024; Chakraborty et al., 2024) and on developing a unified view of
various offline alignment methods (Tang et al., 2024). Similar to our contributions towards using pessimism
with respect to the correct choice of reward model for robust reward model distillation, existing work on
offline RLHF has also focused on encompassing various forms of conservative reward penalties (Zhu et al.,
2023; Liu et al., 2024; Zhan et al., 2024). This work builds upon several these findings, and provides further
analysis, as well as a solution based on pessimism and reward distillation.
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As discussed in §1, offline settings are attractive since they allow for simple, efficient, and scalable training
frameworks. At the same time, while offline alignment methods are popular, recent evidence suggests that
online alignment methods such as RLHF (Christiano et al., 2017; Stiennon et al., 2020), can still lead to
more favorable outcomes (Guo et al., 2024; Tajwar et al., 2024; Dong et al., 2024; Xu et al., 2024; Xiong
et al., 2024; Calandriello et al., 2024), especially when high reward outputs have low probability under
the base policy. One of the advantages of online settings over offline settings is that many strategies for
mitigating over-optimization that are simple to apply in online settings, such as reward shaping, are not
as straightforward to apply in offline settings. For example, reward ensembles have been widely investigated
recently as a mechanism for tackling reward hacking in online RLHF (Eisenstein et al., 2023; Coste et al., 2023;
Zhai et al., 2023; Ramé et al., 2024), and in the context of multi-objective optimization (Moskovitz et al., 2023;
Rame et al., 2024). Other notable examples for combating reward over-fitting and optimization by training
reward models with regularized training objectives include iterative data smoothing (Zhu et al., 2024), which
uses a trained model to softly label data during RLHF, and reward calibration from demonstrations (Rita
et al., 2024). This work addresses some of the methodological gap that exists between online and offline
methods for RLHF, by allowing for explicitly designed, trained, and regularized reward models (or pessimistic
reward model ensembles) to be added back into the offline alignment setting without losing the practical
benefits of the offline setting. Also relevant to our work, Moskovitz et al. (2023) focus on “composite”
rewards in the online setting, with the goal of achieving high task reward while ensuring that every individual
component is above some threshold—also by applying a Lagrangian relaxation. In this work, we also consider
multiple reward models, but we only focus on cases where there is no known, obvious reward decomposition.

Finally, the question of using a small amount of offline data to learn high-quality policies, instead of online
access to reward feedback, has been widely studied in the offline reinforcement learning (RL) literature. The
predominant approach here is to use pessimism, that is, to learn a policy with the highest reward under all
plausible environment models consistent with the data, with an extensive theoretical (Liu et al., 2020; Zanette
et al., 2021; Xie et al., 2021) and empirical (Kumar et al., 2020; Cheng et al., 2022; Yu et al., 2021) body of
supporting work. The key insight in this literature is that without pessimism, the RL algorithm learns undesir-
able behaviors which are not explicitly ruled out in the training data, and pessimism provides a robust way of
preventing such undesirable extrapolations, while still preserving generalization within the support of the data.

3 Preliminaries

We begin with a brief review of Direct Preference Optimization (DPO) (Rafailov et al., 2023) and its analysis.
Proofs of all theoretical results provided here, and in the rest of the paper, are deferred to Appendix A.

3.1 The preference alignment problem

Let x be an input prompt, and let y ∼ πθ(· | x) be the language model policy πθ’s response to x. Given some
reward function r∗(x, y) and another reference policy πref(y | x), the goal of alignment is to solve for the
“aligned” policy πθ∗(y | x) that maximizes the following RLHF objective, i.e.,

πθ∗(y | x) = argmax
πθ

Eµ(x)
[
Eπθ(y|x)[r∗(x, y)]− βDKL[πθ(· | x)‖πref(· | x)]

]
, (1)

where µ(x) is a fixed distribution over prompts, and the KL-divergence term keeps the aligned policy
close to the anchoring reference policy, πref(y | x). Here, the reward function r∗ is typically not known in
advance, but rather inferred from collected human preference data in the form of (x, yw, y`), where x is
the prompt, yw is the “winning”, or preferred, response, and y` is the “losing”, or dispreferred, response.
A common approach is to assume that pairs (y1, y2) follow a Bradley-Terry model (Bradley and Terry,
1952), under which the probability that y1 is preferred to y2 given the reward function r∗ and prompt x
is p∗(y1 � y2 | x) = σ(r∗(x, y1) − r∗(x, y2)), where σ(·) is the sigmoid function and � denotes preference.
Under this model, we can use the preference data (x, yw, y`) ∼ Dpref to estimate r∗ via maximum likelihood
estimation, i.e.,

r̂ ∈ argmin
r

E(yw,y`,x)∼Dpref

[
− log σ(r(x, yw)− r(x, y`))

]
. (2)
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With r̂ in hand, Eq. (1) can be optimized using standard reinforcement learning algorithms (Schulman et al.,
2017; Stiennon et al., 2020; Christiano et al., 2017).

3.2 Direct preference optimization

DPO is a simple approach for offline policy optimization that uses preferences to directly align the language
model policy, without training an intermediate reward model. Specifically, DPO leverages the fact that the
optimal solution to the KL-constrained objective in (1) takes the form (Korbak et al., 2022)

πθ∗(y | x) = 1
Z(x)πref(y | x) exp

(
1
β
r∗(x, y)

)
, (3)

where Z(x) =
∑
y πref(y | x) exp( 1

β r
∗(x, y)) is the partition function. DPO reparameterizes the true reward

function r∗ in terms of the optimal policy πθ∗ that it induces, i.e.,

r∗(x, y) = β log
(
πθ∗(y | x)
πref(y | x)

)
+ β logZ(x). (4)

Under the Bradley-Terry model, the likelihood that y1 � y2 can then be written as

p∗(y1 � y2 | x) = σ

(
β log πθ

∗(y1 | x)πref(y2 | x)
πθ∗(y2 | x)πref(y1 | x)

)
, (5)

where now πθ∗ can be directly estimated on Dpref following the objective in (2), in place of the intermediate
reward model r̂, i.e., πθ̂(y | x) ∈ argminπθ Ldpo(πθ;Dpref) where

Ldpo(πθ;Dpref) = E(yw,y`,x)∼Dpref

[
− log σ

(
β log πθ(y

w | x)πref(y` | x)
πθ(y` | x)πref(yw | x)

)]
. (6)

As described in §1, optimizing Ldpo offers two main advantages over using online RL for Eq. (1): (a) there is
no need for a separate reward model, and (b) Ldpo is a supervised objective that can be trained offline, which
allows for a simpler training setup than online learning. Still, Ldpo also has certain pitfalls, as we analyze next.

3.3 Pitfalls of direct preference optimization

As argued by Azar et al. (2024), DPO strongly relies on the Bradley-Terry assumption, which leads to
surprising and undesirable consequences when trained on finite preference data. The root issue is that if we
have any two responses y1 and y2 where p∗(y1 � y2 | x) = 1, then the Bradley-Terry model dictates that
r∗(y1)− r∗(y2) = +∞, and therefore πθ∗(y2 | x) = 0 for any finite KL-regularization strength β.

We can illustrate this phenomenon on a broader level with the following example.
Assumption 1. Suppose we are given a preference dataset of (context-free) pairs Dpref = {(ywi , y`i )}ni=1, the
pairs (ywi , y`i ) are mutually disjoint in both the elements. Further suppose that we optimize the DPO objective
on Dpref with a single parameter θy for each y.
Proposition 1. Under Assumption 1, for any (y, y′) such that y = ywi and y′ = y`i for some i, we have
πθ∗ (y)πref(y′)
πθ∗ (y′)πref(y) →∞, for all global minimizers πθ∗ of the DPO objective in (6), for any β > 0.

Corollary 1. Under Assumption 1, further assume that 0 < πref(y) < 1 for all y. Then πθ∗ is a global
minimizer of the DPO objective in (6) iff πθ∗(C(y`)c) → 1 with πθ∗(ywi ) > 0 ∀i ∈ [n], where C(y`)c is the
complement of the set of all responses y that appear as a dispreferred y`i for any i ∈ [n].

Additional analysis of the training dynamics of DPO is also provided in §6. A significant, and non-obvious,
implication of Corollary 1 is that the set of global optima of the DPO loss also includes policies that can
shift nearly all probability mass to responses that never even appear in the training set—and even assign
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near-zero probability to all of the training data responses that do in fact correspond to winning generations,
yw, a phenomenon that has been observed empirically (e.g., Pal et al., 2024). Stated differently, Corollary 1
implies that any θ∗ merely satisfying πθ∗(y`i ) = 0 with πθ∗(ywi ) > 0 ∀i ∈ [n] is a global minimizer of the
DPO objective in this setting. Though simplistic, the scenario in Assumption 1 is closer to reality than might
first be appreciated: in many practical situations we can almost always expect the finite-sample preference
data to contain one (or at most a few) preference annotations per example (x, y1, y2), while the policies
πθ can have billions of parameters (� n). It is important to note that the supposed regularization term
β does not help: it can limit the speed at which the optimizer reaches the degenerate solution, but it cannot
alter the final destination. This issue could be viewed as a classic instance of overfitting—but as opposed
to overpredicting responses within the training set, we might overfit to almost never producing anything like
the “good” responses that do appear within the training set. Furthermore, without additional regularization
(beyond β), we can expect this degeneration to occur in typical preference datasets.

Takeaways: Pitfalls of direct preference optimization
The DPO objective only requires that the likelihood of the preferred response is relatively higher than
that of the dispreferred response. A peculiarity of this objective is that when preference data is disjoint
(i.e., preferred responses never appear as dispreferred responses, and vice versa), certain types of policies
(e.g., over-parameterized) will learn to assign 0 probability to all dispreferred responses, with merely
non-zero probability to all preferred responses. This includes policies that assign near-zero probability
to preferred responses, and place all mass on (often degenerate) generations outside the training set.

4 Uncertainty-aware reward model distillation

As discussed in the previous section, a core issue in preference optimization is that the true preference
distribution p∗(y1 � y2 | x) is not known. Attempting to infer it from finite-sample preference data (that may
further be biased or out-of-distribution with respect to the target domain) can then result in a failure to learn
reasonable policies. In this section, we now propose an inherently regularized approach to direct preference
optimization that brings explicit reward modeling back into the picture through a model distillation objective,
while still maintaining the simplicity and efficiency of offline alignment methods.

4.1 Reward model distillation

Suppose for the moment that the reward function r∗ was in fact known, and did not have to be inferred from
sampled preference data. Under this setting, we can then define an efficient offline optimization procedure
that is similar in spirit to DPO, but no longer relies directly on a preference dataset.

Concretely, given unlabeled samples (x, y1, y2) ∼ ρ (where the number of samples can be potentially unlimited),
we can define a simple “distillation” loss, Ldistill(r∗, πθ), as follows:

Ldistill(r∗, πθ; ρ) = Eρ(x,y1,y2)

[(
r∗(x, y1)− r∗(x, y2)− β log πθ(y1 | x)πref(y2 | x)

πθ(y2 | x)πref(y1 | x)

)2
]
. (7)

Note that due to symmetry, here it does not matter if (y1, y2) = (yw, y`), i.e., preferred vs. dispreferred, or
vice versa. Intuitively, the distillation loss seeks to exactly match differences in reward model scores across
all generation pairs (x, y1, y2). It is easy to see that under the Bradley-Terry model, this is equivalent to
matching the strength of the preference relationship, y1 � y2. Furthermore, by only matching differences, we
can still conveniently ignore the log partition term, logZ(x), in the implicit reward formulation for πθ as
shown in (4), as it is constant across different y for any given x. Finally, similar to the motivation in DPO,
we can show that minimizing Ldistill(r∗, πθ; ρ) indeed results in an optimally aligned policy πθ∗ , as long as
the data distribution ρ has sufficient support over the space of prompts and responses.
Theorem 1. Let Y denote the set of all possible responses for any model πθ. Assume that
supp(πref(y | x)) = Y, i.e., the reference policy may generate any outcome with non-zero probability. Further,
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Figure 1: A toy illustration of Theorem 2, which states that the optimal πθ∗ for (8) is the policy in Pβ(S) with
the lowest forward-KL from πSFT. The set Pβ(S) contains a (potentially infinite) set of policies π1, π2, . . . cor-
responding to target reward models. Here, πSFT assigns equal mass to yw and y`, πMLE is the MLE solution for
the DPO objective, which puts all probability mass on yw, and π3 is the policy in Pβ(S) with lowest forward-KL.

let supp(ρ(x, y1, y2)) = supp(µ(x)) × Y × Y. Let πθ∗(y | x) ∈ argminπθ Ldistill(r∗, πθ; ρ) be a minimizer
over all possible policies, of the implicit reward distillation loss in (7), for which r∗(x, y) is assumed to be
deterministic, and finite everywhere. Then for any β > 0, πθ∗ also maximizes the alignment objective in (1).

The theorem holds for a broad class of data distributions ρ(x, y1, y2), and makes no assumptions on r∗. For
example, it is no longer necessary for it to be defined using a Bradley-Terry model. Notably, it applies for
reward models that are much larger and potentially better than the policy model, as the reward model is
not used at test time (in contrast to DPO, which ties the size of the policy model used for generation to
the size of the implicit reward model that is trained on preferences). In fact, this result can also be seen
as strict generalization of the IPO framework of Azar et al. (2024), which corresponds to the special case
r∗(x, y) , 1{y = yw}, if labeled pairs (x, yw, yl) are provided instead of the unlabeled pairs (x, y1, y2).

Of course, the true reward r∗ is usually not known in practice. Still, as in standard RLHF, we can construct
good proxies by using the preference data to identify plausible target reward models rtgt, further guided by
any amount of regularization and inductive bias that we desire. A natural choice is to first learn rtgt on the
preference data Dpref using standard methods, and then reuse Dpref to distill πθ, which is similar to classical
settings in teacher-based model distillation (Hinton et al., 2015; Romero et al., 2015). Furthermore, as rtgt is
a real-valued model, at a bare minimum it is guaranteed to induce a regularized Bradley-Terry preference
distribution ptgt(y1 � y2 | x) > 0, ∀x, y1, y2 ∈ X × Y × Y, and thereby avoid the degeneracies identified in
§3.3 for the maximum likelihood estimate under DPO.

Takeaways: Reward model distillation
If the true reward r∗ is known, Eq. (7) provides an objective that distills r∗ directly into πθ∗ , where
πθ∗ maximizes r∗ as in Eq. (1). When the true reward r∗ is unknown, we can use any form of
approximate reward model rtgt. Furthermore, any real-valued rtgt naturally adds regularization, and
avoids degenerate optima such as the 0-probability solutions identified in §3.3.

4.2 Pessimistic reward model distillation

Choosing a single reward model rtgt for anchoring the LM policy can naturally still lead to degenerate
behavior if rtgt is a poor approximation of the true r∗ that accurately reflects human preferences. However,
we can easily extend our framework to handle uncertainty in the right target reward function by defining
a confidence set of k ≥ 1 plausible target reward models, S =

{
r1
tgt, . . . , r

k
tgt
}
, and training πθ∗(y | x) to

maximize the following “pessimistic” form of the objective in (1):

max
πθ

min
ritgt∈S

Eµ(x)

[
Eπθ(y|x)[ritgt(x, y)]− Eπref(y|x)[ritgt(x, y)]︸ ︷︷ ︸

advantage over the baseline policy

−βDKL(πθ(· | x)‖πref(· | x))
]
. (8)

In this pessimistic objective we are no longer optimizing πθ for a single reward, but optimizing πθ to produce
generations that are scored favorably on average, even by the worst-case reward model in the set S, relative
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to the generations of the baseline policy πref .1 When the set S = {r∗} consists of only the ground-truth
reward, the objective (8) is equivalent to standard RLHF (1), up to a constant offset independent of θ. More
generally, whenever S includes a good proxy r̃ for r∗, the pessimistic advantage evaluation ensures that
the policy π∗θ that maximizes eq. (8) still has a large advantage over πref under all r ∈ S, including r̃. This
use of pessimism to handle uncertainty in the knowledge of the true reward is related to similar techniques
in the offline RL literature (Kumar et al., 2020; Cheng et al., 2022).

For the objective to be meaningful, the set S has to be chosen carefully. When S is small, it might not
include any good proxy for r∗. Conversely, if S is too rich, it forces πθ∗ to be nearly identical to πref , since
any deviations from πref might be penalized by some reward model in S. Consequently, we want to design S
to be the smallest possible set which contains a reasonable approximation to r∗.

To optimize (8), we reformulate it as an equivalent constrained offline optimization problem, which conveniently
admits a similar loss form as (7).
Theorem 2 (Pessimistic distillation). Define the constrained minimizer

πθ∗(y | x) ∈ argmin
πθ∈Pβ(S)

βEµ(x)DKL(πref(· | x)‖πθ(· | x)), (9)

where Pβ(S) is the set of all possible policies with implicit reward models that are consistent with any target
reward model ritgt ∈ S, i.e., Pβ(S) , {πθi}

|S|
i=1 where πθi ∝ πref(y | x) exp 1

β r
i
tgt(x, y). Then for any β > 0,

πθ∗ also maximizes the pessimistic alignment objective in (8).

To unpack this result, Theorem 2 stipulates that the πθ that maximizes the pessimistic objective in (8) is the
policy in Pβ(S) that is closest in forward KL-divergence to πref (see Figure 1).2 In addition, this policy also
maximizes the expected reward of one of the ritgt ∈ S (minus the additional weighted reverse KL-divergence
penalty term). Intuitively, the forward KL-divergence term serves the role of biasing the model towards
optimizing for reward models that are similar to the implicit reward that πref already maximizes. Otherwise,
there might exist a target reward model ritgt ∈ S for which the advantage of πθ relative to πref will be low, or
even negative (a solution that we would like to avoid).

4.2.1 Optimization

The constraint in (9) can be relaxed and approximately optimized by introducing an objective with a
Lagrangian-style penalty with strength α > 0 on a form of distillation loss as (7), i.e.,

min
πθ

βEµ(x)DKL(πref(y | x)‖πθ(y | x)) + α min
ritgt∈S

Ldistill(ritgt, πθ; ρ), (10)

where for convenience we divide by α and instead optimize3

Lpdistill(S, πθ; ρ) = min
ritgt∈S

Ldistill(ritgt, πθ; ρ) + γEµ(x)DKL(πref(· | x)‖πθ(· | x)), (11)

where γ = β/α. In reality, minimizing (11) for γ > 0 is equivalent to solving the constrained optimization
problem in (9) with an implicitly larger set of possible reward models Sγ ⊇ S indexed by γ. More specifically,
Sγ also contains all reward models r̃ that are approximately consistent with the anchoring reward models
ritgt contained in S, as the following result states.
Proposition 2 (Soft pessimistic distillation). Assume the same conditions as Theorem 1. Then for any
0 < γ <∞, there exists a λ ≥ 0 such that πθ∗(y | x) ∈ argminπθ Lpdistill(S, πθ; ρ), where πθ∗ is a minimizer
over all possible policies of the objective (9), for the effective reward model set

Sγ =
⋃

ritgt∈S

{
r̃ : Eρ(x,y1,y2)

[
(ritgt(x, y1)− ritgt(x, y2)− r̃(x, y1) + r̃(x, y2))2] ≤ λ}. (12)

1It is useful to optimize the advantage as it cancels the effects of constant differences between reward models in S. We are
also free to use any baseline policy πbase; we pick πref for simplicity and ease of analysis in §6.

2Note that the objective in (9) minimizes the forward KL-divergence DKL(πref(· | x)‖πθ(· | x)) even though the pessimistic
objective in (8) is regularized with reverse KL-divergence DKL(πθ(· | x)‖πref(· | x)).

3In practice, we also compute and optimize the min over reward models per each mini-batch of examples.
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As a result, optimizing (11) even when using the singleton S = {rtgt} yields an implicitly pessimistic objective,
in which the pessimism is over all reward models r̃ that are consistent up to λ with rtgt.

Takeaways: Pessimistic reward model distillation
It can often be unclear what reward model should be used as a target for policy distillation. A natural
optimization objective in the face of uncertainty is to optimize for the worst-case reward, out of a set
of plausible reward candidates. We show that this can be formulated in a very similar style to the
original distillation loss in Eq. (7) by simply adding an additional forward KL penalty term.

4.3 Pessimistic DPO

Proposition 2 can also be leveraged to obtain an alternative, implicitly pessimistic, objective that uses DPO
directly instead of distillation. Consider the following regularized DPO loss:

Lpdpo(πθ;Dpref) = Ldpo(πθ;Dpref) + γEµ(x)DKL(πref(y | x)‖πθ(y | x)). (13)

Following a similar analysis as in Proposition 2, we can derive that this implicitly corresponds to maximizing
the pessimistic objective in (8) for the reward model set

Sγ =
{
rπθ : Ldpo(πθ;Dpref) ≤ min

π′
θ

Ldpo(π′θ;Dpref) + λ
}
, (14)

where rπθ (x, y) , β log πθ(y | x)/πref(y | x) + β logZ(x) is the implicit reward model defined by πθ. Sγ then
corresponds to the set of reward models rπθ that are all approximate minimizers of the DPO loss. This
includes not only the MLE, but also all other estimators that obtain nearly the same loss. In principle,
this can be expected to help ameliorate some of the issues of §3.3: since driving the reward to ±∞ only
marginally decreases the Ldpo loss past a certain point, the set S will also include finite reward functions
|rπθ (x, y)| <∞ for any γ > 0. These rewards would then be preferred if they induce a policy with a smaller
(forward) KL-divergence to πref than the degenerate, infinite rewards.

5 Experimental results

The main motivation for reward distillation and pessimism is to increase alignment robustness in challenging
settings where it is difficult to learn good policies directly from the preference data. To demonstrate the
effectiveness of our approach, we run experiments on the popular TL;DR summarization task (Stiennon et al.,
2020; Völske et al., 2017), in which we simulate a scenario where the preference data has a spurious correlation
between the length of a summary and whether or not it is preferred.4 Additionally, we show results for an
unbiased setting on TL;DR, as well for an unbiased setting on Anthropic Helpfulness (Bai et al., 2022).

5.1 Experimental setup

We first train an “oracle” reward model on the TL;DR preference data training set (Stiennon et al., 2020) and
relabel all preference pairs with this oracle. This enables us to use the oracle reward model for evaluation,
without worrying about the gap to true human preferences. After relabeling, longer responses (where longer
is defined as y1 having at least 10% more tokens than y2) are preferred in 61% of the examples.

To test the effect of a spurious correlation on preference-based policy optimization, we select a training set
of 30K examples from the relabeled data such that the longer output is preferred in ρ fraction of examples,
with ρ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. Each such training set is denoted Dρ. At each Dρ, we compare our
approach to DPO (Rafailov et al., 2023) and IPO (Azar et al., 2024), which are currently the most commonly
used offline alignment methods. We test the following variants of distillation and pessimism:

• Distilled DPO (d-DPO): Trains a reward model rρ on Dρ, and then optimizes Ldistill(rρ, πθ; ρ).
4Length has been repeatedly shown in the past to correlate with reward (Singhal et al., 2023; Park et al., 2024).
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Figure 2: Main results, showing the advantage in oracle reward compared to the initial finetuned policy.
Error bars correspond to bootstrap 95% confidence intervals for finite sample variance. Ensemble DPO
(e-DPO) is significantly better than DPO and IPO in the challenging setup where shorter responses are
preferred (ρ ≤ 0.5), and is generally the best-performing method overall in this regime. Distilled DPO
(d-DPO) performs best when longer responses are preferred (ρ > 0.6).

• Pessimistic DPO (p-DPO): A pessimistic version of DPO as described in §4.3, trained on Dρ.

• Pessimistic Distilled DPO (dp-DPO): Combines the above two by training a reward model rρ on Dρ
and optimizing the pessimistic distillation objective (Eq. (11)) with confidence set S = {rtgt}.

• Pessimistic Ensemble DPO (e-DPO): To create ensembles of reward models, we subsample from
each Dρ five preference datasets, Dρ,b, at b ∈ B = {0.2, 0.4, 0.5, 0.6, 0.8}, such that the fraction of pairs
where the longer response is preferred is b, and train reward models rρ,b on those subsets. Consequently,
sensitivity to length should vary across ensemble members. We then apply the same procedure as dp-DPO
above, with a confidence set Sρ = {rρ,b}Bb=1.

All reward models and policies are initialized from Palm-2-XS (Anil et al., 2023). Policies also go through a
supervised finetuning step on human-written summaries from the original TL;DR training set (Völske et al.,
2017) prior to alignment, and we term this policy πSFT. We evaluate performance by sampling summaries for
test set prompts, evaluating the average reward according to the oracle reward model, and computing the
advantage in average reward compared to πSFT (before alignment). We train policies for 10, 000 steps with
batch size 16 and learning rate 10−6, and reward models for 3k steps with batch size 64 and learning rate
4× 10−6. We use the validation set for model selection during policy training and to choose the following
hyperparameters. For all DPO variants, we sweep over β ∈ {.01, .1, 1, 3, 10, 30, 100}. For IPO, we sweep
over τ ∈ {0.01, 0.1, 1, 3, 5, 10, 25}. For all pessimistic methods we anneal γ = α/β from 10−4 to 10−2 linearly
during the 10k training steps (however, in later experiments performed with e-DPO, we found annealing does
not affect performance and a constant γ also leads to similar performance).

5.2 Results

We present the results of our experiment in Figure 2. As can be seen in the plot, the more challenging
setting is when ρ < 0.5, which corresponds to a sample of preference annotations in which shorter outputs
are generally preferred. This distribution shift is more difficult because as mentioned the oracle reward model
(trained on human annotations) has a bias in favor of longer outputs (Singhal et al., 2023). Nevertheless
we get sizable improvements compared to the reference policy πSFT for all length bias values.

All approaches that invoke distillation (d-DPO, e-DPO, dp-DPO) outperform IPO and DPO (p < .01 by
a Wald test) for ρ ≤ 0.5, where shorter responses are preferred. Pessimistic ensemble DPO (e-DPO) performs
particularly well in these settings, generally outperforming all methods that use a single reward model. When
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Method %Wins %Ties %Losses
e-DPO vs. SFT 65.8 1.3 32.9
d-DPO vs. SFT 65.6 1.0 33.3
DPO vs. SFT 64.2 1.0 34.8

Method %Wins %Ties %Losses
e-DPO vs. DPO 49.7 3.4 46.9
d-DPO vs. DPO 48.2 3.6 48.2

Table 1: Side-by-side win rates on the Helpfulness dataset (with a Gemini 1.0 Ultra evaluator).

longer responses are preferred (ρ > 0.6), single reward distillation (d-DPO) leads to the highest performance,
significantly outperforming both DPO and IPO (p < .01 by a Wald test). Interestingly, p-DPO does not
provide empirical benefits relative to the distillation based methods, indicating that the distillation loss
itself is quite important. For the effect of hyper-parameter selection, see Figure B.3. In DPO-based methods,
the optimal value of β is inversely correlated with the bias; in IPO the same holds for the τ hyperparameter.

To better understand the utility of reward ensembles in e-DPO, in particular when ρ < 0.5, we examine the
role of each reward model in the ensemble across different biases. Specifically, for e-DPO, we identify for each
example, throughout training, the reward model rρ,b that best matches the implicit reward of the current
policy, i.e., for which reward model is Ldistill minimized on that example (see Eq. (7) and (11)). We find that
when the policy is trained on data where shorter preference are preferred (ρ < .5), the reward model that best
matches the policy often has the opposite bias (b is high), and vice versa. Thus, the success of e-DPO may be
explained by its ability to distill from reward models that do not suffer from the bias in the policy training
data, which is particularly helpful when ρ ≤ .5 as this bias is also not shared by the oracle RM. We provide
the full distribution over reward models for all ρ and β in Appendix B.2. Overall, these results demonstrate
the efficacy of training a policy by distilling from a reward model in the presence of distribution shifts, and
that a careful design of an ensemble to mitigate spurious correlations can lead to further performance gains.5

5.3 Additional results in an unbiased setting

To test the ability of our method to perform well on preference tasks where no bias is present, we next run
experiments on the Anthropic Helpfulness dataset (Bai et al., 2022). We use a Gemini 1.0 Ultra (Gemini
Team, 2024) LLM-as-a-judge model for evaluating win-rates of the policies over both the SFT starting point
and the best DPO baseline. As shown in Table 1, in this unbiased setting our distillation objectives can also
provide modest gains. Concretely, e-DPO’s win rate against the SFT policy is 65.8%, while DPO’s win rate
is 64.2%. Moreover, comparing e-DPO and DPO directly, e-DPO wins in 49.7% of the cases, while DPO wins
in 46.9% of the cases (the rest are considered to be ties with no preference relation).

Takeaways: Experimental results
Reward model distillation, specifically pessimistic reward model distillation when an ensemble of
reward models is used, leads to improved robustness on tasks where bias is present in the preference
data. In addition, reward model distillation results in small improvements in performance even on
unbiased settings, making it a simple but compelling algorithmic modification to offline training.

6 Theoretical analysis

This section characterizes problems with the DPO objective and solutions offered by pessimistic DPO and
distillation, focusing on the simplified scenario in which we optimize with respect to a single preference pairs
(yw, y`). Once again, all proofs are deferred to Appendix A.

5We note that we also experimented with an ensemble where members are different checkpoints across training of a reward
model on the preference data, however, we did not observe any empirical gains from this form of ensemble.
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6.1 Optima

In its Lagrangian formulation, pessimistic DPO adds a forward KL term to the DPO objective (§4.3). Here we
seek to better analyze how this additional term effects the optimal policy. For the sake of analysis, we assume
that the preference annotations are sampled from the reference distribution, µ(x)× πref(y | x)× πref(y | x).
Then a finite-sample approximation of the forward KL term is

Ω̂(Θ) :=
∑

(yw,y`)∈DPref

−(log πθ(y`) + log πθ(yw)). (15)

By applying this finite-sample approximation, p-DPO has a finite optimum, unlike DPO, as shown in
Proposition 1. Note that this analysis is limited in two ways: (1) as mentioned, we compute the KL term over
the completions in the preference data; (2) we directly optimize the probability ratios ψw = πθ(yw)/πref(yw)
and ψ` = πθ(y`)/πref(y`), rather than optimizing them jointly through the parameters. For sufficiently
expressive πθ, however, this approximation captures the behavior of the two algorithms reasonably well.
Proposition 3. Let L̂pdpo represent a finite-sample approximation to Lpdpo with the empirical forward
KL term Ω̂(Θ). For a fixed π̂θ(ywi ) and α > 1, the argminπθ(y`) L̂pdpo is min

(
1− π̂θ(ywi ), π̂θ(y`i )

)
, with

log π̂θ(y`i ) = − 1
β log (α− 1) + log π̂θ(ywi ) + log πref(y`i )

πref(ywi ) .

The optimum in Proposition 3 corresponds to logψw/ψ` = β−1 log(α− 1). Recall that IPO (Azar et al., 2024)
seeks to assign a constant value to this ratio by minimizing (log ψw

ψ`
− τ−1)2; the (unconstrained) optima are

identical for τ−1 := β−1 log(α− 1), but the loss surfaces are different (see further analysis of this in §6.4).
DPO sets πθ(y`i ) → 0, as shown in Corollary 1; this is due not only to competition from πθ(ywi ) but from
DPO penalizing positive probability on y`i . Analysis of the distilled loss gives a similar result:
Proposition 4. For any fixed π̂θ(ywi ) and β > 0, the argmin of the distilled DPO objective in (7) is
min(1− π̂θ(ywi ), π̂θ(y`i )), with log π̂θ(y`i ) = 1

β (rt(x, y`i )− rt(x, ywi )) + log π̂θ(ywi ) + log πref(y`i )
πref(ywi ) .

While the setting is simplistic, the results are comforting: here the additional regularization effects of both
distillation and pessimism (in the case of p-DPO) clearly help to avoid degenerate optima.

6.2 Why DPO can drive π(yw) to zero

In §3.3 we pointed out a peculiarity of the DPO global optima: in certain cases, it can include policies where
π(yw) may be nearly 0 for all yw in the training set. This undesirable behavior has also been observed
in practice (Pal et al., 2024; Rafailov et al., 2024; Tajwar et al., 2024). For intuition on why this may
happen, consider the simplified case where the policy is a bag-of-words model, πθ(y) ∝ exp (c(y) · θ) for c(y)
representing a vector of counts in y and θi representing the unnormalized log-probability of token i. Then we
can formally show that DPO optimization monotonically decreases an upper bound on the probability of the
preferred completion, π̃θ(t−1)(yw) ≥ π̃θ(t)(yw) ≥ πθ(t)(yw).
Proposition 5. Let yw, y` ∈ Vn be preferred versus dispreferred outputs of length n, respectively, with
πref(yw), πref(y`) > 0 and corresponding count vectors c(yw), c(y`). Let log πθ(y) = c(y) · θ − nZ(θ) for
Z(θ) = log

∑V
i e

θi , with upper bound log π̃θ(y) = c(y) · θ − nmaxj θj. Let θ(t) represent the parameters of π
after t steps of gradient descent on Ldpo({y`, yw, x}), with θ(0) = 0. Then, we have that

πθ(t)(yw) ≤ π̃θ(t)(yw) ≤ π̃θ(t−1)(yw) for all t,

with strict inequality when ||c(yw)− c(y`)||0 > 1.

6.3 Where does the probability mass go?

If πθ(t)(yw) decreases in t, what other strings become more probable? In the following proposition, we show
that under the bag-of-words model, DPO optimization moves probability mass away from yw to sequences
that contain only the tokens that maximize the difference between yw and y`. This is a concrete example of
the type of undesirable optima described in §3.3, now shown here to be realizable.
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Proposition 6. Let yw and y` be preferred versus dispreferred outputs of length n. Let ∆ = c(yw)− c(y`)
be the difference in unigram counts. Let ŷ = [i, i, . . . , i], for i ∈ argmax ∆, with ‖c(ŷ)‖1 = n. Then
πθ(t)(yw)− πθ(t)(ŷ) = τ(t)k for some k ≤ 0 and some non-decreasing τ : Z+ → R+.

We have k = 0 when c(yw) = c(ŷ), and k � 0 when ‖c(yw)‖2 � ‖c(ŷ)‖2 = n (dense c(yw)) and ‖∆‖2 = ‖∆‖∞
(sparse ∆). This implies that when yw and y` are similar, πθ(yw) will degrade more rapidly. Early stopping
will therefore tradeoff between reaching the degenerate solution on such cases, and underfitting other cases in
which yw and y` are more distinct.

6.4 Transitive closure: p-DPO vs IPO

As pointed out in §6.1, both p-DPO and IPO target a constant ratio for logψw/ψl. Despite the similar form
of optima, however, the loss surfaces of the two objectives differ in notable ways. To see this, we consider a
simplified setting with three possible outputs, y1, y2, y3. We observe either D = {(y1 ≺ y2), (y2 ≺ y3)} or
D = D ∪ {(y1 ≺ y3)}. If we treat this problem as a multi-arm bandit, the goal is to assign a weight to each
arm, which we denote ψi = log πθ(yi | x) + Zx, with Zx an underdetermined log-partition function.

Proposition 7. Let D = {(i, i + 1) : i ∈ 1, 2, . . . , n} for n > 2. Let D be the dataset arising from the
transitive closure of D. Assume πref is indifferent to all (yi, yj). Let ψ(D)

∞ = maxi ψ(D)
i −mini ψ(D)

i . Then
ψ

(D)
∞ = (n− 1)τ−1 > ψ

(D)
∞ = 2n−1

n τ−1.

Intuitively, the observation of y1 ≺ y3 should increase confidence that y3 is superior to y1, but in IPO it
has the opposite effect, drawing their scores closer together. While pessimistic DPO also has a target ratio
between each preference pair, its loss surface is different: in particular, it does not increase quadratically as
we move away from the target. We find empirically that pessimistic DPO is robust to the transitive closure
of preference annotations in the multi-arm bandit setting, as shown in Figure B.1. As discussed above, DPO
will set ψ1 → −∞ because y1 is never preferred. Specifically, in our experiments we solve the p-DPO and
IPO objectives for both D = {(y1, y2), (y2, y3)} and D = D∪ {(y1, y3)}, solving with respect to {πθ(yi)}. IPO
is solved analytically as a quadratic program; for p-DPO we used projected gradient descent. We consider
β ∈ (1, 3, 10, 30) and α ∈ (5, 10, 20, 50, 100, 1000). As shown in Figure B.1, there are significant differences
in the IPO solutions with and without transitive closure, while for p-DPO these differences are imperceptible.

Takeaways: Theoretical analysis
Both pessimistic DPO and reward model distillation avoid the degenerate optima of DPO that were
analyzed in §3.3—primarily through adding additional sources of regularization to the objective. This
is important: absent this regularization, we demonstrate settings under which DPO can cause the
probabilities of preferred outputs to catastrophically plummet, and instead set all probability mass on
generations that simply maximize token-level differences between preferred and dispreferred examples.
In addition to these more stable optima, we also show how the loss surface of p-DPO can lead to more
favorable outcomes with respect to modeling challenging transitive preferences vs. IPO.

7 Conclusion

LM alignment is crucial for deploying safe and helpful assistants, but is difficult due to lack of access to perfect
preference oracles. We presented a thorough theoretical analysis of some of the degeneracies that DPO is sus-
ceptible to when learning from sampled human preference data. Furthermore, our findings suggest that explicit
reward modeling remains a powerful vehicle for introducing regularization into post-training. By distilling the
reward assigned by a single, explicit reward model—or a family of explicit reward models—directly into the
implicit reward maximized by our policies using offline data, we demonstrated that we can achieve improved
robustness to variations in preference dataset quality, while maintaining the simplicity of offline alignment
frameworks. Finally, reward model distillation also results in modest but consistent improvements in perfor-
mance even on unbiased settings, making it an overall compelling algorithmic modification to offline training.
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A Proofs

A.1 Proof of Proposition 1

Proposition (Proposition 1 restated). Under Assumption 1, for any (y, y′) such that y = ywi and y′ = y`i for
some i, we have πθ∗ (y)πref(y′)

πθ∗ (y′)πref(y) →∞, for all global minimizers πθ∗ of the DPO objective in (6), for any β > 0.

Proof. Since all the preference pairs (y, y′) are mutually disjoint, and θy is specific to each y, the DPO
objective over Dpref is convex in ∆ = {∆1, . . . ,∆n}, where

∆i = β log πθ(y
w
i )πref(y`i )

πθ(y`i )πref(ywi )
. (16)

Furthermore, the different ∆i are completely independent from each other due to the preference pairs being
disjoint, so they can be optimized over separately.

In particular, for every i we have that

lim
∆i→∞

− log (σ (∆i)) = 0, (17)

which implies that ∆∗ = {∞}n is the unique global minimizer of the DPO loss over Dpref in the space of ∆’s,
and any θ∗ that is a global minimizer must therefore satisfy

log πθ(y
w
i )πref(y`i )

πθ(y`i )πref(ywi )
=∞. (18)

A.2 Proof of Corollary 1

Corollary (Corollary 1 restated). Under Assumption 1, further assume that 0 < πref(y) < 1 for all y. Then
πθ∗ is a global minimizer of the DPO objective in (6) iff πθ∗(C(y`)c)→ 1 with πθ∗(ywi ) > 0 ∀i ∈ [n], where
C(y`)c is the complement of the set of all responses y that appear as a dispreferred y`i for any i ∈ [n].

Proof. Following the same argument of the proof of Proposition 1, we have that all global minimizers θ∗ of
the DPO satisfy ∆∗i =∞, which in turn implies that

πθ∗(ywi )πref(y`i )
πθ∗(y`i )πref(ywi )

=∞. (19)

Since πref(y) is assumed to satisfy 0 < πref(y) < 1 for all y, this implies that all θ∗ satisfy

πθ∗(ywi )
πθ∗(y`i )

=∞, (20)

which further implies that πθ∗(y`i ) = 0 and πθ∗(ywi ) > 0 for all i ∈ [n], as πθ∗(ywi ) ≤ 1 for any ywi . Aggregating

C(y`) = {y : ∃i ∈ [n] s.t y`i = y} (21)

then gives that

πθ∗(C(y`)) =
∑

y∈C(y`)

πθ∗(y) = 0 =⇒ πθ∗(C(y`)c) = 1. (22)
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To prove the converse, let πθ′ be a policy that satisfies πθ′(C(y`)c) = 1, with πθ′(ywi ) > 0, ∀i ∈ [n],. As
πθ′(y) ≥ 0 for all y, this implies that πθ′(y`

i
) = 0 ∀i ∈ [n]. Then, we have

πθ′(ywi )
πθ′(y`i )

=∞, (23)

which by Proposition 1 implies that πθ′ is a global optimum.

A.3 Proof of Theorem 1

Theorem (Theorem 1 restated). Let Y denote the set of all possible responses for any model πθ. Assume that
supp(πref(y | x)) = Y, i.e., the reference policy may generate any outcome with non-zero probability. Further,
let supp(ρ(x, y1, y2)) = supp(µ(x)) × Y × Y. Let πθ∗(y | x) ∈ argminπθ Ldistill(r∗, πθ; ρ) be a minimizer
over all possible policies, of the implicit reward distillation loss in (7), for which r∗(x, y) is assumed to be
deterministic, and finite everywhere. Then for any β > 0, πθ∗ also maximizes the alignment objective in (1).

Proof. We know that the optimal policy for the RLHF objective (1) is given by πθ∗(y|x) ∝
πref(y|x) exp(r∗(x, y)/β). Plugging this policy into the distillation objective (7), we see that
Ldistill(r∗, πθ∗ , ρ) = 0 for all ρ. In fact, the loss is equal to 0 pointwise, meaning that πθ∗ is a global
minimizer of the distillation objective (7). Further, let π be some other minimizer of Ldistill(r∗, ·, ρ). Then
π also has to attain a loss of 0 at all (x, y, y′) in the support of ρ, meaning that log π(y|x)− log π(y′|x) =
log πθ∗(y|x)− log πθ∗(y|x) for all (x, y, y′) in the support of ρ. Consequently, the two policies coincide in the
support of ρ (due to the normalization constraint, there is no additional offset term allowed as the support of
ρ covers all of Y). Finally, noting that the support of the chosen ρ is such that πθ∗ puts no mass outside its
support due to the KL constraint in (1), we complete the proof.

A.4 Proof of Theorem 2

Theorem (Theorem 2 restated). Define the constrained minimizer

πθ∗(y | x) ∈ argmin
πθ∈Pβ(S)

βEµ(x)DKL(πref(· | x)‖πθ(· | x)),

where Pβ(S) is the set of all possible policies with implicit reward models that are consistent with any target
reward model ritgt ∈ S, i.e., Pβ(S) , {πθi}

|S|
i=1 where πθi ∝ πref(y | x) exp 1

β r
i
tgt(x, y). Then for any β > 0,

πθ∗ also maximizes the pessimistic alignment objective in (8).

Proof. Consider the pessimistic objective:

max
πθ

min
rtgt∈S

Eµ(x)

[
Eπθ(y|x)[rtgt(x, y)]− Eπref(y|x)[rtgt(x, y)]

]
− βDKL(πθ‖πref). (24)

As it is linear in rtgt and convex in π, we can switch the order of min and max:

min
rtgt∈S

[
max
π∈Π

Eµ(x)

[
Eπ(y|x)[rtgt(x, y)]− Eπref(y|x)[rtgt(x, y)]

]
− βDKL(π‖πref)

]
. (25)

Note that every rtgt ∈ S can be written in terms of the KL-constrained policy π∗rtgt
it induces, i.e.,

rtgt(x, y) = β log
π∗rtgt

(y | x)
πref(y | x) + β logZ(x, rtgt), (26)

where

π∗rtgt
= argmax

πθ
Eµ(x)Eπθ(y|x)[rtgt(x, y)]− βDKL(πθ‖πref) (27)
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which has the form
π∗rtgt

(y | x) = 1
Z(x, rtgt)

πref(y | x) exp
(

1
β
rtgt(x, y)

)
(28)

where Z(x, rtgt) is the partition function:

Z(x, rtgt) =
∑
y∈Y

πref(y | x) exp
(

1
β
rtgt(x, y)

)
. (29)

Substituting π∗rtgt
in for maxπ and writing rtgt in terms of π∗rtgt

, we get the simplified objective

min
rtgt∈S

[
max
π∈Π

Eµ(x)

[
Eπ(y|x)[rtgt(x, y)]− Eπref(y|x)[rtgt(x, y)]

]
− βDKL(π‖πref)

]
= min
rtgt∈S

[
Eµ(x)

[
Eπ∗rtgt (y|x)

[
β log

π∗rtgt
(y | x)

πref(y | x) + β logZ(x, rtgt)
]

− Eπref(y|x)

[
β log

π∗rtgt
(y | x)

πref(y | x) + β logZ(x, rtgt)
]

(30)

− βDKL(π∗rtgt
‖πref | x)

]]
= min
rtgt∈S

β

[
Eµ(x)

[
DKL(π∗rtgt

‖πref | x) + DKL(πref‖π∗rtgt
| x)− DKL(π∗rtgt

‖πref | x)
]]

= min
rtgt∈S

βEµ(x)

[
DKL(πref‖π∗rtgt

| x)
]
.

A.5 Proof of Proposition 2

Proposition (Proposition 2 restated). Assume the same conditions as Theorem 1. Then for any 0 < γ <∞,
there exists a λ ≥ 0 such that πθ∗(y | x) ∈ argminπθ Lpdistill(S, πθ; ρ), where πθ∗ is a minimizer over all
possible policies of the objective (9), for the effective reward model set

Sγ =
⋃

ritgt∈S

{
r̃ : Eρ(x,y1,y2)

[
(ritgt(x, y1)− ritgt(x, y2)− r̃(x, y1) + r̃(x, y2))2] ≤ λ}.

Proof. The proof is a standard Lagrangian duality argument, which we reproduce here for completeness. For
two functions f(z) and g(z), let us define

z∗ = argmin
z
f(z) + αg(z). (31)

Let us also consider the constrained problem

z′ = argmin
z
f(z) s.t. g(z) ≤ g(z∗). (32)

Suppose by contradiction that z∗ is not a minimizer of (32). Since z∗ is feasible for the constraint by
construction, we get that f(z′) < f(z∗). Consequently, we further have

f(z′) + αg(z′) < f(z∗) + αg(z∗),
where the inequality follows from the feasibility of z′ in (32). This contradicts the optimality of z∗ in (31),
meaning that z∗ must be a minimizer of (32). Applying this general result with f = βEµ(x)DKL(πref(y |
x)‖πθ(y | x)), g = minritgt∈S Ldistill(ritgt, πθ; ρ), and z = πθ completes the proof, since we recognize the set Sγ
in (12) to be equivalent to

⋃
ritgt∈S

Ldistill(ritgt, πθ; ρ) ≤ λ.
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A.6 Proof of Proposition 3

Proposition (Proposition 3 restated). Let L̂pdpo represent a finite-sample approximation to Lpdpo
with the empirical forward KL term Ω̂(Θ). For a fixed π̂θ(ywi ) and α > 1, the argminπθ(y`) L̂pdpo is
min

(
1− π̂θ(ywi ), π̂θ(y`i )

)
, with log π̂θ(y`i ) = − 1

β log (α− 1) + log π̂θ(ywi ) + log πref(y`i )
πref(ywi ) .

Proof. We differentiate Lpdpo with respect to ψ` = πθ(y`)/πref(y`) with i implicit, obtaining,

∂Lpdpo

∂ψ`
=β

ψβ`
ψβw + ψβ`

ψ−1
` −

β

α
ψ−1
` = βψ−1

`

(
ψβ`

ψβw + ψβ`
− α−1

)
(33)

which is zero when,

αψβ` =ψβw + ψβ` (34)

ψ` =
(

1
α− 1

)1/β
ψw (35)

logψ` =− 1
β

log(α− 1) + logψw (36)

log πθ̂(y
`) = log πref(y`)−

1
β

log (α− 1) + log πθ(yw)− log πref(yw). (37)

By the second-order condition, the critical point is a minimum. The objective Lpdpo is the sum of two
components: the negative log sigmoid term for Li and the negative log probability for Ω̂. Because each
component is a convex function of ψi, so is Lpdpo. As a result, the local minimum log π̂θ(y`) is also a global
minimum.

A.7 Proof of Proposition 4

Proposition (Proposition 4 restated). For any fixed π̂θ(ywi ) and β > 0, the argmin of the distilled DPO
objective in (7) is min(1− π̂θ(ywi ), π̂θ(y`i )), with log π̂θ(y`i ) = 1

β (rt(x, y`i )−rt(x, ywi ))+ log π̂θ(ywi )+ log πref(y`i )
πref(ywi ) .

Proof. This follows directly from differentiating (7) with respect to πθ(y2).

A.8 Proof of Proposition 5

Proposition (Proposition 5 restated). Let yw, y` ∈ Vn be preferred versus dispreferred outputs of length
n, respectively, with πref(yw), πref(y`) > 0 and corresponding count vectors c(yw), c(y`). Let log πθ(y) =
c(y) · θ − nZ(θ) for Z(θ) = log

∑V
i e

θi , with upper bound log π̃θ(y) = c(y) · θ − nmaxj θj. Let θ(t) represent
the parameters of π after t steps of gradient descent on Ldpo({y`, yw, x}), with θ(0) = 0. Then, we have that

πθ(t)(yw) ≤ π̃θ(t)(yw) ≤ π̃θ(t−1)(yw) for all t,

with strict inequality when ||c(yw)− c(y`)||0 > 1.

Proof. Let ∆ = [c(yw) − c(y`)] and ρ = πref(yw)/πref(y`). The theorem assumes |yw| = |y`|. Then
Ldpo = − log σ (β(∆ · θ) + β log ρ) . The derivative with respect to θ is,

∂Lβ(θ)
∂θ

=− (1− σ(β(∆ · θ) + β log ρ))β∆ = −p(y` � yw; θ)β∆ ≺ 0. (38)
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Let δt = βp(y` � yw; θ(t)). Then,

π̃θ(t) =θ(t) · c(yw)− nmax
j
θ

(t)
j (39)

=(θ(t−1) + δt∆) · c(yw)− nmax
j

(θ(t−1)
j + δt∆j) (40)

=θ(t−1) · c(yw)− nmax
j
θ

(t−1)
j + δt∆ · c(yw)− nδt max

j
∆j (41)

=π̃θ(t−1) + δt

(
∆ · c(yw)− nmax

j
∆j

)
(42)

=π̃θ(t−1) + δt

V∑
j

cj(yw)(∆j −max
j′

∆j′) ≤ π̃θ(t−1) . (43)

We obtain maxj
(
θ

(t−1)
j + δt∆j

)
= maxj θ(t−1)

j + maxj δt∆j from the fact that θ(0) = 0 and therefore

j ∈ argmax ∆ implies j ∈ argmax θ(t′) for all t′ > 0. The second-to-last step uses n =
∑V
j cj(yw) and

the final step uses ∆j ≤ max′j ∆j′ . Finally, we have πθ(t)(y) ≤ π̃θ(t)(yw) because Z(θ) = log
∑
j exp θj ≥

log maxj exp θj = maxj θj .

A.9 Proof of Proposition 6

Proposition (Proposition 6 restated). Let yw and y` be preferred versus dispreferred outputs of length n.
Let ∆ = c(yw) − c(y`) be the difference in unigram counts. Let ŷ = [i, i, . . . , i], for i ∈ argmax ∆, with
‖c(ŷ)‖1 = n. Then πθ(t)(yw)− πθ(t)(ŷ) = τ(t)k for some k ≤ 0 and some non-decreasing τ : Z+ → R+.

Proof. Applying gradient descent with learning rate η to the gradient from Equation (38), at each step t the
parameters are,

θ(t) =θ(t−1) + ηβp(y` � yw; θ(t−1))∆ =
(

t∑
t′=1

ηβp(y` � yw; θ(t′))
)

∆ = τ(t)∆. (44)

Plugging these parameters into the likelihoods,

`θ(t)(c(yw))− `θ(t)(ŷ) = c(yw) · θ(t) − nZ(θ(t))− c(ŷ) · θ(t) + nZ(θ(t)) (45)
= (c(yw)− c(ŷ)) · θ(t) = (c(yw)− c(ŷ)) · (τ(t)∆) (46)
= τ(t)(c(yw) ·∆− nmax ∆) = τ(t)k, (47)

with k ≤ 0 by c(yw) ·∆ ≤ ||c(yw)||1 × ||∆||∞ = nmax ∆.

A.10 Proof of Proposition 7

Proposition (Proposition 7 restated). Let D = {(i, i + 1) : i ∈ 1, 2, . . . , n} for n > 2. Let D be the
dataset arising from the transitive closure of D. Assume πref is indifferent to all (yi, yj). Let ψ(D)

∞ =
maxi ψ(D)

i −mini ψ(D)
i . Then ψ(D)

∞ = (n− 1)τ−1 > ψ
(D)
∞ = 2n−1

n τ−1.

Proof. For D, the IPO objective can be minimized at zero, so that ψ(D)
∞ = (n − 1)τ−1. For D, each

adjacent pair of completions is separated by γ, and the objective is
∑n−1
i=1 (n− i)(iγ − τ−1)2. The minimum is

γ = n(n+1)(n−1)/6
n2(n+1)(n−1)/12τ

−1 = 2
nτ
−1, so that ψ(D)

∞ = (n− 1)γ = 2n−1
n τ−1 < (n− 1)τ−1 = ψ

(D)
∞ for n > 2.
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B Additional results

B.1 Transitive closure

Figure B.1 shows the results of our multi-arm bandit experiments with p-DPO vs. IPO losses, as described
in §6.4. In this synthetic setup, we solve the p-DPO and IPO objectives for both D = {(y1, y2), (y2, y3)} and
D = D ∪ {(y1, y3)}, solving with respect to {πθ(yi)}.
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Figure B.1: Effect of transitive closure on p-DPO and IPO solutions to preference learning in
a multi-arm bandit. Each column shows the learned policy probability for a given arm, based on the
preferences y1 ≺ y2 ≺ y3. The top row shows that in p-DPO, the probabilities are not materially affected by
the transitive closure y1 ≺ y3. The bottom row shows that in IPO, transitive closure causes the probabilities
to be compressed. In each subfigure, we sweep a range of effective values of τ−1, shown on the x-axis.

B.2 Distribution over reward models for e-DPO

Figure B.2 investigates the reason for the success of e-DPO, especially when ρ < .5. For every length bias, we
track during training for all training examples which reward model, rρ,b, best matched the implicit reward of
the currently trained e-DPO policy, and plot the distribution over reward models. The policy matches different
reward models in different examples. Moreover, there is inverse correlation between the data bias for policy
training (ρ) and the data bias for training the reward models (b). This suggests that the ensemble in e-DPO
helps as the policy is distilling from reward models that do not share the data bias of the policy training set.
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Figure B.2: We track during training for all training examples which reward model best matches the implicit
reward of the current e-DPO policy and plot the distribution over reward models, for every length bias, ρ. We
observe that the e-DPO policy matches different reward models across examples during training. Moreover,
when the policy is trained with data biased towards preferring short responses, the reward model that was
trained on longer responses is by and large preferred and vice versa.

B.3 Hyperparameters

Validation set performance across the range of hyperparameter settings is shown in Figure B.3. In pilot
studies we found that these results were relatively robust to variation in the random seed, but did not conduct
extensive investigation of this effect across all methods and hyperparameters due to cost.

C Compute resources

We train policies on 32 TPU v3 chips and reward models on 16 TPU v3 chips. We obtain roughly 0.1 steps
per second when training, for both the policy and reward models.
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Figure B.3: Validation set results across hyperparameters for each method. For all methods, different
values of ρ induce different optimal hyperparameters β and τ−1.
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