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Abstract

Lane detection is an important yet challenging task in autonomous driving systems.
Existing lane detection methods mainly rely on finer-scale information to identify
key points of lane lines. Since local information in realistic road environments is
frequently obscured by other vehicles or affected by poor outdoor lighting condi-
tions, these methods struggle with the regression of such key points. In this paper,
we propose a novel Siamese Transformer with hierarchical refinement for lane
detection to improve the detection accuracy in complex road environments. Specif-
ically, we propose a high-to-low hierarchical refinement Transformer structure,
called LAne TRansformer (LATR), to refine the key points of lane lines, which
integrates global semantics information and finer-scale features. Moreover, exploit-
ing the thin and long characteristics of lane lines, we propose a novel Curve-IoU
loss to supervise the fit of lane lines. Extensive experiments on three benchmark
datasets of lane detection demonstrate that our proposed new method achieves
state-of-the-art results with high accuracy and efficiency. Specifically, our method
achieves improved F1 scores on the OpenLane dataset, surpassing the current
best-performing method by 5.0 points.

1 Introduction

Lane detection is a fundamental task in Autonomous Driving Systems (ADS), which enables a
vehicle to localize its relative position and avoid potential risks. It plays an important role in many
downstream tasks, such as driving route planning, road tracking, and adaptive cruise control. Recently,
lane detection methods based on computer vision have attained lots of achievements. Compared
to methods that combine GPS/INS (Inertial Navigation System) [2], lane detection methods that
incorporate only a camera are cheaper and safer to apply.

Early lane detection research focused on hand-crafted features and applied methods such as Hough
Transform [16] or Kalman Filter [36] to filter out unreasonable lanes. However, manually extracted
features often fail in complex scenarios. Convolutional Neural Network (CNN) based methods
[10, 13, 38, 39] arose to cope with different scenarios, which greatly improved the accuracy of lane
detection. These methods often rely on straight-line anchors [12, 15, 31, 32, 35] or parametric curves
[18, 33, 9, 4] to detect lane lines. Although CNN-based methods can handle different scenarios, they
still struggle with realistic road environments, especially when involving strong light, shadows, or
dense traffic. Due to the thin and long characteristics of lane lines, lane detection requires a lot of
contextual information, and CNN-based methods may be ineffective and incapable of clustering
global semantics information and combining it with finer-scale features.

Recently, attention-based methods (e.g., CLRNet [41]) have shown promising capability in lane
detection by describing a lane line as a series of key points. By taking the lane lines as a whole unit,
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these methods can make use of global semantics information and finer-scale features, which help
the detection of lane lines in complex environments. However, since these methods mainly rely on
finer-scale information to identify the position of each key point, their detection results may have
large deviations when there is local occlusion or blurring. In addition, former studies did not take into
account the thin and long structure of lane lines during supervision, thus often leading to inaccurate
detection when the lane line has a certain curvature.

In this paper, we propose a novel Siamese Transformer with hierarchical refinement for lane detection
to improve the detection accuracy in realistic road environments, especially when roads are obscured
by other vehicles or affected by poor outdoor lighting conditions. Two attributes of our proposed
method contribute to its universality for the lane detection task. First, to address the under utilization
of finer-scale information when fine-tuning the positions of key points, we propose a novel Siamese
Transformer structure with shared parameters, called LAne TRansformer (LATR), which can integrate
global semantics information and finer-scale features. Simultaneously, we develop a high-to-low
hierarchical refinement scheme to refine the key points of lane lines so that the network can fully
learn information at different scales. Second, to take the thin and long structure of lane lines into
account, we propose a novel Intersection over Union (IoU) loss called Curve-IoU (CIoU) for lane
detection. Compared to the common IoU loss, we supervise the fit of lane lines at different locations
for the thin and long structure of the lane lines, which helps accurately detect lane lines with curves.

We evaluate our proposed method on three benchmark datasets for lane detection, OpenLane [5],
CULane [26], and Tusimple[34], and achieve state-of-the-art results. Our main contributions can be
summarized as follows:

• We propose a novel Siamese Transformer with hierarchical refinement for lane detection to
improve the detection accuracy in realistic road environments, especially when roads are
obscured by other vehicles or affected by poor outdoor lighting conditions.

• We propose a high-to-low hierarchical refinement Transformer structure called LATR to
refine the key points of lane lines so that the network can fully integrate global semantics
information and finer-scale features.

• Exploiting the thin and long structure of lane lines, we propose a novel Curve-IoU loss to
supervise the fit of lane lines at different locations, which helps the regression of the curves.

• We achieve state-of-the-art results on three benchmark datasets, with 5.0% improvement in
F1 score compared to the best-known method on the OpenLane dataset.

2 Related Work

Early lane detection studies relied on hand-crafted features [7, 23]. Due to their limited feature
capturing capability and low robustness, these methods often fail in complex conditions.

To improve the robustness of lane detection under different environments, segmentation-based
methods [10, 13, 38, 39] were introduced to lane detection. These methods typically apply post-
processing operations such as curve fitting and clustering on pixel-level segmentation maps to generate
final results. Compared to traditional methods, segmentation-based methods are able to capture
more plentiful visual features and spatial structure information, thus achieving better performance
than traditional detection methods. However, per-pixel-based segmentation methods incur high
computational costs, have limited real-time capability, and struggle with learning lane line specific
long and thin characteristics.

To address these issues, LaneNet [25] introduced a branched, multi-task architecture to cast the lane
detection task as an instance segmentation problem. This method is more robust to variations in road
conditions compared to the previous methods, but it is more time-consuming. RESA [40] proposed
to aggregate spatial information by shifting sliced feature maps, which obtains good real-time results
but still fails under complex road conditions. Furthermore, the output lane lines of most of the above
methods may not be continuous.

To attain more continuous lane lines with higher efficiency, recently curve-based methods [18, 9, 4, 33]
viewed the lane detection task as a polynomial regression problem and utilized parametric curves to fit
lane lines. These methods depend heavily on the parameters of the curves (e.g., x = ay3+by2+cy+d,
where (x, y) denotes the coordinates of a lane line pixel and a, b, c, and d are the parameters of a
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Figure 1: The overall architecture of our proposed method. It includes a multi-scale backbone to
extract hierarchical features from the input image, a Siamese Transformer structure named LATR to
integrate global semantics information and finer-scale features, and a Curve-IoU loss to supervise the
fit of lane lines for model training. Swin level 1-3 denotes the multi-scale backbone using the Swin
Transformer. FFN represents a feed-forward network.

curve function). PloyLaneNet [33] first proposed an end-to-end deep polynomial regression method
that directly outputs the parameters. To improve the stability and efficiency, BézierLaneNet [9]
proposed a parametric Bézier curve to model the geometric shape of lane lines. However, because of
the limited learning ability of global information, the accuracy of these curve-based methods is not
satisfactory on large datasets, especially in complex road conditions.

Attention-based methods [32, 18] were introduced to the computer vision field, and were proven
to be able to capture long-range information. LaneATT [32] introduced an attention mechanism to
anchor-based lane detection methods. Based on PolyLaneNet [33], LSTR [18] was proposed with
high inference efficiency but relatively low accuracy, especially in some complex road environments.
PriorLane [30] improved the accuracy of prediction compared to LSTR with pre-training and local
prior. However, there is still a gap in accuracy between the contemporaneous Transformer-based
methods and CNN-based methods, and the reason can be attributed to the shortcut of the multi-head
self-attention mechanism which neglects the characteristics of different frequencies [28].

3 Method

In this section, we present the proposed Siamese Transformer with hierarchical refinement for lane
detection. First, we describe the overall architecture of our proposed network. Then we explain each
key component of the proposed network, including the LAne TRansformer (LATR) and the proposed
Curve-IoU loss. Finally, we provide the inference details of our network.

3.1 Overall Architecture

We present the overall architecture of our proposed method in Fig. 1. It consists of a multi-scale
backbone and a Siamese Transformer structure named LATR. An input image RH×W×C is first fed
into the backbone to obtain hierarchical features from high to low levels, which are then refined
by LATR with the supervision of the Curve-IoU loss. Next, we use two different detection feed-
forward networks (FFN) to generate (1) lane line properties including the start point (x0, y0), angle
of inclination θ, and length l of each lane line, and (2) the offset map {oi}Pi=1. Finally, key points of
the lane line are produced by post-processing, which can be expressed as:

xi = tan θ × (yi − y0) + x0 + oi, (1)

where i denotes the i-th key point of the lane line. All the key points are sampled at equal intervals
based on the y-axis, which can be expressed as yi = i H

P+1 , where H and P represent the image
height and the number of key points, respectively.

3.2 Lane Transformer
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Figure 2: The detailed structure of our
proposed LAne TRansformer (LATR).
We employ a high-to-low refinement
structure in which the input lane query
is refined by higher-scale features.

Transformer structure. Our proposed LATR employs the
Siamese Transformer structure based on the hierarchical fea-
tures extracted by the backbone of the network. Inspired by
the recent Transformer-based networks with Siamese structures
[1, 14], we develop a high-to-low refinement structure to obtain
features of the predicted lane line. The detailed structure of
LATR is illustrated in Fig. 2.

Specifically, we denote a lane query as Qd = {qj}Nj=1, where
N represents the dimension of the decoder embeddings and
d is the number of the scales. The lane query is a series of
one-dimensional features of the lane lines, which can be further
processed to obtain the key points of the lane lines. The input
hierarchical features Pd ∈ RHd×Wd×C′

are extracted by the
multi-scale backbone (we use Swin Transformer [19] for it), and
then are sorted from high-level to low-level. Next, we flatten
it into Md ∈ RHdWd×C′

with 2-D positional embedding.

Different from DETR [3], we integrate the lane query in the
Transformer encoder and then employ Deformable Attention
[42] as cross-attention in the decoder process. The whole pro-
cess can be expressed as:

k = Softmax(
Q′

d−1M
′
d
T

√
zd

)M ′
d +Q′

d−1,

Qd = DA(k, kT , Q′
d−1) +Qd−1,

(2)

where Q′
d and M ′

d represent the lane query and high-to-low
hierarchical features after positional embeddings respectively,
DA() denotes the Deformable Attention, and zd represents the
sequence length.

Compared with DETR, our proposed Siamese Transformer integrates the lane query during the
encoder. The multi-scale features from the backbone have different shapes. Note that integration
during the encoder can unify the decoder’s input scales with less information loss. When the scales
are unified, the network can be made into a Siamese structure with shared parameters, which leads to
a big efficiency improvement.

High-to-low refinement structure with shared parameters. Recent studies have shown that Vision
Transformer (ViT) is good at extracting low-frequency information (in other words, global semantics
information) from images [27]. However, lane lines are characteristically thin and long, and their
accurate detection often requires integrating finer-scale features and global semantics information.
High-level information can help determine the structural information of lane lines while low-level
information can help adapt key points of the lane lines. Therefore, we adopt a high-to-low refinement
structure to refine the lane query. Given hierarchical features Pd ∈ RHd×Wd×C′

from the multi-scale
backbone, we first flatten it into Md ∈ RHdWd×C′

with 2-D positional embedding. Then we employ
cross-attention to integrate Md with the lane query into Sd ∈ RN×C′

. Since Sd shares the same
shape, the same parameters can be used during refinement between multi-scales. By refining the lane
query from high to low, the network can adapt the key points of the lane lines from coarse to fine,
which helps the Transformer learn high-frequency information of the image. After the refinement, we
employ a detection FFN to generate the lane anchor and finally attain the predicted lane lines with
bi-linear interpolation between the key points.

3.3 Curve-IoU Loss

We represent a lane line as a sequence of key points, and we need a loss to supervise the regression
of lane lines. In previous work, LIoU [41] was proposed as a similarity function to calculate the
distance between predicted key points and the ground truth. Although the LIoU loss ensures the
scale consistency of the lane shape, it does not match the L1 distance when there is a long distance
between the prediction lane line and the ground truth. Fig. 3(a) shows a typical curve scenario that
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Figure 3: (a) a typical failure scenario for LIoU, which cannot measure the distances between Ground Truth
and Predictions A and B; (b) the values of LIoU and Curve-IoU.

LIoU cannot describe correctly. In such cases, lane lines are inclined and curved, and the LIoU loss
is unable to judge which prediction lane line is closer to the ground truth. In Fig. 3, the values for
Prediction A and Prediction B are −0.6 and 0.6, respectively. However, the L1 distances for them are
8e and 1.5e, respectively.

To bridge this gap, we propose Curve-IoU (CIoU). Different from the traditional IoU, we add a
penalty term to IoU so that the spatial distance between each pair of lane lines will be represented
more accurately, especially for those with a long distance between the prediction lane line and the
ground truth. We use a sequence of points with a certain width e to present a lane line and calculate
the Intersection over Union, which can be written as:

doi = min(P r
i , G

r
i )−max(P l

i , G
l
i),

dui = max(P r
i , G

r
i )−min(P l

i , G
l
i),

(3)

where P l
i = xi − e and P r

i = xi + e, and Gl
i and Gr

i are defined similarly. IoU can be calculated as
IoU =

do
i

du
i

. Then we add the L1 distance between each corresponding pair of lines as the penalty
term to the overlap ranges, as:

LIoU = 1−
∑k

i=j(d
o
i −ReLU(dui − 4e))∑k

i=j d
u
i

, (4)

where j is the first valid point in the lane line. Then the CIoU loss can be calculated as CIoU =
1− LIoU .

Exploiting the thin and long structures of lane lines, our CIoU loss can supervise the regression of
lane lines better. As shown in Fig. 3(b), the values of LIoU and CIoU for Prediction A are −0.6 and
−1.6 respectively, which means that our CIoU can handle these scenarios more precisely.

3.4 Inference Details

In order to reduce the training costs, we generate only the lane anchor during training. The loss is
calculated by comparing the lane anchor to the ground truth. Our method generates a fixed number of
lane anchors, which is much larger than the maximum number of lane lines in the image. Besides the
Curve-IoU loss, we also utilize a classification accuracy loss to determine whether the lane anchor is
a lane line or the background. The classification accuracy loss can be described as:

ℓcls =

L∑
i=1

L (pi, gi) , (5)

where L(·, ·) denotes the cross-entropy loss and L is the number of sequences. If the i-th predicted
lane line matches the ground truth, then gi = 1 (0 otherwise). The objective function of our network
can be represented as:

ℓ = λclsℓcls + λregCIoU, (6)
where λcls and λreg are importance weight values. We supervise each generated lane anchor during
training, while during inference we use Non-Maximum Suppression (NMS) [24] to exclude incorrect
lane lines. Finally, we utilize bi-linear interpolation to produce the predicted lane lines of the image.
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Method Backbone F1 Up & Down Curve Extreme Weather Night Intersection Merge & Split FPS(↑) GFlops(↓)
LaneATT [32] ResNet18 28.3 25.3 25.8 32.0 27.6 14.0 24.3 153 9.3
LaneATT [32] ResNet34 31.0 28.3 27.4 34.7 30.2 17.0 26.5 129 18.0
PersFormer [5] EfficientNetB7 42.0 40.7 46.3 43.7 36.1 28.9 41.2 - -
CondLaneNet [17] ResNet18 52.3 55.3 57.5 45.8 46.6 48.4 45.5 173 10.2
CondLaneNet [17] ResNet34 55.0 58.5 59.4 49.2 48.6 50.7 47.8 128 19.6
CondLaneNet [17] ResNet101 59.1 62.1 62.9 54.7 51.0 55.7 52.3 47 44.8
CLRNet [41] ResNet18 52.3 55.3 57.5 45.8 46.6 48.4 45.5 168 11.9
CLRNet [41] ResNet34 55.0 58.5 59.4 49.2 48.6 50.7 47.8 124 19.6
CLRNet [41] ResNet101 59.1 62.1 62.9 54.7 51.0 55.7 52.3 46 44.8
CondLSTR [6] ResNet18 63.3 58.3 64.6 55.9 53.4 56.3 66.8 105 13.7
CondLSTR [6] ResNet34 65.6 59.1 66.7 57.2 55.6 57.5 68.3 91 23.2
CondLSTR [6] ResNet101 67.8 62.2 68.0 59.8 57.4 59.1 69.4 45 50.2
Our method tiny 68.3 69.5 65.3 52.4 50.9 56.5 69.6 172 10.2
Our method small 69.1 70.3 67.0 54.5 51.7 58.5 71.3 111 17.6
Our method base 69.7 70.5 69.1 55.7 52.2 59.9 71.6 69 16.8

Table 1: Comparison results of recent methods and our method on the OpenLane dataset. In order to
compare the computation speeds in the same setting, we remeasure FPS on the same machine with an
RTX3090 GPU using open-source code (if code is available). The best results in each column are
marked as bold and the second best results are underlined.

Method Backbone Total Normal Crowded Hlight Shadow Noline Arrow Curve Cross Night FPS(↑) GFlops(↓)
SCNN [26] VGG16 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5 328.4
UFLD [29] ResNet18 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 341 8.4
UFLD [29] ResNet34 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 184 -
LSTR [18] ResNet18 68.72 86.78 67.34 56.63 59.82 40.10 78.66 56.64 1166 59.92 126 2.9
Laneformer [11] ResNet18 71.71 88.60 69.02 64.07 65.02 45.00 81.55 60.46 25 64.76 - -
Laneformer [11] ResNet34 74.70 90.74 72.31 69.12 71.57 47.37 85.07 65.90 26 67.77 - -
Laneformer [11] ResNet50 77.06 91.77 75.41 70.17 75.75 48.73 87.65 66.33 19 71.04 - -
RESA [40] ResNet34 74.50 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80 51 -
RESA [40] ResNet50 75.30 92.10 73.10 69.20 72.80 47.70 88.30 70.30 1503 69.90 39 -
PriorLane [30] ResNet18 76.27 92.36 73.86 68.26 78.13 49.60 88.59 73.94 2688 70.26 - -
ADNet [37] ResNet18 77.56 91.92 75.81 69.39 76.21 51.75 87.71 68.84 1133 72.33 87 -
ADNet [37] ResNet34 78.94 92.90 77.45 71.71 79.11 52.89 89.90 70.64 1499 74.78 77 -
CondLaneNet [17] ResNet18 78.14 92.87 75.79 70.72 80.01 52.39 89.37 72.40 1364 73.23 154 10.2
CondLaneNet [17] ResNet101 79.48 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80 45 44.8
CLRNet [41] ResNet18 79.58 93.30 78.33 73.71 79.66 53.14 90.25 71.56 1321 75.11 152 11.9
CLRNet [41] ResNet101 80.13 93.85 78.78 72.49 82.33 54.48 89.79 75.57 1262 75.51 68 42.9
CLRNet [41] DLA34 80.47 93.73 79.59 75.30 82.51 54.58 90.62 74.13 1155 75.37 101 18.5
Our method tiny 80.01 93.48 79.31 73.91 82.30 53.56 89.88 69.13 1112 75.41 173 10.2
Our method small 80.43 93.65 79.76 73.34 81.21 53.56 89.76 72.58 1022 75.54 121 17.6
Our method base 80.85 93.92 80.21 76.04 81.65 55.42 89.53 75.66 1043 75.81 78 16.8

Table 2: Comparison results of recent methods and our method on the CULane dataset.

4 Experiments

4.1 Datasets

To demonstrate the effectiveness of our proposed method in realistic road environments, we evaluate
it on three benchmark datasets: OpenLane [5], CULane [26], and Tusimple [34]. OpenLane is a
real-world large-scale lane detection dataset, which contains 160K and 40K images as the training and
validation sets, respectively. The validation set consists of six realistic road scenarios and annotates 14
lane categories (including white dotted line, double yellow solid, left/right curb, and so on). CULane
is a widely-used large dataset for lane detection including eight hard-to-detect scenarios in urban
areas and on highways, with 88K and 34K images as the training and validation sets, respectively.
Tusimple is also a widely-used dataset with images collected on US highways under clear weather,
which contains 3K images for training and 2K for validation.

4.2 Evaluation Metrics

For OpenLane [5] and CULane [26], we adopt the F1-score measure proposed by SCNN [26] as
the evaluation metric. Intersection-over-Union (IoU) between the ground truth (GT) label and each
predicted lane line of the model is calculated to determine whether a sample is True Positive (TP),
False Positive (FP), or False Negative (FN). The ways to calculate IoU and F1-score can be found in
the supplemental material. For Tusimple [34], the evaluation metrics are composed of three official
indicators: Accuracy, False Positive Rate (FPR), and False Negative Rate (FNR). The way to calculate
Accuracy can be found in the supplemental material.
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Method Backbone F1 Acc FP(↓) FN(↓)
SCNN VGG16 95.97 96.53 6.17 1.80
RESA ResNet34 96.93 96.82 3.63 2.48
UFLD ResNet18 87.87 95.82 19.05 3.92
UFLD ResNet34 88.02 95.86 18.91 3.75
PolyLaneNet EfficientNetB0 90.62 93.36 9.42 9.33
LaneATT ResNet18 96.71 95.57 3.56 3.01
LaneATT ResNet122 96.06 96.10 5.64 2.17
LSTR ResNet18 96.84 96.18 2.91 3.38
ADNet ResNet18 96.90 96.23 2.91 3.29
ADNet ResNet34 97.31 96.60 2.83 2.53
PriorLane ResNet18 97.15 96.58 3.91 2.95
Laneformer ResNet18 97.30 96.54 4.35 2.36
Laneformer ResNet34 97.41 96.56 5.39 3.37
Laneformer ResNet50 97.56 96.80 5.60 1.99
CLRNet ResNet18 97.41 96.84 2.28 1.92
CLRNet ResNet101 97.68 96.83 2.37 2.38
Our method tiny 97.76 96.85 2.55 2.03
Our method small 98.01 96.79 2.13 2.17
Our method base 97.85 96.95 1.86 2.34

Table 3: Comparison results on the Tusimple dataset.

4.3 Implementation Details

In the experiments, we adopt the Swin Transformer [19] as the pre-trained backbone of our network.
We divide the versions of the backbone of the network based on the size of the Swin Transformer
into three categories: tiny, small, and big, which are consistent with the work in [19]. For data
augmentation, we adopt the affine transformation method (horizontal flip, rotation), brightness, and
saturation addition method. All the input images are reshaped into 800× 320 pixels each for both the
training and inference stages. For the number of lane anchors in an image, we set it to 150. In the
optimization process, we adopt AdamW [21] and the cosine decay learning rate strategy [20] with
the initial learning rate set to 6e-4. A batch size of 32 and training epoch numbers of 10, 20, and 90
are used for OpenLane, CULane, and Tusimple, respectively. All the experiments are conducted on a
machine with a single NVIDIA RTX3090 GPU with 24GB memory.

4.4 Experimental Results

4.4.1 Results on OpenLane

Comparisons of results by recent methods and our method on the OpenLane dataset are shown in
Table 1. Our method achieves state-of-the-art results in F1 score. Specifically, our method achieves
F1 scores of 68.3, 69.1, and 69.7, surpassing those of the best-known method CondLaneNet by
5.0, 3.5, and 1.9 points, respectively. Further, our method achieves the best performances in four
out of six scenarios, showing the robustness of our method. Among these, the “Up & Down” and
“Curve” categories are 7.2% and 1.1% higher than the previous best results, respectively. These results
demonstrate that the proposed Siamese Transformer with the hierarchical refinement structure can
deal with lane lines in realistic road environments very well. This is because our proposed LATR
integrates global semantics information and finer-scale features, which help refine key points when
roads are obscured by other vehicles or affected by poor outdoor lighting conditions. Simultaneously,
the proposed Curve-IoU can supervise the regression of curves well, which helps accurate detection
of lane lines.

4.4.2 Results on CULane

We compare the results by recent known methods and our method on the CULane dataset in Table 2.
In the total F1 score, our method achieves state-of-the-art results, with 0.38% improvement over
the best-known CLRNet. Among all the eight difficult scenarios, our method achieves the best
results on five of them. Specifically, for the “Crowded" and “Hlight" scenarios, our method achieves
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Figure 5: Visualization results of Ground Truth (GT), CondLaneNet [17] (CondLane), CLRNet [41],
and our method on CULane [26]. The results of CondLaneNet and CLRNet are generated with
ResNet18 and ours are generated with Swin Transformer tiny. Different lane lines are represented by
different colors. The F1 score for each predicted image is labeled in the top left corner of the image.

80.21% and 76.04% F1 scores respectively, surpassing those of CLRNet by 0.62% and 0.74% points,
respectively. These results demonstrate that our method can deal with realistic road environments,
especially when roads are obscured by other vehicles or affected by poor outdoor lighting conditions.

Fig. 5 shows some visual results of several known methods and our method on the CULane dataset.
CondLaneNet is an open-source dynamic convolution-based method and CLRNet is the second
best-performing method on CULane. The results of CondLaneNet and CLRNet are generated with
ResNet18 as the backbone and ours are generated with Swin Transformer tiny as the backbone. The
visual results show that when the roads are crowded and lane lines are covered by other vehicles, our
method can detect lane lines better and the lane regression is closer to the ground truth. What’s more,
our method also outperforms these methods in night scenarios, proving that our method can adapt to
different lighting environments with good robustness.

4.4.3 Results on Tusimple

Comparison results of recent methods and our method on the Tusimple dataset are given in Table 3.
This dataset consists of images captured in different weather conditions. Our method achieves
state-of-the-art results in F1 score, Accuracy, and False Positive Rate (FP), demonstrating that our
method can be adapted to both complex urban environments and simple highway scenarios. Note that
because the dataset was collected on US highways where the road conditions are relatively simple
(lane features are more obvious and clear), the results of various methods are close.

4.5 Ablation Studies

4.5.1 LAne TRansformer (LATR)

level3 level2

level1 level0

Figure 4: High-to-low attention maps of our pro-
posed LATR.

To fully integrate global semantics information and
finer-scale features, we propose a high-to-low hier-
archical refinement Transformer structure for lane
detection called LAne TRansformer (LATR), which
helps identify key points especially when roads are
crowded or affected by blurring. Fig. 4 shows some
high-to-low attention maps of our LATR. From Fig. 4,
one can see that attention is gradually focused on key
points on both sides of the road from high to low.
High-level attention is extended along the road from
the near end to the far end of the road, initially defin-
ing the overall structure of the lane lines. Low-level attention focuses on finer-scale features of the
lane lines, which refine the key points of the lane lines from higher-levels to lower-levels.

We compare the F1 scores of our Lane Transformer (LATR) and existing Transformer structures with
the same backbone Swin Transformer tiny on CULane, and report the results in Table 4. Compared
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with the existing Transformer structures, our method has a big advantage of extracting features at
multi-scales, which play an important role in the process of lane detection. Compared with the
Deformable Transformer, our method improves the detection accuracy by 4.36%. Further, as shown
in Table 4, lane features cannot be fully obtained by relying only on high-level features p0 or low-
level features p3. The Siamese refinement structure from high to low can better integrate the global
semantics information and finer-scale features, especially when roads are obscured by other vehicles
or affected by poor outdoor lighting conditions.

Transformer Refine level F1 score FPS

ViT [8] - 72.46 -
DETR [3] - 74.15 -

Deform [42] - 75.65 -
PriorLane [30] - 76.27 -
Our method p0 76.87 210
Our method p3 78.15 208
Our method p0 → p3 80.01 172

Table 4: Ablation study results of the Lane Trans-
former on the CULane dataset with the same back-
bone (Swin Transformer tiny).

Loss F1
OpenLane

F1
CULane

w/o IoU 64.28 77.16
smooth-L1 65.52 77.86
RIoU [22] 67.28 79.01
LIoU [41] 67.75 79.24
Curve-IoU 68.34 80.01

Table 5: Effect of our proposed Curve-IoU
on OpenLane and CULane. “w/o IoU” de-
notes optimizing with no IoU loss.

4.5.2 Curve-IoU Loss

To help the regression of lane lines, we propose the Curve-IoU loss. In Table 5, we compare our
Curve-IoU with different types of IoU for lane detection. “w/o IoU” denotes optimizing the network
with no IoU loss, using only classification and L1 regression loss, which only yields an F1 score of
77.16%. LIoU was proposed by CLRNet as a similarity function to calculate the distance between
the prediction and ground truth. However, LIoU does not match the L1 distance when there is a long
distance between the prediction lane line and ground truth. Compared with LIoU, our Curve-IoU
takes the L1 distance into account, which helps the regression of lane lines with curves. On the
CULane dataset, Curve-IoU achieves an F1 score of 80.01%, which is 2.85% higher than w/o IoU
and 0.77% higher than LIoU. Its effect on Transformer-based lane detection is validated.

5 Discussion

Our method achieves state-of-the-art results on three benchmark datasets and performs the best among
all the Transformer-based methods, especially in some challenging and complex road conditions.
However, we still find that the current known anchor-based methods are competitive in the “Shadow",
“Noline", and “Arrow" scenes on the CULane dataset, which is the opposite of the OpenLane
dataset. Also, the improvement of our method is larger on the OpenLane dataset. For this interesting
phenomenon, we assmue the reason behind it is that the CULane dataset contains 88K images
for training while the Openlane dataset contains 160K, which is almost twice that of CULane and
includes more complex and various scenes. Our Transformer-based method performs relatively better
on a larger dataset compared to anchor-based and CNN-based methods, that is, our method has a
much bigger potential for scaling up if the data and computation resources are sufficient. Considering
the current state of affairs in vision-based autonomous driving systems, deep learning algorithms are
advancing and models are expanding, yet the systems are still constrained by the size and diversity of
datasets. We call for larger and better datasets featuring more diverse scenes for further research.

6 Conclusions

In this paper, we proposed a novel Siamese Transformer structure with hierarchical refinement, which
achieves state-of-the-art results on three benchmark datasets. Specifically, we developed a high-to-low
hierarchical refinement Transformer structure called LATR to refine key points of lane lines, which
compensates for the Vision Transformer’s deficiency in extracting finer-scale features. Also, we
proposed a novel Curve-IoU loss tailored for the long and thin shape of lane lines, which helps
supervise the regression of lane lines with different offsets. Extensive experiments confirmed that our
model effectively handles complex scenarios, particularly when lane lines are heavily obscured by
other vehicles or compromised by poor lighting conditions.
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A Evaluation Metrics

For OpenLane [5] and CULane [26], we adopt the F1 score proposed by SCNN [26] as the evaluation
metric. Intersection-over-Union (IoU) between the ground truth (GT) and the predicted lane line of
the model is calculated to determine whether a sample is True Positive (TP), False Positive (FP), or
False Negative (FN). The IoU and F1 score are calculated as in the following formulas:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (7)

IoU =
Intersection

Union
, (8)

F1 =
2× Precision×Recall

Precision+Recall
. (9)

For Tusimple [34], the evaluation metrics are composed of three official indicators: accuracy, False
Positive Rate (FPR), and False Negative Rate (FNR). The accuracy is calculated as:

Accuracy =

∑
clip Cclip∑
clip Sclip

, (10)

where Cclip is the number of correct points and Sclip is the number of ground truth (GT) points in
an input image. If the accuracy of a predicted lane is greater than 85%, it will be considered a True
Positive (TP). F1 score is also used in the evaluation.

B More Ablation Studies

B.1 Overall Ablation Study

To verify the roles of our proposed lane Transformer (LATR) and Curve-IoU in our method, we
carry out an overall ablation study with the same baseline LSTR [18]. The results of the ablation
study are shown in Table 6. LATR can greatly improve the detection accuracy of lane lines, which
improves the F1 scores with 8.38% and 6.45% increase on OpenLane and CULane, respectively.
This is because our proposed LATR can better integrate global semantics information and finer-scale
features, especially when roads are obscured by other vehicles or affected by poor outdoor lighting
conditions. What’s more, our proposed Curve-IoU further improves the F1 scores by 1.23% and
1.66% on OpenLane and CULane, respectively. These results show that our proposed Curve-IoU can
improve the accuracy of lane detection, especially for roads with curves.

LATR Curve-IoU F1
OpenLane

F1
CULane

59.96 73.56
✓ 67.11 78.35

✓ 61.86 76.05
✓ ✓ 68.34 80.01

Table 6: Results of the overall ablation study with
the same backbone. We conduct the overall ab-
lation study based on the same baseline LSTR
[18].

Number of
Lane anchors

F1
OpenLane

F1
CULane FPS

50 65.64 79.16 208
100 67.56 79.75 195
150 68.34 80.01 172
200 68.36 79.91 150
250 68.18 80.05 131

Table 7: Results of the ablation study on the num-
ber of lane anchors. “FPS" denotes the FPS on
the CULane dataset.

B.2 Number of Lane Anchors

Our method generates a fixed number of lane anchors, much more than the maximum number of lane
lines in the image. Here we conduct an ablation study on the number of lane anchors. As shown in
Table 7, when we increase the number of lane anchors from 50 to 150, the accuracy of lane detection
on both OpenLane and CULane is improved. This demonstrates that increasing the number of lane
anchors is beneficial to the detection of lane lines. However, when we further increase the number of
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CondLane CLRNet Our method GT

Figure 6: More visualization results of Ground Truth (GT), CondLaneNet [17] (CondLane), CLRNet
[41], and our method on the CULane dataset [26]. The results of CondLaneNet and CLRNet are
generated with ResNet18 and ours are generated with Swin Transformer tiny. Different lane lines are
marked by different colors.

lane anchors, the enhancement is not obvious or even appears to be decreasing. This is because when
the number of lane anchors reaches a certain value, adding more lane anchors will cause redundancy.
150 lane anchors are enough for the network to detect lane lines in the image.

B.3 More Studies on Backbone

In order to evaluate the bias caused by the backbone net, we conduct ablation experiments on
backbones. We find that the Swin Transformer with hierarchical features can better extract image
features for subsequent processing. Therefore, we choose the Swin Transformer as our backbone
network, which is an open-source backbone widely used by other works. The results show that our
approach achieves better results with higher FPS and lower GFlops. We also replace the backbone
of previous methods (e.g., CLRNet) with Swin Transformer and train these models under equal
situations. The results are shown below in Table 8.

Method Backbone F1 score on CULane
CondLaneNet Swin-tiny 77.16
CondLaneNet Swin-base 77.84

CLRNet Swin-tiny 79.05
CLRNet Swin-base 79.73

Ours Swin-tiny 80.01
Ours Swin-base 80.85

Table 8: Replace the backbones of previous methods with Swin Transformer.
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B.4 Scaling up

We only use a single LATR module for each pyramid level, to find out the potential scaling-up ability
of our model, we add more layers to each level, and the results are shown in Table 9 and 10. It can be
seen from the results that more LATR added at the lower feature levels can improve performance,
while not leading to much increase in parameters. As a result, we think it is effective to add two
LATR modules at both the lowest and second-lowest feature levels.

Number of LATR Module F1 Score on CULane

1 80.01
2 80.32
3 80.43

Table 9: Performance with Different Numbers
of LATR Modules.

Layer Level F1 Score on CULane Params

1 80.10 29.186 M
2 80.15 29.186 M

1 & 2 80.22 29.592 M
Table 10: Impact of Adding 2 LATR Modules
to lowest and second lowest feature levels

C More Visualization Results

More visualization results of Ground Truth (GT), CondLaneNet [17], CLRNet [41], and our proposed
method on the CULane dataset [26] are shown in Fig. 6. Compared with CondLaneNet and CLRNet,
our method is more effective in detecting lane lines on congested roads and in different lighting
environments, which demonstrates the robustness of our method.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly illustrate our proposed model LATR, and
precisely show the experiment results we have achieved.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper thoughtfully discusses the limitations of the research in Section 5.
We evaluate the robustness of our proposed method on three datasets in varying scenarios,
and before that, we make assumptions and declare the inference details thoroughly in Section
3.4.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not propose theoretical results in this paper
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We illustrate our experiment details in our paper, and we will release our code
and checkpoint, ensuring our work’s reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

16



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our code and checkpoint of this paper, and all the datasets we
use are open access. The appendix includes extensive experiments to prove our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are all illustrated thoroughly in Section 4, and our code will release.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We display the experiment results in Section 4 which can explain the variance,
outliers, and anomalies, and we illustrate all the evaluation metrics we use in Section 4.2
and A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provides detailed descriptions of the computational resources used for each
experiment in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly examined the ethical guidelines and legal considerations,
and confirm that all study aspects obey the rules.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We comprehensively discuss the broader societal impacts of the research in
this paper, and no significant negative impacts are found.

Guidelines:

18

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not pose any such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper cites the original creators of all utilized assets, including code and
datasets. The licensing information of our code is clearly outlined, ensuring full compliance
with legal and ethical standards.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper documents all newly introduced assets, including code and datasets,
and we have ensured that all assets are appropriately anonymized in line with submission
guidelines.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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