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Abstract

In this work, we introduce AutoFragDiff, a fragment-based autoregressive diffu-
sion model for generating 3D molecular structures conditioned on target protein
structures. We employ geometric vector perceptrons to predict atom types and
spatial coordinates of new molecular fragments conditioned on molecular scaffolds
and protein pockets. Our approach improves the local geometry of the resulting 3D
molecules while maintaining high predicted binding affinity to protein targets. The
model can also perform scaffold extension from user-provided starting molecular
scaffold.

1 Introduction

Rational drug design against defined binding pockets relies heavily on computational modeling.Stokes
et al. [2020], Anderson [2003] Traditionally, the diversity of small-molecule candidates and the
high degrees of freedom inherent in ligand-protein binding systems make navigating chemical
space computationally intensive.Lipinski and Hopkins [2004] Moreover, target-aware molecular
design strives to balance optimizing for potency against specific target structures while maintaining
desirable absorption, distribution, metabolism, and excretion (ADME) and pharmacokinetic and
pharmacodynamic (PKPD) properties.Skalic et al. [2019] While many target protein structures are
available, effectively harnessing this information to design novel drug-like compounds with desired
therapeutic effects remains an active area of research.Ragoza et al. [2017]

Diffusion models Ho et al. [2020], Kingma et al. [2021] generate 3D molecular structures from
underlying distributions of molecular dataHoogeboom et al. [2022], thus enabling the generation
of diverse molecular candidates that reflect real chemical space. However, these models struggle
to capture the nuances of local molecular geometry. Specifically, maintaining the correct spatial
arrangements and conformations of functional groups and atoms remains challenging.Harris et al.
[2023] While the overall structure might resemble known molecules, minor deviations in local
geometry can significantly impact the bioactivity and specificity of the generated compounds.

Many pocket-specific molecule generation models have leveraged autoregressive strategies. In these
models, atoms are placed individually, and bonds are determined separately. Drotár et al. [2021], Liu
et al. [2022]. However, this sequential approach can be cumbersome and error-prone; even generating
a benzene ring is a laborious six-step procedure. Fragment-based generation strategies sidestep some
of these drawbacks. Our work employs Autoregressive Diffusion Models (ARDMs),Hoogeboom et al.
[2021] which can generate data in a flexible order. This unique feature enables ARDMs to bridge
the gap between order-agnostic autoregressive and diffusion-based generative models.Igashov et al.
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Figure 1: Noising and Sampling for a single fragment inside a protein pocket. Yellow spheres show
the anchor point.

[2022], Hoogeboom et al. [2022], Schneuing et al. [2022], Guan et al. [2023] Unlike their traditional
counterparts, ARDMs don’t adhere to strict architectural norms for neural networks, yet they achieve
comparable results in fewer steps.

In this study, we combine fragment-based drug design with autoregressive diffusion models. Unlike
traditional autoregressive methods that work atom by atom, this combined approach allows each
fragment to undergo a denoising process, predicting atom coordinates and atom types (Figure 1).
Rather than relying on a fixed fragment library, our approach dynamically generates fragments,
providing flexibility in the diversity of fragments produced. This approach generates molecules with
more accurate local geometries for pocket-based molecule generation, delivering greater precision
and efficiency in drug design.

2 Related Work

Generative models and geometric deep learning have influenced recent pocket-based drug design.
Atz et al. [2021], Bronstein et al. [2017]. Li et al. [2021] introduced an autoregressive generative
model designed to sample ligands, using the pocket as a conditioning constraint. Building on this
work, Peng et al. Peng et al. [2022b] introduced Pocket2Mol, which uses an E(3) equivariant graph
neural networkSatorras et al. [2021] that accounts for rotation and translation symmetries in 3D
space for more accurate molecular representations. Similarly, Drotár et al. [2021], Liu et al. [2022]
explored autoregressive models for molecular generation, generating atoms sequentially. These
models incorporate angles during generation to improve molecular detail and accuracy.

Diffusion models enable pocket-free and pocket-based drug design.Kingma et al. [2021] Hoogeboom
et al. [2022] introduced Equivariant Diffusion Models (EDMs), which simultaneously learn contin-
uous coordinates and atom types for molecule generation. Multiple studies built on this approach:
GeoDiff Xu et al. [2022] predicts a molecule’s 3D conformation and DiffLinkerIgashov et al. [2022]
learns to connect seed fragments. Similarly, Schneuing et al. Schneuing et al. [2022] developed
DiffSBDD, a denoising diffusion model for pocket-based molecule design. Guan et al’s TargetDiff
uses SE(3)-equivariant networks to explicitly learn the generative process for continuous coordinates
and categorical atom types.Guan et al. [2023]. Peng et al introduced FragDiff Peng et al. [2022a],
an autoregressive diffusion model on molecular fragments. By comparison, our approach employs
order-agnostic autoregressive diffusion models Hoogeboom et al. [2021], and its high molecule
validity from Geometric Vector Perceptrons Jing et al. [2020] eliminates the need for a discriminator.

3 Methods
3.1 Problem Definition

We represent the protein pocket and the ligand as point clouds with atomic coordinates r and
corresponding feature vectors h. The feature vector is the one-hot encoded atom type for ligand
atoms and element type, plus amino acid type for the pocket atoms. For the pocket P = (rPi , h

P
i )

NP
i=1,

and for the molecule M = (rMi , hM
i )NM

i=1 where NP and NM are the number of atoms in the pocket
and molecule respectively. We further separate each molecule into multiple fragments and molecular
scaffolds M = [(rMF

i , rFi ), (h
MF
i , hF

i )]
NM
i=1 . MF and F superscripts represent molecule scaffold and

the fragment respectively. Note that for each molecule, there exist multiple fragments and scaffolds.
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The autoregressive diffusion process aims to generate a new fragment conditioned on a molecular
scaffold and protein pocket at each step.

3.2 Diffusion Process

The diffusion process iteratively adds noise to data point x and trains a neural network to remove
noise progressively (Figure 1). Generative denoising inverts the trajectory when x is unknown. This
process for fragment F is conditioned on the molecular scaffold MF and the protein pocket P :

p
(
zFt−1|zFt ,MF , P

)
= q

(
zFt−1|x̂F , zFt

)
(1)

where x̂ = (1/αt)zt − (σt/αt)ϵ̂t is the approximation of xF computed by neural network ϕ using
ϵ̂t = ϕ(zt, t,MF , P ) . We use Geometric Vector Perceptrons (GVP ) to parameterize ϕ because
they outperform equivariant neural networks. Satorras et al. [2021] Following DiffLinker Igashov
et al. [2022], Jing et al. [2020], Torge et al. [2023], we define the "anchor point" as the scaffold atom
bonded to the fragment F . We ensure the GNN is translationally invariant by first centering the data
around the anchor point a and then sampling from N (0, I) instead of sampling the initial noise from
N (f(a), I) where f(a) is the anchor point center of mass.

During training, we only add noise to coordinates r and feature vector h of the fragment F . We
keep the scaffold molecule MF and the protein pocket intact. The input to the neural network is the
noised version of fragment zFt at time t and the context u, which contains the molecular scaffold MF ,
the protein pocket P , and the anchor point a. The predicted noise ϵ̂Fi for the fragment Fi includes
coordinates and feature vector ϵ̂Fi = [ϵ̂Fi

x , ϵ̂Fi

h ]. We only use the predicted coordinates and feature
vectors for the fragment atoms and discard the rest.

Hoogeboom et al. [2021] et al. derived an objective for order agnostic diffusion models to be
optimized one step at a time (see SI). Following the ARDM approach, we first sample a random
ordering σ from the set of all fragment-wise molecule generation permutations SD at each training
step, where D is the number of fragments in the molecule. Next, we uniformly sample a single
fragment F to reconstruct with the diffusion model. As proposed by Kingma et al. [2021], we use a
simplified objective L(t) = ||ϵ− ϵ̂t||2 that can be optimized by mini-batch gradient descent.

Additionally, we train a separate model for anchor point prediction (see SI). During sampling, this
AnchorGNN (see SI) model predicts the anchor point from among the scaffold atoms. We sample the
fragment size from the data distribution conditioned on the pocket size near the anchor point. We
repeat the fragment generation process until we reach a maximum number of fragments or molecule
size. Algorithms 1 and 2 in SI define AutoFragDiff training and sampling procedures, respectively.
We compute Lennard-Jones-motivated interactions between generated fragment and pocket atoms
to minimize clashes. Following a classifier-based guidance strategy Ho and Salimans [2022], we
compute the gradient of a score function (Lennard-Jones interaction between pocket and fragment)
with respect to fragment atom coordinates and add it to them with a negative sign (see SI).

Figure 2: (Left) The fragment connectivity for a molecule. Highlighted atoms are the anchor points
on each fragment. (Right) Sampled generation order for the molecule on the left from its fragments.
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4 Datasets

CrossDock: We use CrossDock2020Francoeur et al. [2020] to evaluate AutoFragDiff for pocket-
based molecule generation. Similar to other studies, we refined the original 22.5 million docked
protein binding complexes by filtering for low (<1Å) RMSD and sequence identity of less than 30%.
This procedure yielded 100,000 training complexes and 100 previously unseen testing pockets. We
used RDKit Landrum [2013] and BRICS Degen et al. [2008] to fragment molecules by breaking
bonds between rings without breaking fused ring systems. We used a maximum of 8 fragments
per molecule. We used breadth-first and depth-first search traversals of each molecule’s fragment
connectivity graph to avoid computing an intractable enumeration of all potential fragment-wise
molecule reconstructions. At each reconstruction step, we saved the scaffold atoms and coordinates,
the added fragment, and the anchor point where the scaffold connects to the next fragment. Figure 2
illustrates the molecule fragmentation strategy and generation order.

5 Results

As in TargetDiffGuan et al. [2023], we use openbabel O’Boyle et al. [2011] to reconstruct the
molecules from the generated atomic point clouds. In terms of the Jensen Shannon Divergence
Lin [1991] (JSD) of angles and dihedrals for common ring structures in CrossDock, AutoFragDiff
significantly surpasses other models (Table 1). Although it was not a focus of this study, we also assess
the generated molecules for various chemical properties (Table 2), including drug-likeliness (QED)
and average synthetic accessibility (SA)Ertl and Schuffenhauer [2009]. "Diversity" evaluates the
average molecular fingerprint similarity across all generated molecule pairs. AutoFragDiff generates
realistic molecules with higher calculated binding affinity than the molecules in the test set and
exhibits results on par with state-of-the-art models. Figure 8 and Figure 9 (see SI) show generated
molecules for two examples, protein L3MBTL1 (pdb: 2pqw) and P21-activated kinase (pdb: 5i0b).

Additionally, we used PoseCheck Harris et al. [2023] to evaluate the generated molecules for clashes
with protein atoms, strain energies, and interactions with pocket atoms (see SI). AutoFragDiff
molecules averaged 6.7 clashes with pocket atoms (Figure 4), outperforming other diffusion-based
models (TargetDiff 9.2 and DiffSBDD 11.8 averages). Non-diffusion models Pocket2Mol and
3DSBDD averaged 5.7 and 3.9 clashes per molecule, while the CrossDock ground truth test set
averaged 4.8 clashes. Similarly, non-diffusion modelsPocket2Mol and 3DSBDD generally generated
molecules with lower strain energies than diffusion-based models (Figure 5). Considering interaction
types, TargetDiff molecules had the most H-bond donors and acceptors (Figure 6), while both
AutoFragDiff and TargetDiff showed the most hydrophobic and Van der Waals interactions, on par
with the CrossDock test set molecules.

Table 1: JSD of angles and dihedrals for most common rings in CrossDock dataset. Best score
highlighted in dark gray; second best in light gray. DiffSBDD results are from the conditional all
atoms model Schneuing et al. [2022]

Model angles dihedrals angles dihedrals angles dihedrals angles dihedrals
3D-SBDD 0.458 0.666 0.293 0.300 0.457 0.625 0.342 0.439
Pocket2Mol 0.438 0.574 0.321 0.272 0.347 0.551 0.408 0.478
DiffSBDD* 0.342 0.549 0.310 0.235 0.254 0.546 0.363 0.435
TargetDiff 0.203 0.459 0.154 0.176 0.140 0.460 0.335 0.437
AutoFragDiff(ours) 0.103 0.151 0.191 0.172 0.073 0.179 0.293 0.333

Scaffold Extension: Since our model adds fragments to an existing molecular scaffold at each step,
it can further optimize a user-provided starting scaffold. To test the concept, we extracted the Murcko
scaffold from every molecule in the CrossDock test set. We augmented each scaffold with up to 4
fragments, generating 20 distinct molecules per CrossDock molecule. 70% of the newly generated
molecules exhibited higher calculated binding affinity than their corresponding starting molecule
(average Vina score of -7.8 generated versus -7.1 CrossDock). Figure 3 contains representative
examples for an S. cerevisiae Cytochrome-c peroxidase pocket (pdb: 1a2g).
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Table 2: Pocket-based generative models comparison. Best score highlighted in dark gray; second
best in light gray.

Method Vina (↓) Diversity (↑) QED (↑) SA (↑)
3D-SBDD -6.71 0.70 0.49 0.62
Pocket2Mol -7.15 0.69 0.56 0.74
DiffSBDD -6.90 0.73 0.48 0.63
TargetDiff -7.55 0.72 0.49 0.61
AutoFragDiff(ours) -7.45 0.69 0.45 0.62
CrossDock Test Set Molecules -7.10 - 0.47 0.73

Figure 3: Scaffold (red) extension examples on a Cytochrome-c peroxidase (pdb: 1a2g).

6 Conclusion

We introduce AutoFragDiff (https://github.com/keiserlab/autofragdiff), an open-source autoregressive
fragment-based diffusion model tailored for pocket-free and pocket-based molecule generation. A
standout feature of AutoFragDiff is its capability for scaffold extension, which is a key aspect of
many real-world drug design applications, especially in close-in optimization around lead series. The
model is adept at generating molecules with high-quality local geometry and exhibits robust binding
affinity to target proteins. Looking forward, we aim to enhance the ligand affinity within the pocket
using guidance strategies and model architecture improvements.
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7 Appendix

A.1 Training and Sampling

Algorithm 1 Training
1: Input: Fragment xF , Scaffold MF , anchor point a, protein pocket P , neural network ϕ
2: Sample Permutation order σ ∼ SD

3: Sample fragment F
4: Sample t ∼ U(0, . . . , T ), ϵt ∼ N (0, I)
5: zFt ← αtx

F + σtϵt
6: ϵ̂t ← ϕ(zt,MF , a, t,P)
7: Minimize ∥ϵ− ϵ̂t∥2

Algorithm 2 Sampling
1: for i in 1..D; do
2: Input: Scaffold MFi

, anchor point ai, protein pocket P , neural network ϕ
3: Center everything at f(ai)
4: Sample zFi

T ∼ N (0, I)
5: for t in T ;T − 1; . . . ; 1 do
6: Sample ϵt ∼ N (0, I)

7: ϵ̂t ← ϕ(zFi
t , t,MFi , ai, P )

8: zFi
t−1 ← (1/ᾱt) · zt − σ̄2

t /(ᾱtσt) · ϵ̂t + ζt.ϵ
9: end for

10: Sample xFi ∼ p(xFi |zFi
0 ,MFi

, ai, P )
11: end for

For sampling molecule sizes, we first bin the pocket volumes into 10 bins (using grids inside the
protein pocket) and find the distribution of molecule sizes for each bin. During sampling, we sample
molecule sizes from the distribution of the corresponding volume bin. For the first generation step,
the anchor point is selected from the pocket atoms in contact with the original ligand. We first bin the
pocket volume within 3.5 Å of the anchor point for fragment size and then sample the fragment sizes
from the corresponding bin. The average size of generated molecules from our model is 26 atoms.

A.2 Diffusion Process

At each timestep t = 0...T the conditional distribution of the intermediate state zFt for a single
fragment F given the previous state is defined by the multivariate normal distribution:

q(zFt |zFt−1) = N
(
zFt ; ᾱtz

F
t−1, σ̄

2
t I

)
(2)

In this equation ᾱt = αt/αt−1 controls how much signal is retained and σ̄t = σ2
t − ᾱ2

tσ
2
t−1 controls

how much noise is added. The full transition model for diffusion is Markovian:

q(zF0 , z
F
1 , ..., z

F
T |xF ) = q(zF0 |xF )

T∏
t=1

q(zFt |zFt−1) (3)

The true denoising process has a closed-form solution when conditioned on xF :

q(zFt−1|zFt , xF ) = N
(
zFt−1;µ(x, zt), ζ

2
t I

)
(4)

where µt(x
F , zFt ) and ζt have analytical solutions:

µt(x
F , zFt ) =

ᾱtσ
2
t−1

σ2
t

zt +
αsσ̄

2
t

σ2
t

, ζt =
σ̄tσt−1

σt
(5)
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We trained AutoFragDiff with T = 500 diffusion steps using a polynomial noise scheduler:

αt = (1− 2s) · (1− (t/T )2) (6)

where s = 10−5 is the precision value to help with numerical issues.

A.3 Geometric Vector Perceptrons

GVP Jing et al. [2020] uses nodes with scalar features s as inputs. These scalars represent embedded
features of atoms without accompanying vector features. Edges within the graph incorporate a
normed direction vector alongside the distance between two nodes. More specifics about this can be
found in GVP paper.Jing et al. [2020]

As described previously in DiffHopp Torge et al. [2023], the attributes of nodes and edges undergo
linear transformations. Edge embeddings are achieved in two phases: initially, their inputs are
normalized using layer normalization Ba et al. [2016], and following this, they are channeled through
a GVP. Here, both σ and σ+ operate as the identity function, resulting in a scalar with a hidden size
of h/2 and a singular vector. Nodes undergo a parallel embedding process, culminating in outputs of
h scalars and h/2 vectors, summing up to h features. The message-passing layers can be expressed
as:

m′
vw = ϕe(hv, hw, evw),

m′
v =

∑
w∈Nv

ẽvwmvw

h′
v = ϕh(hv,m

′
v)

(7)

Within this equation, ẽvw = ϕatt(mvw) acts as an attention mechanism, enabling the learning of soft
edge estimates, mirroring the approach in EGNN. The function ϕe combines three GVPs featuring
hidden sizes (h, h/2). Notably, the final GVP has σ as its identity function. Meanwhile, ϕatt

embodies a single GVP translating to a singular scalar with σ functioning as the sigmoid activation.
A factor of C = 100 normalizes the resulting output.

The relationship between ϕh(hv,m
′
v) is captured by the equation ϕh(hv,m

′
v) = norm(hv +

ϕ′
h(norm(hv + m′

v))). This employs a residual architecture where ϕ′
h integrates two GVPs with

sizes (h, h/2). This encapsulates input, hidden, and output dimensions. The terminal layer once
again adopts σ as the identity function. The term "norm" represents layer normalization, which isn’t
applied to vectors.

A.4 Autoregressive Diffusion Models

Autoregressive models can factorize a multivariate distribution into a product of D univariate distri-
butions.

log p(x) =

D∑
t=1

log p(xt|x1, ..., xt−1) (8)

Sampling from such models can be done through D iterative sampling steps. Order agnostic models
can generate variables with random orderings σ ∈ SD where SD is the set of all permutations for
building the molecule from its fragments. The log-likelihood of these models can be written as:

log p(M |P ) ≥ Eσ∼U(SD)

D∑
i=1

log p(Mσi |Mσ(<i), P ) (9)

In this equation, M is the set of molecule atoms, P is the set of protein atoms, and Mσi
is the

molecule generated with sampled ordering σ at the fragment step i. Hoogeboom et. al. derived
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an objective for order agnostic diffusion models Hoogeboom et al. [2021] that only needs to be
optimized for a single step at a time:

log p(M |P ) ≥ Eσ∼U(SD)D.Ei∼U(1..D) log p(Mσi |Mσ(<i), P ) (10)

According to this objective, during training, we sample a random order σ of molecule generation
uniformly from the set of all generation orders SD, and a single fragment from the uniform distribution
of all fragments in the molecule. We train the diffusion model to predict this single fragment. In
practice, we optimize a simplified L(t) = ||ϵ− ϵ̂t||2 loss by mini-batch gradient descent.

A.5 Hyperparameters

We consider the protein graph as the protein atoms within 7 Å of the original ligand. Edges within
the ligand are fully connected, while protein-ligand and protein-protein edges are drawn with a radius
threshold of 4.5 Å. The edge features for nodes i and j are the distance dij and the normalized
direction vector (xi − xj)/dij . As previously suggested by Hoogeboom et al. [2022], we scale node
types h by a factor of 0.25. The final model had 6 GVP layers, with hidden dimension of 128 and a
joint embedding dimension of 32. We trained the model with a learning rate of 2 × 10−4 for 500
epochs.

A.6 Additional results

Table 3 compares different models by JSD for different types of bonds.

Table 3: Comparison of JSD of bond distances in different bond types for different models. Best
results per row are highlighted in dark gray, and second best in light gray.

Bond 3D-SBDD Pocket2Mol DiffSBDD TargetDiff AutoFragDiff

C-C 0.576 0.455 0.347 0.286 0.363
C=C 0.421 0.561 0.314 0.220 0.221
C-N 0.383 0.321 0.313 0.242 0.290
C=N 0.443 0.377 0.348 0.179 0.231
C-O 0.394 0.326 0.353 0.298 0.354
C=O 0.511 0.446 0.398 0.398 0.363
C:C 0.459 0.309 0.316 0.176 0.295
C:N 0.582 0.377 0.348 0.158 0.217

As described below, we used PoseCheck Harris et al. [2023] to evaluate each model’s generated
molecules for their number of clashes with pocket atoms, strain energies, and interactions (hydrogen
bond donors and acceptors, hydrophobic interactions, and Van der Waals contacts) with pocket atoms.

7.1 Steric clashes

We computed steric clashes of generated molecules with protein atoms with a clash tolerance of 0.5
Å, as described in PoseCheck. We use a classifier guidance approach to minimize the clashes to
pocket atoms in our model. We calculate the Lennard-Jones (LJ) interaction of the fragment atoms
with pocket atoms as the guidance function and add the negative gradient of this score with respect to
fragment coordinates to the current fragment atom coordinates. When computing the Lennard-Jones
interactions, we include pocket hydrogen atoms, although the ligand diffusion itself does not include
explicit hydrogens.

U(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(11)

In this equation, σ is the sum of Van der Waals radii of the pocket and ligand atoms, and r is the
distance between protein and ligand atoms. We clip the output at 1000 to avoid very large values.
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xF = xF − ϵ∇xFU(r) (12)

We use a cosine-β weight scheduler to progressively lower the effect of LJ guidance over the inference
trajectory. Note that the LJ guidance is only used for avoiding clashes with pocket atoms and does
not have a physical meaning. CrossDock test set molecules have on average 4.8 clashes with pocket
atoms. Our model shows an average of 6.7 clashes, outperforming other diffusion models Targetdiff:
9.2 and DiffSBDD: 11.8. However, non-diffusion-based models have fewer clashes with pocket
atoms, with Pocket2Mol having an average of 5.7 and 3DSBDD 3.9 clashes.

Figure 4: Steric clashes of different models

7.2 Strain energy

We computed molecule strain energies as the difference between the internal energy of the generated
and minimized conformers, using the Universal Force Field (UFF) from RDKit (Figure 5). Diffusion-
based models all showed higher strain energies than non-diffusion models with Pocke2Mol model
having the lowest strain energy.

7.3 Ligand-pocket interactions

Using PoseCheck, we computed four interaction types between molecule poses and pocket atoms
(hydrogen bond donors, hydrogen bond acceptors, hydrophobic interactions, and Van der Waals
contacts) (Figure 6). CrossDock molecules have more hydrogen bond donors than any generated
molecules. TargetDiff shows more H-bond donors and acceptors than the other generative models.
In terms of hydrophobic and Van der Waals interactions, AutoFragDiff and TargetDiff show similar
performance which is also on par with CrossDock test set molecules
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Figure 5: Strain energies of different models

Figure 6: Different interaction types of generated poses with protein atoms.
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Figure 7: Top 15 occurring fragments using our custom fragmentation in CrossDock dataset.

A.7 Fragmentation

During fragmentation, we first break all the bonds between rings without breaking fused ring systems.
In addition, we also use RDKit and use BRICS to fragment the molecules (Figure 7). A maximum
of 8 fragments is used for each molecule; if the number of fragments exceeds 8, we connect the
smallest fragments iteratively until the maximum of 8 fragments is reached. Given the fragment
connectivity of a molecule (fragment adjacency), we compute all BFS and DFS traversals of the
molecule graph based on the fragment. We only use BFS And DFS traversals to avoid computing all
of the molecule’s fragmentation graph’s traversals for computational feasibility. A generation order
defines how fragments are added step-wise based on their connectivity to make a complete molecule.
At each step of the generation order, we save the scaffold atoms and their coordinates, the added
fragment at the generation step and its coordinates, the generation step, and the scaffold anchor point
for the next fragment. This strategy greatly augments the size of the dataset as well.

A.8 Anchor point predictor

We trained a standalone neural network (AnchorGNN) to predict the anchor points during sampling.
We used graph convolutional layers (GCL) to predict the probability of each scaffold atom being an
anchor point. The molecular scaffold and protein pocket atoms are the model inputs. We use one-hot
encoded atom types as scaffold atom features. For pocket atoms, the features are atom types, amino
acid types, and whether the atom belongs to the backbone or sidechain. We use inter-atomic squared
distance d2ij = ||ri − rj ||2 as the edge feature.

The update for feature h and coordinates of node i at layer l are computed as follows:

mij = ϕe(h
l
i, h

l
j , d

2
ij), hl+1

i = ϕh(h
l
i,
∑
j ̸=i

mij), rl+1
i = rli + ϕvel(r

l, hl, i) (13)

with dij = ||ri − rj || and ϕe, ϕh being learning functions. We perform a sequence of l Graph
Convolutional Layers (l = 4). Finally, node embeddings for the scaffold molecule hM are linearly
transformed to a single number and passed through a sigmoid function to compute the probabilities.
A binary cross-entropy loss is used to train the model. During sampling, we take the anchor point
with the highest probability. A learning rate of 5× 10−4 was used to train this model.
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Figure 8: Examples of generated molecules for protein L3MBTL1 (pdb: 2pqw).

Figure 9: Examples of generated molecules for P21-activated kinase (pdb: 5i0b).
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