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Abstract— Semantic communication (SemComm) has emerged
as new paradigm shifts. Most existing SemComm systems trans-
mit continuously distributed signals in analog fashion. However,
the analog paradigm is not compatible with current digital
communication frameworks. In this paper, we propose an alter-
nating multi-phase training strategy (AMP) to enable the joint
training of the networks in the encoder and decoder through
non-differentiable digital processes. AMP contains three training
phases, aiming at feature extraction (FE), robustness enhance-
ment (RE), and training-testing alignment (TTA), respectively. In
particular, in the FE stage, we learn the representation ability
of semantic information by end-to-end training the encoder and
decoder in an analog manner. When we take digital communi-
cation into consideration, the domain shift between digital and
analog demands the fine-tuning for encoder and decoder. To
cope with joint training process within the non-differentiable
digital processes, we propose the alternation between updating
the decoder individually and jointly training the codec in RE
phase. To boost robustness further, we investigate a mask-attack
(MATK) in RE to simulate an evident and severe bit-flipping
effect in a differentiable manner. To address the training-testing
inconsistency introduced by MATK, we employ an additional
TTA phase, fine-tuning the decoder without MATK. Combining
with AMP and an information restoration network, we propose a
digital SemComm system for image transmission, named AMP-
SC1. Comparing with the representative benchmark, AMP-SC
achieves 0.82 ∼ 1.65dB higher average reconstruction perfor-
mance among various representative datasets at different scales
and a wide range of signal-to-noise ratio.

Index Terms—Semantic communication, Digital communica-
tion, Multi-phase training, Alternating training.

I. INTRODUCTION

S IXTH generation (6G) has been conceptualized as an intel-
ligent information system both being driving and driven by

the modern artificial intelligence (AI) technology [1]. Bridging
the AI applications and physical world, SemComm achieves
reliable transmission with impressive semantic level infor-
mation fidelity [2] by extracting the latent semantic features
from the source. In fact, SemComm has been recognized as
a promising technique to improve communication efficiency
and breakthrough beyond Shannon paradigm.

By leveraging the advances in deep learning, SemComm
systems often use deep neural networks (DNNs) for joint
source-channel coding (JSCC) to extract and encode the se-
mantic information and can transmit various types of sources,
such as texts [3], images [4], [5], speeches [6], and videos
[7]. For instance, [3] proposed a text transmission SemComm
system called DeepSC, and [4] developed a SemComm system

1The code is available in https://github.com/gmzSZU/AMP-SC

named DeepJSCC for image transmission. Alternatively, in
some cases, not all receivers are expected to display source
data. Instead, some receivers might be on duty of edge tasks,
and they prefer directly inferring based on received semantic
features rather than the reconstructed source data. Motivated
by this, numerous task-oriented SemComm systems [8]–[10]
have been proposed and demonstrated remarkable communica-
tion efficiency compared with separate source-channel coding
(SSCC) approaches. Besides of above-mentioned works, some
works have investigated the combination of conventional Sem-
Comm and widely-used communication technologies, includ-
ing non-orthogonal multiple access [11], [12], multiple-input-
multiple-output [13], [14], and broadcast communication [15],
[16].

Nonetheless, most of the existing SemComm systems suffer
compatibility issues with modern wireless communication
framework. The DNN-based deep channel encoders typically
output continuous signals, which are then directly transmit-
ted to physical channel. This analog transmission approach,
however, is challenging to implement in practice due to the
non-ideal characteristics of hardware components, such as
power amplifiers. Although the implementation of analog
paradigm based SemComm might appear straightforward,
bridging conventional SemComm and practical applications
necessitates a comprehensive evolution of hardware, protocols,
and communication operators, which can be extremely costly.
Therefore, it is also crucial to explore approaches to convert
continuous signals into finite ones to improve compatibility
of SemComm system to conventional framework, enabling a
smooth transition between two paradigms.

To be compatible with the fact that the current wireless hard-
ware/protocol can only admit certain sets of channel inputs,
many research efforts have been devoted to the quantization
problem in SemComm system. The non-differentiable quanti-
zation renders directly applying the conventional SemComm
methods in digital fashion. In particular, some researches [17]–
[19] have proposed differentiable quantizers through mathe-
matical approximation. On the other hand, some works [20],
[21] investigated the use of additive analog noise, which is
differentiable, to replace quantization during training, yielding
remarkable performance during digital testing.

Apart from discrete and finite set channel input, the process
of current digital communication requires further mapping
the transmitting signals into constellation symbols, i.e., dig-
ital modulation. The constellation mapping ensures efficient
modulation-demodulation, which are crucial for minimizing
transmission errors in real-world noisy wireless channels.

ar
X

iv
:2

40
8.

04
97

2v
1 

 [
ee

ss
.S

P]
  9

 A
ug

 2
02

4



2

Deep Source  

Encoder

Deep Source  

Decoder

Wireless 

Channel

(a) Conventional

Deep Source 

Encoder

Modulator

Deep Source 

Decoder

Wireless 

Channel

Euclidean

Quantizer

Demodulator

Digital-Analog

Converter

Analog-Digital

Converter

(d) Standard

Deep Source 

Encoder

Modulator

Deep Source 

Decoder

Wireless 

Channel

Projection 

Codebook

Demodulator

Digital-Analog

Converter

(c) Codebook-Based

Deep Source 

Encoder

Differentiable 

Quantizer/Modulator

Deep Source 

Decoder

Wireless 

Channel

(b) Differentiable 

Quantizer/Modulator

Deep Channel  

Encoder

Deep Channel  

Decoder

Knowledge 

Sharing

Deep Channel  

Sub-Encoder

Deep Channel  

Decoder

Optional

Fig. 1: Illustration of conventional SemComm system and various types of digital SemComm systems. Conventional denotes the
conventional SemComm systems [3]–[7], where the continuous semantic features are directly transmitted to the wireless channel. Furthermore,
Differentiable Quantizer/Modulator denotes the systems employed differentiable quantizers [17]–[21] or learnable modulators [22], [23] on
the transmitter side. Additionally, Codebook-Based [24]–[28] represents those leveraging learnable codebook for vector quantization and
standard modulator for constellation mapping. Standard represents the systems, including [29]–[31] and ours, have simultaneously studied
quantization, modulation, and demodulation, which are important processes in standard wireless communication framework. In this paper,
we aim at proposing a training strategy to enable a smooth transition from (a) to (d) for any SemComm system, empowering the digital
SemComm with the development of conventional SemComm.

To cope with the non-differentiable issues caused by both
the discrete-value-to-constellation mapping and the likelihood
maximization during demodulation, [22], [23] proposed learn-
able modulators to bypass conventional digital processes for
end-to-end training. That is, they empower the projection from
continuous features to bit sequences by DNNs in the trans-
mitter and enable the receiver to directly decode the received
constellation symbols without likelihood maximization.

Although the learnable modulators have addressed the
incompatibility in the transmitter, the receiver without de-
modulation is still in an analog fashion. Accordingly, based
on codebooks for quantization, some works [24]–[27] have
explored approaches to train the networks through modulation
and demodulation in an end-to-end manner. In particular,
[24] leveraged categorical reparameterization with Gumbel-
Softmax to approximate the demodulation. Alternatively, [25]
adopt the gradient estimator to numerically approximate the
gradient of likelihood maximization. Furthermore, [26] in-
troduced the binary symmetric channel model to enable the
gradient propagation. However, the learnable modulators fit
to specific modulation orders during training, leading to in-
flexibility in changing different modulations (e.g., QPSK, 16-
QAM) according to channel conditions. Thus, [27] proposed a
modulation-agnostic SemComm framework that incorporates
all the digital modulation orders in training. However, the
above codebook-based quantization methods [24]–[27] suffer
the mismatch issue occurring in the local relationship between
code indices and code vectors. To address this issue, [28]
proposed a heuristic codebook reordering algorithm, where
the Gray code mapping is integrated. Despite, this algorithm

TABLE I: Considered Digital Processes of Related Works and Ours

SemComm System Euclidean Quantization Modulation Demodulation
[17]–[21] ✓ ✗ ✗
[22], [23] ✗ ✓ ✗
[24]–[28] ✗ ✓ ✓

[29]–[31], Ours ✓ ✓ ✓

aligns the codebook and modulation by establishing proximity
relationships under the context of Gray code mapping, rather
than together with the codebook. Consequently, the learned
semantic information space becomes distorted, resulting in the
average performance degradation. In brief, the mismatch issue
between code indices and code vectors continues to undermine
the effectiveness of codebook-based quantization methods.

Apart from these codebook-based methods, the encoders
in [32]–[34] generate representations directly in binary latent
space. The binary-latent approaches facilitate compatibility
with existing modulation-demodulation schemes. However, the
binary latent space is much larger than the discrete value space,
since multiple bits are grouped to represent one discrete value.
Furthermore, when amounts of bits are transmitted for high-
quality images, the binary DNNs could suffer the convergence
problem in training and performance degradation in testing due
to the explosively increased number of parameters. Accord-
ingly, the proposed systems in [32]–[34] only work for a short
range of compression ratios. In addition, it is worth noting
that DNNs are widely researched based on the assumption of
latent space in the field of real numbers. Hence, encoding the
entries of feature vectors at the bit level is often inefficient
and diminishes the benefits associated with SemComm [27].

The aforementioned works have made impressive efforts to
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transfer continuous data streams to discrete data streams within
the transmitted signal, achieving remarkable performance.
However, it is worth noting that a modern standard digital
communication framework encompasses multiple digital pro-
cesses, including source coding, channel coding, Euclidean
quantization (e.g. rounding), modulation-demodulation, and
analog-digital conversion. To be more compatible with the
standard framework, the JSCC-based SemComm system needs
to consider all these digital processes, from Euclidean quanti-
zation to digital-analog conversion. Unfortunately, as shown in
Fig. 1 and Table. I, these works deviate from standard digital
communication frameworks in one or more signal processing
steps during conversion between continuous and finite signals.
This variance still hinders a smooth transition to semantic
communication in a cost-effective manner.

Recently, to facilitate the deployment of SemComm within
standard digital communication frameworks, some works
[29]–[31] have conducted further investigations on optimizing
DNNs in the encoder and decoder through non-differentiable
digital operations and channel. To enable the end-to-end train-
ing in digital SemComm system, [29] proposed a digital Sem-
Comm system, where the source codecs and physical channel
are modeled as a probabilistic model, for image transmission.
Despite remarkable performance, the probabilistic approach
imposes constraints on the upper bound of reconstruction
performance due to the uncertainty [35].

To efficiently utilize powerful models for remarkable task
performance in digital SemComm, [30], [31] have explored
decoder-only training strategy. In particular, to avoid non-
differentiability issue in modulation, [30] focused on optimiz-
ing networks in the receiver, rather than those in the trans-
mitter. Similarly, [31] proposed a two-phase training strategy.
In the first phase, both the encoder and decoder are offline-
trained in an end-to-end manner. In the second phase, [31]
solely fine-tuned the decoder, where the inputs are the received
demodulated symbols generated by the frozen encoder with the
conventional modulation-demodulation process. Consequently,
the encoder displays limited contribution to the network op-
timization, resulting in sub-optimal inference accuracy in the
receiver. Overall, the non-differentiability problem in digital
SemComm system during training remains unsolved.

In this paper, towards the above challenge, we propose
the alternating multi-phase training strategy (AMP) to over-
come non-differentiability in training. It is worth noting that
the alternating training strategy can be applied to various
SemComm systems for compatible implementation in current
digital communication framework without any modification
on neural network architectures. In addition, AMP enables
the noise robustness enhancement in both the encoder and
decoder, improving the task performance in noisy channels.
Furthermore, we explore a differentiable mask-attack (MATK)
to indicate the unpredictable noise during transmission. From
the perspective of DNN, we propose an information restoration
network, called IRSNet, to reduce the impact of bit-flipping
(BFP) in the receiver. Additionally, based on JSCC framework,
we propose a digital semantic communication system, named
AMP-SC, for image transmission. Notably, standard modu-
lation schemes such as QPSK and 16QAM can be directly

implemented in AMP-SC, which is empowered by AMP. The
major contributions of this paper are summarized as follows:

1) Alternating Multi-Phase Training Strategy: Given the
non-differentiable nature of bits transmission, we pro-
pose a training strategy named AMP to optimize the
system, empowering the success of conventional Sem-
Comm into modern digital communication frameworks.

2) We design AMP with three training phases: feature
extraction, robustness enhancement, and training-testing
alignment, respectively. In the robustness enhancement
phase, we introduce a differentiable MATK to approxi-
mate and indicate the unpredictable noise during trans-
mission, thereby boosting the noise robustness.

3) IRSNet: Inspired by the great success of U-Net in
signal/image restoration, we develop IRSNet to restore
noise-corrupted semantic features to cleaner ones, miti-
gating the impact of unpredictable BFP for the decoder.

4) Superior Performance : Compared with the state-of-the-
art approaches, AMP-SC achieves remarkable recon-
struction performance. In terms of 4-bit quantization,
AMP-SC displays 1.24 ∼ 1.65dB higher average perfor-
mance than the digital system empowered by the “soft”
quantization in [21] and two-phase training strategy in
[31] among multiple representative datasets.

The remainder of this paper is organized as follows: In the
following Section II, we will introduce the system model of the
proposed AMP-SC. In particular, we will discuss the proposed
AMP and neural network architecture in details in Section III.
Then, simulation results are presented in Section IV. Finally,
we will summarize this paper in Section V.

II. SYSTEM MODEL

In this section, we will introduce the system model of
the proposed AMP-SC. As shown in Fig. 2, we consider a
single-user digital semantic communication system for image
transmission. Without loss of generality, we denote that the
inputs of the SemComm system are images x ∈ Rc×h×w

with the number of color channels c as well as the height h
and the width w of the image signal and the outputs are the
reconstructed images y ∈ Rc×h×w.

A. Transmitter

As shown in Fig. 2, the transmitter contains an encoder, a
rounding quantizer, an analog-digital converter, and a modu-
lator. The encoder extracts features through learned function
ES :: Rc×h×w → Rn, where n is the number of transmitted
continuous symbols. Briefly, the deep source encoding func-
tion is given by

x̃ = ES(x|ϕ), (1)

where x̃ ∈ Rn is the continuous encoded semantic features
and ϕ is the set of learnable parameters of the encoder.
Thus, the following quantized continuous semantic features
can be represented as ⌈x̃⌋, where ⌈·⌋ is a rounding operation.
Assuming the input continuous symbol is s, the conversion
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from continuous symbols to binary bits can be achieved by
following

AD(s) = db−1db−2 . . . d1d0, (2a)

di = ⌊ s
2i
⌋ mod 2, (2b)

where di denotes the i-th bit counting from the right and b is
the number of bits per symbol for modulation. In addition, ⌊·⌋
indicates operation of rounding down. Following the employed
general constellation mapping and modulation schemes, the
binary signal z ∈ Cn×2b are transmitted to physical channel.

B. Modulation, Physical Channel, and Demodulation

Due to the impact of physical channel noise, the transmitted
bit stream will inevitably experience bit-flipping. This means
that a bit transmitted as 0 (or 1) may be received as 1 (or
0). The probability of each bit-flipping and the correlation
between adjacent flipped bits are influenced not only by the
intensity of channel noise but also by the specific modulation
and demodulation methods [31]. Modeling the joint probability
distribution of bit-flipping for each modulation-demodulation
method is very complex, and training a model for each
method individually is computationally expensive and beyond
the scope of this paper. Alternatively, this paper aims to
use a simple yet representative model to analyze changes
within a bit stream. This approach leverages the simplicity
of network optimization and extends to practical communica-
tion applications. In particular, the binary symmetric channel
model is widely adopted as the channel model to analyze bit
transmission [33]. Following [18], [26], [31]–[34], we consider
the binary symmetric channel as the channel model due to its
symmetric error characteristics, making system optimization
and performance validation more efficiently.

As the bits are transmitted to the physical channel, some
factors, such as channel noise, interference, and multipath
effects, can lead to changes in the transmitted bits. Hence,
the received bits could be inconsistent with the transmitted
ones. Despite the advanced maturity of modern error detection
and correction techniques, they are still not flawless enough
to detect and correct all errors. Therefore, from an end-to-end
perspective of the converters in Fig. 2, some bits are flipped
imperceptibly, known as BFP. Similar with [34], we assume
that BFP occurs independently in each bit and the probability
model can be regarded as a binomial distribution with flipping
probability p. Therefore, the BFP can be given by

ẑ = z + sign(rand(z)), (3)

where ẑ ∈ Cn×2b denotes the received binary signal. Given
an input a, the sign function sign() follows

sign(a) =

{
1 if a < p

0 if a > p
, (4)

In addition, rand(z) ∈ Cn×2b obeys the uniform distribution
of [0, 1] and is utilized to determine whether each bit in z is
flipped or not.
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Fig. 2: System model of the proposed AMP-SC.

C. Receiver

Upon receiving the corrupted bit-stream and converting it
to continuous symbols, the receiver reconstructs the source
information with neural networks. However, BFP, as men-
tioned earlier, is unpredictable, making it inadequate to directly
input the received continuous signal to the decoder as it may
contain incorrect semantic information. Therefore, we suggest
restoring the received continuous signal with a DNN and then
reconstruct the source data.

Similar with the transmitter, the receiver consists of the
demodulator, digital-analog converter, optimizable information
restoration network, and the decoder. The binary semantic
features are converted to the continuous ones ž ∈ Rn

according to a digital-to-analog conversion function DA(·).
Given the demodulated binary number set d̂, each grouped
of demodulated digital representation in the received signal is
first converted to continuous symbol by following

DA(d̂) =

b∑
i=0

(d̂i × 2i). (5)

In particular, we leverage an information restoration network
to reduce information loss, which is mainly caused by bit-
flipping, for the decoder. The restored semantic features z̃ ∈
Rn is given by

z̃ = DR(ž|θR), (6)

where DR ∈ Rn → Rn is the restoration function with
optimizable parameters θR. Accordingly, the inference result
is given by

y = DS(z̃|θS), (7)

where DS ∈ Rn → Rc×h×w is the decoding function with
learnable parameters θS.

III. ALTERNATING MULTI-PHASE TRAINING STRATEGY
AND NETWORK ARCHITECTURE

In this section, we will introduce the proposed training
strategy. As discussed in Section I, the decoding-only training
strategy proposed by [31] enables parameter tuning in the
decoder to fit with BFP in an end-to-end manner. However,
the encoder remains in a noise-unaware fashion, since the
gradients from the decoder are blocked by quantization and
modulation. The concession degrades the inference accu-
racy over the noisy wireless channel. To tackle the non-
differentiability in training and robustness enhancement for
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Algorithm 1 Alternating Multi-Phase Training Strategy

1: Input: a set of numbers of training epochs, batch size M ,
number of bits for analog-digital conversion B, BFP ratio
p, and mask ratio 2p

2: do Step-1 and Step-2
3: while alternating training round j = 1 to 3 do
4: do Step-3 and Step-4
5: end while
6: do Step-5

digital SemComm systems, we propose an alternating multi-
phase training strategy, named AMP. As shown in Fig. 3,
the proposed method mainly contains three phases, aiming
at feature extraction (FE), robustness enhancement (RE), and
training-testing alignment (TTA). While each of FE and TTA
contains 1 step, RE contains 3 steps, including 2 steps for
alternating training. AMP can be briefly described as the
following:

• In the first phase FE, we aim at empowering the repre-
sentation ability of the system in the analog domain.

• Following FE, RE is deployed to intensify the robustness
to information loss, which is caused by quantization and
BFP, with “soft” quantization and alternating training.
In particular, the alternation between solely updating
decoder and jointly optimizing codecs in RE, enables the
parameter updating in both encoder and decoder, even
the digital communication processes in-between are non-
differentiable. To boost robustness further, we investigate
MATK in RE to simulate an evident and severe BFP
effect in a differentiable manner.

• To cope with the training-testing inconsistency introduced
by MATK, we employ an additional TTA phase, fine-
tuning the decoder without MATK.

Algorithm 1 briefly demonstrates the entire training pro-
cedures of AMP. The training settings of AMP for AMP-
SC are shown in Table. II. Particularly, in the following, yi

will be used to denote the reconstructed images in Step-i
for simplicity. Moreover, L(·) is used to represent the loss
function, whose inputs are learnable parameters.

A. Feature Extraction
For SemComm, either in digital or analog fashion, one

key sector is to extract the semantic-relevant information and

Algorithm 2 Step-1 in Alternating Multi-Phase Training

1: Input: number of training epochs K1, batch size M , and
number of bits for analog-digital conversion B

2: while epoch k = 1 to K1 do
3: Select a mini-batch of data {xm}Mm=1

4: Compute feature vectors based on (1)
5: Compute reconstructed source image {y1,m}Mm=1

based on (8)
6: Compute the loss based on (9)
7: Update parameters ϕ,θS through backpropagation
8: end while

compress the irrelevant information. As discussed in Section I,
despite the differentiability of systems in [32]–[34] empowered
by binary DNNs, the binary latent space limits the range of
compression ratios. Rather than directly training in the digital
domain, we argue that it is more efficient to gradually transfer
well-optimized parameters from the analog domain to the
digital domain.

Therefore, we eliminate the process of quantization and
modulation, and thus directly feed the output of the encoder
as the input of the decoder in FE. In this case, we enable the
end-to-end training of ϕ and θs in the analog domain to obtain
the encoder and decoder that successfully extract the semantic-
relevant information and compress the irrelevant information.
Briefly, FE contains Step-1 only, whose training procedures
are shown in Algorithm 2. Recalling the encoded continuous
semantic features x̃ in (1), we optimize the model in the analog
domain using an end-to-end training approach, following:

y1 = DS (x̃|θS) , (8)

and the loss function is given by

L (ϕ,θS) = ∥y1 − x∥1. (9)

B. Robustness Enhancement

Notably, in FE, the system is well optimized in the analog
domain to ensure the representation ability. When we take
digital communication into consideration, the domain shift be-
tween digital and analog demands the fine-tuning for encoder
and decoder. Accordingly, in this phase, we aim at enhancing
robustness to noise distortion in the digital domain.
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Algorithm 3 Step-2 in Alternating Multi-Phase Training

1: Input: number of training epochs K2, batch size M , and
number of bits for analog-digital conversion B

2: while epoch k = 1 to K2 do
3: Select a mini-batch of data {xm}Mm=1

4: Compute feature vectors based on (1)
5: Randomly sample N from a standard Gaussian dis-

tribution
6: Compute reconstructed source image {y2,m}Mm=1

based on (10)
7: Compute the loss based on (11)
8: Update parameters ϕ,θS through backpropagation
9: end while

In particular, to be compatible with current digital communi-
cation framework, a SemComm system should take digital pro-
cesses, from quantization to demodulation, into further consid-
eration. However, shifting to digital communications, the non-
differentiability problem inevitably appears. Particularly, the
conversion between bit-stream and continuous signal-stream
is not differentiable, as indicated by (2). This characteristic
makes the end-to-end training approach no longer suitable to
fine-tune the digital SemComm system. Moreover, although
the two-phase training strategy proposed by [31] has enabled
the optimization in the decoder, the encoder remains in a
noise-unaware fashion, resulting in performance degradation
over noisy channel. Therefore, introducing digital processes,
we alternate between solely updating decoder and jointly
optimizing codecs in RE. In the following, we will introduce
the Step-2, alternating Step-3 and Step-4, alternating training
with MATK in RE. Additionally, the proposed IRSNet and
alternating training of AMP will be discussed.

1) Methodology of Step-2: In order to fine-tune the encoder
and decoder through non-differentiable quantization, inspired
by [21], we fine-tune the well-trained model in FE with ad-
ditive randomness to achieve relaxed continuous quantization
in the analog domain. It also helps reduce information loss
caused by quantization. Thus, in Step-2, the deep source
decoding function can be denoted as

y2 = DS (x̃+ α×N |θS) , (10)

where N samples from a standard Gaussian distribution and
α is the intensity coefficient of N . Thus, the loss function is
given by

L (ϕ,θS) = ∥y2 − x∥1. (11)

The training procedures of Step-2 is shown in Algorithm 3.
2) Alternating Step-3 and Step-4: In the following, as the

impact of information loss caused by non-differentiable quan-
tization is mitigated in Step-2, the optimization is concentrated
on adapting the networks to digital channel environment in the
following alternating steps. To better illustrate the proposed
alternating training, we suggest treating the transmitter and
physical channel as a single entity. When the encoder networks
are frozen to allow no parameter updates, the optimization of
decoder networks becomes feasible, since the inputs to the
decoder are demodulated symbols. This approach bypasses

the non-differentiable nature of the digital components in
the system. Notably, the random BFP distorts the received
signal, enabling the decoder networks to become aware of
digital noise through backpropagation. As the receiver is fine-
tuned for down-stream task, the transmitter needs to adjust
the encoding policy to further improve inference accuracy
and noise robustness. Thus, alignment in the latent space of
transceivers is carried out by jointly training networks of the
encoder and decoder with additive noise in the analog domain.
This joint training extends noise-awareness to the encoder,
enhancing the overall system’s robustness.

Accordingly, we update the decoder’s parameters with dig-
ital processes while freezing those of the encoder, which can
be referred to Step-3. Recalling the additive randomness, we
then jointly optimize encoder and decoder networks in the
analog domain to align the encoder and decoder networks,
which is named as Step-4. The alternating training enables the
gradients to bypass the non-differentiable part of the digital
system, allowing the learnable parameters to be updated.
Furthermore, they contribute to the reduction of performance
degradation in digital SemComm systems. It is worth noting
that such alternating training strategy can be transferred
to various SemComm systems for implementation in current
digital communication framework without any modification on
network architectures.

However, it remains challenging to preserve the trans-
mitted semantic information from BFP. Since it is nearly
unpredictable which bits will be flipped and how much the
corresponding symbols will change, we argue that limited
optimization can be achieved by the transmitter, while the
burden of eliminating “fake” semantic information falls on the
receiver. As for the receiver, one effective method to mitigate
the impact of BFP is to restore the received signal before
reconstructing the source information by a DNN. Motivated
by this, we investigate differentiable MATK in the alternating
training process to enhance robustness to the potential infor-
mation loss caused by BFP and propose IRSNet to restore the
transmitted continuous signal to reduce the negative impact of
BFP, respectively.

Inspired by [36], MATK is designed to simulate an evident
and severe bit-flipping effect in a differentiable manner. With
MATK in Step-3, the decoder infers based on the incomplete
signal, where the semantic information is broken by MATK
and explicitly polluted by BFP. Thus, the decoder needs
to learn the deep correlations among semantic information,
resulting in the improvement of noise robustness. Addition-
ally, the encoder can also benefit from MATK. In Step-4,
MATK provides simulated digital communication environment
to empower the joint training of the encoder and decoder in
the analog domain. As a result, MATK enhances the error
resilience of transmitted semantic information.

Briefly, RE includes Step-2 and two alternating steps, which
are named as Step-3 and Step-4, to enhance the system robust-
ness to digital noise distortion. It is worth noting that Step-
3 and Step-4 will be alternated for multiple times, whereas
Step-2 will only be carried out once. In Step-3, we train
the decoder only, with random BFP in fixed flipping ratio p.
Notably, the learnable parameters in transmitter are frozen.
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Algorithm 4 Step-3 in Alternating Multi-Phase Training

1: Input: number of training epochs K3, batch size M ,
number of bits for analog-digital conversion B, BFP ratio
p, and mask ratio 2p

2: while epoch k = 1 to K3 do
3: Select a mini-batch of data {xm}Mm=1

4: Compute feature vectors based on (1)
5: Compute quantized feature vectors
6: Compute analog-digital conversion based on (2)
7: Compute binary signal {zm}Mm=1 based on a given

modulation order
8: Compute noise-corrupted signal {ẑm}Mm=1 based on

(3), (4), and (5)
9: Randomly sample M from a uniform distribution

between 0 and 1
10: Compute reconstructed source image {y3,m}Mm=1

based on (12)
11: Compute the loss based on (13)
12: Update parameters θR,θS through backpropagation
13: end while

Recalling the received continuous semantic features ž and
semantic decoding function DS , the forward propagation in
receiver is given by

y3 = DS (ž ·M|θS) , (12)

where M is the randomly generated binary mask and · denotes
dot-product operation. The loss function is given by

L (θS) = ∥y3 − x∥1. (13)

In Step-4, we jointly train the encoder and decoder with
relaxed quantization and MATK. The semantic decoding func-
tion is given by

y4 = DS ((x̃+ α×N ) ·M|θS) . (14)

Although the process functions are similar with those in Step-
3, the loss function is different and given by

L (ϕ,θS) = ∥y4 − x∥1. (15)

Generally, the mask ratio should be larger than the bit-
flipping ratio p. As indicated by [37], the optimal mask ratio
for a network could be high. Furthermore, a good mask ratio
should be selected to balance the distance between irrele-
vant semantics and that between relative semantics, which
contribute to noise robustness and representation ability re-
spectively. Accordingly, without loss of generality, we suggest
setting the mask ratio as 2p.

3) IRSNet: Inspired by the great success of U-Net [38] in
signal/image restoration, we develop IRSNet to restore noise-
corrupted semantic features to cleaner ones, mitigating the
impact of unpredictable BFP for the decoder. The multi-level
structure with full connections of U-Net endows the network
with multi-scale information extraction and restoration capa-
bilities. Furthermore, MATK makes the IRSNet blind to a por-
tion of the received information, forcing it to restore the broken
semantics. Although BFP introduces “fake” semantic informa-
tion before masking, it provides no assistance in repairing the

Algorithm 5 Step-4 in Alternating Multi-Phase Training

1: Input: number of training epochs K4, batch size M ,
number of bits for analog-digital conversion B, BFP ratio
p, and mask ratio 2p

2: while epoch k = 1 to K4 do
3: Select a mini-batch of data {xm}Mm=1

4: Compute feature vectors based on (1)
5: Randomly sample N from a standard Gaussian dis-

tribution
6: Randomly sample M from a uniform distribution

between 0 and 1
7: Compute reconstructed source image {y4}Bb=1 based

on (14)
8: Compute the loss based on (15)
9: Update parameters ϕ,θR,θS through backpropaga-

tion
10: end while

compromised semantics to IRSNet as it represents nothing in
the source data. Through backpropagation, the IRSNet learns
to achieve restoration with accurate semantic information in
the corrupted signal. Consequently, the following decoder can
reconstruct the source information with cleaner and more
precise semantic information.

4) Alternating Training of AMP-SC: With the joining of
IRSNet, the process and loss functions of alternating training
need to be rewritten for AMP-SC. Recalling the functions (12)
and (13) in Step-3, now we train the proposed IRSNet and
decoder with random BFP in fixed flipping ratio and MATK in
fixed mask ratio. With the restoration function DR, the forward
propagation in receiver is given by

y3 = DS (DR (ž ·M|θR) |θS) . (16)

In order to optimize the proposed IRSNet for information
restoration, we leverage the L1-loss to train IRSNet. Accord-
ingly, the loss function is given by

L (θR,θS) = ∥y3 − x∥1 + ∥z̃ − ⌈x̃⌋∥1. (17)

In the following, the deep source decoding function in Step-4
is given by

y4 = DS (DR ((x̃+ α×N ) ·M|θR) |θS) . (18)

Similar with (15), the loss function is given by

L (ϕ,θR,θS) = ∥y4 − x∥1. (19)

Since the IRSNet is introduced and randomly initialized in
the first round of interactive training, the number of training
epoch in Step-3 of the first round is set to 4T , where T is the
number of training epochs for each regular step, to refine the
IRSNet and decoder.

C. Training-Testing Alignment

In the alternating part, MATK has enhanced the restoration
ability of IRSNet and noise robustness of the system against
BFP. However, it is noteworthy that MATK does not exist in
practical communications. Moreover, further fine-tuning the
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Algorithm 6 Step-5 in Alternating Multi-Phase Training

1: Input: number of training epochs K5, batch size M ,
number of bits for analog-digital conversion B, and BFP
ratio p

2: while epoch k = 1 to K5 do
3: Select a mini-batch of data {xm}Mm=1

4: Compute feature vectors based on (1)
5: Compute quantized feature vectors
6: Compute analog-digital conversion based on (2)
7: Compute binary signal {zm}Mm=1 based on a given

modulation order
8: Compute noise-corrupted signal {ẑm}Mm=1 based on

(3), (4), and (5)
9: Compute reconstructed source image {y5,m}Mm=1

based on (20)
10: Compute the loss based on (21)
11: Update parameters θR,θS through backpropagation
12: end while

IRSNet with MATK limits the improvement of restoration
ability against BFP since less latent space of IRSNet is devoted
to restoring “fake” information. As a result, the reconstruction
performance of the system degrades in implementation. There-
fore, in this phase, we aim at aligning the decoding process
in the training and testing stages to improve performance in
implementation. Particularly, we remove MATK to bridge the
gap between training and testing, making simulations more
relevant to real transmission scenarios. In addition, it ensures
that the system can focus on explicit semantic loss during
subsequent fine-tuning processes.

Briefly, training-testing alignment phase (TTA) contains
only one step, which is step 5. Based on the above discussion,
the deep source decoding function is given by

y5 = DS (DR (ž|θR) |θS) , (20)

Furthermore, the loss function is denoted as

L (θR,θS) = ∥y5 − x∥1 + ∥z̃ − ⌈x̃⌋∥1. (21)

D. Network Architecture

The network architecture of proposed digital SemComm
system is shown in Fig. 4. The learnable part of the sys-
tem includes multiple residual convolutional blocks (RCBs)
[39], transposed residual convolutional blocks (T-RCBs), and
squeeze-and-excitation modules (SEs) [40]. Notably, we em-
ploy two convolutional layers in RCB and two transposed
convolutional layers in T-RCB respectively. Assuming the
input and output of modules are s and s

′
, the processing

function of RCB and T-RCB can be given by

s
′
= F1(s, {Wi}) +Wss, (22)

where F1(s, {Wi}) represents the learnable residual mapping
function with parameter {Wi} and consists of two convolution
operations. In addition, Ws is denoted as the parameters of the
shortcut convolutional layer. The processing function of SE is
given by

s
′
= F2(s, {Wi})× s, (23)

SE
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Fig. 4: The proposed digital SemComm system for image trans-
mission. Left: The pipeline of AMP-SC; Right: The information
restoration network IRSNet; Below: Notations.

TABLE II: Training Settings of AMP for AMP-SC

Steps Epoch Learning Rate Mask Ratio
1 4T 1e− 4 N/A
2 T 1e− 5 N/A
3 [4T , T , T ] [1e− 4, 1e− 4, 1.5e− 5] [2p, 2p, 2p]
4 [T , T , T ] [1e− 4, 1e− 4, 1.5e− 5] [2p, 2p, 2p]
5 T 1.5e− 5 N/A

where F2(s, {Wi}) represents squeeze-and-excitation function
and contains two linear operations and a sigmoid function. The
“Squeeze” operation in the SE compresses features in each
channel through global average pooling, while the “Excitation”
operation enhances the representation of informative features
using learned channel attention weights.

The proposed IRSNet has an architecture similar with U-
Net, which is a widely used framework in image restoration.
As shown in the middle of Fig. 4, IRSNet consists of nine
RCBs and two T-RCBs. Similar with the general U-Net
architecture, the first five RCBs are utilized to down-sample
the input features, and one RCB for projection. In the up-
sampling stage, three RCBs and two T-RCBs are cross-used
to recover the transmitted semantic information. Since “fake”
semantic information introduced by BFP represents nothing
in the source data, it will be detected and restored in higher-
dimensional latent space through down-sampling and up-
sampling processes, respectively. Accordingly, the distortion
caused by BFP remains minimal in the restored signals.

IV. SIMULATION RESULTS

In this section, we evaluate the image reconstruction per-
formance of the proposed AMP-SC and benchmarks.
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TABLE III: Number of Blocks

Block CIFAR10 Kodak24 & DIV2K
Encoder Decoder Encoder Decoder

RCB / T-RCB 6 6 8 8
SE 5 5 7 7

TABLE IV: BFP Ratio versus SNR

SNR(dB) 0 1 2 3 4 5 6
p 1.41e-01 1.19e-01 9.77e-02 7.75e-02 5.86e-02 4.19e-02 2.79e-02

SNR(dB) 7 8 9 10 11 12 13
p 1.70e-02 9.25e-03 4.39e-03 1.75e-03 5.65e-04 1.39e-04 2.42e-05

SNR(dB) 14 15 16 17 18
p 2.76e-06 1.84e-07 6.25e-09 9.07e-11 4.52e-13

A. Experiment Settings

1) Dataset: The simulations are performed on three
datasets in different scales, including CIFAR10, Kodak24, and
DIV2K. CIFAR10 dataset consists 50,000 R.G.B images at the
size of 3 × 32 × 32 for training and 10,000 images for test.
To further evaluate the superiority of AMP-SC, we introduce
Kodak24 dataset, which includes 24 R.G.B. images at the size
of 3×512×768 or 3×768×512, and DIV2K dataset, whose
validation part consists 80 R.G.B. images with approximate
2K resolution, for validation on high-resolution images.

2) Benchmarks: To demonstrate the superiority of the pro-
posed AMP-SC and AMP, we introduce the following bench-
marks, which are highly related to our work, for comparsion:

• Conventional: This benchmark is a performance-
achieving conventional SemComm system, whose param-
eters are from the converged model in Step-1 of the AMP.
Moreover, it is evaluated under zero BFP ratio condition.

• SoftQ: Similar to the approach in [21], we adopt a digital
SemComm system which is trained with additive noise in
(10) to achieve “soft” quantization in the analog domain.
In other words, the SoftQ model represents the converged
model in Step-2 of the AMP.

• He22: We construct a digital system with an architecture
identical to that of AMP-SC without IRSNet. Following
the two-phase training strategy in [31], we train the sys-
tem with FE and TTA in Fig. 3 to serve as a benchmark.

• SoftHe22: We fine-tune the decoder networks in SoftQ
with the second training phase in He22.

For fair comparison, the ratio of the number of transmitted
continuous symbols and that of pixels in the source image is
fixed at 1/6.

3) Implementation Details: The number of blocks in the
encoder and decoder for all evaluated systems is shown in
Table III. The training configuration for the proposed AMP-
SC and all benchmarks is outlined as follows. We use the
Adam stochastic optimization method to update the model
parameters. Additionally, a cosine annealing strategy is in-
troduced to dynamically adapt the learning rate to achieve
better training. For modulation and demodulation, we re-
spectively utilize 16-QAM and Gray code. Without loss of
generality, following [18], [26], [31]–[34], we implement the
modulation-demodulation process over an AWGN channel by
going through the bit-stream with BFP effect. Notably, the
projection from SNR to the flipping probability p in AWGN
channel is shown in Table IV, which is generated by the
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Fig. 5: The PSNR of AMP-SC and benchmarks in an AWGN channel
versus SNR from 0dB to 18dB in CIFAR10 dataset. Notably, each
transmitted symbol is converted into 4 or 2 bits.

Bit-Error-Rate-Analysis toolbox provided by MATLAB. To
train AMP-SC, the p in AMP is set as 0.0125. Moreover,
the alternating training lasts for three rounds2. In addition, the
intensity coefficient α of additive randomness N is set as 0.5.

For simulations on CIFAR10 dataset, all systems are trained
and tested on the dataset, and the batch size is set as 256.
In particular, the training hyperparameter T in Table. II is
set as 200. On the other hand, for simulations on high-
resolution images, we follow [5] to leverage the validation set
of ImageNet dataset, including 48627 R.G.B. images, to train
the systems and test them on Kodak24 and DIV2K datasets.
For each training sample, it is obtained by random-crop the
original images with size 256 × 256, the batch size is set as
16, and the training hyperparameter T is set as 15.

B. Validation Results

1) Results on CIFAR10 Dataset: In this experiment, we
evaluate the reconstruction quality achieved by the proposed
AMP-SC and benchmarks in an additive white Gaussian noise

2Although increasing the number of alternating training rounds can gradu-
ally improve task performance, it is out of scope of this paper. Additionally,
considering the efficiency of simulations, we set the number of rounds to three
without loss of generality.
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Fig. 6: The PSNR of AMP-SC and benchmarks in an AWGN channel
versus SNR from 0dB to 18dB in Kodak24 dataset. Notably, each
transmitted symbol is converted into 4 or 2 bits.

(AWGN) channel versus a wide range of SNR in CIFAR10
dataset. In Fig. 5a, we plot the achieved peak signal-to-noise
ratio (PSNR) of total five systems, where are deployed 4-
bit analog-digital conversion. Overall, AMP-SC displays less
performance degradation across all SNRs compared to the
baseline and benchmarks, showcasing its superiority among
digital SemComm systems. On average, AMP-SC achieves
PSNR of 27.63dB in reconstructing source images, which
is 1.97dB higher than that of SoftQ. In particular, AMP-SC
demonstrates 6.53dB and 1.24dB higher PSNR than those
achieved by He22 and SoftHe22, respectively. These improve-
ments highlight the effectiveness of the proposed AMP and
IRSNet. Although the reproduced two-phase training strategy
is not so superior as that reported in [31], we attribute this
difference to potential implementation gaps due to variations
in network architectures. Comparing SoftQ and SoftHe22, the
higher performance of SoftHe22 illustrates the effectiveness of
the two-phase training strategy in [31]. For fair comparison,
we utilize SoftHe22 to represent the benchmark based on two-
phase training strategy, rather than He22, in the following.

Additionally, in Fig. 5b, we evaluated AMP-SC, SoftQ, and
SoftHe22, where each transmitted symbol is converted into
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Fig. 7: The PSNR of AMP-SC and benchmarks in an AWGN channel
versus SNR from 0dB to 18dB in DIV2K dataset. Notably, each
transmitted symbol is converted into 4 or 2 bits.

2 bits. Notably, compared to SoftHe22, AMP-SC achieves
an average performance improvement of 0.82dB, highlighting
the better noise robustness enhanced by the proposed AMP
and IRSNet. Overall, the simulation results in Fig. 5 confirm
the superiority of the proposed AMP-SC and highlight the
robustness, enhanced by the combination of AMP and IRSNet,
against information loss in digital operations.

2) PSNR Performance on High-Resolution Datasets: In
the following, we leverage two datasets with high-resolution
images to further evaluate the reconstruction performance of
the proposed system and benchmarks. Generally, as shown
in Fig. 6 and Fig. 7, the proposed AMP-SC still holds the
lead in digital image transmission. Notably, the advantage
in noise robustness of AMP-SC becomes more significant
when the channel condition is poor. For example, under the
setting of 2-bit analog-digital conversion, AMP-SC achieves
0.39dB higher PSNR across AWGN channel with intensity of
0dB in CIFAR10 dataset. However, in Kodak24 and DIV2K
datasets, AMP-SC displays 0.98dB and 1.74dB higher PSNR
than SoftHe22, respectively. When the number of bits for
conversion increases to 4, AMP-SC achieves 2.12dB and
2.46dB higher reconstruction performance than SoftHe22 in
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Fig. 8: Visualization Results of AMP-SC and two representative benchmarks in Kodak24 and DIV2K datasets under AWGN channel at
SNR=7dB. For better representation, we zoom part of the image with a 128× 128 window to demonstrate the differences in details.

Kodak24 and DIV2K datasets, respectively, while it illustrates
1.10dB less performance degradation in CIFAR10 dataset.

The above observation supports the advantage of AMP-SC
in reconstructing detailed source information. It is noteworthy
that, from CIFAR10 to Kodak24 and DIV2K datasets, the
detailed information of each unit block in the source image,
such as texture, becomes richer. Richer details place higher
requirements on transmission fidelity. Given poor channel
environment, compared with the relative performance im-
provement of AMP-SC in CIFAR10 dataset, those in high-
resolution datasets demonstrate the superiority of AMP-SC in
high-fidelity image transmission in digital fashion. In addi-
tion, AMP-SC also enjoys the remarkable compatibility with
current wireless communication framework.

3) Visualization Results: To further demonstrate the effec-
tiveness of our proposed system, we provide a set of visually
intuitive results on high-resolution datasets in Fig. 8. The
visual comparisons are conducted under AWGN channel with
noise intensity of 7dB. In addition, we introduce the learned
perceptual image patch similarity (LPIPS) metric to provide
an additional perspective for evaluating reconstruction quality.
For better representation, part of the image is zoomed in by
a window, whose size is 128 × 128, to show the details.
Therefore, the differences in details can be revealed, showing
the performance gap between the systems more intuitively.
In brief, from these visualization results, we can observe that
our proposed AMP-SC exhibits better visual quality over the
digital channel.
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Fig. 9: Inference performance versus SNR from 0dB to 13dB on
DIV2K dataset. Each transmitted symbol is converted into 4 bits.
Notably, SoftAMP is equivalent to removing IRSNet from AMP-SC
in network architecture.

As we mentioned before, it is important for the high-
resolution images to keep detailed information during trans-
mission as much as possible for visual experience. On the other
words, the superiority of digital SemComm systems can be
determined by the details in reconstructed images. As shown
in the highlighted parts of Fig. 8, SoftQ reconstructs high-
resolution images with blur details and slight watermark effect,
leaving negative impact to visual experience. With network
fine-tuning in the decoder, SoftHe22 effectively improves
sharpness of the reconstructed images. However, SoftHe22
demonstrates weakness in recovering detailed information. For
example, in the third row of Fig. 8, the seam between the
two parts of the aircraft that reconstructed by SoftHe22 is
incomplete. Moreover, in the forth row, the letter “R” in the
reconstructed image has a similar issue. Beyond SoftHe22
and SoftQ, AMP-SC displays images with more authentic
detailed information and higher sharpness in the receiver side,
offering better visual experience to the user. Overall, both
the comparisons and visualization results in high-resolution
datasets support the superiority of the proposed AMP-SC.

4) Ablation Study on Proposed Component: In this ablation
study, we investigate the effectiveness of the proposed module
and training strategy in DIV2K dataset. With respect to
“soft” quantization in [21] and the two-phase training strategy
proposed by [31], we construct a digital SemComm system
based on “soft” quantization and the proposed AMP, which
is named SoftAMP. Notably, since IRSNet are not introduced
in SoftAMP, for all steps in AMP, the training epochs are set
as T . To further validate the effectiveness of the introduced
MATK, we consider two more benchmarks, named SoftHe22-
wMATK and SoftAMP-woMATK. Specifically, we introduce
MATK to SoftHe22 in the second training phase to construct
SoftHe22-wMATK. Additionally, we remove MATK from
SoftAMP during training to construct SoftAMP-woMATK.

As shown in Fig. 9, all of AMP-SC, SoftAMP, and
SoftAMP-woMATK display higher inference performance
than SoftHe22 under the 4-bit analog-digital conversion over
AWGN channel with a wide range of noise intensity. In other
words, the proposed AMP supports digital SemComm system
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Fig. 10: Inference performance versus SNR from 2dB to 13dB on
DIV2K dataset. Notably, each transmitted symbol is converted into
4 bits.

TABLE V: Number of parameters (Param) and floating point
operations (FLOPs) number of parameters in the receiver

System Ours SoftHe22
Param (M) 12.917 11.180
FLOPs (G) 30.834 30.805

in image transmission better than the two-phase training strat-
egy, evaluating the superiority of AMP. Furthermore, although
AMP-SC and SoftAMP hold the close lower and upper bounds
of reconstruction performance over AWGN channel, AMP-SC
demonstrate higher inference accuracy than SoftAMP from
1dB to 10dB. It gives the credit to the proposed IRSNet. In
addition, given an image with size of 3 × 128 × 128 as the
input, the number of parameters (Param) and floating point
operations (FLOPs) of in the receiver are shown in Table V.
It is worth noting that the extra storage and computation
overhead introduced by IRSNet are not significant, while
IRSNet further improves the noise robustness in the receiver.

Notably, by introducing MATK, SoftHe22-wMATK demon-
strates higher performance than SoftHe22 from 0dB to 7dB,
while the upper bound of SoftHe22-wMATK is less than
that of SoftHe22. Additionally, the curves of SoftAMP and
SoftAMP-woMATK hold a similar relationship, but the gap
between their upper bounds is smaller than that between
SoftHe22-wMATK and SoftHe22. Above observation supports
the effectiveness of MATK in improving robustness to digital
noise and the necessity of TTA in AMP. Overall, the effec-
tiveness of the proposed IRSNet and MATK is validated.

5) Ablation Study on Mask Ratio: In this ablation study,
we investigate the mask ratio from p to 5p in DIV2K dataset,
where p is set to 0.0125 during training. As shown in Fig. 10,
setting mask ratio to 2p can achieve a balance between noise
robustness and representation ability of the digital SemComm
system. Notably, the relative relationship changes between
mask ratios p and 5p as the SNR increases. This observation
highlights the defects of these two training settings of mask
ratio in terms of robustness and representation ability.

V. CONCLUSIONS

In this paper, we propose an alternating multi-phase training
strategy (AMP) to overcome the non-differentiability inherent
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in bits transmission. In the first phase, the system is trained
in the analog domain to extract the semantic-relevant infor-
mation and compress the irrelevant information. Towards the
compatibility to current digital communication framework, we
enhance system robustness against information loss caused by
digital operations in the second phase. In the third phase,
we bridge the gap between training and testing to further
improve task performance. Moreover, we investigate a MATK
in the second phase to simulate an evident and severe BFP
effect in a differentiable manner. Combining with MATK, we
also developed a IRSNet to improve inference accuracy by
restoring the demodulated signals. Additionally, we proposed
a digital semantic communication system named AMP-SC for
image transmission, which is compatible with current digital
communication framework. Simulation results have illustrated
the outstanding reconstruction performance of the proposed
AMP-SC. Particularly, in the context of 4-bit quantization,
AMP-SC achieves 1.24 ∼ 1.65dB higher PSNR than the sys-
tem, which is empowered by the “soft” quantization and two-
phase training strategy, on average among three representative
datasets and a wide range of SNR.
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[2] D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K.
Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics,
and task-oriented communications,” IEEE J. Sel. Areas. Commun.,
vol. 41, no. 1, pp. 5–41, 2022.

[3] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
semantic communication systems,” IEEE Trans. Signal Process, vol. 69,
pp. 2663–2675, 2021.

[4] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-
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