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ZipAR: Accelerating Auto-regressive Image
Generation through Spatial Locality
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Abstract

In this paper, we propose ZipAR, a training-free, plug-and-play parallel decoding
framework for accelerating auto-regressive (AR) visual generation. The motivation
stems from the observation that images exhibit local structures, and spatially distant
regions tend to have minimal interdependence. Given a partially decoded set of
visual tokens, in addition to the original next-token prediction scheme in the row
dimension, the tokens corresponding to spatially adjacent regions in the column
dimension can be decoded in parallel, enabling the “next-set prediction” paradigm.
By decoding multiple tokens in a single forward pass, the number of forward passes
required to generate an image is significantly reduced, resulting in a substantial
improvement in generation efficiency. Experiments demonstrate that ZipAR can
reduce the number of model forward passes by up to 91% on the Emu3-Gen model
without requiring any additional retraining. Code is available here.
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Figure 1: Up to 91% forward step reduction with ZipAR. Samples are generated by Emu3-Gen
model with next-token prediction paradigm (the first column) and ZipAR (the right three columns).
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Figure 2: (a) An overview of the training and decoding pipeline for auto-regressive (AR) visual
generation models. For models trained with a next-token prediction objective, each forward pass
generates a single visual token. (b) Medusa [2] and Jacobi [16] decoding predict multiple adjacent
tokens in sequence order. (c) MAR [13] predicts multiple tokens in a random order. (d) The proposed
ZipAR predicts multiple spatially adjacent tokens.

1 Introduction

Recent advancements in large language models (LLMs) with the “next-token prediction” paradigm [,
23, 19] have demonstrated remarkable capabilities in addressing text-related tasks. Building on
these successes, many studies [14, 24, 18, 9, 25] have extended this paradigm to the generation of
visual content, leading to the development of auto-regressive (AR) visual generation models. These
models not only produce high-fidelity images and videos that rival or even exceed the performance of
state-of-the-art diffusion models but also facilitate unified multimodal understanding and generation.
However, their slow generation speed remains a significant barrier to widespread adoption. To
generate high-resolution images or videos, these models must sequentially produce thousands of
visual tokens, requiring numerous forward passes and resulting in high latency.

To reduce the number of forward passes required for generating lengthy responses, several studies [2,
16, 12] have proposed the “next-set prediction” paradigm for LLMs, as depicted in Figure 2(b).
These approaches involves introducing multiple decoding heads [2] or small draft models [12], which
generate several candidate tokens that are later evaluated by the original model. However, these
methods incur additional costs, as they require extra draft models or the training of new decoding
heads. Another approaches use the jacobi decoding methods [16, 8, 20], iteratively updates sequences
of tokens until convergence. However, in practice, the acceleration achieved by these methods
is marginal, as LLMs often fail to generate correct tokens when errors exist in preceding ones.
Furthermore, none of these approaches exploit the unique characteristics of visual content, and a
parallel decoding framework specifically tailored for AR visual generation has yet to be developed.

In this paper, we introduce ZipAR, a parallel decoding framework designed to accelerate AR visual
generation. As depicted in Figure 2(a), common AR visual generation models produce visual tokens
in a raster order, where the first token in a row cannot be generated until the last token in the
preceding row is decoded despite their spatial separation. However, visual content inherently exhibits
strong locality, which is a widely utilized inductive bias for visual tasks [6, 11]. Specifically, there
are significant spatial correlations between spatially adjacent tokens (e.g., token 5 and token 1 in
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Figure 3: The attention scores of visual tokens in the Lumina-mGPT-7B [14] and LlamaGen-XL [17]
models. Slash lines indicate that significant attention scores are allocated to tokens at fixed
intervals, corresponding to tokens in the same column of previous rows. The full attention scores
are presented by storing the attention scores of each visual token during decoding and concatenating
them.

Figure 2(a)) compared to tokens that are adjacent only in the generation order (e.g., token 5 and token
4), which makes the raster-order sequential dependency suboptimal. Empirical evidence, as shown
in Figure 3, further supports this observation, with significant attention allocated to tokens in the
same column of the previous row. This motivates us to propose decoding tokens from the next row
without waiting for the full decoding of the current row, enabling the parallel decoding of multiple
tokens in a single forward pass. Specifically, we define a fixed window size to determine whether two
tokens are spatially adjacent. Tokens outside this window in adjacent rows are considered irrelevant.
Consequently, once the number of generated tokens in a row exceeds the window size, decoding of the
next row begins in parallel with the current row. With an appropriately chosen window size, multiple
rows can be decoded simultaneously. Unlike speculative [12] or Medusa [2] decoding methods, all
tokens generated in parallel by ZipAR are produced using the original model head, without the need
for further evaluation or updates. As a result, ZipAR can be seamlessly implemented in a training-free,
plug-and-play manner for auto-regressive visual generation models, without introducing additional
overhead. Experiments across multiple auto-regressive visual generation models demonstrate the
effectiveness and robustness of ZipAR, achieving a 91% forward steps reduction on Emu3-Gen with
minimal degradation in image quality.

2 Related Work

2.1 Auto-regressive Visual Generation

The success of Transformer models in text-based tasks has inspired studies [22, 7, 26] to apply
auto-regressive modeling to visual content generation. These methods can be classified into two
main categories: GPT-style approaches that utilize the next-token prediction paradigm [7, 24, 14, 17]
and BERT-style approaches that employ masked prediction models [4, 3, 13, 26]. More recently,
VAR [21] modified the traditional next-token prediction paradigm to next-scale prediction, resulting in
faster sampling speeds. Models trained using next-token prediction can leverage the infrastructure and
training techniques of large language models (LLMs) and pave the way towards unified multi-modal
understanding and generation. However, they are generally less efficient during sampling compared
to models that predict multiple tokens in a single forward pass. In this paper, we focus on accelerating
visual generation models trained with the next-token prediction objective, hereafter referred to as
auto-regressive visual generation models unless otherwise specified.

2.2 Efficient Decoding of LLMs.

Efforts to reduce the number of forward passes required for LLMs to generate lengthy responses can
be broadly categorized into two main approaches. The first approach involves sampling multiple
candidate tokens before verifying them with the base LLM. Speculative decoding [12] utilizes a small
draft LLM to generate candidate tokens, which are then verified in parallel by the base LLM. While



this approach can potentially generate multiple tokens in a single evaluation, deploying multiple
models introduces significant memory overhead and engineering challenges. Medusa [2] addresses
this by employing multiple decoding heads for the base LLM, enabling self-speculation. However,
due to the large vocabulary size of LLMs, the parameters in each decoding head can be substantial.
The second approach, Jacobi decoding [16, 20], involves randomly guessing the next n tokens in a
sequence, which are iteratively updated by the LLMs. Over time, the n-token sequence converges
to the same output as that generated by the next-token prediction paradigm. However, in practice,
vanilla Jacobi decoding offers only marginal speedup over auto-regressive decoding, with an average
speedup of just 1.05x. This limited improvement is largely due to the causal attention mechanism,
which rarely produces a correct token when preceding tokens are incorrect. Lookahead [8] decoding
enhances efficiency by leveraging n-grams generated from previous Jacobi iterations, which are
verified in parallel during the decoding process. CLLMs [10] further improve the efficiency of Jacobi
decoding by fine-tuning the model with a consistency loss, requiring it to map arbitrary points on the
Jacobi trajectory to a fixed point. However, none of these approaches are designed for auto-regressive
visual generation or incorporate visual inductive biases. In contrast, the proposed ZipAR takes
advantage of the spatial locality inherent in visual content, offering significant acceleration without
the need for retraining. Moreover, ZipAR is orthogonal to the aforementioned methods, and can be
combined with them to achieve even greater acceleration.

3 Method

3.1 Preliminaries

Auto-regressive (AR) visual generation models with the next-token prediction paradigm have shown
exceptional versatility across various vision-language tasks, including generating high-quality images
and videos. As shown in Figure 2(a), pre-trained VQ-VAE models [22, 7] are commonly employed
to convert images or videos into visual tokens. The process begins with a visual encoder that
extracts feature maps at a reduced spatial resolution. These feature maps are then subjected to vector
quantization to produce discrete latent representations, known as visual tokens. These tokens are
arranged in a one-dimensional sequence to serve as input for AR models. Although various methods
exist to flatten these tokens, the row-major order (raster order) is empirically validated to offer the best
performance [7], making it the prevalent method for visual generation. During the image generation
phase, AR models generate visual tokens sequentially in this raster order. Finally, the complete
sequence of visual tokens is rearranged into a two-dimensional structure and processed through a
visual decoder to reconstruct the images.

3.2 Inference with ZipAR
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Figure 4: A toy example of the ZipAR framework. The window size is set to 2 in this toy example.

As analyzed in Section 3.1, AR visual generation models with a raster order generate visual tokens row
by row, completing each row sequentially from left to right before proceeding to the next. However,
images inherently exhibit strong spatial locality. Intuitively, in a high-resolution image, the starting
pixel of a row is more closely related to the starting pixel of the preceding row than to the ending
pixel of the preceding row due to their spatial proximity. Empirical evidence, as shown in Figure 3,
also indicates that significant attention scores are allocated to tokens within the same column of the



previous row. Building on these observations, we propose ZipAR, a simple yet effective parallel
decoding framework for auto-regressive visual generation models. Unlike conventional parallel
decoding methods that predict multiple consecutive tokens in a single forward pass, our approach
decodes tokens from different rows in parallel. The key idea is that it is unnecessary to wait for an
entire row to be generated before initiating the decoding of the next row, as spatially distant tokens
contribute minimally to attention scores.

To formalize this, we define a local window size s. Given the tokens x; ; located in row ¢ and
column j, we assume that tokens beyond x;_1 ;4. in the previous row have a negligible impact on
the generation of z; ; based on the spatial locality of visual tokens. Consequently, the criterion for
initiating the generation of token x; ; can be formulated as:

= ’ 1
G J) {0, otherwise M

Here, D denotes the set of decoded tokens, and C(¢, j) = 1 indicates that token x;, ;j is ready to be
generated. Once the first token in a row is generated, subsequent tokens in the row can be generated
sequentially, along with the unfinished portion of the preceding row, following a next-token prediction
paradigm.

However, to initiate the decoding of the first token x; ¢ in row ¢, the last token of the row ¢ — 1 is
required as input to the auto-regressive model, despite it has not yet been generated in the ZipAR
framework. To address this, we propose several solutions tailored to different types of AR visual
generation models. Some methods [14, 24] support generating images with dynamic resolutions,
typically by appending extra end-of-row tokens at the end of each row. With these special tokens
placed at fixed positions, we can insert the end-of-row tokens in advance when initiating the generation
of the next row. Since the values of these tokens are predetermined, there is no need to update them
subsequently. Conversely, for models that lack end-of-row tokens, we temporarily assign values to
the last token in row ¢ — 1 to decode token z; . This value can be derived from the most spatially
adjacent token that have been decoded.

4 Experiments

4.1 Implementation Details

To assess the effectiveness of our proposed method, we integrate it with three state-of-the-arts
auto-regressive visual generation models: LlamaGen [17], Lumina-mGPT [14] and Emu3-Gen [24].
For text-guided image generation with LlamaGen, we generate 30,000 images and compute CLIP
scores against MS-COCO 2014-val dataset with CLIP ViT-B/32 model [15]. For class-conditional
image generation with LlamaGen on ImageNet, we report the widely adopted Frechet Inception
Distance (FID) to evaluate the performance. We sample 50,000 images and evaluate them with
ADM’s TensorFlow evaluation suite [5].

4.2 Quantitative Results

4.2.1 Class-conditional Image Generation

In this subsection, we quantitatively assess the performance of class-conditional image generation on
the ImageNet 256 x 256 benchmark using the LlamaGen model, as detailed in Table 1. The model
employs a 24 x 24 feature map and necessitates 576 forward passes to generate an image under
the next-token prediction (NTP) paradigm. By incorporating ZipAR with a window size of 16, the
number of forward passes is reduced by 30.5%, with only a 0.16 increase in FID. Fine-tuning the
pre-trained model for a single epoch with an ZipAR-oriented attention mask consistently enhances
performance. Specifically, ZipAR-16 reduces the number of forward passes by 30.5% while achieving
a lower FID compared to the original model with NTP paradigm. ZipAR-12 further reduces the
number of forward passes by 45.8% while maintaining an FID of 3.49.

4.2.2 Text-guided Image Generation

In this subsection, we quantitatively evaluate the effects of ZipAR on text-guided image generation
performance. The LlamaGen-XL model processes a feature map of 32 x 32 and requires 576 forward



Table 1: Quantitative evaluation on ImageNet 256 x 256 benchmark. Here, “NTP” denotes the
next-token prediction paradigm. “ZipAR-n" denotes the ZipAR paradigm with a window size of n.
“Step” is the number of model forward passes required to generate an image. The latency is measured
with a batch size of 1.

Model Method Step Latency (s) FID|

NTP 576 15.20 3.16
ZipAR-16 400 (-30.5%) 10.38 (-24.7%) 3.32
ZipAR-12 312 (-45.8%) 8.38(-39.2%) 4.50
ZipAR-8 224 (-61.1%) 6.56 (-52.4%) 10.22

LlamaGen-L

passes to generate an image under the next-token prediction (NTP) paradigm. As shown in Table 2,
ZipAR-12 results in minimal performance degradation, with a 0.001 decrease in the CLIP score, while
reducing inference latency by 61.0%. Notably, ZipAR-4 significantly reduces the inference latency by
83.3% and retains good semantic information, as indicated by a CLIP score of 0.280. Visualization
results are presented in Figures |1 and 6. Moreover, we observe that the acceleration ratio for the
text-to-image LlamaGen-XL model is higher than that for the class-conditional LlamaGen-L model,
primarily due to the higher spatial resolution of the feature maps and generated images. This suggests
that ZipAR achieves greater generation efficiency improvements when generating higher-resolution
images.

Table 2: Quantitative evaluation on MS-COCO dataset. Here, “NTP” denotes the next-token pre-
diction paradigm. “ZipAR-n” denotes the ZipAR paradigm with a window size of n. “Step” is the
number of model forward passes required to generate an image. The latency is measured with a batch
size of 1.

Model Method Step Latency (s) CLIP Score?
NTP 1024 33.17 0.287
ZipAR-16 544 (-46.8%) 17.65 (-46.8%) 0.287
LlamaGen-XL. ZipAR-12 424 (-58.6%) 12.91 (-61.0%) 0.286
ZipAR-8 304 (-70.3%) 9.44 (-71.5%) 0.285
ZipAR-4 184 (-82.0%) 5.51 (-83.3%) 0.280

4.3 Qualitative Visualizations

In this subsection, we present non-cherry-picked visualizations of images generated using the
next-token prediction (NTP) paradigm and the proposed ZipAR framework across Emu3-Gen [24],
LlamaGen [17], and Lumina-mGPT [14], as shown in Figures 5 to 7. Notably, ZipAR can reduce
the number of model forward steps by up to 91%, 82%, and 67% for Emu3-Gen, LlamaGen, and
Lumina-mGPT, respectively, while still producing high-fidelity images rich in semantic information.

5 Conclusion and Future Work

In this paper, we have proposed ZipAR, a new parallel decoding framework designed to accelerate
auto-regressive visual generation. ZipAR leverages the spatial locality inherent in visual content
and predicts multiple spatially adjacent visual tokens in a single model forward pass, thereby
significantly enhancing generation efficiency compared to the traditional next-token-prediction
paradigm. Extensive experiments demonstrate that ZipAR can reduce the number of model forward
steps by up to 91% on the Emu3-Gen model with minimal impact on image quality.

In the future, we anticipate that integrating ZipAR with other methods that employ the next-set-
prediction paradigm, such as Medusa [2] and Jacobi decoding [16], will further enhance acceleration
ratios.
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Figure 5: Samples generated by Emu3-Gen model with next-token prediction paradigm (the first
column) and ZipAR under different configurations (the right three columns). The classifier-free
guidance is set to 6.0.
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Figure 6: Samples generated by LlamaGen-XL model with next-token prediction paradigm (the
first column) and ZipAR under different configurations (the right three columns). The classifier-free
guidance is set to 7.5.
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Figure 7: Samples generated by Lumina-mGPT-7B-768 model with next-token prediction paradigm
(the first column) and ZipAR under different configurations (the right three columns). The classifier-
free guidance is set to 3.
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