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Abstract

Partitioning a set of elements into an unknown number of mutually exclusive subsets is
essential in many machine-learning problems. However, assigning elements to an unknown
and discrete number of subsets is inherently non-differentiable, prohibiting end-to-end
gradient-based optimization of parameters. We propose a novel two-step method for
learning distributions over partitions, including a reparametrization trick, to allow the
inclusion of partitions in variational inference tasks. Our method works by first inferring
the number of elements per subset and then sequentially filling these subsets in an order
learned in a second step. We highlight the versatility of our general-purpose approach on
two different experiments: multitask learning and unsupervised conditional sampling.

1. Introduction

Partitioning a set of elements into subsets is a classical mathematical problem that attracted
much interest over the last few decades. Formally, a partition over a given set is defined as a
collection of non-overlapping subsets such that their union results in the original set. While
there are many well-studied combinatorial partitioning problems (31; 8), recent advances in
machine learning give rise to new challenges revolving around set-partitioning. In machine
learning, partitioning a set of elements into different subsets is essential for many applications.
However, due to the discrete nature of partitions, previous gradient-based methods tackle
non-continuous loss functions and zero gradients almost everywhere with over-restrictive
i.i.d assumptions (14).

Random partition models (RPM, 10) define a probability distribution over the space of
partitions. In contrast to many modern machine learning methods, RPMs do not necessarily
assume i.i.d. data points and can explicitly take the dependencies between samples into
account. On the other hand, most existing RPMs either lack a reparameterization scheme or
are computationally intractable for large datasets, prohibiting their use in modern machine
learning pipelines (22; 29; 28).

In this work, we propose the differentiable random partition model (DRPM), a fully-
differentiable relaxation for RPMs that allows reparametrizable sampling. DRPM follows a
two-stage procedure: first, we model the number of elements per subset, and second, we
learn an ordering of the elements with which we fill the elements into the subsets. DRPM
enables the integration of partition models into modern machine learning frameworks and
learning RPMs from data using stochastic optimization.

In experiments, we demonstrate the versatility of the proposed method by applying
DRPM to weakly supervised learning and generative modeling.
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Related Work Following the proposition of the Gumbel-Softmax trick (GS, 13; 23), inter-
est in research around continuous relaxations for discrete distributions and non-differentiable
algorithms rose. The GS trick enabled the reparameterization of categorical distributions and
their integration into gradient-based optimization pipelines. Based on the same trick, Xie
and Ermon (35) describe a top-k elements selection procedure, and Sutter et al. (32) propose
a differentiable formulation for the multivariate hypergeometric distribution. Multiple works
on differentiable sorting procedures and permutation matrices have been proposed, e.g.,
(19; 30; 27). Grover et al. (9) described the distribution over permutation matrices p(π)
for a permutation matrix π using the Plackett-Luce (PL) distribution (29; 21). Previous
non-differentiable works on RPMs include product partition models (10), species sampling
models (28), and model-based clustering approaches (2).

2. Method

We want to partition n elements [n] = {1, . . . , n} into K subsets {S1, . . . ,SK} where K
is a priori unknown. For a partition ρ = (S1, . . . ,SK) to be valid, it must hold that
S1 ∪ · · · ∪ SK = [n] and Si ∩ Sj = ∅, ∀ i ≠ j. Put differently, every element i has to be
assigned to precisely one subset Sk. We denote the size of the k-th subset Sk as nk = |Sk|.
Alternatively, we describe a partition ρ as an assignment matrix Y = [y1, . . . ,yK ]T ∈
{0, 1}K×n. Every row yk ∈ {0, 1}1×n is a multi-hot vector, where yki = 1 assigns element i
to subset Sk.

In this work, we propose a new two-stage procedure for partition models. The proposed
formulation separately infers the number of elements per subset nk and the assignment
of elements to subsets Sk by inducing an order on the n elements and filling S1, ...,SK

sequentially in this order. See Figure 2 in the appendix for an example.

Definition 1 (Two-stage partition model) Let n = [n1, . . . , nK ] ∈ NK
0 be the subset

sizes in ρ, with N0 the set of natural numbers including 0 and
∑K

k=1 nk = n, where n is the
total number of elements. Let π ∈ {0, 1}n×n be a permutation matrix that defines an order
over the n elements. We define the two-stage partition model of n elements into K subsets
as an assignment matrix Y = [y1, . . . ,yK ]T ∈ {0, 1}K×n with

yk =

νk+nk∑
i=νk+1

πi, where νk =

k−1∑
ι=1

nι (1)

such that Y =
[
{yk | nk > 0}Kk=1

]T
.

Note that in contrast to previous works on partition models (24), we allow Sk to be the
empty set ∅. Hence, K defines the maximum number of possible subsets, not the effective
number of non-empty subsets.

To model the order of the elements, we use a permutation matrix π = [π1, . . . ,πn]
T ∈

{0, 1}n×n which is a square matrix where every row and column sums to 1. This doubly-
stochastic property of all permutation matrices π (25) thus ensures that the columns of
Y remain one-hot vectors. At the same time, its rows correspond to nk-hot vectors yk in
Definition 1 and therefore serve as subset assignment vectors. We provide the proof for the
following corollary in Appendix B.1.1.
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Corollary 2 A two-stage partition model Y , which follows Definition 1, is a valid partition.

2.1. Differentiable Random Partition Models

An RPM p(Y ) defines a probability distribution over partitions Y . In this section, we derive
how to extend the two-stage procedure from Definition 1 to the probabilistic setting to create
a two-stage RPM. To derive the two-stage RPM’s probability distribution p(Y ), we need to
model distributions over n and π. We choose the Multivariate Hypergeometric (MVHG)
distribution p(n;ω) (see Appendix A.1) and the PL distribution p(π; s) (see Appendix A.3).
For the remainder of this paper, we denote p(Y ) as p(Y ;ω, s) to indicate dependence on
the MVHG parameter ω and PL parameter s. In Appendix B we derive the following
proposition:

Proposition 3 (DRPM) The probability density function p(Y ;ω,n) of the differentiable
RPM is given by

p(Y ;ω, s) = p(y1, . . . ,yK ;ω, s) = p(n;ω)
∑
π∈ΠY

p(π; s) (2)

where ΠY = {π : yk =
∑νk+nk

i=νk+1 πi, k = 1, . . . ,K}.

2.1.1. Approximating the distribution over RPMs

The number of permutations per subset |Πyk
| scales factorially with the subset size nk, i.e.

|Πyk
| = nk!. Consequently, the number of valid permutation matrices |ΠY | is given as a

function of n, i.e.

|ΠY | =
K∏
k=1

|Πyk
| =

K∏
k=1

nk! (3)

Although Proposition 3 describes a well-defined distribution for p(Y ;ω, s), it is in general
computationally intractable due to Equation (3). In practice, we thus approximate p(Y ;ω, s)
using the following Lemma (proof in Appendix B.3.1).

Lemma 4 p(Y ;ω, s) can be upper and lower bounded as follows

∀π ∈ ΠY : p(Y ;ω, s) ≥ p(n;ω)p(π; s) (4)

p(Y ;ω, s) ≤ |ΠY |p(n;ω)max
π

p(π; s) (5)

2.2. Sampling partitions from the DRPM

To sample a partition from our DRPM, we use the two methods from Appendices A.1
and A.3, which introduced differentiable and reparameterizable distributions for p(π; s)
and p(n;ω) respectively (9; 32). Sampling a partition Y thus works by first sampling
π ∼ p(π; s) and n ∼ p(n;ω) from the PL and MVHG distributions respectively. We can
then calculate Y = f(π,n) according to Definition 1 by summing the rows of π according to
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Table 1: We evaluate the learned latent representations of the four methods (LabelVAE,
AdaVAE, HGVAE, DRPMVAE) in the weakly-supervised experiment with respect to the
shared (S) and independent (I) generative factors. We do this by fitting linear classifiers
on the shared and independent dimensions of the representation, predicting the respective
generative factors. We report the results in adjusted balanced accuracy (32) across five
seeds.

ns = 0 ns = 1 ns = 3 ns = 5

I S I S I S I

Label 0.14±0.01 0.19±0.03 0.16±0.01 0.10±0.00 0.23±0.01 0.34±0.00 0.00±0.00

Ada 0.12±0.01 0.19±0.01 0.15±0.01 0.10±0.03 0.22±0.02 0.33±0.03 0.00±0.00

HG 0.18±0.01 0.22±0.05 0.19±0.01 0.08±0.02 0.28±0.01 0.28±0.01 0.01±0.00

DRPM (Ours) 0.26±0.02 0.39±0.07 0.2±0.01 0.15±0.01 0.29±0.02 0.42±0.03 0.01±0.00

n. Using this two-stage procedure, we can infer and resample partitions in a differentiable
and reparameterizable way. Additionally, due to Proposition 3 and Lemma 4, we are also
able to efficiently estimate p(Y ;ω, s) for a given DRPM sample Y .

In summary, we introduce an efficient model to deterministically and probabilistically
learn partitions in an end-to-end fashion. In contrast to previous RPMs, which often need
exponentially many distribution parameters (29), the proposed DRPM needs only (n+K)
parameters to create an RPM for n elements: the score parameters s ∈ Rn

+ and the group
importance parameters ω ∈ RK

+ . Our DRPM enables us to integrate partition models in any
gradient-based optimization pipeline. In the following experiments, we present how to use
the DRPM with both deterministic and probabilistic models. Additionally, we demonstrate
how our method enables us to learn variational posterior approximations and priors using
Stochastic Gradient Variational Bayes (SGVB, 17) optimization in variational inference
models.

3. Experiments

We demonstrate the versatility and effectiveness of the proposed DRPM in two different
experiments. First, we show how to use DRPM in weakly-supervised learning where we
are interested in finding shared and independent latent generative factors. Second, we
introduce a novel variational autoencoder that incorporates the DRPM to learn a conditional
generative model in an unsupervised fashion.

3.1. Weakly-Supervised Learning

Data modalities that are not collected as i.i.d. samples, such as consecutive frames in a video,
provide a weak-supervision signal for generative models and representation learning (32).
Compared to learning from single frames, where we are interested in learning meaningful
representations (3), here, we are also interested in discovering the relationship between the
coupled, non-i.i.d. samples. Assuming that the data is generated from underlying generative
factors, weak supervision implies that certain factors are shared between coupled pairs
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while others are independent. The supervision is only weak because we neither know the
underlying generative factors nor the number of shared and independent factors. In such
a setting, our DRPM not only enables us to infer the number of shared and independent
generative factors but also lets us assign latent factors to be either shared or independent.

In this experiment, we use paired frames X = [x1,x2] from the mpi3d toy dataset (7).
Every pair of frames shares a subset of their seven generative factors. The model maximizes
an evidence lower bound on the marginal log-likelihood of images through a VAE (17). We
use the code from Locatello et al. (20) and follow the evaluation in Sutter et al. (32). We
refer to Appendix C.1 for more details on the setup and baseline methods of this experiment.

For DRPMVAE, we model the distribution of shared and independent latent factors
as RPM using the proposed DRPM p(Y ;ω, s). We add a posterior approximation of the
form q(Y ;ω(X), s(X)) where the notation ω(X) and s(X) implies that the distribution
parameters are inferred from data X, and additionally a prior distribution of the form
p(Y ;ωp, sp). The ELBO we optimize when assuming this generative process is given by:

log p(X) ≥Eq(z,Y |X) [log p(x1 | zs, z1)] + Eq(z,Y |X) [log p(x2 | zs, z2)]

− Eq(z,Y |X)

[
log

q(zs, z1, z2 | Y,X)

p(zs, z1, z2)

]
− Eq(z,Y |X)

[
log

q(Y ;ω(X), s(X))

p(Y ;ωp, sp)

]
(6)

We refer to Appendix C.1 for details on the implementation.
We evaluate all methods according to how well they partition the latent representations

into shared and independent factors (Table 1). Because we have access to the data-generating
process, we can control the number of shared ns and independent ni factors. We compare the
methods on four different weakly-supervised datasets with ns ∈ {0, 1, 3, 5}. In Table 1, we
see a considerable performance improvement compared to previous work when assessing the
learned latent representations. We assume this to be due to its ability to not only estimate
the subset sizes of latent and shared factors like HGVAE but also to learn assigning latent
dimensions to corresponding shared or independent representations. Thus, DRPMVAE can
dynamically learn more meaningful representations of both the shared and independent
subspaces for all dataset versions. See Appendix C.1 for more results. DRPMVAE provides
empirical evidence of how RPMs can help with specific weakly-supervised learning tasks
where we are interested in maximizing the data likelihood while also learning representations
that capture the relation between coupled data samples. Additionally, we can explicitly
model the data-generating process in a theoretically grounded fashion instead of relying on
heuristics.

3.2. Generative Model

In a second experiment, we explore whether we can use the DRPM to learn a generative
model for unsupervised conditional generation in a variational fashion. The main idea is to
learn latent approximate posterior distributions that are close to class conditional priors
by partitioning the approximate posteriors according to an RPM. More specifically, we
assume that each sample xi of a dataset X is generated by a latent vector zi. Instead
of assuming a single Gaussian prior N (µ,σI) for all latent vectors like in traditional
variational autoencoders (VAE, 17), we assume every zi to be sampled from one of K
different latent Gaussian distributions N (µy,σyI), y = 1, . . . ,K. The assignments yi of
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all zi to their respective clusters are then distributed according to an RPM, potentially
resulting in dependencies between latent vectors zi. In the following, let Z = {z1, ..., zN}, and
Y = {y1, ..., yN} contain the respective latent vectors and cluster assignments for each sample
of a given dataset X = {x1, ..., xN} with N samples. The generative process is summarized
as follows: First, we sample the cluster assignments Y from an RPM, i.e., Y ∼ DRPM(ω, s).
Given Y , we can sample the latent variables Z, where zi ∼ N (µyi ,σ

T
yi
Il), zi ∈ Rl. Finally,

we sample X , where xi ∼ N (µ(zi),σ(zi)
T Id) if xi ∈ Rd or xi ∼ Ber(µ(zi)) if xi ∈ {0, 1}d.

Assuming this generative process, we derive the following evidence lower bound (ELBO)
for p(X ):

LELBO =
∑
x∈X

Eq(z|x) [log p(x|z)]−
∑
x∈X

Eq(Y |X ) [KL[q(z|x)||p(z|Y )]]−KL[q(Y |X )||p(Y )]

Note that computing KL[q(Y |X )||p(Y )] directly is computationally intractable, and we need
to upper bound it using Theorem 4, i.e.

KL[q(Y |X )||p(Y )] ≤ Eq(Y |X )

[
log

|ΠY | · q(n;ω(X ))

p(n;ω)p(πY ; s)

]
+ log

(
max
π

q(π; s(X ))
)
,

where πY is any π ∈ ΠY .

Figure 1: A sample drawn from a
trained DRPM generative model. On
top is the sampled partition with the
cluster assignments, and at the bot-
tom are the corresponding prior sam-
ples.

We train and qualitatively evaluate our model
on MNIST (18) and present the generative capabil-
ities of our method in Figure 1, where we sample
a partition with n = 8 from the prior of a trained
generative DRPM model. Interestingly, our model
seems to pick up on the different digit distributions,
learning separate priors for each digit and allowing
us to sample from different classes of the distribution
in an unsupervised fashion. In practice, this could
help with exploring the different modes of a given
distribution if we do not have access to labels.

We provide more samples and implementation
details in Appendix C.3.

4. Conclusion

In this work, we proposed the DRPM, a novel differentiable random partition model. Its
differentiable and reparameterizable formulation enables the integration of RPMs in modern
probabilistic gradient-based optimization frameworks. In addition, the proposed two-stage
formulation separately controls the number of elements per subset and the assignment of
elements to subsets. We show the versatility of the proposed DRPM by applying it to two
vastly different experiments, where we could easily use it as a plug-and-play module. In
the future, we want to explore whether we can use the conditional generation framework
to achieve state-of-the-art clustering performance by investigating the learned approximate
posteriors more closely. Further, we want to explore whether we can also use the DRPM as
a deterministic module in certain settings.
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Appendix A. Preliminaries

A.1. Probability distribution over subset sizes

The multivariate non-central hypergeometric distribution (MVHG) describes sampling
without replacement and allows to skew the importance of groups with an additional
importance parameter ω (5; 34; 4). The MVHG is an urn model and is described by the
number of different groups K ∈ N, the number of elements in the urn of every group
m = [m1, . . . ,mK ] ∈ NK , the total number of elements in the urn

∑K
k=1mk ∈ N, the

number of samples to draw from the urn n ∈ N0, and the importance factor for every group
ω = [ω1, . . . , ωK ] ∈ RK

0+ (15).

p(n;ω,m) =
1

P0

K∏
k=1

(
mk

nk

)
ωnk
k (7)

where P0 =
∑

(η1,...,ηK)∈S

K∏
κ=1

(
mκ

ηκ

)
ωηκ
κ (8)

Here, S = {n ∈ NK
0 : ∀k nk ≤ mk,

∑K
k=1 nk = n} denotes the support S of the probability

mass function.

Sutter et al. (32) introduced a differentiable reparameterization for the MVHG that
makes use of the GS trick (13; 23) and enables the learning of group importance ω using
gradient-based optimization. Hence, the differentiable MVHG p(n;ω,m) allows us to model
dependencies between different elements of a set since drawing one element from the urn
influences the probability of drawing one of the remaining ones, creating interdependence
between samples. Note that here, we assume ∀mi ∈ m : mi = n and thus use the shorthand
p(n;ω) to denote the density of the MVHG. The following serves as a quick recap on the
MVHG and is largely based on Sutter et al. (32).

A.2. Hypergeometric Distribution

Suppose we have an urn with marbles in different colors. Let K ∈ N be the number of
different classes or groups (e.g. marble colors in the urn), m = [m1, . . . ,mK ] ∈ NK describe
the number of elements per class (e.g. marbles per color), N =

∑K
k=1mK be the total number

of elements (e.g. all marbles in the urn) and n ∈ {0, . . . , N} be the number of elements
(e.g. marbles) to draw. Then, the multivariate hypergeometric distribution describes the
probability of drawing n = [n1, . . . , nK ] ∈ NK marbles by sampling without replacement
such that

∑K
k=1 nk = n, where nk is the number of drawn marbles of class k.

In the literature, two different versions of the noncentral hypergeometric distribution
exist, Fisher’s (5) and Wallenius’ (34; 4) distribution. Sutter et al. (32) restrict themselves
to Fisher’s noncentral hypergeometric distribution due to limitations of the latter (6). Hence,
we will also talk solely about Fisher’s noncentral hypergeometric distribution.

Definition 5 (Multivariate Fisher’s Noncentral Hypergeometric Distribution (5))
A random vector X follows Fisher’s noncentral multivariate distribution, if its joint proba-

10
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bility mass function is given by

P (N = n;ω) = p(n;ω) =
1

P0

K∏
k=1

(
mk

nk

)
ωnk
k (9)

where P0 =
∑

(η1,...,ηK)∈S

K∏
k=1

(
mk

ηk

)
ωηk
k (10)

The support S of the PMF is given by S = {n ∈ NK : ∀k nk ≤ mk,
∑K

k=1 nk = n} and(
n
k

)
= n!

k!(n−k)! .

The class importance ω is a crucial modeling parameter in applying the noncentral hyperge-
ometric distribution (see (4)).

A.2.1. Differentiable MVHG

Their reparameterizable sampling for the differentiable MVHG consists of three parts:

1. Reformulate the multivariate distribution as a sequence of interdependent and condi-
tional univariate hypergeometric distributions.

2. Calculate the probability mass function of the respective univariate distributions.

3. Sample from the conditional distributions utilizing the Gumbel-Softmax trick.

Following the chain rule of probability, the MVHG distribution allows for sequential sampling
over classes k. Every step includes a merging operation, which leads to biased samples
compared to groundtruth non-differentiable sampling with equal class weights ω. Given that
we intend to use the differentiable MVHG in settings where we want to learn the unknown
class weights, we do not expect a negative effect from this sampling procedure. For details
on how to merge the MVHG into a sequence of unimodal distributions, we refer to Sutter
et al. (32).

The probability mass function calculation is based on unnormalized log-weights, which
are interpreted as unnormalized log-weights of a categorical distribution. The interpretation
of the class-conditional unimodal hypergeometric distributions as categorical distributions
allows applying the Gumbel-Softmax trick (13; 23). Following the use of the Gumbel-Softmax
trick, the class-conditional version of the hypergeometric distribution is differentiable and
reparameterizable. Hence, the MVHG has been made differentiable and reparameterizable
as well. Again, for details we refer to the original paper (32).

A.3. Probability distribution over Permutation Matrices

In addition to the distribution over subset sizes, we are also interested in describing the
distribution over permutation matrices p(π) ∈ {0, 1}n×n that impose an ordering over a set
with n elements. We assume p(π) to be parametrized by scores s ∈ Rn

+, where each element
i corresponds to si. A sample π from the permutation distribution p(π; s) then corresponds
to the order that results from sorting s̃, which is a perturbed version of s (33). Specifically,
sorting s̃ in decreasing order leads to a permutation of the original n elements, which we

11
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represent as a permutation matrix π. Hence, resampling scores s enables the resampling
of permutation matrices π. The resulting distribution is a Plackett-Luce (PL) distribution
(21; 29) if and only if the scores s are perturbed with noise drawn from Gumbel distributions
with identical scales (36; 9).

Proposition 6 (Distribution over Permutation Matrices (9)) For each item i, let
gi denote Gumbel noise gi ∼ Gumbel(0, β) for fixed scale β. Let s̃ be the perturbated scores
such that s̃i = β log si + gi. The probability p(π; s) is then given by

p(π; s) =p((πs̃)1 ≥ · · · ≥ (πs̃)n) (11)

=
(πs)1
Z

(πs)2
Z − (πs)1

· · · (πs)n

Z −
∑n−1

j=1 (πs)j
(12)

where π is a permutation matrix and Z =
∑n

i=1 si.

Proof We take the proof from Grover et al. (9), which follows a result from Yellott Jr (36).
We only provide a proof sketch and refer the reader to Yellott Jr (36) for more details.

Consider random variables {Xi}ni=1 such that Xi ∼ exp(si). We may prove by induction
a generalization of the memoryless property:

q(X1 ≤ · · · ≤ Xn | x ≤ min
i

Xi) =

∫ ∞

0
q(x ≤ X1 ≤ X1 + t | x ≤ min

i
Xi) (13)

·q(X2 ≤ · · · ≤ Xn | x+ t ≤ min
i≥2

Xi)dt (14)

=

∫ ∞

0
q(0 ≤ X1 ≤ t) (15)

·q(X2 ≤ · · · ≤ Xn | x+ t ≤ min
i≥2

Xi)dt (16)

If we assume as inductive hypothesis that

q(X2 ≤ · · · ≤ Xn | x+ t ≤ min
i≥2

Xi) = q(X2 ≤ · · · ≤ Xn | t ≤ min
i≥2

Xi),

we complete the induction as:

q(X1 ≤ · · · ≤ Xn | x ≤ min
i

Xi) =

∫ ∞

0
q(0 ≤ X1 ≤ t)q(X2 ≤ · · · ≤ Xn | t ≤ min

i≥2
Xi)dt (17)

=q(X1 ≤ X2 ≤ · · · ≤ Xn | 0 ≤ min
i

Xi) (18)

It follows from a familiar property of argmin of exponential distributions that:

q(X1 ≤ · · · ≤ Xn | x ≤ min
i

Xi) =q(X1 ≤ min
i

Xi)q(X2 ≤ · · · ≤ Xn | Xi ≤ min
i

Xi) (19)

=
si
Z
q(X2 ≤ · · · ≤ Xn | Xi ≤ min

i
Xi) (20)

=
si
Z

∫ ∞

0
q(X1 = x)q(X2 ≤ · · · ≤ Xn | x ≤ min

i≥2
Xi)dx (21)

=
si
Z
q(X2 ≤ · · · ≤ Xn) (22)

12
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and by another induction, we have

q(X1 ≤ · · · ≤ Xn) =

n∏
i=

si

Z −
∑i−1

j=1 sj
. (23)

Finally, following the argument of Balog et al. (1), we apply the strictly decreasing function
g(x) = −β log x to this identity, which from the definition of the Gumbel distribution implies

q(s̃1 ≤ · · · ≤ s̃n) =
n∏
i=

si

Z −
∑i−1

j=1 sj
. (24)

To compute p(π; s), Grover et al. (9) introduce a differentiable sorting function fπ(s̃) = sort(s̃)
that orders the resampled scores s̃ in descending order.

Here, we summarise the findings from Grover et al. (9) on how to construct such a
differentiable sorting operator. As already mentioned in Section 1, there are multiple works
on the topic (30; 27; 26), but we restrict ourselves to the work of Grover et al. (9) as we see
the differentiable generation of permutation matrices as a tool in our pipeline.

Corollary 7 (Permutation Matrix (9)) Let s = [s1, . . . , sn]
T be a real-valued vector of

length n. Let As denote the matrix of absolute pairwise differences of the elements of s such
that As[i, j] = |si − sj |. The permutation matrix π corresponding to sort(s) is given by:

π =

{
1 if j = argmax[(n+ 1− 2i)s−As1]

0 otherwise
(25)

where ⊮ denotes the column vector of all ones.

As we know, the argmax operator is non-differentiable which prohibits the direct use
of Corollary 7 for gradient computation. Hence, Grover et al. (9) propose to replace the
argmax operator with softmax to obtain a continuous relaxation π(τ). In particular, the
ith row of π(τ) is given by:

π(τ)[i, :] = softmax[(n+ 1− 2i)s−As1/τ ] (26)

where τ > 0 is a temperature parameter. We adapted this section from Grover et al. (9)
and we also refer to their original work for more details on how to generate differentiable
permutation matrices.

In this, work we remove the temperature parameter τ to reduce clutter in the notation.
Hence, we only write π instead of π(τ), although it is still needed for the generation of the
matrix π. For details on how we select the temperature parameter τ in our experiments, we
refer to Appendix C.
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π
e. g.
=



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0



= π̄2

= π̄3

= π̄5

n =


n1

n2

n3

n4

n5

 e. g.
=


0
3
2
0
1




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0


1 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0


︸ ︷︷ ︸

Y

Figure 2: Illustration of the proposed DRPM method. We first sample a permutation matrix
π, and a set of subset sizes n separately in two stages. We then use n and π to generate the
assignment matrix Y , the matrix representation of a partition ρ.

Appendix B. Method

B.1. Two-Stage Partition Model

B.1.1. Proof of Corollary 2

Proof By definition, every row πi and column πj of π is a one-hot vector, hence
∑

nk
πi

results in a nk-hot encoding. Therefore,
∑nk

i=1

∑n
j=1 πij = nk follows directly from π being

a permutation matrix. Hence, if
∑

k nk = n, every element i is assigned to one and only one
yk. Thus, Theorem 1 fulfills S1 ∪ · · · ∪ SK = [n], and Si ∩ Sj = ∅ ∀ i, j and i ̸= j.

B.2. Computing p(Y)

We calculate the probability p(Y ;ω, s) sequentially over the probabilities of subsets

pyk
:= p(yk | y<k;ω, s).

pyk
itself depends on the probability over subset permutations

pπ̄k
:= p(π̄ | nk,y<k; s),

where a subset permutation matrix π̄ represents an ordering over nk out of n elements.

Definition 8 (Subset permutation matrix π̄) A subset permutation matrix π̄ ∈ {0, 1}nk×n,
where nk ≤ n, must fulfill

∀i ≤ nk :

n∑
j=1

π̄ij = 1 and ∀j ≤ n :

nk∑
i=1

π̄ij ≤ 1.

We describe the probability distribution over subset permutation matrices pπ̄k
using Defini-

tion 8 and proposition 6.
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Lemma 9 (Probability over subset permutations pπ̄k
) The probability pπ̄k

of any
subset permutation matrix π̄ = [π̄1, . . . , π̄nk

]T ∈ {0, 1}nk×n is given by

pπ̄k
: = p(π̄ | nk,y<k; s) =

nk∏
i=1

(π̄s)i

Zk −
∑i−1

j=1(π̄s)j
(27)

where y<k = {y1, ...,yk−1}, Zk = Z −
∑

j∈S<k
sj and S<k =

⋃k−1
j=1 Sj.

Lemma 9, for which we provide the proof in Appendix B.2.1, describes the probability of
drawing the elements i ∈ Sk in the order described by the subset permutation matrix π̄ given
that the elements in S<k are already determined. Note that in a slight abuse of notation, we
use p(π̄ | nk,y<k;ω, s) as the probability of a subset permutation π̄ given that there are nk

elements in Sk and thus π̄ ∈ {0, 1}nk×n. Additionally, we condition on the subsets y<k and
nk, the size of subset Sk. In contrast to the distribution over permutations matrices p(π; s) in
proposition 6, we take the product over nk terms and have a different normalization constant
Zk. Although we induce an ordering over all elements i in Definition 1, the probability pyk

is invariant to intra-subset orderings of elements i ∈ Sk.

Lemma 10 (Probability distribution pyk
) The probability distribution over subset as-

signments pyk
is given by

pyk
: = p(yk | y<k;ω, s) = p(nk | n<k;ω)

∑
π̄∈Πyk

p(π̄ | nk,y<k; s)

where Πyk
= {π̄ ∈ {0, 1}nk×n : yk =

∑nk
i=1 π̄i} and p(π̄ | nk,y<k; s) as in Lemma 9.

We provide the proof in Appendix B.2.2. We describe the set of all subset permutations π̄ of
elements i ∈ Sk by Πyk

. Put differently, we make p(yk | y<k;ω, s) invariant to the ordering
of elements i ∈ Sk by marginalizing over the probabilities of subset permutations pπ̄k

(35).
We propose the DRPM p(Y ;ω, s), a differentiable and reparameterizable two-stage RPM.

Since Y = [y1, . . . ,yK ]T , we calculate p(Y ;ω, s), the density of the differentiable RPM,
sequentially using Lemmas 9 and 10, where we leverage the PL distribution for permutation
matrices p(π; s) to describe the probability distribution over subsets p(yk | y<k;ω, s).

B.2.1. Proof of Lemma 9

Proof We provide the proof for pπ̄1 , but it is equivalent for all other subsets. Without
loss of generality, we assume that there are n1 elements in S1. Following proposition 6, the
probability of a permutation matrix p(π; s) is given by

p(π; s) =
(πs)1
Z

(πs)2
Z − (πs)1

· · · (πs)n

Z −
∑n−1

j=1 (πs)j
(28)

At the moment, we are only interested in the ordering of the first n1 elements. The probability
of the first n1 is given by marginalizing over the remaining n− n1 elements:

p(π̄ | n1;ω) =
∑
π∈Π1

p(π | s) (29)
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where Π1 is the set of permutation matrices such that the top n1 rows select the elements in
a specific ordering π̄ ∈ {0, 1}n1×n, i.e. Π1 = {π : [π1, . . . ,πn1 ]

T = π̄}. It follows

p(π̄ | n1;ω) =
∑
π∈Π1

p(π | s) (30)

=
∑
π∈Π1

n∏
i=1

(πs)i

Z −
∑i−1

j=1(πs)j
(31)

=

n1∏
i=1

(π̄s)i

Z −
∑i−1

j=1(π̄s)j

∑
π∈Π1

n−n1∏
i=1

(πs)n1+i

Z −
∑n1

j=1(π̄s)j −
∑i−1

j=1(π̄s)j
(32)

=

n1∏
i=1

(π̄s)i

Z −
∑i−1

j=1(π̄s)j

∑
π∈Π1

n−n1∏
i=1

(πs)n1+i

Z1 −
∑i−1

j=1(π̄s)j
(33)

where Z1 = Z −
∑n1

j=1(π̄s)j . It follows

p(π̄ | n1;ω) =

n1∏
i=1

(π̄s)i

Z −
∑i−1

j=1(π̄s)j
(34)

B.2.2. Proof of Lemma 10

Proof We can proof the statement of Lemma 10 as follows:

pyk
= p(yk | y<k;ω, s)

=
∑
n′
k

p(yk, n
′
k | y<k;ω, s) (35)

=
∑
n′
k

p(n′
k | y<k;ω, s)p(yk | n′

k,y<k;ω, s) (36)

=
∑
n′
k

p(n′
k | n<k;ω, s)p(yk | n′

k,y<k; s) (37)

= p(nk | n<k;ω, s)p(yk | nk,y<k; s) (38)

= p(nk | n<k;ω)
∑

π̄∈Πyk

p(π̄ | nk,y<k; s) (39)

Equation (35) holds by marginalization, where n′
k denotes the random variable that stands

for the size of subset Sk. By Bayese rule, we can then derive Equation (36). The next
derivations stem from the fact that we can compute n<k if y<k is given, as the assignments
y<k hold information on the size of subsets S<k. More explicitly, ni =

∑n
j=1 yij . Further, yk

is independent of ω if the size n′
k of subset Sk is given, leading to Equation (37). We further

observe that p(yk | n′
k,y<k; s) is only non-zero, if n′

k =
∑n

i=1 yki = nk. Dropping all zero
terms from the sum in Equation (37) thus results in Equation (38). Finally, by Theorem 1,
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we know that yk =
∑νk+nk

i=νk+1 πi, where νk =
∑k−1

ι=1 nι and π ∈ {0, 1}n×n a permutation
matrix. Hence, in order to get yk given y<k, we need to marginalize over all permutations
of the elements of yk given that the elements in y<k are already ordered, which corresponds
exactly to marginalizing over all subset permutation matrices π̄ such that yk =

∑nk
i=1 π̄i,

resulting in Equation (39).

B.2.3. Proof of Proposition 3

Proof From Lemmas 9 and 10, we write

p(Y ) =p(y1, . . . ,yK ;ω, s) = p(y1;ω, s) · · · p(yK | {yj}j<K ;ω, s)

=

p(n1;ω)
∑

π̄1∈Πy1

p(π̄1 | n1; s)

 · · ·

p(nK | {nj}j<K ;ω)
∑

π̄K∈ΠyK

p(π̄K | {nj}j≤K ; s)


=p(n1;ω) · · · p(nK | {nK}j<K ;ω) ·

 ∑
π̄1∈Πy1

p(π̄1 | n1; s) · · ·
∑

πK∈ΠyK

p(π̄K | {nj}j≤K ; s)


=p(n;ω)

 ∑
π̄1∈Πy1

· · ·
∑

πK∈ΠyK

p(π̄1 | n1; s) · · · p(π̄K | {nj}j≤K ; s)


=p(n;ω)

∑
π∈ΠY

p(π | n; s)

=p(n;ω)
∑
π∈ΠY

p(π; s)

B.3. Approximating p(Y)

B.3.1. Proof of Lemma 4

Proof Since p(π; s) is a probability we know that ∀π ∈ {0, 1}n×n p(π; s) ≥ 0. Thus, it
follows directly that:

∀π ∈ ΠY : p(Y ;ω, s) = p(n;ω)
∑

π′∈ΠY

p(π′; s) ≥ p(n;ω)p(π; s),

proving Equation (4).
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On the other hand, can prove Equation (5) by:

p(Y ;ω, s) = p(n;ω)
∑

π′∈ΠY

p(π′; s)

≤p(n;ω)
∑

π′∈ΠY

max
π∈ΠY

p(π; s)

=p(n;ω) max
π∈ΠY

p(π; s)
∑

π′∈ΠY

1

=|ΠY | · p(n;ω) max
π∈ΠY

p(π; s)

≤|ΠY | · p(n;ω)max
π

p(π; s)

We can compute the maximum probability maxπ p(π; s) with the probability of the permu-
tation matrix fπ(s), which sorts the unperturbed scores in decreasing order.

Appendix C. Experiments

C.1. Weakly-Supervised Learning

Y

x1 x2

X

z1 z2zs

p(zs, z1, z2 | Y )

p(x1 | zs, z1) p(x2 | zs, z2)

(a) Generative Model

Y

x1 x2X

z1 z2

zs

q(z1 | Y, x1)

q(Y | x1, x2)

q(z2 | Y, x2)

q(zs | Y, x1, x2)

(b) Inference Model

Figure 3: Graphical Models for DRPMVAE models in the weakly-supervised experiment.

C.1.1. Baseline Methods

We compare the proposed DRPMVAE to three methods, which only differ in how they infer
shared and latent dimensions. Using a single encoder, all methods independently encode
both images to some latent representations, which are used to infer shared latent dimensions.
A single decoder independently reconstructs the two views from an aggregated latent vector
consisting of a combination of shared and independent factors. While the LabelVAE (3; 12)
assumes that the number of independent factors is known, the AdaVAE (20) relies on a
heuristic-based approach to infer shared and independent latent factors. Like in Locatello
et al. (20) and Sutter et al. (32), we assume a single known factor for LabelVAE in all
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experiments. HGVAE (32) also relies on the MVHG to model the number of shared and
independent factors. Unlike the proposed DRPMVAE approach, HGVAE must rely on a
heuristic to assign latent dimensions to shared factors, as the MVHG only allows to model
the number of shared and independent factors.

C.1.2. Generative Model

We assume the following generative model for DRPMVAE

p(X) =

∫
z
p(X, z)dz (40)

=

∫
z
p(X | z)p(z)dz (41)

where z = {zs, z1, z2}. The two frames share an unknown number ns of generative latent
factors zs, and an unknown number, n1 and n2, of independent factors z1 and z2. The
RPM infers nk and zk using Y . Hence, the generative model extends to

p(X) =

∫
z
p(X | z)

∑
Y

p(z | Y )p(Y )dz

=

∫
z
p(x1,x2 | zs, z1, z2)

∑
Y

p(z | Y )p(Y )dz

=

∫
zs,z1,z2

p(x1 | zs, z1)p(x2 | zs, z2)
∑
Y

p(zs, z1, z2 | Y )p(Y )dzsdz1dz2 (42)

Figure 3 shows the generative and inference models assumptions in a graphical model.
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C.1.3. DRPM ELBO

Following Theorem 4, we are able to optimize DRPMVAE using the following ELBO:

log p(X) ≥Eq(z,Y |X)

[
log p(X | z, Y ) + log

q(z, Y | X)

p(z, Y )

]
(43)

=Eq(z,Y |X)

[
log p(X | z) + log

q(z | Y,X)q(Y | X)

p(z)p(Y )

]
(44)

=Eq(z,Y |X)

[
log p(x1,x2 | z) + log

q(z | Y,X)

p(z)
− log

q(Y | X)

p(Y )

]
(45)

=Eq(z,Y |X) [log p(x1 | zs, z1)] + Eq(z,Y |X) [log p(x2 | zs, z2)]

+ Eq(z,Y |X)

[
log

q(zs, z1, z2 | Y,X)

p(zs, z1, z2)

]
+ Eq(z,Y |X)

[
log

q(Y | X)

p(Y )

]
(46)

≥Eq(z,Y |X) [log p(x1 | zs, z1)] + Eq(z,Y |X) [log p(x2 | zs, z2)]

+ Eq(z,Y |X)

[
log

q(zs, z1, z2 | Y,X)

p(zs, z1, z2)

]
+ Eq(z,Y |X)

[
log

q(n | X;ω) · |ΠY |
p(n;ωp)

]
+ Eq(z,Y |X)

[
log

maxπ∈ΠY
q(π | X; s)

maxπ∈ΠY
p(π | X; sp)

]
(47)

The ELBO L(X) to be optimized can be written as

L(X) =Eq(z,Y |X) [log p(x1 | zs, z1)] + Eq(z,Y |X) [log p(x2 | zs, z2)]

+ β · Eq(z,Y |X)

[
log

q(zs, z1, z2 | Y,X)

p(zs, z1, z2)

]
+ γ ·

(
Eq(z,Y |X)

[
log

q(n | X;ω) · |ΠY |
p(n;ωp)

]
+ Eq(z,Y |X)

[
log

maxπ∈ΠY
q(π | X; s)

maxπ∈ΠY
p(π | X; sp)

])
(48)

C.1.4. Implementation and Hyperparameters

In this experiment, we use the disentanglement lib from Locatello et al. (20). We use
the same architectures proposed in the original paper for all methods we compare to.
The baseline algorithms, LabelVAE (3; 12) and AdaVAE (20) are already implemented
in disentanglement lib. For details on the implementation of these methods we refer
to the original paper from Locatello et al. (20). HGVAE is implemented in Sutter et al.
(32). We did not change any hyperparameters or network details. All experiments were
performed using β = 1 as this is the best performing β (according to Locatello et al. (20).
For DRPMVAE we chose γ = 0.25 for all runs. All models are trained on 5 different random
seeds and the reported results are averaged over the 5 seeds. We report mean performance
with standard deviations.

We adapted Figure 4 from Sutter et al. (32). It shows the baseline architecture, which
is used for all methods. As already stated in the main part of the paper, the methods
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E D
x1

x2

x̂1

x̂2

View

Aggregation

qϕ(zs, z1 | x1)

qϕ(zs, z2 | x2)

Figure 4: Setup for the weakly-supervised experiment. The three methods differ only in the
View Aggregation module.

only differ in the View Aggregation module, which determines the shared and independent
latent factors. Given a subset S of shared latent factors, we have

qϕ(zi | xj) =avg(qϕ(zi | x1), qϕ(zi | x2)) ∀ i ∈ S (49)

qϕ(zi | xj) =qϕ(zi | xj) else (50)

where avg is the averaging function of choice (20; 32) and j ∈ {1, 2}. The methods used (i.
e. LabelVAE, AdaVAE, HGVAE, DRPMVAE) differ in how to select the subset S.

For DRPMVAE, we infer ω from the pairwise KL-divergences between the latent vectors
of the two views. The KL-divergence values are fed to a single fully-connected layer, which
maps from d to K values where d = 10 and K = 2 in this experiment. d is the total number
of latent dimensions and K is the number of groups in the latent space. The scores s are
equal to the KL-divergence values.

Similar to the original works, we also anneal the temperature parameter for p(n;ω)
and p(π; s) (9; 32). We use the same annealing function as in the conditional generation
experiment (see Appendix C.3). We anneal the temperature τ from 1.0 to 0.5 over the
complete training time.

C.2. Additional Results

In Figure 5, we assess the methods with respect to how well they estimate the number of
shared factors. In Figure 5, we see that DRPM can accurately estimate the true number
of shared generative factors. It matches the performance of HGVAE and outperforms the
other two baselines, which consistently overestimate the true number of shared factors.

C.3. Unsupervised Conditional Generation

C.3.1. Additional Samples

In addition to the small partition with eight elements presented in Figure 1, we sample some
additional larger partitions of size 32 in Figure 7. Note that despite not cherrypicking any of
these partitions, each set of the partition stems from a single digit, which implies that each
of the priors learned to represent one of the MNIST digits. To further investigate whether
this is true, we repeatedly sample from each of the priors in Figure 8. As demonstrated
there, each of the priors nicely represents a digit and also captures some variability that is
present in the dataset.

C.3.2. Loss Function

As mentioned in Section 3.2, for a given dataset X = {x1, ..., xN} with N samples, let
Z = {z1, ..., zN}, and Y = {y1, ..., yN} contain the respective latent vectors and cluster
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Figure 5: Mean squared error between the estimated number of shared factors n̂s and the
true number of shared factors ns across five seeds for the LabelVAE, AdaVAE, HGVAE,
and DRPMVAE.

Figure 6: Generative model of the DRPM conditional generation model. Generative paths
are marked with thin arrows, whereas inference is in bold.
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Figure 7: More sampled partitions from the generative DRPM model. The different sets of
each partition match each of the digits relatively well also for larger partitions of size 32.
Samples for this plot were randomly drawn and not cherry-picked.
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Figure 8: Various samples from each of the generative priors. Each prior learns to represent
one of the digits. Samples for this plot were randomly drawn and not cherry-picked.
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assignments for each sample. The generative process can then be summarized as follows:
First, we sample the cluster assignments Y from an RPM, i.e. Y ∼ DRPM(ω, s). Given Y ,
we can sample the latent variables Z, where zi ∼ N (µyi ,σ

T
yi
Il), zi ∈ Rl. Finally, we sample

X , where xi ∼ N (µzi ,σ
T
zi
Id) if xi ∈ Rd or xi ∼ Ber(µzi) if xi ∈ {0, 1}d. Using Bayes rule

and Jensen’s inequality we can then derive the following evidence lower bound (ELBO):

log(p(X )) = log

(∫ ∑
Y

p(X , Y,Z)dZ

)

≥ Eq(Z,Y |X )

[
log

(
p(X|Z)p(Z|Y )p(Y )

q(Z, Y |X )

)]
:= LELBO(X)

We then assume that we can factorize the approximate posterior as follows:

q(Z, Y |X ) = q(Y |X )
∏
x∈X

q(z|x)

Note that while we do assume conditional independence between z given its corresponding
x, we model q(Y |X ) with the DRPM and do not have to assume conditional indepen-
dence between different cluster assignments. This has the advantage that we can leverage
dependencies between samples from the dataset. Hence, we can rewrite the ELBO as follows:

LELBO(X) = Eq(Z|X ) [log(p(X|Z))]

− Eq(Y |X ) [KL[q(Z|X )||p(Z|Y )]]

−KL[q(Y |X )||p(Y )]

=
∑
x∈X

Eq(z|x) [log p(x|z)]

−
∑
x∈X

Eq(Y |X ) [KL[q(z|x)||p(z|Y )]]

−KL[q(Y |X )||p(Y )]

See Figure 6 for an illustration of the generative process and the assumed inference model.

C.3.3. Architecture

The model for our unsupervised conditional generation experiment is a relatively simple,
fully-connected autoencoder with a structure as seen in Figure 9. We have a fully connected
encoder E with four layers mapping the input to 500, 500, and 2000 neurons, respectively.
We then compute each parameter by passing the encoder output through a linear layer
and mapping to the respective parameter dimension in the last layer. In our experiments,
we use a latent dimension size of 10, hence µx, σx ∈ R10. In order to learn dependencies
between samples, we map the last layer of the ωX parameter to K, where K is the number
of dimensions. We then apply a softmax activation for each sample, average the resulting
vector over the batch, and take the logarithm since we want to model logωX . To compute
the score sx of a sample x, we map the last layer to dimension K and apply a softmax
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Figure 9: Architecture of the DRPM conditional generation model.

activation to that representation to compute intermediate representation r ∈ [0, 1]K . Since
we know that the scores for samples in the same cluster should be approximately equal, we
compute sx by log(sx) = λ

∑K
i=1 i ·ri, where λ is a learnable parameter that is responsible for

scaling the scores to an appropriate magnitude. Note that we thus compute sx per sample
independently of the other samples in the batch. Finally, once we resample z ∼ N (µx, σx),
we pass it through a fully connected decoder D with four layers mapping z to 2000, 500,
and 500 neurons in the first three layers and then finally back to the input dimension in the
last layer to end up with the reconstructed sample x̂.

C.3.4. Training

As described in Section 3.2 and Appendix C.3.2, we use the following loss to train the
conditional generation experiment:

LELBO =
∑
x∈X

Eq(z|x) [log p(x|z)] (51)

−
∑
x∈X

Eq(Y |X ) [KL[q(z|x)||p(z|Y )]] (52)

− Eq(Y |X )

[
log

|ΠY | · q(n;ω(X ))

p(n;ω)p(πY ; s)

]
(53)

− log
(
max
π

q(π; s(X ))
)

(54)

Due to the fact that we applied an upper bound on the KL-divergence KL[q(Y |X)||p(Y )],
we need to weight the KL-divergence terms in a similar fashion as in the β-VAE (11). To
train the model, we reshuffle the terms in Equations (53) and (54), leading to the following
formulation:

LELBO =
∑
x∈X

Eq(z|x) [log p(x|z)]−
∑
x∈X

Eq(Y |X ) [β ·KL[q(z|x)||p(z|Y )]]

− Eq(Y |X )

[
γ · log

(
|ΠY | · q(n;ω(X ))

p(n;ω)

)
+ δ · log

(
maxπ q(π; s(X ))

p(πY ; s)

)]
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This has the advantage that we can balance regularization for balanced clusters with γ
and randomness of the permutations through δ. As in vanilla VAEs we can estimate
the reconstruction term in Equation (51) with MCMC by applying the reparametrization
trick (17) to q(z|X) in order to sample M samples z(i) ∼ q(z|X) and compute their
reconstruction error to estimate Equation (51). Similarly, as described in Section 2.2, we
apply the reparametrization trick to p(n; s) and p(π; s) to attain L reparametrized samples
Y (i) ∼ q(Y |X ). These can then be used to compute the KL divergences in Equations (52)
to (54) in closed form. Finally, this leads to the following loss during training:

LELBO =
∑
x∈X

1

M

M∑
i=1

log p(x|z(i))−
∑
x∈X

1

L

L∑
i=1

β ·KL[q(z|x)||p(z|Y (i))]

− 1

L

L∑
i=1

(
γ · log

(
|ΠY (i) | · q(n(i);ω(X ))

p(n(i);ω)

)
+ δ · log

(
maxπ q(π; s(X ))

p(π(i); s)

))

In our experiments, we set M = 1 as in vanilla VAEs and L = 100 since the MVHG, and
PL distributions are not concentrated around their mean very well, such that more Monte
Carlo samples lead to much better approximations of the expectation terms. In order to
resample n and π we need to apply temperature annealing (9; 32). To do this, we applied
the exponential schedule that was originally proposed together with the Gumbel-Softmax
trick (13), i.e. τ = max(τfinal, exp(−rt)), where t is the current training step and r is the

annealing rate. For our experiments, we choose r =
log(τfinal)−log(τinit)

100000 in order to annealing
over 100000 training step. Like Jang et al. (13), we set τinit = 1 and τfinal = 0.5. Similarly,
we also annealed the weights β, γ, and δ with the same schedule, setting βinit = 0.1 · βfinal,
βfinal = 0.1, γinit = 0.1 · γfinal, γfinal = 1, δinit = 0.1 · δfinal, and δfinal = 0.001.

We trained with the Adam (16) optimizer and learning rate 0.0001 with a batch size of
256 for 512 epochs.
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