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Abstract

Event-intensity asymmetric stereo systems have emerged as a promising approach
for robust 3D perception in dynamic and challenging environments by integrating
event cameras with frame-based sensors in different views. However, existing
methods often suffer from overfitting and poor generalization due to limited dataset
sizes and lack of scene diversity in the event domain. To address these issues, we
propose a zero-shot framework that utilizes monocular depth estimation and stereo
matching models pretrained on diverse image datasets. Our approach introduces
a visual prompting technique to align the representations of frames and events,
allowing the use of off-the-shelf stereo models without additional training. Fur-
thermore, we introduce a monocular cue-guided disparity refinement module to
improve robustness across static and dynamic regions by incorporating monocular
depth information from foundation models. Extensive experiments on real-world
datasets demonstrate the superior zero-shot evaluation performance and enhanced
generalization ability of our method compared to existing approaches.

1 Introduction

Stereo matching has witnessed significant advancements in recent years, driven by deep learning
techniques and the availability of extensive training datasets in the image domain [18} [16} [20].
These advancements have enabled widespread applications in various fields, including mapping [[10],
navigation [21]], 3D reconstruction [14} 9], motion estimation [7, 29]], and image restoration [42, 19,
38]]. Additionally, the abundance of unlabeled data on the internet has recently fueled the progress of
monocular depth estimation [37} 25]].

Event cameras report per-pixel relative intensity changes asynchronously at high temporal resolutions
within a wide dynamic range [[12f], providing complementary sensory information alongside conven-
tional frame-based cameras that capture absolute intensity values synchronously. Event-intensity
asymmetric stereo matching has emerged as a promising approach to achieve robust performance
in challenging conditions such as ultra-wide dynamic range and fast-moving scenes that cannot be
faithfully captured by conventional frame-based cameras alone, by leveraging the complementary
strengths of event and frame cameras in different views [30 [17, 146} |40} |4]. Despite the potential
benefits, existing event-intensity asymmetric stereo approaches often rely on supervised learning
or fine-tuning, requiring large amounts of labeled training data. Unfortunately, the shorter history
of event-based sensors in commercial markets poses a scarcity of large-scale datasets essential for
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Figure 1: The proposed Zero-shot Event-intensity asymmetric STereo (ZEST) framework estimates disparity
by finding correspondences between RGB frames and event data. (a) Our method conducts stereo matching by
utilizing off-the-shelf stereo matching and monocular depth estimation models with frozen weights, and feeding
them visual prompts tailored to the physical formulation of frames and events (temporal difference of frames
and temporal integral of events, respectively). (b) In contrast, existing methods (e.g., [40]) that rely on training
data with known ground truth disparities often suffer from limited annotated data availability, thus leading to
unsatisfactory results.

effective training and generalization. The scarcity of large-scale datasets in the event domain has
resulted in overfitting and poor generalization to new environments or unseen disparity ranges [6].

Stereo models estimate disparity by establishing feature similarities between views, assuming that
the two inputs are aligned in feature representation space. As events and frames capture relative
differences and absolute values of intensity, respectively, they inherently possess a strong physical
connection. This connection can be leveraged to convert them into intermediate representations with
comparable appearance patterns. In the context of event-intensity asymmetric stereo, where training
data are significantly limited compared to images, it is crucial and beneficial to develop a zero-shot
approach that does not necessitate training data for modifying the underlying architecture or weights
of the models. Considering the recent progress in image-based stereo matching [18] [16], where
models trained on extensive datasets have exhibited effective zero-shot generalization, as well as the
emerging techniques of “visual prompting” [36] [T]], which aims to adapt off-the-shelf models to
new domains or modalities without modifying the model architecture or weights, we are motivated to
utilize off-the-shelf models from the image domain with only modified inputs, rather than altering the
weights, which requires substantial data.

Yet, several challenges impede the introduction of off-the-shelf models from the image domain to
event in a zero-shot manner: 1) Significant modality gaps exist between events and frames (the red
boxes in Figure[I), where events are triggered by temporal differences between frames exceeding
predefined thresholds, compounded by sensor imperfections and stochastic electric noise. 2) In static
regions where events cannot be triggered (the green boxes in Figure[T)), no correspondences can
be established, necessitating hallucination from the monocular model processing frames. However,
these models typically provide relative disparities, whose distances from the actual metric are mostly
calculated up to a global scale and bias.

In this paper, we propose a Zero-shot Event-intensity asymmetric STereo (ZEST) framework that
leverages both monocular depth estimation and stereo matching models from the image domain,
which is shown in Figure[T] To address the appearance gap between frames and events, we introduce
a representation alignment module that considers the physical formulation from frames to events.
The disparity map is then estimated from frames and events in different views using an off-the-shelf
stereo model in the image domain. We further propose a monocular cue-guided disparity refinement
module that re-renders these disparities by rescaling the relative depths predicted by a monocular
depth estimation foundation model, enhancing robustness in regions with few events or textures.
Our framework demonstrates superior performance among training-free methods for intensity-event
asymmetric stereo matching and enhanced generalization across diverse real-world scenes. The
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Figure 2: Overview of the proposed ZEST framework. The representation alignment module aligns frames
and events, considering exposure time and event properties. This enables using an off-the-shelf stereo model
to find correspondences. Disparity refinement then improves the estimates by minimizing differences between
monocular depth prediction rescaled by an optimized scale map and binocular depth predictions, guided by event
density confidence.

flexibility of our approach allows for seamless upgrades of the stereo and monocular models alongside
advances in the related fields. Our main contributions are as follows:

* We present the first zero-shot event-intensity asymmetric stereo matching method that
leverages off-the-shelf depth estimation models from the image domain.

* We introduce a visual prompting method for representation alignment between events and
frames, enabling the utilization of off-the-shelf stereo models without modification.

* We propose a monocular cue-guided disparity refinement method for robustness in regions
with few events or textures, inspired by recent advancements in monocular depth estimation.

2 Related Work

Intensity-based stereo and monocular depth estimation. With the development of deep learning
technology, significant progress has been made in stereo matching, with methods categorized based
on their cost construction and aggregation approaches. Correlation-based methods [27, 35,139, 8] and
those using 3D convolutions [3} 15, [33]] have achieved impressive performance. Recently, iterative
optimization-based networks [20) 34} 41]] have demonstrated superior accuracy and robustness. In
monocular depth estimation, models like Depth Anything [37] and MiDaS [25]] leverage extensive
unlabeled data to estimate relative depth, enabling generalization across domains at the cost of
unknown scale and shift.

Event-based symmetric stereo. Event cameras capture pixel-level brightness changes asyn-
chronously, offering advantages over conventional frame-based cameras. Event-based stereo depth
estimation has emerged rapidly. Representative works include utilizing camera velocity [44]] or
estimating depth without explicit event matching [43]]. Deep learning solutions have considered novel
sequence embedding [28]] and fusion of frame and event data [22] 23] for improved depth estimates
in challenging scenarios. Recent efforts explore integrating off-the-shelf models from the image
domain [6] to improve stereo matching performance by leveraging the inherent connection between
frame and event data.

Event-intensity asymmetric stereo. Event-frame asymmetric stereo matching leverages the comple-
mentary strengths of event and frame cameras. Traditional methods focused on aligning and fusing
asynchronous event data with synchronous frame data using hand-crafted features [17] and traditional
stereo matching algorithms [30]. Deep learning approaches [46| 40, 4] have been employed to learn
complex mappings for event-frame fusion and dense depth estimation. However, these methods
often suffer from overfitting and poor generalization due to limited dataset sizes and scene diversity
in the event domain. Our work proposes a zero-shot approach that leverages disparity estimation
models from the image domain by visual prompting, eliminating the need for additional training and
improving generalization.



3 Method

Overview The proposed method aims to estimate depth from a frame-based camera and an event
camera in different views, separated by a baseline distance. Without loss of generality, we assume
that the frames are in the left view and the events are in the right view. Given consecutive rectified
event-intensity pairs (I“(7;), E®(7;) and (I*(7;11), E®(7;41)), our goal is to infer the corresponding
disparity map D(7;) at timestamp 7;.

The overall framework of the proposed ZEST for event-intensity asymmetric stereo is shown in Fig-
ure[2] consisting of two components: the representation alignment module for aligning the frames in
the left view and events in the right view into an intermediate representation space (Sec.[3.I)), and the
disparity refinement module for improving stereo matching results under the guidance of monocular
model predictions (Sec.[3.2).

3.1 Event-intensity representation alignment for stereo matching

Stereo matching estimates depth by tri-
angulation using pixel space represen-
tations, where stereo correspondence is
established by finding similar patterns
on a pixel-wise basis. With the advances
in deep learning, modern stereo match-
ing models are trained on massive data
to estimate disparity. Due to the amount
of training data and the diversity of real-
world scenes, off-the-shelf models with
frozen weights maintain robustness to
different representations ranging from
absolute values to relative changes in in-
tensity, as shown in FigureEl However,
directly using these representations may
not be optimal for event-intensity asym-
metric stereo. This is because the event
and frame data have fundamentally dif-
ferent characteristics, and a carefully de-
signed intermediate representation can better bridge the appearance gap between them.

Disparity Right View Left View
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Figure 3: Visual comparisons of the disparity predicted by a stereo
model fed with inputs in the first two rows, which are aligned
in the space of raw data, intensity (via [26])), events (via [13])),
and intermediate (via the proposed method), respectively.

Inspired by this, we design an intermediate representation as a “visual prompt” to align the modalities
in two views, enabling off-the-shelf stereo matching models to work for event-intensity asymmetric
stereo. We will detail the formulation of the proposed intermediate representation in the following.

Anevent e = (t,p, o) at the pixel p = (p,, p,) " and time ¢ is triggered whenever the logarithmic
change of irradiance I exceeds a pre-defined threshold ¢ (> 0), i.e.,

|log Ip(t) — log Ip(t — At)|| > ¢, D

where I(t) denotes the instantaneous intensity at time ¢, and the polarity o € {—1, +1} indicates
{negative, positive} brightness changes. We define e, () as a function of continuous time ¢ such that,

ep(t) = 00, (1), @

whenever there is an event e = (7, p, o). Here, ¢, (¢) is an impulse function, with unit integral, at
time 7, and the sequence of events is turned into a continuous-time signal, consisting of a sequence
of impulses. There is such a function e, (¢) for each position p in the image. Since each pixel can be
treated separately, we omit the subscripts p. Given a reference timestamp 7;, assuming that there are
latent sharp image sequences I (7) with infinitesimal exposure time, their relationship between the
corresponding events can be expressed as

Ti41

I(7i41) = I(;) exp (c/ e(t)dt). 3)

Define the logarithmic brightness increment A L;(t) from two consecutive frames as



It can be approximated by events triggered during these frames as

- Tit1

ALi(t) = ¢ / e(t)dt. )
Ti

In Eq. (§), the left-hand side represents the temporal difference of frames, while the right-hand

side denotes the temporal integral of events. This formulation establishes an explicit intermediate

representation that bridges the gap between frames and events with similar appearance, enabling

correspondences to be found for stereo matching.

Now we turn to the frames captured in the real world, which have a non-negligible exposure time 27"
A frame I 7(t) with exposure time [T — T', 7 4+ T'] can be represented as the average of the latent
image I(t) over the exposure duration given a latent frame with a timestamp 79 as reference [24]],
which can be formulated as

1 T+T t

Lr(t)= —I(To)/ exp (c/ e(s)ds)dt. (6)
' 2T =T T0

Then, the difference between two consecutive logarithmic frames L., L

with the middle latent frame I, as reference can be formulated as

~ Ti+T t T7,+1+T t
AL;(t) =log (/ exp (c/ e(s)ds) dt) — log (/ exp (c/ e(s)ds)dt)). (7
i =T To Tig1—T To

We use the temporal difference map AL(t) defined by consecutive frames in Eq. and its ap-
proximation version defined from the temporal integral of events in Eq. (/) as explicit intermediate
representations, respectively. The event trigger threshold c is often unknown in real scenarios. How-
ever, Eq. still holds after we normalize both sides of the equation for eliminating the unknown
¢, where percentile normalization is used for robustness. In practice, the calculations are done in
discrete form, whose details can be found in the appendix.

i, With exposure time 27T

Specifically, the disparity D" at timestamp ¢ is estimated by stereo matching model F°"® as
DP™(t) = FO(ALM(t), ALR(t)). ®)

As shown in Figure 3| the proposed event-intensity alignment method successfully finds appropriate
visual prompts for the stereo models from the image domain, which helps to establish correspondences
between the frames and events.

3.2 Monocular cue guided disparity refinement

In the context of event-intensity asymmetric stereo, stereo matching often faces challenges in
establishing reliable correspondences, particularly in textureless regions of left images and static
regions with sparse events in the right view. In contrast, monocular depth estimation directly infers
depth maps from single images by leveraging monocular cues such as texture variations, gradients,
occlusion, known object sizes, haze, and defocus. Off-the-shelf monocular depth estimation models,
such as Depth Anything [37]] and MiDaS [23]], have demonstrated impressive “zero-shot cross-dataset
transfer” capabilities, thanks to the relaxed requirements for training data in unsupervised learning.

Inspired by this, we propose a monocular cue-guided disparity refinement approach. However, there
may be unknown scale and shift discrepancies between the predictions of the stereo and monocular
models, which may vary spatially due to the absence of physically measurable information during
monocular depth estimation. To address these factors, we model the desired refined disparity map as
a locally linear transformation of the estimation from the monocular cue. Let D™°" represent the
disparity map predicted by a monocular depth estimation model F™°"° from frame I, i.e.,

DII]OI]O — meHO(I) (9)
whose relationship with the binocular estimation DP" is assumed a linear transform as
Dbino ~ W @ (Dmono + B), (10)

where © denotes the element-wise multiplication operation, and W and B denote the scale map and
the shift map, respectively.
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Figure 4: From left to right, our model exhibits impressive generalization abilities across a broad spectrum of
varied scenes, encompassing sparse event scenes, richly textured environments, dimly lit settings, close-range
captures, and high dynamic range situations.

To estimate the scale map W and shift map B, we minimize the following loss function:
W*, B* = a'rgInian,B Leconst + aﬂsmoolhy (11)

where the loss function involves several priors about the desired disparity map, and « is a regular-
ization parameter to balance between them. We optimize this function using gradient descent with
the Adam optimizer in PyTorch, running 500 iterations per image. Note that D®™ is predicted by
establishing correspondence between frames and events, which is more reliable where there are more
events. Therefore, the temporal difference map ALY(t) of frames is utilized to construct a confidence
map C' to identify the density of events. Firstly, the estimated scale map W and shift map B should
be consistent with the model defined in Eq. (I0), which can be constrained by

Econst - Z |CP(WP(Dgon0 + Bp) - D;in0)|, (12)
p

where the ¢; distance is utilized for its robustness to outliers. Secondly, the scales and biases for
neighboring pixels should be similar, which can be derived by an edge-ware smoothness as

Lomoon = 3 (101 + 0B CP5™)" 4 (10, | 10, Bpl)e™ 25" ). a3)
p

This regularizer encourages local smoothness in the scale and shift maps. To ensure stability in the
optimization steps for only one sample, a good initialization is necessary. While the shift map B is
simply initialized as all ones matrix B(®) = 1, the scale map W is initialized as

ZPEQP (Cngno/(Dgono + BI(JO)))
Zpeﬂp Cp ’

where €),, is a window centered at position p. This loss term ensures the consistency modeled
in Eq. (]@ in regions with more events measured by AL in the beginning of the optimization. At the

end of the optimization, the refined disparity map D can be obtained by

w©) —

(14)

D =W*® (D™ + B*). (15)

The proposed method effectively combines the strengths of both stereo matching and monocular
depth estimation, leveraging the accurate but sparse disparity estimates from stereo matching to guide
the refinement of the dense but relative depth estimates from monocular depth estimation.



Table 1: Quantitative comparisons of disparity estimation results with state-of-the-art methods from both event
and image domains. The end-point-error (EPE), root mean square error (RMSE), 3-pixel error (3PE, %), and
2-pixel error (2PE, %) are adopted for evaluation. Zu, In, and Th denote the Zurich City, Interlaken, and Thun
sequences on the DSEC dataset, respectively. Red and orange highlights indicate the first and second
best performing technique for each metric. 1 ({) indicates that higher (lower) values are better. The method with
a gray background is the only one that does not adhere to the cross-dataset evaluation protocol.

EPE] RMSE| 3PE) 2PE|
Method
Zu In Th Al Zu In Th Al Zu In Th All Zu In Th All
SHEF [30] 10.43 11.93 14.61 10.66 18.05 18.22 24.42 18.10 51.07 74.54 5598 54.37 60.21 80.12 65.93 63.01
HSM [17] 8.65 834 842 8.60 19.11 17.96 19.16 18.95 32.55 36.40 30.87 33.08 42.10 45.77 38.15 42.60
DAEI [40] 12.43 12.09 13.89 12.39 15.66 1544 17.12 15.63 87.10 86.02 89.97 86.96 91.48 90.74 93.58 91.39
DAEI [40] - 193 - - - 294 - - - 16.82 - - - 29.16 - -

Translate event into intensity on the right view

PSMNet-ETNet  29.58 30.27 19.68 29.64 44.80 44.67 34.23 44.74 80.09 8598 75.93 80.90 89.33 9195 87.14 89.69

CR-ETNet 27.99 1920 5.25 26.67 3431 2693 12.31 33.19 31.90 2544 12.75 3092 40.46 35.64 2042 39.71
DS-ETNet 20.84 24.04 293 21.22 29.32 4045 5.67 30.78 34.19 36.18 23.00 3442 43.46 4743 33.10 43.98
PSMNet-E2VID 29.50 26.69 25.07 29.09 44.84 38.74 39.42 4396 81.43 84.43 8231 81.86 90.15 91.33 90.53 90.32
CR-E2VID 24.65 7.70 3.67 2220 30.60 12.17 8.15 27.94 27.78 1275 9.51 25.60 35.06 21.23 15.18 33.05
DS-E2VID 13.30 17.40 2.37 13.83 20.02 30.72 428 2146 2820 28.83 20.23 28.25 36.38 38.70 29.09 36.68

Translate intensity into event on the left view

CFF-v2e 9.86 12.07 7.81 10.17 14.69 16.55 11.36 14.93 60.34 7195 62.77 6197 68.55 79.73 73.03 70.14

ZEST: Translate into intermediate representation on both views (Ours)

Ours-CR-MiDaS 3.64 879 221 435 460 9.68 323 530 28.68 33.07 21.61 29.26 48.02 51.52 41.12 4848
Ours-DS-MiDaS = 224 7.66 1.68 3.00 3.46 12.07 2.82 4.66 1448 17.57 1246 1491 2631 28.58 22.39 26.61
Ours-CR-DA 3.18 9.00 131 399 427 993 240 5.05 9.75 1048 7.26 9.84 18.76 18.05 14.23 18.64
Ours-DS-DA 224 766 171 299 344 1205 2.86 4.64 14.67 1744 13.11 1505 26.14 2821 22.83 2641
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Figure 5: Visual quality comparison of disparity estimation results among state-of-the-art methods (HSM [17],
SHEF [30], DAEI [40] trained on MVSEC [43]] and DSEC [13]], respectively) and the proposed ZEST with
various stereo matching models (CR and DS) and monocular depth estimation models (Mi and DA). The baseline
method with the best EPE and RMSE metrics, i.e., DS-E2VID, is also included for comparison.

4 [Experiments

Dataset. We evaluate the proposed ZEST framework on the widely-used benchmark dataset for
event-intensity stereo matching, the DSEC dataset [13]], a large-scale high-quality driving dataset
with challenging scenes. It consists of synchronized event and frame streams captured from a stereo
setup in a wider range of challenging scenarios, including fast motion, high dynamic range, and low
light conditions. Specifically, it provides high-resolution (640 x 480) stereo event streams captured
in outdoor driving scenes using Prophesee Gen 3.1 event cameras across 53 outdoor driving scenarios
under diverse lighting. Without specification, all 41 sequences (5 Interlaken sequences, 1 Thun
sequence, and 35 Zurich City sequences) in the training set are adopted for evaluation, as the official
“test” split lacks ground truth disparity. To address boundary issues with certain methods, such as
E2VID’s inability to reconstruct the initial frames without prior events, we exclude the first and last
10 frames of each sequence from metric calculations. To assess generalization, we also evaluate on
the MVSEC and M3ED [2] datasets. MVSEC [43]], the pioneering stereo event dataset, includes
ground truth depth maps in diverse scenarios with DAVIS346 event cameras (346 x 260 resolution).
We use three subsets for MVSEC evaluation: indoor_flying1 (500-1500), indoor_{flying2 (500-2000),



Table 2: Quantitative results of the proposed zero-shot disparity estimation method on the MVSEC [45] dataset.

EPE] RMSE| 3PE] 2PE|
Method
S2 S3 All S1 S2 S3 All S1 S2 S3 All S1 S2 S3 All
HSM [17] 9.64 1298 9.09 10.57 11.43 1581 10.87 12.70 82.22 83.75 79.48 81.82 8596 89.03 83.68 86.22
DAEI [40] 1.08 - 155 7.73 15.73

CR-E2VID  16.33 23.62 18.01 19.32 1694 24.64 1855 20.04 79.31 8824 83.39 83.64 82.12 92.05 8842 87.53
Ours-CR-DA 334 7.19 513 522 383 7.83 560 576 19.06 41.72 28.66 29.82 3322 61.38 43.97 46.19

indoor_flying3 (500-2500), denoted as S1, S2, and S3, respectively. Given the differing frame and
depth rates, we select the depth map closest to each image frame timestamp. The M3ED [2] dataset
captures unique urban and forest scenes with Prophesee EVK4 HD event cameras (1280 x 720
resolution). We use the car_urban_day_horse (300-700) sequence for evaluation.

Metrics We use the standard evaluation metrics for stereo matching, including the mean absolute
error (MAE), root mean squared error (RMSE), and the percentage of pixels with errors larger than a
threshold (e.g., 1, 2, or 3 pixels).

Compared methods. We compare the performance of the proposed ZEST framework with state-of-
the-art event-intensity stereo matching methods, including both traditional and deep-learning-based
approaches. For traditional methods, we consider SHEF [30] and HSM [17]]. For deep-learning-
based methods, we compare against a state-of-the-art method DAEI [40], originally trained on the
MVSEC [45] dataset (S2 and S3 splits), which has limited generalizability to DSEC. We also test
a variant of DAEI (denoted DAEI'), finetuned on the Zurich and Thun sequences in DSEC for 34
epochs and evaluated on both DSEC and M3ED.

Baselines. We also include several baseline methods that directly apply the off-the-shelf stereo
models to the event and frame images without extra representation alignment or disparity refinement.
To align the different modalities between the left and right views, we consider two cases, event-to-
intensity and intensity-to-event, respectively. In the case of event-to-intensity, events in the right
view are reconstructed into a gray image using E2VID [26] and ETNet [31] and paired with frames
in the left view. The off-the-shelf image-based stereo models used include PSMNet (checkpoint
trained on KITTI2015) [3], CREStereo (CR, checkpoint trained on ETH3D) [18]], and DynamicStereo
(DS, checkpoint trained on DynamicReplica and SceneFlow) [16]]. In the case of intensity-to-event,
consecutive frames in the left view are converted by v2e [15]], which are then fed to the off-the-shelf
event-based stereo models CFF [23]] together with the events in the right view. As for the proposed
ZEST framework, we adopt CR and DS for the stereo models, and Depth Anything (DA, checkpoint
Depth-Anything-Large, 335.3M parameters) [37] and MiDaS (Mi, checkpoint BEiT-L-512, 345M
parameters) [25] for monocular depth estimation. Throughout this paper, we use abbreviations to
denote specific combinations of modality alignment, stereo models, and monocular models. For
example, the combination of the proposed technique, CREStereo, and Depth Anything is referred to
as “Ours-CR-DA”. All results for comparison are produced from their official codes and models with
recommended hyperparameters provided on public available sources or provided by the authors.

Compute environment setup. All models are tested on an Intel i7-13700K CPU and a single
NVIDIA RTX 4090 GPU. While representation alignment and disparity refinement modules can run
on either CPU or GPU, stereo and monocular depth estimation models require GPU acceleration.

4.1 Comparisons with prior arts

Quantitative results on the benchmark dataset Table 3: Quantitative results of the proposed zero-shot
DSEC [13] are reported in Table El, demon- disparity estimation method on the M3ED [2] dataset.
strating the proposed method’s superior perfor-

mance. The quantitative analysis revealed that Method EPEJ  RMSE|  3PEJ  2PE}
our framework consistently outperformed al- HSM [17] 12.39 1427 9087 9258
most all compared methods and baselines across Bﬁlgzlé?g 22'(1)(7) 2‘2{(1)3 ?; ég ggi;
. T - - d d E
every metric, except for DAEI" [40] and the Ours.CR-DA 2.06 339 19.04 29.02

baseline E2VID-CR. While all other methods
are evaluated in a cross-dataset manner, DAEI' [40] is the only method that is evaluated in an
in-dataset manner, which is trained and tested on the DSEC [13]]. Therefore, it is not surprising that



Table 4: Quantitative results of ablation studies on the interlaken_00_c sequence of the DSEC dataset.
Compared to TableEI, 1-pixel error (1PE, %) is also utilized for evaluation.

Setting Rep. alignment Monocular cue EPE| RMSE| 3PE| 2PE] IPE|
1) DS w/ E2VID-right X X 43.02 55.79 87.63 91.57 95.98
2) DS w/ v2e-left X X 13.90 20.26 72.68 81.44 90.65
3) DS w/ spatial gradients X X 19.01 23.76 78.88 86.24 93.05
4) DS w/ spatial gradients + DA_Large X v 19.09 23.57 81.38 88.20 94.49
5) DA_Large X v 35.85 41.34 99.05 99.35 99.65
6) DA_Large w/ GT scale X v 2.40 3.16 28.35 47.45 72.07
7) Ours-DS w/o DA v X 1.49 2.85 7.77 16.84 47.84
8) Ours-DS-DA_Large v v 1.41 2.62 722 16.00 46.37
9) Ours-DS-DA_Base v v 1.39 2.59 6.96 15.60 46.17
10) Ours-DS-DA_Small Vv v 1.42 2.64 7.30 15.94 46.95
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Figure 6: Visual comparison of the disparity results of a stereo matching method DS using different representa-
tions and the proposed approach. From left to right: inputs, spatial gradients of frames and spatial integral of
events (via [11]])), their corresponding disparity result, the proposed representation, i.e., the temporal difference

of the frame and the temporal integral of the events, and their corresponding disparity result.

they achieve almost the best performance. Surprisingly, most of the variants of the proposed ZEST
framework outperform this method in terms of 3PE metric, which demonstrates the effectiveness of
the proposed method. The performance of the baseline CR-E2VID achieves good performance in
terms of the 3PE and 2PE metrics in some sequences, although worse than the proposed method in
all sequences. Quantitative results on MVSEC [43] and M3ED datasets are shown in Tables|Z|
and 3] respectively, which demonstrate ZEST’s robust generalization across diverse scenarios.

The visual results across varied scenes shown in Figure 4] demonstrate the generalizability of our
method. Visual comparisons on DSEC are shown in Figure[5] For the baselines, we include DS-
E2VID [16]], which achieved the best performance in terms of EPE and RMSE metrics. They highlight
the superior quality of our framework, generating depth maps with significantly enhanced sharpness,
intricate details, and improved dynamic accuracy compared to the compared methods.

4.2 Ablation study

To validate the effectiveness of each component in the proposed ZEST framework and analyze their
contributions to the overall performance, we conduct a series of ablation studies to evaluate the impact
of the representation alignment module and the monocular cue-guided disparity refinement module.

Impact of the representation alignment module. To assess the importance of the representation
alignment module, we compare the performance of ZEST with and without this module. Quantitative
results are shown in Table[d} In the absence of the proposed representation alignment, we feed the
off-the-shelf stereo matching model DS with: 1) original frames and frames generated from events in
the right view via E2VID (Figure[6); 2) events generated from frames in the left view via v2e and
events in the right view; 3) the spatial gradient of frames in the left view and the spatial integral of
events in the right view using [[11]]; and 7) the proposed representation alignment module. Among
these settings, the proposed module achieves the best performance. This highlights the effectiveness
of our approach in bridging the modality gap between events and frames, enabling the successful



Frame (Left) Event (Right) Scale Map DA Ours-DS Ours-DS-DA

Figure 7: Visual comparison of the effectiveness of the monocular cue-guided disparity refinement module.
From left to right: input frames, input events, scale map results, disparity results from the monocular model DA
alone, results from the proposed method without DA, and results with DA incorporated.

application of off-the-shelf stereo matching models. The corresponding qualitative results are shown
in Figures [3and [6] respectively.

Impact of the disparity refinement module. To validate the effectiveness of each component, we
compare the proposed method with its five variants: 3) stereo matching model fed with the spatial
gradient of frames in the left view and the spatial integral of events in the right view; 4) the results
of 3) refined by a monocular depth estimation; 5) only the monocular depth estimation model DA;
6) the results of (5) rescaled by a global scale calculated from the ground truth disparity; 7) the
proposed method without disparity refinement; and 8) the proposed method with DA for disparity
refinement. The effectiveness of the introduction of monocular depth estimation can be shown by
comparing 7) and 8) and the corresponding qualitative results are shown in Figure[7} whose results
demonstrate more natural edges with DA. However, the disparity refinement module fails when the
stereo matching results are totally not reliable, as shown in the comparison between 3) and 4). As
shown in Figures [6] and [7] the disparity refinement module improves sharp depth boundaries for
objects, such as cars, in challenging scenarios with sparse events or low-texture regions.

Impact of monocular depth estimation model size for refinement. Our framework’s modular
design allows for deployment with lighter-weight models, ideal for resource-limited environments.
While we use the DA_Large (335.3M parameters) for results in Table [T} we also evaluated compact
alternatives, DA_Base (97.5M) and DA_Small (24.8M), as shown in 9) and 10) in Table[d] These
alternatives provide substantial speed gains with acceptable accuracy trade-offs.

5 Conclusion

We introduce ZEST, a novel zero-shot event-intensity stereo matching framework that utilizes cutting-
edge image domain models for accurate disparity estimation without training data. ZEST addresses
the modality gap and labeled data scarcity in the event domain through representation alignment
and monocular cue-guided disparity refinement. Experiments on DSEC show ZEST outperforms
state-of-the-art methods in cross-dataset evaluation. Ablation studies validate the effectiveness of each
component, highlighting the importance of representation alignment, model integration versatility,
and monocular cue-guided refinement benefits.
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A Appendix

This appendix provides additional implementation details and extended experimental results for the
ZEST framework introduced in the main paper. We aim to facilitate the reproducibility and offer a
more comprehensive analysis of the performance and robustness.

A.1 Implementation Details

Intermediate representation for stereo matching. Considering the physical formulation from
frames to events, we design a representation that better captures the common information between
the two modalities while suppressing their differences. Specifically, the proposed intermediate
representation is designed to have the following properties: 1) It should be based on relative changes
in intensity, which is the primary information captured by event cameras. 2) It should incorporate
temporal information from the frames to match the temporal aggregation of events. 3) It should be
robust to the different dynamic ranges and noise levels of event and frame data. By designing an
intermediate representation with these properties, we aim to provide a more effective visual prompt
for the off-the-shelf stereo matching models to adapt to the asymmetric characteristics of event
and frame data. This can lead to an improved stereo matching performance in the event-intensity
asymmetric setting compared to directly using the existing representations.

Now we provide the discrete form of the explicit representation defined in Eq. (7), which is used in
practice since events with continuous time cannot be obtained. For convenience, we define the event
map E(t) as the integral of events between time T and 7 + A7 as E (t) to represent the proportional
change in intensity, which is equivalent to the sum of the polarity o, of the N.- events e, = (t, p, ok)
at position p in discrete form:

T+AT
ET(t):/ etydt= > o (16)

tr [T, T+AT]

Suppose that the duration of the exposure time 27" is discretized into N**P temporal bins with a
predefined unit duration A7. By ignoring the logarithm effects of events, the temporal difference
AL;(t) between two consecutive frames L., , L can be expressed into a reweighted sum form of
brightness increment E(t) as

Ti+1

Tit1—T Tit1+T . LT Ti+T AT
T i+1 - — 1
ALi(t) = C( E NeXPET + E |_+TJET - E \_TJET)7
T=71;+T T=Tip1—T T=7;—T

7)
where |- | denotes the round down operation. Note that, compared to the commonly used event-based
double integral model [24] that uses trilateral weights to reweigh the event bin, the weights used in
the proposed method are trapezoidal, as shown on the left of Figure 2] where the events during the
readout time between frames are weighted equally according to the physical formulations. This new
formulation is especially useful when neither the exposure phase nor the readout phase is negligible
towards each other. In summary, we use the temporal difference map AL(t) defined by consecutive
frames in Eq. (4) and its approximation version defined from the temporal integral of events in Eq.
as explicit intermediate representations, respectively.

A.2 More Qualitative Results

We provide additional qualitative comparisons of the disparity estimation results obtained by ZEST
and state-of-the-art methods on the DSEC [13]] dataset. The qualitative results of the baseline methods
are shown in Figure[8Jand Figure 9] Qualitative results of our methods and the compared methods
are shown in Figure [10| and Figure More qualitative results of the representation alignment
method are shown in Figure[T2] More intermediate results of the disparity refining method are shown
in Figure More results on diverse real-world scenes of our method are shown in Figure The
qualitative results of the proposed method on the MVSEC [45] and M3ED [2]] datasets are shown

in Figures[T5]and

A.3 Computational Efficiency
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Table 5: Computational complexity breakdown per stage. Runtime (ms), GPU memory usage (MB), number of
parameters (M), and equivalent FPS are reported.

Stage Memory Params Runtime FPS
Representation 0 - 39.06 25.59
DS 9224 21.47 8515.32 0.11
CR 2078 5.43 243.55 4.11
DA 3640 33532 79.99 12.5
MiDaS 3344 344.05 31.14 32.10
Refinement 1736 - 306.82 3.25

Table 6: Computational complexity analysis across methods. 3PE performance, runtime (ms), GPU memory
usage (MB), number of parameters (M), and equivalent FPS are reported.

Method 3PEl Memory Params Runtime FPS
SHEF [30] 54.37 0 - 28944.85 0.03
HSM [17] 33.08 766 - 224.85 4.44
DAEI [40] 86.96 3238 11.25 75.15 13.3
Ours-DS-DA 15.05 14600 356.79 8902.13 0.11
Ours-DS-MiDaS 14.91 14304 365.52 8853.27 0.11
Ours-CR-DA 9.84 7454 340.75 630.36 1.58
Ours-CR-MiDaS 29.26 7158 349.48 581.51 1.71

Table 7: Disparity refinement module computational cost across different iterations. EPE and 3PE performance,
runtime (ms), and equivalent FPS are reported.

Iterations EPE| 3PE| Runtime FPS
0 1.487 7.785 4.20 238.06

50 1.488 8.028 42.39 23.59
100 1.451 7.457 70.92 14.10
200 1.430 7.270 127.75 7.82
300 1.420 7.234 188.14 531
400 1.413 7.227 247.63 4.03
500 (Ours) 1.409 7.230 306.82 3.25

Table 8: Computational cost comparison at different input resolutions, reporting runtime (ms) and GPU memory
usage (MB).

CRES DA Refinement
Input Runtime Memory Runtime Memory Runtime Memory
240x320 (1x) 156.59 2064 81.27 3640 300.96 1688
480640 (4x) 243.55 2078 80.00 3640 306.82 1736
720960 (9%) 624.11 2738 80.26 3640 311.70 1808

We evaluated the computational efficiency of our method on an Intel 17-13700K CPU and a single
NVIDIA RTX 4090 GPU, using a 480 x 640 input resolution. Unless noted otherwise, performance
metrics were derived from the interlaken_00_c sequence of the DSEC dataset. TableE]provides a
breakdown of the computational cost per algorithm stage. The Ours-CR-DA variant averages 630.36
ms per frame, consuming 7454 MB of GPU memory. The disparity refinement module is the most
computationally intensive, accounting for 48.6% of total runtime. In the Ours-DS-DA variant, the
DS model bears most of the computational load, while the DA and refinement modules add minimal
additional overhead. Table [6]compares the total computational cost of our method to existing methods.

Profiling results in Table|/|show the disparity refinement module requires approximately 306.82 ms,
48.6% of the Ours-CR-DA variant’s total inference time (630.36 ms). This overhead can be reduced
without significantly impacting performance by limiting the number of iterations.

We also evaluated scalability across input resolutions. Table [§|shows that GPU memory usage and
runtime increase marginally with larger resolutions, mainly due to the DA model’s fixed inference
resolution, which stabilizes memory requirements.
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Figure 8: Qualitative comparison of our method and baselines. Our methods demonstrate better robustness.

A.4 Limitations

Despite the impressive performance of ZEST in event-intensity asymmetric stereo matching, there
remain several limitations that warrant further investigation.

One challenge is handling noisy or sparse events, which can reduce the accuracy of visual prompts
and stereo matching. In cases of significant noise or low event density, the disparity refinement
module may struggle to compensate, resulting in suboptimal depth estimation. Representative failure
cases are illustrated in Figure[T7] Row 1 shows how noisy events increase the visual discrepancy
between views, leading to stereo model errors partially mitigated by monocular DA predictions but
ultimately producing suboptimal results. Row 2 depicts the challenges of sparse events, where limited
event information hampers stereo matching, and the refinement module struggled to compensate.

Additionally, The representation alignment module employed in the current framework relies on
a fixed transformation, which may not fully capture the intricacies of the modality gap between
events and frames. Future research could explore more expressive modality alignment techniques,
such as learning-based approaches or domain adaptation methods, to improve the robustness and
generalization capabilities of the framework.

Furthermore, the use of off-the-shelf image-domain models adds considerable computational load
due to their large parameter counts. Nevertheless, ZEST’s modular design allows for lightweight
alternatives to be substituted in place of the stereo and monocular depth estimation models. This
flexibility provides options for resource-limited deployments, though with some trade-offs in accuracy.

A.5 Broader Impacts

The proposed ZEST framework has the potential to significantly advance the field of event-intensity
asymmetric stereo matching and enable a wide range of applications in various domains. In au-
tonomous driving, the improved disparity estimation provided by ZEST can contribute to better
obstacle detection, 3D object location, and scene understanding, ultimately improving the safety
and reliability of self-driving vehicles. In robotics, the enhanced depth perception enabled by our
method can facilitate more precise object manipulation, navigation, and mapping tasks, particularly
in dynamic environments where conventional frame-based cameras may struggle. Furthermore,
the zero-shot learning approach of ZEST lowers the entry barrier for researchers and practitioners
to explore the benefits of event-intensity asymmetric stereo matching in their specific fields, as it
eliminates the need for large-scale labeled training data.
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Figure 9: Qualitative comparison of our method and baselines. Our methods demonstrate better robustness.
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Figure 10: Qualitative comparison of our method and other methods.
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Figure 11: Qualitative comparison of our method and other methods.
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Figure 12: Qualitative comparison of our method and other representations.
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Figure 13: Intermediate results of disparity refining.
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Figure 14: Results of our method in diverse scenarios.
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Figure 15: Comparison of disparity estimation results for real data from the MVSEC dataset.
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Figure 16: Comparison of disparity estimation results for real data from the M3ED [2] dataset.
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Figure 17: Examples of failure cases for the proposed method.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction outline the main claims, contributions, and scope
of the paper, with a summary of contributions clearly detailed at the end of Section I}

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a discussion on our method’s limitations in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when the image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: As this paper focuses on an empirical method rather than formal theoretical
analysis, no theorems or proofs are included. The method’s efficacy is supported through
conceptual explanations and empirical results.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details in Sections [3|and ] cover our methodology and experimental setup to
ensure reproducibility. Our code has been made publicly available.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Our code has been made publicly available.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details, including hyperparameters and data splits, are specified
in Sectionf]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not include error bars, following standard evaluation protocols used by
comparable methods and ensuring fairness through consistent experimental settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute environment is described in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The potential impacts of our work are discussed in Appendix [A.5]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research presents no high-risk elements, focusing on controlled and
standard event-intensity data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit datasets and code used, ensuring compliance with all terms and
licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Documentation and relevant details will accompany the released code to
support reproducibility and usage.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve human subjects or crowdsourcing.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects were involved in this research.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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