
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

RETHINKING CONTINUAL LEARNING WITH PROGRESSIVE
NEURAL COLLAPSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) seeks to build an agent that can continuously learn a sequence of
tasks, where a key challenge, namely Catastrophic Forgetting, persists due to the potential
knowledge interference among different tasks. On the other hand, deep neural networks
(DNNs) are shown to converge to a terminal state termed Neural Collapse during training,
where all class prototypes geometrically form a static simplex equiangular tight frame
(ETF). These maximally and equally separated class prototypes make the ETF an ideal
target for model learning in CL to mitigate knowledge interference. Thus inspired, several
studies have emerged very recently to leverage a fixed global ETF in CL, which however
suffers from key drawbacks, such as impracticability and limited performance. To address
these challenges and fully unlock the potential of ETF in CL, we propose Progressive
Neural Collapse (ProNC), a novel framework that completely removes the need of a
fixed global ETF in CL. Specifically, ProNC progressively expands the ETF target in a
principled way by adding new class prototypes as vertices for new tasks, ensuring maximal
separability across all encountered classes with minimal shifts from the previous ETF. We
next develop a new CL framework by plugging ProNC into commonly used CL algorithm
designs, where distillation is leveraged to balance between target shifting for old classes
and target aligning for new classes. Experiments show that our approach significantly
outperforms baselines while maintaining superior flexibility, simplicity, and efficiency.

1 INTRODUCTION

Continual Learning (CL) has gained much attention in recent years, aiming to mimic the extraordinary
human abilities to learn different tasks in a lifelong manner. A key challenge here is Catastrophic Forgetting,
i.e., deep neural networks (DNNs) exhibit a pronounced tendency to lose previously acquired knowledge
when trained on new tasks (McCloskey & Cohen, 1989). Within the spectrum of CL scenarios, class-
incremental learning (CIL) presents the most formidable setting (Masana et al., 2022), where the model
must not only address the current task by differentiating intra-task classes but also retain the knowledge of
prior tasks by distinguishing historical classes from newly introduced ones. Yet, achieving this dual objective
remains particularly challenging, as evidenced by the suboptimal performance of existing CL methods.

Recent studies (e.g., Papyan et al. (2020)) have identified a compelling empirical phenomenon in DNN train-
ing termed Neural Collapse (NC). During the terminal phase of training—when the training error asymp-
totically approaches zero—the last-layer features of samples within the same class converge to their class-
specific mean, while the means of all classes align with their corresponding classifier prototypes. These pro-
totypes further collapse geometrically to form the vertices of a Simplex Equiangular Tight Frame (ETF).
This phenomenon results in four critical properties: (1) Feature Collapse: Features from samples within
the same class converge to their class-specific mean, effectively eliminating within-class variability. (2)
ETF Geometric Alignment: The class-specific means for all classes align with the vertices of an ETF. (3)
Classifier-Prototype Equivalence: These class means further align with the weights of the linear classifier.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

(4) Decision Simplification: Predictions reduce to a nearest-class-mean rule, where test samples are assigned
to the class whose feature mean is the closest.

Cifar10 Cifar100 Tiny-ImageNet
0

10

20

30

40

50

60

Ac
cu

ra
cy

 (A
CC

)

60.9

52.4 51.7

33.8
30.1 28.7

18.2
15.2

11.7

K Value
K=10
K=50
K=100
K=200
K=500
K=1000

Figure 1: Accuracy with different numbers
of predefined ETF in NCT

A key idea emerging here is that the elegant NC properties of
DNN training naturally characterize an ideal model for CL:
All classes seen so far will have nearly-zero within-class vari-
ability, and their corresponding class-means are equally and
perfectly separated. Several studies (Yang et al., 2023b; Dang
et al., 2025; Yang et al., 2023a) have recently emerged to lever-
age NC and predefine a fixed global ETF as the model train-
ing target in CL, which however suffer from significant limita-
tions: 1) Setting the number of vertices in the predefined ETF
requires the knowledge of total class number encountered dur-
ing CL before learning the first task, which is clearly not prac-
tical. While Yang et al. (2023b) posits that increasing the total
class number k can overcome these limitations, our results in
fig. 1 demonstrate that the consequently diminished angle be-
tween vertices actually degrades performance. 2) When the
total class number is very large, the distance between any two vertices in the predefined ETF will be very
small. Pushing class means towards these closely located vertices will unnecessarily hinder class discrimi-
nation, especially in early stages of CL when the number of seen classes that the model has to discriminate
among is much smaller and the distance between these class means is larger. 3) NC posits that ETFs emerge
naturally from feature convergence during training. Predefining the ETF contradicts this emergent behavior,
as random initialization of the ETF risks geometric misalignment between learned features and the imposed
topology.

To handle these limitations, a key insight is that the number of vertices in the target ETF for model training
should match the total number of classes seen so far to achieve maximal across-class separation anytime in
CL. Thus inspired, instead of relying on a predefined ETF with critical design flaws, we seek to develop a
novel approach that can appropriately adapt the ETF target for CL in order to fully unleash the potential of
NC. To this end, our contributions can be summarized as follows:
1) A principled approach for ETF expansion. By rethinking the objective of CL in classification as facilitat-
ing progressive NC with a growing ETF after learning each new task, we propose a novel approach, namely
ProNC, to dynamically adjust the target ETF during CL. Specifically, ProNC first extracts the initial ETF
target that emerges from first task training, and then expands the ETF target by adding new class proto-
types as vertices prior to new task learning, to ensure maximal separability across all encountered classes
without causing dramatic shifts from the previous ETF. In principle, ProNC can be broadly applied in CL
frameworks as a new type of feature regularization.
2) A simple and flexible framework for CL based on ProNC. We next develop a new CL framework by
plugging ProNC into commonly used CL algorithm designs. In particular, building upon the standard cross-
entropy loss for new task learning, we introduce two additional losses, i.e., the alignment loss and the
distillation loss. The former seeks to push the learned class features towards the corresponding target ETF
provided by ProNC, whereas the later follows a standard idea of knowledge distillation to mitigate feature
shifts for old classes. A nearest-ETF classifier will be used to replace the standard linear classifier.
3) Comprehensive experiments for performance evaluation. We perform comprehensive experiments on
multiple standard benchmarks for both CIL and TIL, to evaluate the effectiveness of our CL approach com-
pared with related baseline approaches. It can be shown that our approach significantly outperforms the
baselines especially on larger datasets and also enjoys much less forgetting, without introducing more com-
putation costs. In particular, extensive ablation studies are conducted to justify the benefits of ProNC in
terms of maximizing feature separation among different classes and minimizing feature shifts across CL.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

Problem Setup. We consider a general CL setup where a sequence of tasks T = {t}Tt=1 arrives sequentially.
Each task t is associated with a dataset Dt = {(xt,i, yt,i)}Nt

i=1 containing Nt input-label pairs. A fixed
capacity model parameterized by θ will be trained to learn one task at a time. This work focuses on two
widely studied settings: class-incremental learning (Class-IL) and task-incremental learning (Task-IL). In
both settings, there is no overlap in class labels across tasks, ensuring Dt∩Dt′ = ∅ for any two distinct tasks
t ̸= t′. In Class-IL, the model does not have task specific information, requiring all data to be classified
through a unified global classifier. In Task-IL, task-specific identifier is provided, enabling classification via
dedicated task-level classifiers.

Neural Collapse. To formally characterize the NC phenomenon (Papyan et al., 2020) emerged during
terminal training phases of DNNs, it is necessary to first define the simplex ETF geometry.
Definition 1 (Simplex Equiangular Tight Frame). A simplex equiangular tight frame (ETF) is a set of vectors
{ek}Kk=1 ∈ Rd (d ≥ K − 1) with the following properties. 1) Equal Norm: All vectors have identical ℓ2-
norm, i.e., ∥ek∥2 = 1,∀k ∈ {1, . . . ,K}. 2) Equiangularity: The inner product between any two distinct
vectors is minimal and constant, i.e., e⊤k1

ek2
= − 1

K−1 , ∀k1 ̸= k2. Then, a simplex ETF can be constructed
from an orthogonal basis U ∈ Rd×K (where U⊤U = IK) via:

E =
√

K
K−1U

(
IK − 1

K1K1⊤
K

)
, (1)

where E = [e1, . . . , eK] is the ETF matrix, IK is the identity matrix, and 1K is the all-ones vector.

The NC phenomenon can then be characterized by the following four properties (Papyan et al.,
2020): (NC1): The last-layer features of samples within the same class collapse to their within-
class mean, resulting in vanishing intra-class variability: the covariance Σ

(k)
W → 0, where Σ

(k)
W =

Avgi
{
(µk,i − µk)(µk,i − µk)

⊤}, µk,i is the feature of sample i in class k, and µk is the within-class
feature mean of class k; (NC2): The centered class means {µ̂k} align with a simplex ETF, where
µ̂k = (µk − µG)/∥µk − µG∥ and the global mean µG = 1

K

∑K
k=1 µk; (NC3): The centered class means

align with their corresponding classifier prototypes, i.e., µ̂k = wk/∥wk∥, 1 ≤ k ≤ K, where wk is the
class prototype of class k; (NC4): Under NC1–NC3, predictions reduce to a nearest-class-center rule, i.e.,
argmaxk⟨µ,wk⟩ = argmink ∥µ− µk∥, where µ is the last-layer feature of a sample for prediction.

3 CONTINUAL LEARNING WITH PROGRESSIVE NEURAL COLLAPSE

3.1 PROGRESSIVE NEURAL COLLAPSE

To completely remove the need of predefining a global fixed ETF as the feature learning target for CL, we
next seek to answer the following two important questions: 1) How should the base ETF target be initialized?
2) How should the ETF target be adapted during CL?

1) ETF initialization after first task. Previous studies (Yang et al., 2023b) randomly initialize the ETF
target, which could lead to potential misalignment between the predefined ETF and learned features during
task learning. Note that after the training of Task 1, last-layer class feature means {µc}K1

c=1 converge to an
ETF Ed×K1 , where µc ∈ Rd and K1 is the number of classes in Task 1. Thus motivated, the initial ETF
should be extracted from the first task training to address the misalignment, which leads to an ETF target
that matches the number of classes in Task 1.

However, in practice it is difficult to fully reach the asymptotic convergence regime of model training with
zero training loss, such that the learned class feature means M̃K1 = {µ̃c}K1

c=1 for Task 1 will not strictly
satisfy the ETF properties, as also corroborated in our empirical observations. Here µ̃c is the empirical
feature mean over samples within the class c. To handle this, a key step is to find the right ETF target that is

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

closest to M̃K1 after the training for Task 1 converges, i.e., E∗ = argminE ∥M̃K1 −E∥2F . Towards this end,
based on Definition 1, we can have the following theorem that characterizes the nearest ETF after learning
the first task:

Theorem 1. Let U′ =
√

K1−1
K1

M̃K1

(
IK1

− 1
K1

1K1
1⊤
K1

)
and the SVD of U′ is WΣV⊤. Then the ETF

matrix E∗ can be obtained as follows:

E∗ =
√

K1

K1−1WV⊤
(
IK1 − 1

K1
1K11

⊤
K1

)
. (2)

Given the learned class feature means M̃K1 , Theorem 1 immediately indicates a three-step procedure to
construct the initial ETF target that aligns well with the task learning: 1) Construct U′ from M̃K1

, 2)
Conduct SVD on U′, 3) Construct E∗ based on Equation (2).

2) ETF expansion prior to new task learning. Given the initial ETF matrix E1 = E∗ where the number of
vertices matches the number of classes in Task 1, the next step is to progressively expand the ETF target as
new classes come in with new tasks, in order to achieve two objectives: 1) the number of newly expanded
vertices in the new ETF target will match the number of new classes in the new task; 2) the vertices in the
new ETF target that match old classes will not significantly shift from their original positions in the old ETF
target, so as to reduce catastrophic forgetting.

A key insight here is that the ETF matrix E is indeed determined by the corresponding orthogonal basis
U as shown in Equation (1), and keeping the orthogonal basis unchanged when expanding the ETF will in
principle reduce the shift from the old ETF. This motivates a novel ETF expansion strategy by expanding
the constructing orthogonal basis, which includes two steps:

(Step a) Let Kt represent the total number of classes until any task t. When a new task t ≥ 2 arrives with
Kt −Kt−1 classes, the ETF target expansion will be triggered before learning task t, which seeks to obtain
a new target Et with Kt vertices from the previous ETF target Et−1 with Kt−1 vertices. In particular,
the original orthogonal basis Ut−1 ∈ Rd×Kt−1 of Et−1 will be expanded to Ut ∈ Rd×Kt by appending
Kt −Kt−1 new orthogonal vectors. These new vectors are generated via Gram-Schmidt orthogonalization
against the existing Kt−1 basis vectors in Ut−1, ensuring that Ut retains orthonormality across all Kt

vectors.

(Step b) Substituting Ut and Kt into Equation (1) will lead to an expanded ETF target with Kt vertices. This
extended ETF serves as the predefined geometric configuration for feature learning in task t, maintaining
uniform angular separation and maximal equiangularity among all seen classes.

3.2 A CONTINUAL LEARNING FRAMEWORK BASED ON PROGRESSIVE NEURAL COLLAPSE

In what follows, we seek to incorporate the idea of progressive neural collapse (ProNC) into commonly
used CL algorithm designs, where the model will be trained to push the learned class features towards the
progressively expanded ETF for each task during CL. More specifically, we focus on the model training for
tasks t ≥ 2, whereas the first task learning follows a standard supervised learning procedure with widely
used loss functions, e.g., cross-entropy loss Lce. For tasks t ≥ 2, we first apply ProNC to generate a
newly expanded ETF target Et before learning task t. The loss function design for model training will
include three different loss terms, i.e., a supervised term, an alignment term, and a distillation term. The
first supervised term follows the standard cross-entropy loss to facilitate intra-task classification, while we
introduce the other two loss terms below in detail.

1) Alignment with the ETF target. The alignment loss pushes the learned class features towards the ETF
target Et = [e1,t, ..., eKt,t], which characterizes the cosine similarity between the feature µk,i for sample i
in class k and the corresponding vertex ek,t in the ETF Et for class k (Yang et al., 2022; 2023b):

Lalign(µ
t
k,i, ek,t) =

1
2 (e

⊤
k,tµ

t
k,i − 1)2. (3)

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Figure 2: Overflow of our proposed CL framework for new task learning based on the mixture of current
task data and replay data. The new model ft is trained towards the expanded ETF target, with forgetting
further reduced based on feature distillation.

Here µt
k,i corresponds to the normalized feature extracted from the last layer of the current model when

learning task t. A small Lalign implies that the learned normalized feature for each sample aligns well the
corresponding ETF vertex for the class that the sample belongs to, minimizing the intra-class variability
while forcing different class feature means equally separated. This indeed provides a new type of feature
regularization based on our progressively expanded ETF, which can be widely adopted and is also very
powerful as shown later in our experimental results.

2) Distillation to further reduce forgetting. While ProNC expands the ETF target without dramatically
shifting from the old ETF, the vertices that map to old classes will inevitably change after ETF expansion
due to geometric properties of ETF. To handle this and further reduce catastrophic forgetting, we next borrow
the idea of knowledge distillation, which is a widely used technique in CL to reduce catastrophic forgetting
(Rebuffi et al., 2017; Hou et al., 2019; Buzzega et al., 2020; Yang et al., 2023b). In particular, we consider
a typical distillation loss which characterizes the cosine similarity between the normalized features, for the
same data sample, from the current model and that from the model obtained after learning the previous task,
to maintain the simplicity and flexibility of our framework:

Ldistill(µ
(t−1)
k,i ,µ

(t)
k,i) =

1
2 ((µ

(t−1)
k,i)⊤µ

(t)
k,i − 1)2. (4)

Here µ
(t−1)
k,i is the normalized last layer feature for the sample i in class k after task t− 1.

To best unlock the potential of ProNC, we also leverage the standard data replay in the CL framework:
the replay data from previous tasks will be mixed together with the current data before the current task
learning, such that each minibatch of data during model training will include both replay data and current
data. Combining all three loss terms will lead to the final instance-loss function:

L = Lce + λ1 · Lalign + λ2 · Ldistill, (5)
which is averaged over all samples in a minibatch for model update. Here λ1 and λ2 are coefficients to
balance between pushing the learned features towards the target ETF and reducing the vertex shift from the
previous ETF for minimizing forgetting. The overall workflow is shown in Figure 2.

Inference. During inference for model performance evaluation, instead of using the linear classifier for
classification, we leverage the widely used cosine similarity (Peng et al., 2022; Gidaris & Komodakis, 2018;
Wang et al., 2018; Hou et al., 2019) between the extracted sample feature from the learned model and the
vertices in the target ETF as the classification criteria. Specifically, for any testing data sample i, let µj

denote the normalized last layer feature extracted from the tested model. Then the class prediction result
will be argmaxk µ

⊤
j ek, where ek is the k-th column vector in the target ETF.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUPS

Datasets and baseline approaches. We evaluate the performance on three standard CL benchmarks, i.e.,
Seq-CIFAR-10 (Krizhevsky et al., 2009) that partitions 10 classes into 5 sequential tasks, Seq-CIFAR-
100 (Krizhevsky et al., 2009) that comprises 10 tasks with 10 classes per task, and Seq-TinyImageNet (Le &
Yang, 2015) divides 200 classes into 10 sequential tasks, and consider both Class-IL and Task-IL scenarios.
We evaluate our CL approach against state-of-the-art (SOTA) approaches, including various replay-based
approaches, i.e., ER (Riemer et al., 2019), iCaRL (Rebuffi et al., 2017), GEM (Lopez-Paz & Ranzato, 2017),
GSS (Aljundi et al., 2019), DER (Buzzega et al., 2020), DER++ (Buzzega et al., 2020), STAR (Eskandar
et al., 2025), CSReL (Tong et al., 2025), and contrastive learning based approaches, i.e., Co2L (Cha et al.,
2021), CILA (Wen et al., 2024), MNC3L (Dang et al., 2025). We also compare our approach with NCT
(Yang et al., 2023b) that predefines a fixed global ETF target.

Implementation details and evaluation metrics. To ensure a fair comparison, we train a ResNet-18 back-
bone (He et al., 2016) using the same number of epochs and batch size for all approaches. For contrastive
learning approaches Co2L, CILA, and MNC3L, we follow their original implementations by removing the
final classification layer of ResNet-18, and append a two-layer projection head with ReLU activation to map
backbone features into a d-dimensional embedding space (d = 128 for Seq-CIFAR-10/100, d = 256 for
Seq-TinyImageNet). The training epochs are 50 for Seq-CIFAR-10 and Seq-CIFAR-100, and 100 for Seq-
TinyImageNet instead of 500 epochs for the initial tasks, 100 (Seq-CIFAR-10 and Seq-CIFAR-100) and 50
(Seq-TinyImageNet) for incremental tasks. A separate linear classifier is subsequently trained on the frozen
embeddings for these contrastive learning methods. For STAR (Eskandar et al. (2025)), we employ the
performance of ER+STAR, since our method can be seen as adding a regularization term to ER. Hyperpa-
rameter details are in Appendix B.2. We consider two standard evaluation metrics in CL, i.e., final average
accuracy (FAA) and average forgetting (FF). Let T denote the total number of tasks and ati be the model
accuracy on the i-th task after learning the task t ∈ [1, T]. The FAA and FF are defined as:

FAA = 1
T

∑T−1
i=0 aT−1

i , FF = 1
T−1

∑T−2
i=0 maxt∈{0,...,T−2} a

t
i − aT−1

i .

4.2 MAIN RESULTS

Table 1 shows the performance comparison for both Class-IL and Task-IL under 200 and 500 memory
budgets. It is clear that our approach significantly and consistently outperforms all the baseline approaches
across all considered CL settings, datasets, and buffer sizes. In particular, the performance improvement
in our approach becomes more substantial on larger datasets and under a smaller buffer size. For example,
consider a buffer size of 200. On Seq-CIFAR-100, our approach outperforms the best baseline approaches,
i.e., DER for Class-IL and NCT for Task-IL, by 37.65% and 13.04%, respectively. On Seq-TinyImageNet,
our approach outperforms the best baseline approaches, i.e., CSREL for Class-IL and NCT for Task-IL, by
59.32% and 31.08%, respectively. In particular, the performance of our approach is outstanding when the
buffer size is 200, especially for Task-IL when we focus on differentiating classes within a specific task. This
implies that our approach is more robust to different buffer sizes and the principle of ProNC can even work
well with a small amount of replay data. Moreover, by leveraging the NCT in a more principled manner,
our approach dominates the previous approach NCT where a predefined global ETF target hinders class
discrimination by unnecessarily forcing class means towards closely located vertices.

Besides, it can be seen from Table 1 that among most scenarios our approach and NCT achieve much less
forgetting compared to other baseline approaches, while our approach shows even better forgetting than
NCT in 8 out of 12 settings. The reason is that, instead of simply constraining the shifts from old features
or important weights as in previous studies, the ETF target offers an additional fixed goal from which the

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison under various setups. All results are averaged over multiple runs. The
final version with error bars is in the appendix.

Buffer Method Seq-CIFAR-10 Seq-CIFAR-100 Seq-TinyImageNet

Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

FAA (FF) FAA (FF) FAA (FF) FAA (FF) FAA (FF) FAA (FF)

200

ER (Riemer et al., 2019) 44.79 (59.30) 91.19 (6.07) 21.78 (75.06) 60.19 (27.38) 8.49 (76.53) 38.17 (40.47)
iCaRL (Rebuffi et al., 2017) 49.02 (23.52) 88.99 (25.34) 28 (47.20) 51.43 (36.20) 7.53 (31.06) 28.19 (42.47)

GEM (Lopez-Paz & Ranzato, 2017) 25.54 (80.36) 90.44 (9.57) 20.75 (77.40) 58.84 (29.59) – –
GSS (Aljundi et al., 2019) 39.07 (72.48) 88.8 (8.49) 19.42 (77.62) 55.38 (32.81) – –

DER (Buzzega et al., 2020) 61.93 (35.79) 91.4 (6.08) 31.23 (62.72) 63.09 (25.98) 11.87 (64.83) 40.22 (40.43)
DER++ (Buzzega et al., 2020) 64.88 (32.59) 91.92 (5.16) 28.13 (60.99) 66.80 (23.91) 11.34 (73.47) 43.06 (39.02)

LODE (Liang & Li, 2023) 68.01 (24.63) 93.11 (4.75) 26.65(44.29) 71.23 (18.75) 15.13 (64) 51.42 (29.66)
Co2L (Cha et al., 2021) 51.27 (30.17) 84.69 (2.91) 18.09 (64.14) 49.19 (27.83) 12.95 (62.04) 38.40 (40.75)
CILA (Wen et al., 2024) 59.68 (37.52) 91.36 (5.89) 19.49 (64.01) 53.93 (33.07) 12.98 (63.11) 37.32 (41.40)

MNC3L (Dang et al., 2025) 51.09 (33.74) 85.07 (4.90) 15.81 (62.51) 43.91 (39.79) 10.57 (59.68) 32.78 (45.10)
STAR (Eskandar et al., 2025) 65.94 (15.99) 95.12 (2.06) 38.15 (42.17) 79.53 (17.32) 13.64 (68.51) 43.01 (39.16)

CSReL (Tong et al., 2025) 37.46 (26.34) 69.22 (17.16) 29.06 (58.23) 66.99 (23.20) 18.14 (49.77) 45.04 (34.12)
NCT (Yang et al., 2023b) 51.59 (22.48) 80.63 (1.41) 26.38 (27.40) 75.75 (4.79) 10.95 (49.33) 52.71 (15.88)

Ours 65.58 (32.75) 96.86 (0.65) 42.99 (36.07) 85.63 (4.40) 27.44 (42.81) 69.09 (9.42)

500

ER (Riemer et al., 2019) 57.74 (43.22) 93.61 (3.50) 22.35 (73.08) 73.98 (16.23) 9.99 (75.21) 48.64 (30.73)
iCaRL (Rebuffi et al., 2017) 47.55 (28.20) 88.22 (22.61) 33.25 (40.99) 58.16 (27.90) 9.38 (37.30) 31.55 (39.44)

GEM (Lopez-Paz & Ranzato, 2017) 26.2 (78.93) 92.16 (5.60) 25.54 (71.34) 66.31 (20.44) – –
GSS (Aljundi et al., 2019) 49.73 (59.18) 91.02 (6.37) 21.92 (74.12) 60.28 (26.57) – –

DER (Buzzega et al., 2020) 70.51 (24.02) 93.40 (3.72) 41.36 (49.07) 71.73 (25.98) 17.75 (59.95) 51.78 (28.21)
DER++ (Buzzega et al., 2020) 72.70 (22.38) 93.88 (4.66) 38.20 (49.18) 74.77 (15.75) 19.38 (58.75) 51.91 (25.47)

LODE (Liang & Li, 2023) 75.91 (18.18) 94.19 (3.94) 40.01 (32.58) 80.06 (8.96) 20.5 (56.51) 61.49 (18.61)
Co2L (Cha et al., 2021) 61.78 (17.79) 89.51 (2.65) 26.64 (48.60) 62.32 (23.47) 18.71 (49.64) 50.74 (13.80)
CILA (Wen et al., 2024) 67.82 (18.22) 93.29 (0.65) 31.27 (45.67) 68.29 (16.98) 18.09 (64.14) 49.19 (27.83)

MNC3L (Dang et al., 2025) 52.20 (27.88) 85.94 (3.15) 22.29 (46.09) 56.43 (24.29) 11.52 (44.96) 36.32 (39.00)
STAR (Eskandar et al., 2025) 69.19 (12.21) 95.36 (2.38) 47.56 (28.68) 78.28 (15.43) 21.31 (57.2) 59.32 (19.49)

CSReL (Tong et al., 2025) 40.82 (29.18) 73.30 (16.89) 39.22 (47.03) 75.09 (15.55) 22.13 (50.01) 51.94 (28.20)
NCT (Yang et al., 2023b) 60.93 (13.82) 81.27 (3.84) 33.77 (27.85) 75.87 (5.06) 18.24 (50.90) 62.30 (6.84)

Ours 73.95 (26.75) 96.95 (0.24) 48.94 (24.32) 86.38 (4.35) 29.06 (38.58) 69.77 (9.52)

model should not shift the new features too far away. These results indicate the huge potential of leveraging
NC and ETF in guiding the feature learning for CL.

Table 2: Performance comparison with buffer size zero.
Buffer Method Seq-CIFAR-100 Seq-TinyImageNet

Class-IL Task-IL Class-IL Task-IL

0
Co2L (Cha et al., 2021) 26.06 (68.82) 51.91 (40.02) 13.43 (65.75) 38.98 (40.77)

MNC3L (Dang et al., 2025) 30.48 (53.03) 56.69(37.02) 14.04 (54.25) 42.59 (37.89)
Ours 32.28 (45.92) 84.62 (4.39) 24.43 (46.14) 68.08 (9.81)

More interestingly, in contrast to
previous replay-based approaches
(Riemer et al., 2019; Rebuffi et al.,
2017; Lopez-Paz & Ranzato, 2017;
Aljundi et al., 2019; Buzzega et al.,
2020) which require a replay buffer
in principle, our approach can even work without replay. In table 2, we report the results for both
Class-IL and Task-IL under an empty memory buffer. Compared with contrastive-learning-based methods
such as Co2L (Cha et al., 2021) and MNC3L (Dang et al., 2025), our method still achieves superior
performance. Specifically, with an empty replay buffer, our approach can achieve a FAA of 32.28% for
Class-IL and 84.62% for Task-IL on Seq-CIFAR-100, and 24.43% for Class-IL and 68.08% for Task-IL
on Seq-TinyImageNet. Remarkably, these results almost surpass all baselines in table 5 even when those
baselines use a buffer size of 200 on Seq-CIFAR-100, and for Seq-TinyImageNet, without a memory buffer,
ProNC outperforms all baselines using buffer sizes of both 200 and 500. This phenomenal performance
implies that our approach indeed offers a new and powerful feature regularization based on ProNC, which
can be widely applied in various CL scenarios.

4.3 ABLATION STUDY

In what follows, we will conduct various ablation studies to build a comprehensive understanding of our
approach, where most studies are for Class-IL on Seq-CIFAR-100 with a buffer size 500.

Feature learning behaviors. To understand the superior performance of our approach in contrast to important
baseline approaches, we first delve into the feature learning behaviors during CL by characterizing different

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

2 4 6 8
0.5

1.0

1.5

2.0

2.5

3.0 1e 2
Ours
NCT

(a) Cosine similarity of fea-
ture means between any two
different classes, averaged
over all seen classes.

2 4 6 8
2.6

2.8

3.0

3.2

3.4

3.6
1e 1

Ours
NCT

(b) Std of cosine similar-
ity of feature means between
any two different classes in
the same task, averaged over
tasks.

2 4 6 8
7.0

7.5

8.0

8.5

9.0

1e 1
Ours
NCT
DER++

(c) Cosine similarity between
best previous features and fi-
nal features for the same
class, averaged over all seen
classes.

2 4 6 8

3

2

1

1e 2

Ours
NCT
DER++

(d) Cosine similarity between
one class feature mean and
the classifier prototype of any
seen different class.

2 4 6 8

5

4

3

2

1e 2

Ours
NCT
DER++

(e) Cosine similarity between
one class feature mean and
the classifier prototype of a
different class in the same
task.

50 60 70 80
20,190

 19,180

18,170

17,160

16,150

Class IL
Task IL

(f) Performance robustness of
our approach under different
values of the hyperparameters
(λ1, λ2).

Figure 3: In (a)-(e), X-axis is the task ID during CL and Y-axis is the (average or std) value of the corre-
sponding cosine similarity. In (f), X-axis is the accuracy FAA and Y-axis is the value of (λ1, λ2).

types of feature correlations. In particular, based on our analysis of the ETF target and Table 1, compared to
NCT (Yang et al., 2023b) with a predefined global ETF, our approach should enjoy the following benefits:

Table 3: ProNC as feature regular-
ization
Method FAA

iCaRL (Rebuffi et al., 2017) 33.25
iCaRL with ProNC 38.87
LUCIR (Hou et al., 2019) 37.68
LUCIR with ProNC 40.80
ER (Riemer et al., 2019) 22.35
ER with LODE (Liang & Li, 2023) 35.21
ER with STAR (Eskandar et al., 2025) 26.77
ER with ProNC 48.94
DER++ (Buzzega et al., 2020) 38.20
DER++ with LODE (Liang & Li, 2023) 40.01
DER++ with STAR (Eskandar et al., 2025) 39.77
DER++ with ProNC 47.34
XDER (Buzzega et al., 2020) 49.93
XDER with ProNC 51.32

1) A lower cosine similarity between different class feature
means which is also closer to theoretically maximum separation
− 1

Kt−1 for Kt seen classes until task t according to Defini-
tion 1. This can be confirmed in Figure 3a, where we calculate
Avgk ̸=k′(⟨ µk−µG

||µk−µG|| ,
µk′−µG

||µk′−µG|| ⟩+
1

Kt−1) of the features after learn-
ing every task t, averaged for any two seen classes k and k′. Thanks
to ProNC, our approach achieves a smaller value, which is also
closer to 0, than NCT. 2) All class feature means should be al-
most equally separated within the same task. To show this, we
evaluate the standard deviation (std) of across-class cosine simi-
larity for the same task, averaged over all seen tasks in CL, i.e.,
Avg(std(⟨ µk−µG

||µk−µG|| ,
µk′−µG

||µk′−µG|| ⟩)), where classes k and k′ are in the
same task. Figure 3b shows that our approach achieves a smaller average std (also closer to 0) than NCT,
implying the different class means are closer to equal separation. Besides, we also follow the metrics in
NCT (Yang et al., 2023b) to evaluate 1) the cosine similarity between the feature mean of class k and the
classifier prototype wk′ of a different class k′, averaged over all seen classes until task t.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

2) the same cosine similarity but for classes within the same task which is averaged over all seen tasks during
CL. As shown in Figure 3d and 3e, our approach achieves a lower cosine similarity compared to NCT and
DER++, which implies easier class discrimination.

Benefits of ProNC. Our ProNC’s central contribution is a progressively expanding algorithm for ETF that
makes it grow as new classes arrive, explicitly designed and analyzed for the continual learning setting. This
leads to a distinct geometric regime. In NCT, with a global ETF of Kglobal classes, the pairwise inner product
between any two normalized ETF vertices is −1/(Kglobal − 1), which is very close to 0 when Kglobal is large
(e.g., −1/999 for Kglobal = 1000), so early-task classes are packed with relatively small angular separation.
In ProNC, at Task 1 with K1 = 10 classes, the ETF is constructed only for these 10 classes, giving a
pairwise inner product of −1/(K1 − 1) = −1/9, which means a much larger angle and lower similarity
between class vertices. Intuitively, this larger angular separation makes early tasks easier to separate and
provides a better-conditioned geometry for subsequent ETF expansions. The ablation study in fig. 3a shows
that ProNC achieves consistently lower cosine similarity between different classes compared to NCT (Yang
et al. (2023b)) on the Seq-CIFAR-100 dataset. This reduction in similarity indicates that ProNC yields
superior class separation in the feature space, which will make the classification easier.

Moreover, Table 1 demonstrates the exceptional performance of our approach in addressing forgetting. To
understand this, we characterize the cosine similarity between 1) the learned features from the best perform-
ing previous model and 2) that from the final model, for the same class, averaged over all seen classes so
far. This is consistent to the definition of forgetting. As shown in Figure 3c, our approach achieves a higher
similarity than both NCT and DER++, indicating its superior capability in handling feature shifts during CL
and then minimizing forgetting based on ProNC.

Table 4: Impact of different loss de-
sign

Loss Combination FAA

Lalign + Ldistill 48.94
Lalign + l2-Norm loss 49.42
l2-Norm loss + Ldistill 48.61
l2-Norm loss + l2-Norm loss 48.66

Generality of our approach. As discussed in Section 4.2, our ap-
proach introduces a novel and effective feature regularization method
based on ProNC, which can be generally incorporated into different
CL frameworks. To further verify this, we conduct more experiments
by plugging ProNC into established replay-based methods (iCaRL
(Rebuffi et al., 2017), LUCIR (Hou et al., 2019)), ER (Riemer et al.,
2019), and DER++ (Buzzega et al., 2020). For studies with feature-
wise distillation (iCaRL and LUCIR), we keep all the components
the same as the original designs in these studies (including the classi-
fier design) and only incorporate ProNC with the alignment loss. For studies without feature-wise distillation
(ER and DER++), in addition to the alignment loss, we also add feature-wise distillation and keep all the
original components. Table 3 shows the performance comparison among iCaRL, LUCIR, ER, DER++, and
the versions enhanced with the ProNC regularization. For the SOTA regularization STAR (Eskandar et al.,
2025) and LODE Liang & Li (2023), the training of current and buffer data needs to be separated, making
it unsuitable for iCaRL and LUCIR. Clearly, incorporating the ProNC regularization yields substantial per-
formance improvements over both the original design, LODE, and STAR, which proves the potential and
generality of ProNC as a feature regularization for CL.

Flexibility of Our Designs. Our approach is very flexible in the sense that the loss terms in the final objec-
tive function can be replaced by other designs. To show this, we replace the cosine-similarity in the loss
functions, i.e., Lalign and Ldistill, by using a standard l2-norm, and conduct experiments under the Class-IL
setting on Seq-CIFAR-100 with a memory buffer size of 500. As shown in Table 4, the performance of our
approach is stable under different design combinations when we replace the cosine similarity in any of the
two loss terms, which further corroborate the flexibility of our approach. In principle, our approach can be
generally applied with a loss function that seeks to minimize the distance between the learned features and
the ETF target/old features.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

Table 5: Impact of different com-
ponents.
Variant Performance

Ours 48.94
(a) w/o Lce 44.97
(b) w/o Lalign 23.22
(c) w/o Ldistill 19.96
(d) w/ predefined base ETF 44.99
(e) w/ predefined global ETF 33.51
(f) w/ linear classifier 44.49

Impacts of different components. To understand the impact of different
design components on our approach, we investigate six different vari-
ants, as shown in Table 5. Here in (a)-(c) we remove one of the three
loss terms in Equation (5), respectively. Clearly, removing either Lalign
or Ldistill will significantly degrade the performance, highlighting the
importance of the designed ETF target and the right balance between
learning stability and plasticity. On the other hand, while removing Lce
will slightly decrease the performance, this variant still outperforms
the baseline approaches as shown in Table 1, indicating the benefit of our approach mainly from Lalign and
Ldistill. In (d), we predefine a base ETF target and expand it for new tasks based on ProNC, and the degraded
performance shows the benefit of naturally aligning the base ETF with feature learning in the first task. In
(e), we replace the entire ProNC with a predefined fixed global ETF as in (Yang et al., 2023b) and the per-
formance drops dramatically, corroborating the importance of ProNC for setting an appropriate ETF target
in new task learning. In (f), we replace our cosine similarity based classifier by using the standard linear
classifier, and the performance drop further highlights the usefulness of ETF in classification by providing
equally separated feature representation targets for different classes.

Table 6: FAA, FF and total training time comparison with con-
trastive learning based approaches under their training setups.

Buffer Method Seq-CIFAR-100 Seq-TinyImageNet

Class-IL Task-IL Time(S) Class-IL Task-IL Time(S)

200
Co2L (Cha et al., 2021) 27.38 (67.82) 42.37 (38.22) 4362 13.88 (73.25) 42.37 (47.11) 12494

MNC3L (Dang et al., 2025) 34.04 (52.40) 59.46(33.66) 3904 15.52 (52.07) 44.59 (33.76) 10922
Ours 42.99 (36.07) 85.63 (4.40) 1482 27.44 (42.81) 69.09 (9.42) 12137

500
Co2L (Cha et al., 2021) 37.02 (51.23) 62.44 (26.31) 4380 20.12 (65.15) 53.04 (39.22) 12100

MNC3L (Dang et al., 2025) 40.25 (46.09) 65.85 (24.29) 3979 20.31 (46.08) 53.46 (26.45) 12669
Ours 48.94 (24.32) 86.38 (4.35) 1588 29.06 (38.58) 69.77 (9.52) 12350

More comparison with contrastive
learning based approaches. Con-
trastive learning based approaches
usually suffer from high computation
costs due to the nature of contrastive
learning with data augmentation. In
the original implementation of these
approaches, e.g., Co2L (Cha et al.,
2021) and MNC3L (Dang et al., 2025), 500 training epochs are used for the initial task, and followed by
different epochs for each subsequent task, i.e., 100 epochs for Seq-CIFAR-100 and 50 epochs for Seq-
TinyImageNet. To further demonstrate the superior performance of our approach, we evaluate our approach
under the standard setup, against these approaches under their original implementation in Table 6. Clearly,
while the performance of the contrastive learning based approaches improves with more training epochs, our
approach still achieves significantly better performance with an even shorter training time.

Robustness with respect to λs. We conduct experiments to demonstrate the impact of λ1 and λ2 in Equa-
tion (5). As shown in Figure 3f, the performance of our approach is very stable under a wide range of λs’
selections, indicating the robustness of our approach.
5 CONCLUSION
Conclusion. Neural collapse in DNN training characterizes an ideal feature learning target for CL with
maximally and equally separated class prototypes through a simplex ETF, whereas recent studies leverage
this by predefining a fixed global ETF target, suffering from impracticability and limited performance. To
address this and unlock the potential of NC in CL, we propose a novel approach namely progressive neural
collapse (ProNC), by initializing the ETF to align with first task leaning and progressively expanding the
ETF for each new task without significantly shifting from the previous ETF. This will ensure maximal and
equal separability across all encountered classes anytime during CL, without the global knowledge of total
class numbers in CL. Building upon ProNC, we introduce a simple and flexible CL framework with minimal
changes on standard CL frameworks, where the model is trained to push the learned sample features towards
the corresponding ETF target and distillation with data replay is leveraged to further reduce forgetting.
Extensive experiments have demonstrated the dominating performance of our approach against state-of-the-
art baseline approaches, while maintaining superior efficiency and flexibility. One limitation here is that we
assume clear task boundaries and it is interesting to see how our approach can be extended to more general
setups. We hope this work will serve as initial steps for showcasing the great potentials of NC in facilitating
better CL algorithm design and inspire further research in CL community along this interesting direction.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In 3.1, explanations of implementation details for ProNC are presented. The details of hyperparameters,
equipment, and code platform are presented in B.2. Furthermore, the code of our implementation is submit-
ted together with the paper as supplement materials.

ETHICS STATEMENT

We have read and followed the ICLR Code of Ethics.

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory
aware synapses: Learning what (not) to forget. In Proceedings of the European conference on computer
vision (ECCV), pp. 139–154, 2018.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online
continual learning. Advances in neural information processing systems, 32, 2019.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual learning
and streaming. Advances in neural information processing systems, 33:14879–14890, 2020.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark experience
for general continual learning: a strong, simple baseline. Advances in neural information processing
systems, 33:15920–15930, 2020.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of the
IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In Proceedings of the European
conference on computer vision (ECCV), pp. 532–547, 2018a.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with a-gem. arXiv preprint arXiv:1812.00420, 2018b.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data. In
International Conference on Machine Learning, pp. 1952–1961. PMLR, 2020.

Trung-Anh Dang, Vincent Nguyen, Ngoc-Son Vu, and Christel Vrain. Memory-efficient continual learning
with neural collapse contrastive. In Winter Conference on Applications of Computer Vision (WACV), 2025.

Masih Eskandar, Tooba Imtiaz, Davin Hill, Zifeng Wang, and Jennifer Dy. Star: Stability-inducing weight
perturbation for continual learning. In The Thirteenth International Conference on Learning Representa-
tions, 2025.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International conference on artificial intelligence and statistics, pp. 3762–3773. PMLR,
2020.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Qiankun Gao, Chen Zhao, Bernard Ghanem, and Jian Zhang. R-dfcil: Relation-guided representation learn-
ing for data-free class incremental learning. In European Conference on Computer Vision, pp. 423–439.
Springer, 2022.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4367–4375, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier incre-
mentally via rebalancing. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 831–839. IEEE, 2019.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song Chen.
Compacting, picking and growing for unforgetting continual learning. Advances in neural information
processing systems, 32, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526,
2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming catas-
trophic forgetting by incremental moment matching. Advances in neural information processing systems,
30, 2017.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

Yan-Shuo Liang and Wu-Jun Li. Loss decoupling for task-agnostic continual learning. Advances in Neural
Information Processing Systems, 36:11151–11167, 2023.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Beyond not-forgetting: Continual learning with back-
ward knowledge transfer. Advances in Neural Information Processing Systems, 35:16165–16177, 2022a.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for continual
learning. arXiv preprint arXiv:2202.02931, 2022b.

Hao Liu and Huaping Liu. Continual learning with recursive gradient optimization. arXiv preprint
arXiv:2201.12522, 2022.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. Advances
in neural information processing systems, 30, 2017.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
De Weijer. Class-incremental learning: survey and performance evaluation on image classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533, 2022.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165. Elsevier, 1989.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning. arXiv
preprint arXiv:1710.10628, 2017.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences, 117(40):24652–24663, 2020.

Can Peng, Kun Zhao, Tianren Wang, Meng Li, and Brian C Lovell. Few-shot class-incremental learning
from an open-set perspective. In European Conference on Computer Vision, pp. 382–397. Springer, 2022.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2001–2010, 2017.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint
arXiv:1810.11910, 2018.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. In International
Conference on Learning Representations. International Conference on Learning Representations, ICLR,
2019.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience replay
for continual learning. Advances in neural information processing systems, 32, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. arXiv
preprint arXiv:2103.09762, 2021.

Junao Shen, Qiyun Hu, Tian Feng, Xinyu Wang, Hui Cui, Sensen Wu, and Wei Zhang. In2nect: Inter-class
and intra-class neural collapse tuning for semantic segmentation of imbalanced remote sensing images.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 6814–6822, 2025.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay.
Advances in neural information processing systems, 30, 2017.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset based
replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 99–108, 2022.

Ruilin Tong, Yuhang Liu, Javen Qinfeng Shi, and Dong Gong. Coreset selection via reducible loss in
continual learning. In The Thirteenth International Conference on Learning Representations, 2025.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu.
Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5265–5274, 2018.

Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu, Chongxuan Li, Lanqing Hong, Shifeng Zhang,
Zhenguo Li, Yi Zhong, and Jun Zhu. Memory replay with data compression for continual learning. arXiv
preprint arXiv:2202.06592, 2022.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature covari-
ance for continual learning. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern
Recognition, pp. 184–193, 2021.

Yichen Wen, Zhiquan Tan, Kaipeng Zheng, Chuanlong Xie, and Weiran Huang. Provable contrastive con-
tinual learning. In International Conference on Machine Learning, pp. 52819–52838. PMLR, 2024.

Robert Wu and Vardan Papyan. Linguistic collapse: Neural collapse in (large) language models. Advances
in Neural Information Processing Systems, 37:137432–137473, 2024.

Liang Xie, Yibo Yang, Deng Cai, and Xiaofei He. Neural collapse inspired attraction–repulsion-balanced
loss for imbalanced learning. Neurocomputing, 527:60–70, 2023.

Lu Xie, Weigang Li, and Yuntao Zhao. Hard example learning based on neural collapse for class-imbalanced
semantic segmentation. Applied Soft Computing, pp. 112755, 2025.

Li Yang, Sen Lin, Junshan Zhang, and Deliang Fan. Grown: Grow only when necessary for continual
learning. arXiv preprint arXiv:2110.00908, 2021.

Yibo Yang, Shixiang Chen, Xiangtai Li, Liang Xie, Zhouchen Lin, and Dacheng Tao. Inducing neural col-
lapse in imbalanced learning: Do we really need a learnable classifier at the end of deep neural network?
Advances in neural information processing systems, 35:37991–38002, 2022.

Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip Torr, and Dacheng Tao. Neural collapse inspired
feature-classifier alignment for few-shot class incremental learning. arXiv preprint arXiv:2302.03004,
2023a.

Yibo Yang, Haobo Yuan, Xiangtai Li, Jianlong Wu, Lefei Zhang, Zhouchen Lin, Philip Torr, Dacheng Tao,
and Bernard Ghanem. Neural collapse terminus: A unified solution for class incremental learning and its
variants. arXiv preprint arXiv:2308.01746, 2023b.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically ex-
pandable networks. arXiv preprint arXiv:1708.01547, 2017.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
International conference on machine learning, pp. 3987–3995. PMLR, 2017.

Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task-agnostic continual learning using online
variational bayes with fixed-point updates. Neural Computation, 33(11):3139–3177, 2021.

Didi Zhu, Zexi Li, Min Zhang, Junkun Yuan, Jiashuo Liu, Kun Kuang, and Chao Wu. Neural collapse
anchored prompt tuning for generalizable vision-language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4631–4640, 2024.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal of computa-
tional and graphical statistics, 15(2):265–286, 2006.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

APPENDIX

A RELATED WORK

Continual Learning. In general, existing CL approaches on standard neural networks can be divided into
several categories.

1) Regularization-based approaches seek to regularize the change on model parameters that are important
to previous tasks (Zenke et al., 2017; Chaudhry et al., 2018a). For instance, EWC (Kirkpatrick et al., 2017)
penalized updating important weights characterized based on Fisher Information matrix. MAS (Aljundi
et al., 2018) characterized the weight importance based on the sensitivity of model updates if this weight
is changed. Liu & Liu (2022) proposed an approach that recursively modified the gradient update to mini-
mize forgetting. The Bayesian framework has also been substantially investigated to implicitly penalize the
parameter changes (Lee et al., 2017; Nguyen et al., 2017; Zeno et al., 2021).

2) Memory-based approaches store information for previous tasks, which have shown very strong perfor-
mance and can be further divided into two categories, i,e., rehearsal-based and orthogonal-projection based
approaches. Rehearsal-based approaches (Riemer et al., 2018; Chaudhry et al., 2018b; Rolnick et al., 2019)
store a subset of data for previous tasks and replay them together with current data for new task learning.
Some studies focused on how to select and manage the replay data to achieve better performance and effi-
ciency, such as the use of reservoir sampling (Chrysakis & Moens, 2020), coreset-based memory selection
(Borsos et al., 2020; Tiwari et al., 2022; Tong et al., 2025), and data compression (Wang et al., 2022).
Some other studies investigated how to utilize the replay data, such as imposing constraints on gradient up-
date (Chaudhry et al., 2018b; Eskandar et al., 2025), combining with knowledge distillation (Rebuffi et al.,
2017; Buzzega et al., 2020; Hou et al., 2019; Gao et al., 2022), contrastive learning based approaches (Cha
et al., 2021; Wen et al., 2024). The use of generative data has also been explored in CL for rehearsal-based
approaches (Shin et al., 2017). Instead of storing data samples, orthogonal-projection based approaches
(Farajtabar et al., 2020; Wang et al., 2021; Saha et al., 2021; Lin et al., 2022b;a) store gradient or basis
information to reconstruct the input subspaces of old tasks, so as to modify the model parameters only along
the direction orthogonal to these subspaces.

3) Architecture-based approaches freeze the important parameters for old tasks, train the remaining param-
eters to learn new tasks and expand the model if needed. Notably, PNN (Rusu et al., 2016) preserved the
weights for previous tasks and progressively expanded the network architecture to learn new tasks. LwF (Li
& Hoiem, 2017) split the model parameters into two parts, where task-shared parameters are used to extract
common knowledge and task-specific parameters are expanded for new tasks. Some studies (Yoon et al.,
2017; Hung et al., 2019; Yang et al., 2021) combined the strategies of weight selection, model pruning and
expansion.

Neural Collapse. The NC phenomenon during the terminal state of DNN training was first discovered in
(Papyan et al., 2020), which has further motivated a lot of studies on understanding NC. For example, NC
has been investigated under different settings, e.g., imbalanced learning (Yang et al., 2022; Xie et al., 2023),
and also been applied in different domains, e.g., semantic segmentation (Shen et al., 2025; Xie et al., 2025)
and language models (Wu & Papyan, 2024; Zhu et al., 2024). Very recently, several studies have emerged
to leverage NC to facilitate better CL algorithm designs. (Yang et al., 2023a) first proposed to use a fixed
global ETF target for feature-classifier alignment in few-shot CL with an ETF classifier, whereas (Yang
et al., 2023b) applied the same idea to more general CL setups. (Dang et al., 2025) further integrated this
idea with contrastive learning based CL. However, as mentioned earlier, the reliance on a fixed global ETF
suffers from critical drawbacks, which we aim to address in this work.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

B EXPERIMENT DETAILS

B.1 DATASETS

Seq CIFAR-10: Based on CIFAR-10 dataset (Krizhevsky et al., 2009), this benchmark partitions 10 classes
into 5 sequential tasks (2 classes per task), and each class has 5000 and 1000 32 × 32 images each for
training and testing, respectively;

Seq CIFAR-100: Constructed from CIFAR-100 (Krizhevsky et al., 2009), it comprises 10 tasks with 10
classes per task, and each class has 500 and 100 32 × 32 images each for training and testing, respectively;

Seq TinyImageNet: Adapted from the TinyImageNet dataset (Le & Yang, 2015), this benchmark divides
200 classes into 10 sequential tasks (20 classes per task), and each class has 500 and 50 64 × 64 images
each for training and testing, respectively.

B.2 IMPLEMENTATION DETAILS

All experiments are conducted on a single RTX 4090 GPU. For all datasets, we employ a modified ResNet18
network architecture (He et al., 2016), where the kernel size of the first convolutional layer is modified from
7×7 to 3×3, and the stride is changed from 2 to 1. The batch size is set to 32 across all experiments. The
number of training epochs is set to 50 for Sequential CIFAR-10 and Sequential CIFAR-100, and 100 for
Sequential TinyImageNet. For the buffer size, we use 200 and 500 in the main comparison table. For
ProNC, we consider the following hyperparameters: learning rate (η), weight of the alignment loss (λ1),
weight of the distillation loss (λ2), momentum (mom), and weight decay (wd). The hyperparameters are
selected through grid search. The chosen hyperparameters are presented in Table 7, and their corresponding
search spaces are provided in Table 8.

Table 7: Hyperparameters of ProNC

Method Buffer size Dataset Hyperparameter

Ours

200
Seq-CIFAR-10 η: 0.01, λ1: 13, λ2: 90, mom: 0, wd: 0

Seq-CIFAR-100 η: 0.03, λ1: 18, λ2: 170, mom: 0, wd: 0
Seq-Tiny-ImageNet η: 0.03, λ1:20 , λ2: 165, mom: 0, wd: 0

500
Seq-CIFAR-10 η: 0.01, λ1:12 , λ2: 80 , mom: 0, wd: 0

Seq-CIFAR-100 η: 0.03, λ1:18 , λ2: 170 , mom: 0, wd: 0
Seq-Tiny-ImageNet η: 0.03, λ1:20 , λ2: 200, mom: 0, wd: 0

Table 8: Search Spaces for Hyperparameters

Hyperparameter Values
η {0.01, 0.03, 0.05.0.1, 0.3}
λ1 {5, 10, 12, 13, 18, 20}
λ2 {50, 75, 80, 90, 165, 170, 200}
mom {0, 0.9}
wd {0, 10−5, 5× 10−5}

Our code is implemented based on the Continual Learning platform Mammoth (Boschini et al., 2022), which
is also provided in the supplementary materials.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

C MORE RESULTS

C.1 FINAL AVERAGE ACCURACY WITH ERROR BARS

Table 9: Final average accuracies comparison under various setups. All results are averaged over multiple
runs.

Buffer Method Seq-Cifar-10 Seq-Cifar-100 Seq-Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

200

ER (Riemer et al., 2019) 44.79± 1.86 91.19± 0.94 21.78± 0.48 60.19± 1.01 8.49± 0.16 38.17± 2.00
iCaRL (Rebuffi et al., 2017) 49.02± 3.20 88.99± 2.13 28± 0.91 51.43± 1.47 7.53± 0.79 28.19± 1.47

GEM (Lopez-Paz & Ranzato, 2017) 25.54± 0.76 90.44± 0.94 20.75± 0.66 58.84± 1.00 – –
GSS (Aljundi et al., 2019) 39.07± 5.59 88.8± 2.89 19.42± 0.29 55.38± 1.34 – –

DER (Buzzega et al., 2020) 61.93± 1.79 91.4± 0.92 31.23± 1.38 63.09± 1.09 11.87± 0.78 40.22± 0.67
DER++ (Buzzega et al., 2020) 64.88± 1.17 91.92± 0.60 28.13± 0.51 66.80± 0.41 11.34± 1.17 43.06± 1.16

Co2L (Cha et al., 2021) 51.27± 1.86 84.69± 1.52 18.09± 0.49 49.19± 0.91 12.95± 0.06 37.07± 1.62
CILA [47] 59.68± 0.65 91.36± 0.08 19.49± 0.53 53.93± 1.02 12.98± 0.10 37.32± 1.87

MNC3L (Dang et al., 2025) 52.20± 1.56 85.94± 0.22 15.81± 0.48 43.91± 0.76 10.57± 1.66 32.78± 3.54
STAR (Eskandar et al., 2025) 62.10± 2.21 93.54± 1.48 18.29± 2.58 58.53± 13.06 11.55± 3.23 41.70± 0.95

CSReL (Tong et al., 2025) 37.46± 1.57 69.22± 3.03 29.06± 1.00 66.99± 0.35 18.14± 3.10 45.04± 5.86
NCT (Yang et al., 2023b) 51.59± 0.41 80.63± 0.46 26.38± 0.57 75.75± 0.17 10.95± 1.45 52.71± 4.12

Ours 65.58± 0.15 96.86± 0.10 42.99± 0.85 85.63± 0.73 27.44± 1.00 69.09± 0.65

500

ER (Riemer et al., 2019) 57.74± 2.48 93.61± 0.27 22.35± 0.61 73.98± 1.52 9.99± 0.29 48.64± 0.46
iCaRL (Rebuffi et al., 2017) 47.55± 3.95 88.22± 2.62 33.25± 1.25 58.16± 1.76 9.38± 1.53 31.55± 3.27

GEM (Lopez-Paz & Ranzato, 2017) 26.2± 1.26 92.16± 0.64 25.54± 0.65 66.31± 0.86 – –
GSS (Aljundi et al., 2019) 49.73± 4.78 91.02± 1.57 21.92± 0.34 60.28± 1.18 – –

DER (Buzzega et al., 2020) 70.51± 1.67 93.40± 0.21 41.36± 1.76 71.73± 0.74 17.75± 1.14 51.78± 0.88
DER++ (Buzzega et al., 2020) 72.70± 1.36 93.88± 0.50 38.20± 1.00 74.77± 0.31 19.38± 1.41 51.91± 0.68

Co2L (Cha et al., 2021) 61.78± 4.22 89.51± 2.45 26.64± 1.42 62.32± 0.19 18.71± 0.84 50.74± 1.24
CILA (Wen et al., 2024) 67.82± 0.33 93.29± 0.24 31.27± 0.17 68.29± 0.46 18.09± 0.49 49.19± 0.91

MNC3L (Dang et al., 2025) 52.20± 1.56 85.94± 0.22 22.29± 0.18 56.43± 0.29 11.52± 0.01 36.32± 0.05
STAR (Eskandar et al., 2025) 69.15± 3.53 95.36± 0.37 28.45± 1.70 74.06± 1.63 15.19± 2.61 55.06± 2.07

CSReL (Tong et al., 2025) 40.82± 4.09 73.30± 5.92 39.22± 1.70 75.09± 0.78 22.13± 0.35 51.94± 0.22
NCT (Yang et al., 2023b) 60.93± 0.94 81.27± 0.24 33.84± 0.38 76.06± 0.52 18.24± 0.62 62.30± 0.41

Ours 73.95± 0.68 96.95± 0.14 48.94± 0.44 86.38± 0.43 29.06± 0.32 69.77± 0.89

C.2 FINAL FORGETTING WITH ERROR BARS
Table 10: Final forgetting comparison under various setups. All results are averaged over multiple runs.

Buffer Method Seq-Cifar-10 Seq-Cifar-100 Seq-Tiny-ImageNet

Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

200

ER (Riemer et al., 2019) 59.30± 2.48 6.07± 1.09 75.06± 0.63 27.38± 1.46 76.53± 0.51 40.47± 1.54
iCaRL (Rebuffi et al., 2017) 23.52± 1.27 25.34± 1.64 47.20± 1.23 36.20± 1.85 31.06± 1.91 42.47± 2.47

GEM (Lopez-Paz & Ranzato, 2017) 80.36± 5.25 9.57± 2.05 77.40± 1.09 29.59± 1.66 − −
GSS (Aljundi et al., 2019) 72.48± 4.45 8.49± 2.05 77.62± 0.76 32.81± 1.75 − −

DER (Buzzega et al., 2020) 35.79± 2.59 6.08± 0.70 62.72± 2.69 25.98± 1.55 64.83± 1.48 40.43± 1.05
DER++ (Buzzega et al., 2020) 32.59± 2.32 5.16± 0.21 60.99± 1.52 23.91± 0.55 73.47± 1.23 39.02± 0.43

Co2L (Cha et al., 2021) 30.17± 8.57 2.91± 5.25 64.14± 0.69 36.81± 0.63 62.04± 0.28 40.75± 3.55
CILA (Wen et al., 2024) 37.52± 5.84 5.49± 0.74 64.01± 0.18 33.07± 0.96 63.11± 0.61 41.40± 0.51

MNC3L (Dang et al., 2025) 33.74± 1.65 4.90± 0.15 62.51± 0.40 39.79± 0.98 59.68± 2.02 45.10± 1.57
STAR (Eskandar et al., 2025) 21.78± 3.16 6.23± 2.06 68.40± 8.52 27.84± 8.01 67.43± 1.48 34.78± 2.08

CSReL (Tong et al., 2025) 26.34± 2.18 17.16± 2.91 58.23± 1.54 23.20± 1.74 49.77± 2.27 34.12± 2.18
NCT (Yang et al., 2023b) 22.48± 19.50 1.41± 1.09 27.40± 1.65 4.79± 0.07 49.33± 4.47 15.88± 0.95

Ours 32.75± 4.71 0.65± 0.08 36.07± 0.51 4.40± 0.82 42.81± 0.56 9.42± 0.58

500

ER (Riemer et al., 2019) 43.22± 2.10 3.50± 0.53 73.08± 0.78 16.23± 1.06 75.21± 0.54 30.73± 0.62
iCaRL (Rebuffi et al., 2017) 28.20± 2.41 22.61± 3.97 40.99± 1.02 27.90± 1.37 37.30± 1.42 39.44± 0.84

GEM (Lopez-Paz & Ranzato, 2017) 78.93± 6.53 5.60± 0.96 71.34± 0.78 20.44± 1.13 − −
GSS (Aljundi et al., 2019) 59.18± 4.00 6.37± 1.55 74.12± 0.42 26.57± 1.34 − −

DER (Buzzega et al., 2020) 24.02± 1.63 3.72± 0.55 49.07± 2.54 25.98± 1.55 59.95± 2.31 28.21± 0.97
DER++ (Buzzega et al., 2020) 22.38± 4.41 4.66± 1.15 49.18± 2.19 15.75± 0.48 58.75± 1.93 25.47± 1.03

Co2L (Cha et al., 2021) 17.79± 3.36 2.65± 1.00 48.60± 1.34 23.47± 0.27 49.64± 1.14 13.80± 2.10
CILA (Wen et al., 2024) 18.22± 1.32 0.65± 0.13 45.67± 1.02 16.98± 0.56 64.14± 0.69 27.83± 1.32

MNC3L (Dang et al., 2025) 27.88± 2.75 3.15± 0.42 46.09± 0.58 24.29± 0.50 44.96± 0.09 39.00± 0.17
STAR (Eskandar et al., 2025) 18.59± 2.91 2.38± 0.34 53.11± 1.57 15.22± 0.96 63.42± 3.19 15.19± 2.61

CSReL (Tong et al., 2025) 29.18± 6.91 16.89± 3.19 47.03± 2.57 15.55± 0.76 50.01± 1.87 28.20± 0.36
NCT (Yang et al., 2023b) 13.82± 3.64 3.84± 0.35 24.37± 5.42 3.97± 0.75 50.90± 1.16 6.84± 0.87

Ours 26.75± 1.29 0.24± 0.14 24.32± 0.24 4.35± 0.17 38.58± 0.39 9.52± 0.96

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

C.3 TIME COST

Table 11: Average training time per
epoch and per task (seconds).
Method Epoch Task

ER (Riemer et al., 2019) 3.03 151.48
iCaRL (Rebuffi et al., 2017) 1.60 84.77
GEM (Lopez-Paz & Ranzato, 2017) 3.26 162.64
GSS (Aljundi et al., 2019) 28.86 1425.26
DER (Buzzega et al., 2020) 3.07 153.21
DER++ (Buzzega et al., 2020) 5.03 253.34
Co2L (Cha et al., 2021) 2.52 126.19
CIIA (Wen et al., 2024) 2.77 138.59
MNC3L (Dang et al., 2025) 2.82 141.01
STAR (Eskandar et al., 2025) 27.44 1371.89
CSReL (Tong et al., 2025) 8.42 433.35
NCT (Yang et al., 2023b) 3.41 172.02
Ours 2.91 146.71

To evaluate the computation efficiency of our approach, we summa-
rize in Table 11 the average training time per epoch and per task for
all approaches. It can be seen that our approach is more efficient
than all considered replay-based approaches except iCaRL. iCaRL
achieves higher efficiency by employing a binary cross-entropy loss,
which enjoy a constant time complexity per class (O(1)), compared
to the linear class-dependent complexity (O(C), C being the total
number of classes) of conventional cross-entropy loss. Meanwhile,
the per-epoch training time of our approach is comparable with the
recent contrastive-learning based approaches. In summary, by lever-
aging NC in a principled way, our approach not only significantly
outperforms baseline approaches by setting new SOTA performance,
but also maintains a high efficiency due to the simplicity of our framework and robustness to buffer sizes.
This highlights the great potential of our approach in practical resource-limited CL scenarios.

D PROOF OF THEOREM 1

Based on the definition of ETF, we know that E∗ can be expressed as

E∗ =

√
K1

K1 − 1
U∗

(
IK1 −

1

K1
1K11

⊤
K1

)
, (6)

where U∗ ∈ Rd×K1 denotes the corresponding orthogonal matrix.

Because U′ =
√

K1−1
K1

M̃K1

(
IK1

− 1
K1

1K1
1⊤
K1

)
, we can have

M̃ =

√
K1

K1 − 1
U′

(
IK1

− 1

K1
1K1

1⊤
K1

)
. (7)

This is true since IK1 − 1
K1

1K1
1⊤
K1

is an orthogonal projection matrix with rank K1 − 1 and also equal to
its pseudoinverse.

It is clear that

M̃K1 −E∗ =

√
K1

K1 − 1
U′

(
IK1 −

1

K1
1K11

⊤
K1

)
−
√

K1

K1 − 1
U∗

(
IK1 −

1

K1
1K11

⊤
K1

)
=

√
K1

K1 − 1
(U′ −U∗)

(
IK1

− 1

K1
1K1

1⊤
K1

)
.

Since
√

K1

K1−1 is a scalar and IK1
− 1

K1
1K1

1⊤
K1

is a fixed projection matrix, finding E∗ to minimize ∥M̃K1
−

E∗∥2F is equivalent to finding an orthogonal matrix U∗ that minimizes ∥U′ −U∗∥2F .

To this end, the following lemma (Zou et al., 2006) characterizes the nearest orthogonal matrix to any real
matrix.

Lemma 1 (Nearest Orthogonal Matrix via SVD). Let A ∈ Rm×n be a real matrix with Singular Value
Decomposition (SVD) A = WΣV⊤, where W ∈ Rm×s and V ∈ Rs×n are orthogonal matrices, and
Σ ∈ Rs×s is a diagonal matrix of singular values with s = min(m,n). The nearest orthogonal matrix
Q ∈ Rm×n to A under Frobenius norm is:

Q = WV⊤.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Therefore, given the SVD of U′ as WΣV⊤, the orthogonal matrix closest to U′ can be represented as
U∗ = WV⊤, which will lead to an ETF matrix

E∗ =

√
K1

K1 − 1
WV⊤

(
IK1

− 1

K1
1K1

1⊤
K1

)
.

E LLM USAGE

During this project, we did not use LLM.

19

	Introduction
	Preliminaries
	Continual Learning with Progressive Neural Collapse
	Progressive Neural Collapse
	A Continual Learning Framework based on Progressive Neural Collapse

	Experimental Results
	Experimental Setups
	Main Results
	Ablation Study

	Conclusion
	Related Work
	Experiment Details
	Datasets
	Implementation Details

	More Results
	Final Average Accuracy with Error Bars
	Final Forgetting with Error Bars
	Time cost

	Proof of Theorem 1
	LLM USAGE

