
OCN: Effectively Utilizing Higher-Order Common
Neighbors for Better Link Prediction

Juntong Wang1,2 Xiyuan Wang1,2 Muhan Zhang1∗
1Institute for Artificial Intelligence, Peking University

2School of Intelligence Science and Technology, Peking University
jtwang25@stu.pku.edu.cn, {wangxiyuan,muhan}@pku.edu.cn

Abstract

Common Neighbors (CNs) and their higher-order variants are important pairwise
features widely used in state-of-the-art link prediction methods. However, existing
methods often struggle with the repetition across different orders of CNs and fail
to fully leverage their potential. We identify that these limitations stem from two
key issues: redundancy and over-smoothing in high-order common neighbors. To
address these challenges, we design orthogonalization to eliminate redundancy be-
tween different-order CNs and normalization to mitigate over-smoothing. By com-
bining these two techniques, we propose Orthogonal Common Neighbor (OCN), a
novel approach that significantly outperforms the strongest baselines by an average
of 7.7% on popular link prediction benchmarks. A thorough theoretical analysis
is provided to support our method. Ablation studies also verify the effectiveness
of our orthogonalization and normalization techniques. Code is available at: �
https://github.com/qingpingmo/OCN

1 Introduction

The application of link prediction spans numerous fields. For example, it can be used to forecast
website hyperlinks [Zhu et al., 2002]. In bioinformatics, it plays a critical role in analyzing protein-
protein interactions (PPIs) [Airoldi et al., 2008]. Similarly, in e-commerce, link prediction is a core
component in developing recommendation systems [Huang et al., 2005, Lü et al., 2012]. Currently,
the most popular link prediction models are based on Graph Neural Networks (GNNs). The first GNN
for link prediction was the Graph AutoEncoder (GAE) [Kipf and Welling, 2016]. It uses the inner
product of the two target nodes’ representations, produced by a Message Passing Neural Network
(MPNN) [Gilmer et al., 2017], as the logits for the probability that a link exists between the two
nodes. Despite its success on some citation graphs, such as Cora [Sen et al., 2008], GAE computes
the representations of two nodes separately, thus failing to capture structural relationships between
them, such as the number of common neighbors (i.e., nodes connected to both target nodes by an
edge), which is a crucial heuristic in link prediction.

To address the inability to capture pairwise structural relationships, various methods have been
proposed [Zhang et al., 2021, Yun et al., 2021, Chamberlain et al., 2023, Wang et al., 2024]. Although
these methods differ in their detailed implementations, they all focus on computing the neighborhood
overlap between the two target nodes, which includes both common neighbors and higher-order
common neighbors (nodes connected to the two target nodes via a walk or path). While higher-order
common neighbors provide auxiliary information to common neighbors and improve performance in
some cases [Yun et al., 2021, Chamberlain et al., 2023], they have not yet been widely adopted and
do not always improve performance due to two key problems:

∗Correspondence to Muhan Zhang

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/qingpingmo/OCN
https://github.com/qingpingmo/OCN

The first problem is redundancy: different-order common neighbors of the same node pair may
overlap significantly. A node can be a common neighbor and a higher-order common neighbor of
some node pair at the same time, as the path or walk connecting them may not be unique. This
overlap makes higher-order CNs less informative when common neighbors are already used.

The second problem is over-smoothing. In the context of node classification problems [Oono
and Suzuki, 2020], over-smoothing describes the phenomenon that, as the number of GNN layers
increases, all nodes have similar representations because their neighborhoods become more and more
similar. Here, over-smoothing means that, as the order of common neighbors increases, a node can
become a high-order CN for more and more node pairs simultaneously. When the path/walk length is
sufficiently large, the high-order common neighbors of a node pair will encompass the entire graph.
At this time, aggregating the features/embeddings of the high-order common neighbors makes every
node pair have similar pairwise representations, leading to over-smoothing in the context of pairwise
representation learning.

Both issues hinder the effective utilization of higher-order common neighbors, thereby limiting the
learning of complex pairwise structures and preventing state-of-the-art link prediction models from
achieving optimal performance. For example, Wang et al. [2024] found that utilizing only first-order
common neighbors led to the best performance in their models. To address these two problems, we
propose two techniques: coefficient orthogonalization and path-based normalization, respectively.

For coefficient orthogonalization, which solves redundancy, we remove the linear correlation
between the coefficients of different-order common neighbors. For instance, given a pair of nodes in a
graph with n nodes, the coefficient indicating whether each node participates in some order of common
neighbors of this node pair becomes a vector ∈ Rn. We use the Gram-Schmidt orthogonalization
process to eliminate the correlation between the coefficient vectors of different-order common
neighbors, so that models can better leverage information from higher-order CNs. The coefficients
can be binary (0 or 1) to indicate whether a node is a common neighbor, or functions of node degrees
as used in [Yun et al., 2021], or the number of walks of a certain length connecting the two target nodes
in which the node participates, as used in this work. With coefficient orthogonalization, our model
significantly outperforms previous link prediction models using common neighbors. Furthermore,
to accelerate the orthogonalization process, we propose a polynomial trick, which achieves similar
performance to precise orthogonalization while eliminating the extra computational overhead.

For path-based normalization, which addresses over-smoothing, we divide the coefficient of each
node by the number of k-hop walks in which it participates. The intuition behind the normalization
is that when a node participates in a large number of walks, it will more frequently appear in the
common neighbors of other node pairs, which causes the features of different links to become similar,
leading to over-smoothing. Notably, when the path or walk has a length of 1, the path count reduces to
the node degree, and our normalized CN degenerates to a famous link prediction heuristic, Resource
Allocation [Zhou et al., 2009]. To theoretically analyze path-based normalization, we use a random
graph model and prove that, with the normalization, k-hop CNs lead to a strictly decreasing upper
bound of the proximity of positive node pairs (real links) with the increasing of k, while without
the normalization, high-order CNs do not decrease the proximity no matter how large k is used.
This result justifies the effectiveness of using normalized high-order CNs, and potentially explains
why previous methods using high-order CNs do not always work (due to lack of normalization). In
practice, we use a method similar to batch normalization [Ioffe and Szegedy, 2015] to estimate the
number of walks efficiently, avoiding the computational overhead of exact counting.

By combining both techniques with previous methods [Wang et al., 2024], we propose Orthogonal
Common Neighbor (OCN) and its variant with an approximated and faster orthogonalization
process, Orthogonal Common Neighbor with Polynomial Filters (OCNP). In our experiments, the
performance of OCN and OCNP significantly outperforms existing models, achieving state-of-the-art
results on several Open Graph Benchmark datasets [Hu et al., 2020]. Ablation studies also verify the
effectiveness of orthogonalization and normalization.

2 Preliminaries

For an undirected graph G = (V,E,A,X), where V = {1, 2, . . . , n} represents the set of n nodes,
E ⊆ V × V denotes the edge set, X ∈ Rn×F is a matrix of node features, and A ∈ Rn×n is the
symmetric adjacency matrix. The entries of the adjacency matrix are defined such that Auv = 1

2

if there is an edge (u, v) ∈ E, and Auv = 0 otherwise. This adjacency matrix captures the direct
connections between nodes in the graph. The degree of a node u, denoted by d(u,A), is defined as
the sum of the entries in the corresponding row of the adjacency matrix, i.e.,d(u,A) :=

∑n
v=1Auv ,

which represents the number of neighbors of node u.

We further defineAl as the higher-order adjacency matrix, where the entryAl
uv represents the number

of walks of length l between nodes u and v. Specifically, Al encapsulates more complex relationships
between nodes, extending beyond direct neighbors to capture connections that involve intermediary
nodes. The matrix Al can be computed by raising the adjacency matrix A to the power l, where
higher powers encode longer walks between nodes.

The k-order neighbor set N(u,Al) is defined as the set of all nodes that are reachable from node u
through a walk of length l, i.e., N(u,Al) = {v | v ∈ V,Al

uv > 0}.
This set includes all nodes that can be reached from u by traversing l-length walks, thereby expanding
the notion of proximity beyond direct neighbors. While some methods define high-order neighbors
based on paths or shortest paths, we adopt a different approach. Specifically, we do not rely on
shortest paths.

In the context of k-hop neighbors, the k-hop common neighbors of two nodes u and v, denoted as
CNk(u, v), are defined as:

CNk(u, v) =
⋃

2(k−1)<k1+k2≤2k,
k1,k2≤k

(Nk1
(u) ∩Nk2

(v)) , (1)

where the union is taken over all pairs k1 and k2 such that 2(k − 1) < k1 + k2 ≤ 2k. Here,
Nk1

(u) and Nk2
(v) denote the sets of nodes reachable from u and v via walks of lengths k1 and k2,

respectively. The concept of common neighbors is critical in graph-based models, as it quantifies the
overlap between the neighborhood structures of two nodes, which is a useful measure for tasks such
as link prediction.

3 Related Work

Link Prediction Model Link prediction generally employs three main approaches: Node embed-
dings, Link prediction heuristics, and GNNs. Node embeddings aim to find an embedding for nodes
such that similar nodes (in the original network) have similar embeddings [Perozzi et al., 2014,
Belkin and Niyogi, 2001, Grover and Leskovec, 2016, Kazemi and Poole, 2018]. Link prediction
heuristics [Newman, 2001, Barabâsi et al., 2002, Adar and Adamic, 2003, Zhou et al., 2009] mainly
rely on handcrafted structural features for prediction. In recent years, methods based on GNNs have
become a research hotspot. SEAL [Zhang and Chen, 2018] calculates the shortest path distance
between nodes i and j, extracts the k-hop subgraph, generates augmented features X ′, applies MPNN
to aggregate node representations, and predicts the link.

Architecture Combining MPNN and SF The SF-then-MPNN framework, exemplified by
SEAL [Zhang and Chen, 2018], enriches the input graph with structural features, which are then
passed to MPNN to enhance expressivity. However, this approach requires re-running the MPNN for
each target link, leading to lower scalability. In contrast, models such as NeoGNN [Yun et al., 2021]
and BUDDY [Chamberlain et al., 2023] adopt the SF-and-MPNN framework, where the MPNN
takes the original graph as input and runs only once for all target links, thus enhancing scalability.
However, this approach sacrifices expressivity, as the structural features are detached from the final
node representations. To address this, the MPNN-then-SF framework proposed by NCN [Wang et al.,
2024] significantly improves performance by first running MPNN on the original graph and then
employing structural features to guide the pooling of MPNN features, resulting in better expressivity
while retaining high scalability.

4 Orthogonalization

We observe substantial redundancy between CNs of different orders. By analyzing the cor-
relation coefficients between CNs at various orders, we find that this correlation increases

3

with the order, reaching high levels, as shown in Figure 1. This indicates that the cur-
rent definition of CNs contains significant linear dependencies across different orders. In
contrast, higher-order CNs based on shortest path distances (SPDs) are inherently indepen-
dent, as a node cannot simultaneously belong to the common neighbor sets of different SPDs.

0 2 4 6 8 10

Index of CNk

0

2

4

6

8

10

In
de

x
of

 C
N

k

Pairwise Correlation of CNk

0

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

Figure 1: The heatmap illustrates the
correlation coefficients between differ-
ent orders of k-order Common Neigh-
bors (CNs), highlighting increasing re-
dundancy with higher orders.

The presence of such redundancy negatively impacts
model performance by reducing the model’s expressive
power. When different orders of CNs become highly cor-
related, it becomes difficult for the model to effectively
differentiate between them, limiting its ability to capture
distinct structural relationships. This not only impedes
the model’s capacity to learn from richer, higher-order
interactions, but also diminishes its generalization abil-
ity, preventing it from uncovering subtle but important
relationships in the graph.

4.1 Scalable Orthogonalization

To mitigate the negative effects of redundancy, we propose
using the Gram-Schmidt process to transform k-hop CNs
into mutually independent representations. This approach
maximizes the information content of each CNk matrix
by eliminating linear correlations between different orders
of CNs.

For CNk, we define it based on Equation (1) as follows: CNk(u, v) =
∑

2(k−1)<k1+k2≤2k,
k1≤k, k2≤k

(
Ak1

)
u
⊙(

Ak2
)
v
, where CNk(u, v) ∈ Rn, with its i-th element representing the number of 2k- and 2k − 1-

length walks from node u to node v that node i participates in as an intermediate point. The result
of orthogonalizing CNk(u, v) for k = 1, 2, . . . is referred to as OCNk. The matrix OCNk can be
interpreted as a set of orthogonalized representations for the k-hop CNs. The detailed definition and
explanation of the correlation matrix can be found in Appendix B.

However, orthogonalizing CNk over the entire graph poses significant computational challenges.
To address this, we draw inspiration from Batch Normalization [Ioffe and Szegedy, 2015], which
maintains running estimates of batch statistics (mean and variance) to normalize activations during
training. Similarly, we propose a strategy for orthogonalizing CNk across mini-batches. The core
idea is to maintain a running inner product: ξ̂it ← (1 − βt)ξ̂it−1 + βtξ

i
t , where ξ̂it is the running

inner product maintained by the t-th mini-batch. This update process, which considers both the
previous running inner product and the currently computed inner product, is equivalent to a Simple
Moving Average (SMA) [Arce, 2004]. A detailed proof is provided in Appendix C. The complete
orthogonalization algorithm is outlined in Algorithm 1.

4.2 Orthogonal Common Neighbor with Polynomial Filters

While Gram-Schmidt orthogonalization effectively reduces redundancy, it has a relatively high
time complexity (see Appendix I for a detailed analysis). To address this, we explore alternative
orthonormal bases for orthogonalization. For example, Chebyshev polynomials form an orthonormal
basis and can be used as polynomial filters to process CNs.

Inspired by Wang and Zhang [2022], we propose using an orthonormal basis as polynomial filters to
filter common neighbors. This can be expressed as: OCNK ≈

∑K
k=0 αkCN

k, where αk represents
the coefficient of the k-th term in the polynomial filter basis. Although this approach compromises
strict orthogonality, it reduces redundancy between CNk through spectral domain operations. To
further reduce time complexity, we take the limiting case T = 0 and construct a diagonal matrix,
applying consistent filtering operations to each edge signal of CNk within the same dimension.

By replacing inner product operations with weighted operations, we avoid the extensive computations
and iterations required by Gram-Schmidt orthogonalization. This approach effectively adjusts the
signal in the frequency domain and removes redundant information.

4

Building on this, we introduce Orthogonal Common Neighbor with Polynomial Filters (OCNP).
We can select any popular orthogonal polynomial bases (e.g., Jacobi, Monomial, Chebyshev, or
Bernstein). This operation can be viewed as passing the signal of each edge through a filter defined
by the chosen polynomial, thereby adjusting the frequency characteristics of the signal. For a detailed
analysis, please refer to Appendix J.

5 Normalization

1 2 3 4 5 6 7 8 9 10

Order of Common Neighbors Between Nodes
0

5

10

15

20

25

30

35

To
ta

l V
ar

ia
nc

e
/ T

ot
al

 M
ea

n

33.64

18.27

12.80

9.05
7.33

6.05 5.59 5.06 5.02 4.74

Unnormalized
Normalized

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
nc

e
/ T

ot
al

 M
ea

n

1.00 0.99 0.98
0.94

0.87

0.76

0.64

0.53

0.46
0.41

Figure 2: To demonstrate that the higher-
order common neighbors of different
node pairs become similar, we use the
Cora dataset as an example. We cal-
culate the coefficient of variation (CV),
which is the ratio of the standard devia-
tion to the mean, of the CNs of different
nodes at the same order. High CV in-
dicates low over-smoothing degree. Re-
sults shows that as the order increase,
over-smoothing becomes more and more
significant, but our method (yellow) can
alleviate this problem.

A common issue is that, as the order of CNs increases,
the high-order CNs of different nodes become more sim-
ilar. To quantify this effect, we analyze the coefficient of
variation of CNs at different orders across various nodes.
As shown in Figure 2, the coefficient of variation de-
creases at higher orders, indicating that the high-order
CNs of different nodes begin to overlap more frequently
and that the similarity of higher-order neighborhood struc-
tures continually increases. This may lead to a loss of
distinctiveness among nodes. In other words, as we con-
sider more hops in the network, the feature representations
of links become increasingly homogeneous, potentially
undermining the performance of link prediction models.

This observation is consistent with the intuitive motiva-
tion behind our normalization trick. Specifically, when a
node participates in a large number of walks, it will more
frequently appear as a CN for other node pairs, causing
the features of different links to become similar and thus
leading to over-smoothing. Therefore, we propose a nor-
malization trick similar to batch normalization [Ioffe and
Szegedy, 2015] to mitigate this issue. We divide the co-
efficient of each node by the number of walks in which it
participates to obtain normalizedCN. This normalization technique helps to reduce the influence of
frequently appearing common neighbors, ensuring that nodes with a large number of high-order walk
participations are not overly emphasized.

1 2 3 4 5 6 7 8 9 10
Order of the k-hop CNs

U
pp

er
 B

ou
nd

 o
f D

is
ta

nc
e

unnormalizedCN
normalizedCN

Figure 3: The impact of higher-order k-hop CNs
on the upper bound of dij is illustrated. k-hop
CNs have no effect (blue line). The yellow line
shows how the upper bound tightens with increas-
ing k, which is the result obtained after introducing
normalizedCN. With normalizedCN, the contribu-
tion of each k-hop CN is now

∑
c∈CNk(i,j)

1
|Pk(c)|

rather than just 1.

normalizedCN provides the following insight:
If k-hop CNs are less frequently shared among
other node pairs, then these k-hop CNs carry
greater significance in the relationship between
the two nodes. For example, if the more distant
social circles in which two individuals indirectly
participate include many people (i.e., are more
mainstream), then the commonalities between
these two individuals will be fewer. Conversely,
if the social circle is more niche, it suggests a
higher potential for a direct connection between
the two individuals.

This compensates for the traditional Resource
Allocation (RA) [Zhou et al., 2009] method,
which ignores the potential contribution of k-
hop CNs and fails to account for the higher-order
structure of the graph. Next, we analyze this
trick theoretically using a random graph model
and prove its effectiveness. It can be seen that
when the path or walk has a length of 1, the path count reduces to the node degree, and normalizedCN
degenerates to RA.

5

5.1 Theoretical Justification for Normalization

In this section, we analyze common neighbor with and without normalization on random graphs
and Barabási-Albert model [Albert and Barabási, 2002] to show that normalization leads to a better
estimator of link existence. The latent space model [Hoff et al., 2002] is commonly applied to
describe proximity in latent spaces, where nodes with similar locations in the latent space tend to
share specific characteristics. We first discuss the D-dimensional Euclidean space (i.e., a space with
curvature 0). We introduce a latent space model [Sarkar et al., 2011] for link prediction that describes
a graph with N nodes. All definitions and proofs in this section are in Appendix D.

To illustrate the effectiveness of normalization, we compare two link prediction heuristics: CN and
normalized CN.

Definition 5.1. We define the normalizedCN between (i, j) as a measure of their similarity
with Structural Feature based on the contributions from all k-hop CNs. It is inversely propor-
tional to the number of distinct node pairs for which it is also the k-hop common neighbor:
normalizedCNk(i, j) =

∑
c∈CNk(i,j)

1
|Pk(c)| ,

where CNk(i, j) is the set of k-hop CNs of (i, j), |Pk(c)| is the total number of paths for the set of
distinct node pairs in which node c serves as a k-hop CN for those node pairs. Note that, even for the
same node pair, there may be more than one path in which c acts as the k-hop CN of (i, j).

Theorem 5.2. When k = 1, normalizedCN(i, j) degenerates into RA(i, j). Specifically,

for each c ∈ CN1(i, j), the following relationship holds: normalizedCN1(c, i, j) · (
d(c)
2)

d(c) =

RA(c, i, j). The proof is trival.

When there is no normalization, in the latent space we have the following Proposition 5.3. Here, dij
denotes the distance between node i and node j in the latent space. The smaller this distance is, the
higher the probability that there exists a link between i and j.

Proposition 5.3. (Latent space distance bound with k-hop CNs). For any δ > 0, with

probability at least 1− δ, we have dij ≤
∑M−2

n=0 rn + 2
(
(rmax

M)2 − (ι− α)
2

D(2k−1)

) 1
2

,

where α =

√
N ln(1/2δ)/2

N+
√
−3N ln δ

, ι = η2k(i,j)

(N−
√
−2N ln δ)2k−1 . And rmax

M = max{rM}(M ∈ {1, · · · , 2k − 1})
is the maximum of the feature radius for the set of intermediate nodes in D dimensional Euclidean
space. N is the number of nodes. k represents the order of the k-hop CNs. η2k(i, j) is the number of
k-hop CNs about (i, j).

After applying our normalization trick, we have the following Proposition 5.4:

Proposition 5.4. (Latent space distance bound with k-hop CNs after normalization). We sim-
ply need to modify the overall contribution of k-hop CNs from η2k(i, j) to η2k(i,j)∑

c∈CNk(i,j)
1/|Pk(c)| .

For any δ > 0, with probability at least 1− δ, we have

dij ≤
M−2∑
n=0

rn + 2

√√√√√(rmax
M)

2 −

((
γ

(
ζ

2

)) 1
D(k−1)

· ρN
) 2k−2

2k−1

, (2)

where ζ is the maximum degree of all k-hop CNs of (i, j) and ρ ∈ [0, 1] and γ =(
η2k(i,j)

(N−
√
−2N ln δ)2k−1 − α

)
.

Next, we analyze the upper bound of d(i, j) for these two cases. When there is no normalization,
it is evident that as N becomes large, (1− α) approaches 1, so the order k of the k-hop CNs has
no effect. Additionally, the exponent term 2

D(2k−1) contains a large denominator D, meaning that
even if (1− α) does not approach 1, it would not significantly affect the result (as shown by the blue
line in Figure 3). However, when we apply the normalization trick, the upper bound of dij becomes
tighter as k increases (as shown by the yellow line in Figure 3). In fact, this aligns with the general
belief that the effectiveness of incorporating higher-order k-hop CNs is indisputable [Wang et al.,

6

2024, Chamberlain et al., 2023, Mao et al., 2024, Yun et al., 2021]. Based on the above analysis,
normalizedCN provides a tighter upper bound of d(i, j) compared to CN and is more effective.

The above theoretical analysis was conducted on a random graph model. We extend the theoretical
argument to the more realistic Barabási-Albert model [Albert and Barabási, 2002], and obtain
the following Proposition 5.5 and Proposition 5.6 before and after introducing our path-based
normalization, respectively. The detailed derivation process is provided in Appendix Q.

Proposition 5.5. (Distance bound with k-hop CNs on Barabási-Albert model). For any δ >
0, with probability at least 1− δ, we have

dij ≤ 2k
[1
α
ln(

2(N − 2)
(2N+1)!!
2NN !

+
√
N ln δ−1

4

−1)+
[1

NV (1)
(m

(2N + 1)!!

2NN !
+

√
Nm2

2
ln δ−1)

] 1
D
]
,

(3)
where N = #nodes,k represents the order of the k-hop CNs.

Proposition 5.6. (Distance bound with k-hop CNs on Barabási-Albert model after normal-
ization). After introducing normalizedCN, for any δ > 0, with probability at least 1− δ, we
have

dij ≤ 2k
[1
α
ln(
[
− n− 2

N − n− 1
W
(
−N − n− 1

n− 2
C

1
n−2

)]− 1
k − 1) + E, (4)

where W (·) is Lambert W function, ζ is the maximum degree of all k-hop CNs of (i, j), the
total number of paths of length l between i and j is denoted as ηl(i, j).

C =
1(
ζ
2

) D2k−1

η2k −D2k−2

√
N ln δ−1

4

, E =
[1

NV (1)
(m

(2N + 1)!!

2NN !
+

√
Nm2

2
ln δ−1)

] 1
D
]
(5)

and D is the maximum degree on the graph.

Results show that without introducing normalizedCN, the upper bound of sij is a monotonically
increasing affine function with respect to k. After introducing normalizedCN, this upper bound
gradually decreases as k increases. This extends our theoretical analysis to more realistic scenarios.

6 Orthogonal Common Neighbor

Following the structure 0 → OCN0 → · · · → OCNk → OCNk+1 → · · · , we can naturally
construct: OCNk ⇒

∑
u∈Nk(i)∩Nk(j) MPNN(u,A,X) = OCNk · h = OCNk ·MPNN(A, x).

In particular, OCN0 reflects the two nodes of the edge itself, so we have:

MPNN(N0(i), A, x)⊙MPNN(N0(j), A, x) = hi ⊙ hj = MPNN(i, A, x)⊙MPNN(j, A, x)
(6)

We naturally get our Orthogonal Common Neighbor (OCN) model:

OCN(i, j, A,X) = MPNN(i, A,X)⊙MPNN(j, A,X) +

K∑
k=1

αk{OCNk ·MPNN(A,X)}ij .

(7)

The complete algorithm is shown in Algorithm 2. The model architecture is detailed in Appendix
G. According to Section 4.2, we obtain our Orthogonal Common Neighbor with Polynomial Filters
(OCNP) by replacing the computation method of OCNk in Equation (7) from Algorithm 1 with
Equation (73).

Theorem 6.1. OCN is strictly more expressive than Graph Autoencoder(GAE), CN, RA, AA.
Moreover, Neo-GNN BUDDY and NCN are not more expressive than OCN. The proof can be
found in Appendix E.

7

Table 1: Results on link prediction benchmarks. The format is average score ± standard deviation.
OOM means out of GPU memory.

Cora Citeseer Pubmed Collab PPA Citation2 DDI
Metric HR@100 HR@100 HR@100 HR@50 HR@100 MRR HR@20

CN 33.92±0.46 29.79±0.90 23.13±0.15 56.44±0.00 27.65±0.00 51.47±0.00 17.73±0.00
AA 39.85±1.34 35.19±1.33 27.38±0.11 64.35±0.00 32.45±0.00 51.89±0.00 18.61±0.00
RA 41.07±0.48 33.56±0.17 27.03±0.35 64.00±0.00 49.33±0.00 51.98±0.00 27.60±0.00

GCN 66.79±1.65 67.08±2.94 53.02±1.39 44.75±1.07 18.67±1.32 84.74±0.21 37.07±5.07
SAGE 55.02±4.03 57.01±3.74 39.66±0.72 48.10±0.81 16.55±2.40 82.60±0.36 53.90±4.74

SEAL 81.71±1.30 83.89±2.15 75.54±1.32 64.74±0.43 48.80±3.16 87.67±0.32 30.56±3.86
NBFnet 71.65±2.27 74.07±1.75 58.73±1.99 OOM OOM OOM 4.00±0.58

Neo-GNN 80.42±1.31 84.67±2.16 73.93±1.19 57.52±0.37 49.13±0.60 87.26±0.84 63.57±3.52
BUDDY 88.00±0.44 92.93±0.27 74.10±0.78 65.94±0.58 49.85±0.20 87.56±0.11 78.51±1.36

NCN 89.05±0.96 91.56±1.43 79.05±1.16 64.76±0.87 61.19±0.85 88.09±0.06 82.32±6.10
NCNC 89.65±1.36 93.47±0.95 81.29±0.95 66.61±0.71 61.42±0.73 89.12±0.40 84.11±3.67
PLNLP - - - 70.59±0.29 32.38±2.58 84.92±0.29 90.88±3.13

OCN 89.82±0.91 93.62±1.30 83.96±0.51 72.43±3.75 69.79±0.85 88.57±0.06 97.42±0.34
OCNP 90.06±1.01 93.41±1.02 82.32±1.21 67.74±0.16 74.87±0.94 87.06±0.27 97.65±0.38

In our ablation study, when incorporating 3-hop common neighbors (3-hop CN), the model’s per-
formance did not show significant improvement and instead exhibited instability and increased
fluctuations during training. This suggests that higher-order neighbors may introduce redundant in-
formation, affecting the model’s stability and generalization ability. Therefore, despite the possibility
of selecting more orthogonal bases, and considering training resources and model stability, we prefer
to use OCN1 and OCN2 to ensure efficiency on large-scale graph datasets. The analysis of α1 and
α2 along with a discussion highlighting differences from NCN can be found in Appendix N.

7 Experiment

Figure 4: White, green, orange, and yel-
low represent node features 0, 1, 2, and
3, respectively. v2 and v3 are symmet-
ric, and GAE cannot distinguish (v1, v2)
and (v1, v3). With node features ignored,
(v1, v2) and (v1, v3) are symmetric, so
CN, RA, AA, Neo-GNN, and BUDDY
cannot distinguish them. NCN also de-
generates into GAE, so it also cannot.
However, (v1, v2) and (v1, v3) have dif-
ferent 2-hop CNs, which allows OCN to
distinguish them.

In this section, we present a comprehensive evaluation of
the performance of OCN. The full experimental setup is
provided in Appendix F and Appendix H.

For our evaluation, we utilize seven well-known real-
world datasets for link prediction. Three of these datasets
come from Planetoid’s citation networks: Cora, Cite-
seer, and Pubmed [Yang et al., 2016]. The remaining
datasets are sourced from the Open Graph Benchmark
(OGB) [Hu et al., 2020], including ogbl-collab, ogbl-ppa,
ogbl-citation2, and ogbl-ddi. Detailed statistics and dataset
splits are provided in Appendix F.

7.1 Evaluation on Real-World Datasets

In our evaluation on real-world datasets, we adopted a
series of baseline methods, including traditional heuris-
tic approaches such as CN [Barabási and Albert, 1999],
RA [Zhou et al., 2009], and AA [Adar and Adamic,
2003], as well as GAE models such as GCN [Kipf and
Welling, 2017] and SAGE [Hamilton et al., 2017], SF-
then-MPNN models, including SEAL [Zhang and Chen,
2018] and NBFNet [Zhu et al., 2021], as well as SF-and-
MPNN models such as Neo-GNN [Yun et al., 2021] and
BUDDY [Chamberlain et al., 2023]. We also compared
with models that adopt the same MPNN-then-SF architec-
ture, including NCN and NCNC [Wang et al., 2024]. In ad-

8

Table 2: Ablation study on link prediction benchmarks. The format is average score ± standard
deviation. OOM means out of GPU memory.

Cora Citeseer Pubmed Collab PPA Citation2 DDI
Metric HR@100 HR@100 HR@100 HR@50 HR@100 MRR HR@20

OCN-Orth 88.62±1.16 92.04±1.53 80.95±1.14 64.64± 0.45 18.39±5.94 74.53±4.31 36.08±9.36
OCN-normalizedCN 89.11±1.45 92.25±1.46 81.35±0.98 67.30± 0.33 59.94± 2.65 86.33±0.17 97.56±0.43
OCN-CAT 88.63± 0.99 92.52± 1.37 81.12± 0.39 63.20± 0.80 34.30± 6.55 87.34± 0.23 24.30± 3.11
OCN-Linear 87.73±1.23 90.60±1.24 79.71±1.08 64.58±0.56 6.91±3.34 88.56±0.13 84.89±2.74
OCN-sfANDmpnn 89.07±1.35 91.98±1.32 80.27±1.01 68.75±0.34 59.30±0.54 OOM 80.13±12.65
OCN-3 85.84±2.23 88.60±4.59 69.56±4.66 72.28±1.33 OOM 82.88±3.02 89.19±3.21
OCN-SPD 89.17±1.15 91.97±1.60 80.69±1.33 62.58±0.91 44.37±2.19 86.99±0.68 96.82±0.16

OCN 89.82±0.91 93.62±1.30 83.96±0.51 72.43±3.75 69.79±0.85 88.57±0.06 97.42±0.34

OCNP-Filter 88.73±1.36 92.18±2.65 81.40±0.88 63.09±1.75 30.86±1.03 86.96±0.19 27.27±4.17
OCNP-CAT 88.05±1.53 91.71±1.66 81.61±0.73 63.89±0.39 28.11±2.01 86.98±0.44 26.13±4.85
OCNP-Linear 87.68±1.41 90.93±1.79 80.29±0.90 60.89±0.91 12.82±1.37 87.10±0.28 49.48±0.34
OCNP-sfANDmpnn 88.95±0.96 92.36±1.40 79.35±0.63 66.90±1.29 57.45±0.89 OOM 96.86±0.11
OCNP-3 88.17±1.44 91.60±2.04 79.03±0.99 59.31±0.57 OOM OOM 91.31±2.79
OCNP-SPD 89.08±1.37 91.36±1.85 80.25±0.47 66.24±0.51 52.93±1.14 87.27±0.74 97.33±0.95

OCNP 90.06±1.01 93.41±1.02 82.32±1.21 67.74±0.16 74.87±0.94 87.06±0.27 97.65±0.38

dition, we also selected the strong baseline PLNLP [Wang
et al., 2021], which uses training tricks. Furthermore, we compared it with GIDN [Wang et al.,
2022], which also utilizes training tricks, as well as several node embedding methods. The detailed
comparison results can be found in Appendix K. The baseline results are derived from [Wang et al.,
2024]. Our model is OCN, and its architecture is detailed in Appendix G.

The experimental results, as shown in Table 1, demonstrate that OCN outperforms all baselines on all
datasets except Citeseer and Citation2. Compared to the best-performing NCNC, OCN is only 0.6%
behind on Citeseer and Citation2, but OCN still outperforms all baselines except NCNC on these two
datasets. On the remaining five datasets, OCN improves by an average of 7.7% over NCNC. Across
the seven datasets, OCN improves by an average of 7.2% over NCN and by an average of 12.4%
over BUDDY. These excellent results undoubtedly prove the superior expressiveness of our OCN
model. Furthermore, on the ogbl-ppa dataset, OCN surpassed the large-scale GraphGPT [Zhao et al.,
2024] (0.6876 ± 0.0067), and on the ogbl-ddi dataset, it achieved 97.42, significantly outperforming
the strongest baseline, NCNC. OCNP not only maintains the overall performance of OCN but
also significantly reduces computational complexity, while achieving substantially superior results
compared to NCNC on the ogbl-ppa. The famous baseline models’ average rankings are: BUDDY:
4.7, NCN: 4.29, NCNC: 2.71, while our models’ average rankings are: OCN: 1.57, OCNP: 2.28.

Additionally, we conducted a comparison between OCN, OCNP, and other Link Prediction Models, as
detailed in Section K. Our models consistently demonstrated superior performance when compared to
both node embedding-based methods and models that incorporated various training tricks, regardless
of whether these tricks were applied or not. The results show that, even with the introduction of such
training techniques, our models still maintain an edge in terms of prediction accuracy and efficiency.
Furthermore, we have also provided an ablation study on the MPNN used in both OCN and OCNP
in Section L. This study offers deeper insights into the specific factors in MPNN that enhance the
performance.

7.2 Ablation Analysis

To assess the effectiveness of the OCN and OCNP design, we conducted a comprehensive ab-
lation analysis, as shown in Table 2. By eliminating the influence of normalizedCN on the k-
hop CN weights, we derive OCN-Orth. Similarly, removing the effect of normalizedCN from
OCNP results in OCN-Filter. Furthermore, keeping the impact of normalizedCN while remov-
ing the orthogonalization process in OCN and the filtering mechanism in OCNP leads to OCN-
normalizedCN. Additionally, we modify both models in Equation (7) as follows: MPNN(i, A,X)⊙
MPNN(j, A,X)

∣∣∣∣∑K
k=1 αk OCNk ·MPNN(A,X), which results in OCN-CAT and OCNP-CAT.

The experimental results for OCN-CAT and OCNP-CAT show notably lower performance, especially
on PPA. A detailed analysis of the significant performance gap resulting from changing the aggrega-
tion strategy from summation to concatenation can be found in Appendix O. To investigate the impact

9

of the nonlinear layers in our models, we remove the nonlinear layers from both OCN and OCNP,
yielding OCN-Linear and OCNP-Linear, respectively. To verify that employing the MPNN-then-SF
paradigm better addresses the deficiencies mentioned earlier, we construct two variants utilizing
the SF-and-MPNN framework. Finally, when incorporating 3-hop CNs, the models are referred
to as OCN-3 and OCNP-3. When we use SPD-based higher-order common neighbors, we obtain
OCN-SPD and OCNP-SPD.

Beyond thoroughly verifying the significant role of each component in our models, an intriguing
experimental observation is that removing the nonlinear layers does not lead to a drastic performance
drop, except for ogbl-ppa, where performance collapses entirely. While the overall performance gap
on smaller-scale graph datasets remains relatively minor, it is important to highlight that OCN and
OCNP are originally designed to achieve substantial improvements on large-scale graphs, whereas
their benefits on smaller graphs are naturally less pronounced. This is likely because extensively
leveraging high-order CNs may introduce more uninformative information in smaller-scale graphs.
Furthermore, incorporating 3-hop CNs not only imposes a substantial increase in computational cost
and time but also contributes to greater instability in model performance. This instability manifests as
significant oscillations in the loss curve, which could potentially stem from the increased norm of the
model. MPNN may still implicitly learn information from higher-order neighbors. Using SPD-based
higher-order common neighbors also results in a performance decline, as we have analyzed, due to
information loss.

7.3 Scalability

BUDDY OCNOCN OCNPOCNPNCNNCN NCNCNCNCGAEGAESEALSEAL Neo-GNNNeo-GNN

Figure 5: Inference time and GPU memory on
ogbl-collab. The measured process includes pre-
processing and predicting one batch of test links.
As shown in Appendix I, the relation between time
y and batch size t is y = B + Ct.

We compare the inference time and GPU mem-
ory usage on the ogbl-collab dataset in Fig-
ure 5. Both OCN and NCN exhibit similar com-
putational overhead, as they only need to run
the MPNN model once. However, in contrast,
SEAL shows a significantly higher computa-
tional overhead, particularly as the batch size
increases. This is because SEAL needs to rerun
the MPNN model for each individual target link,
which leads to a substantial increase in inference
time with larger batch sizes. When it comes to
GPU memory consumption, OCN generally re-
quires more memory than NCN. OCNP tends
to outperform OCN in both inference speed and
memory consumption.

We also conducted similar tests on a variety of other datasets. The results are shown in Figure 9.
We observe patterns that are quite similar to the ones seen in the ogbl-collab dataset, as presented
in Figure 5. Specifically, both OCN and OCNP generally show better scalability than Neo-GNN,
handling larger datasets more efficiently. On the other hand, SEAL continues to demonstrate the
poorest scalability among the models tested. In terms of memory usage, the overhead of OCN is
either comparable to or slightly higher than that of NCN, depending on the dataset.

8 Conclusion

We propose a novel method called OCN for the link prediction task and effectively alleviates
two key issues. OCN demonstrates significant performance improvements across multiple datasets.
Furthermore, to further reduce the time complexity of OCN, we introduce OCNP. The work presented
in this study offers a new perspective on the link prediction task and provides valuable insights for
future research on handling higher-order neighborhood information in large-scale graphs.

Acknowledgments and Disclosure of Funding

This work is supported by the National Key R&D Program of China (2022ZD0160300) and the
National Natural Science Foundation of China (62276003).

10

References
Jianhan Zhu, Jun Hong, and John G. Hughes. Using markov models for web site link prediction.

In James Blustein, Robert B. Allen, Kenneth M. Anderson, and Stuart Moulthrop, editors, HY-
PERTEXT 2002, Proceedings of the 13th ACM Conference on Hypertext and Hypermedia, June
11-15, 2002, University of Maryland, College Park, MD, USA, pages 169–170. ACM, 2002. doi:
10.1145/513338.513381. URL https://doi.org/10.1145/513338.513381.

Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed membership
stochastic blockmodels. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon Bottou, edi-
tors, Advances in Neural Information Processing Systems 21, Proceedings of the Twenty-Second An-
nual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 8-11, 2008, pages 33–40. Curran Associates, Inc., 2008. URL https://proceedings.
neurips.cc/paper/2008/hash/8613985ec49eb8f757ae6439e879bb2a-Abstract.html.

Zan Huang, Xin Li, and Hsinchun Chen. Link prediction approach to collaborative filtering. In Mary
Marlino, Tamara Sumner, and Frank M. Shipman III, editors, ACM/IEEE Joint Conference on
Digital Libraries, JCDL 2005, Denver, CO, USA, June 7-11, 2005, Proceedings, pages 141–142.
ACM, 2005. doi: 10.1145/1065385.1065415. URL https://doi.org/10.1145/1065385.
1065415.

Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi-Ke Zhang, and Tao Zhou. Recom-
mender systems. Physics reports, 519(1):1–49, 2012.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016.
URL http://arxiv.org/abs/1611.07308.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 1263–1272.
PMLR, 2017. URL http://proceedings.mlr.press/v70/gilmer17a.html.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. AI Mag., 29(3):93–106, 2008. doi: 10.1609/AIMAG.
V29I3.2157. URL https://doi.org/10.1609/aimag.v29i3.2157.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021.

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 34:13683–13694, 2021.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M. Bronstein, and Max Hansmire. Graph neu-
ral networks for link prediction with subgraph sketching. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/forum?id=m1oqEOAozQU.

Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for link
prediction. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=sNFLN3itAd.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/
forum?id=S1ldO2EFPr.

Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information. The
European Physical Journal B, 71:623–630, 2009.

11

https://doi.org/10.1145/513338.513381
https://proceedings.neurips.cc/paper/2008/hash/8613985ec49eb8f757ae6439e879bb2a-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/8613985ec49eb8f757ae6439e879bb2a-Abstract.html
https://doi.org/10.1145/1065385.1065415
https://doi.org/10.1145/1065385.1065415
http://arxiv.org/abs/1611.07308
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.1609/aimag.v29i3.2157
https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=sNFLN3itAd
https://openreview.net/forum?id=sNFLN3itAd
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org, 2015.
URL http://proceedings.mlr.press/v37/ioffe15.html.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations.
In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani, editors,
The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 701–710. ACM, 2014. doi: 10.1145/
2623330.2623732. URL https://doi.org/10.1145/2623330.2623732.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances
in Neural Information Processing Systems 14 [Neural Information Processing Systems: Natural
and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada], pages
585–591. MIT Press, 2001. URL https://proceedings.neurips.cc/paper/2001/hash/
f106b7f99d2cb30c3db1c3cc0fde9ccb-Abstract.html.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Balaji
Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev
Rastogi, editors, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 855–864. ACM,
2016. doi: 10.1145/2939672.2939754. URL https://doi.org/10.1145/2939672.2939754.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge
graphs. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 4289–4300, 2018. URL https://proceedings.neurips.
cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html.

Mark EJ Newman. Clustering and preferential attachment in growing networks. Physical review E,
64(2):025102, 2001.

Albert-Laszlo Barabâsi, Hawoong Jeong, Zoltan Néda, Erzsebet Ravasz, Andras Schubert, and
Tamas Vicsek. Evolution of the social network of scientific collaborations. Physica A: Statistical
mechanics and its applications, 311(3-4):590–614, 2002.

LAAaE Adar and LA Adamic. Friends and neighbors on the web. social networks, 25(3):211–230,
2003.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 5171–5181, 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html.

Gonzalo R. Arce. Nonlinear Signal Processing - A Statistical Approach. Wiley,
2004. ISBN 978-0-471-67624-9. URL http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-0471676241.html.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors,
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pages 23341–23362. PMLR,
2022. URL https://proceedings.mlr.press/v162/wang22am.html.

12

http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1145/2623330.2623732
https://proceedings.neurips.cc/paper/2001/hash/f106b7f99d2cb30c3db1c3cc0fde9ccb-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/f106b7f99d2cb30c3db1c3cc0fde9ccb-Abstract.html
https://doi.org/10.1145/2939672.2939754
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471676241.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471676241.html
https://proceedings.mlr.press/v162/wang22am.html

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network
analysis. Journal of the american Statistical association, 97(460):1090–1098, 2002.

Purnamrita Sarkar, Deepayan Chakrabarti, and Andrew W. Moore. Theoretical justification of
popular link prediction heuristics. In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011, pages 2722–2727. IJCAI/AAAI, 2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-453.
URL https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-453.

Haitao Mao, Juanhui Li, Harry Shomer, Bingheng Li, Wenqi Fan, Yao Ma, Tong Zhao, Neil Shah, and
Jiliang Tang. Revisiting link prediction: a data perspective. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=8Ur2xmuw7w.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 40–48, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/yanga16.html.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 1024–1034, 2017. URL https://proceedings.neurips.
cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 34:29476–29490, 2021.

Zhitao Wang, Yong Zhou, Litao Hong, Yuanhang Zou, Hanjing Su, and Shouzhi Chen. Pairwise
learning for neural link prediction. CoRR, abs/2112.02936, 2021. URL https://arxiv.org/
abs/2112.02936.

Zixiao Wang, Yuluo Guo, Jin Zhao, Yu Zhang, Hui Yu, Xiaofei Liao, Hai Jin, Biao Wang, and Ting
Yu. GIDN: A lightweight graph inception diffusion network for high-efficient link prediction.
CoRR, abs/2210.01301, 2022. doi: 10.48550/ARXIV.2210.01301. URL https://doi.org/10.
48550/arXiv.2210.01301.

Qifang Zhao, Weidong Ren, Tianyu Li, Xiaoxiao Xu, and Hong Liu. Graphgpt: Graph learning with
generative pre-trained transformers. CoRR, abs/2401.00529, 2024. doi: 10.48550/ARXIV.2401.
00529. URL https://doi.org/10.48550/arXiv.2401.00529.

Gábor Lugosi. Concentration inequalities. In Rocco A. Servedio and Tong Zhang, editors, 21st
Annual Conference on Learning Theory - COLT 2008, Helsinki, Finland, July 9-12, 2008, pages
7–8. Omnipress, 2008. URL http://colt2008.cs.helsinki.fi/papers/lugosi.pdf.

Colin McDiarmid et al. On the method of bounded differences. Surveys in combinatorics, 141(1):
148–188, 1989.

Isaac Chavel. Riemannian geometry: a modern introduction. Number 108. Cambridge university
press, 1995.

13

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-453
https://openreview.net/forum?id=8Ur2xmuw7w
https://proceedings.mlr.press/v48/yanga16.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://arxiv.org/abs/2112.02936
https://arxiv.org/abs/2112.02936
https://doi.org/10.48550/arXiv.2210.01301
https://doi.org/10.48550/arXiv.2210.01301
https://doi.org/10.48550/arXiv.2401.00529
http://colt2008.cs.helsinki.fi/papers/lugosi.pdf

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. CoRR,
abs/1903.02428, 2019. URL http://arxiv.org/abs/1903.02428.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Ankur Teredesai, Vipin Kumar,
Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019, pages 2623–2631. ACM, 2019. doi: 10.1145/3292500.
3330701. URL https://doi.org/10.1145/3292500.3330701.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: large-scale
information network embedding. In Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi,
editors, Proceedings of the 24th International Conference on World Wide Web, WWW 2015,
Florence, Italy, May 18-22, 2015, pages 1067–1077. ACM, 2015. doi: 10.1145/2736277.2741093.
URL https://doi.org/10.1145/2736277.2741093.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
ryGs6iA5Km.

Shuming Liang, Yu Ding, Zhidong Li, Bin Liang, Siqi Zhang, Yang Wang, and Fang Chen. Can gnns
learn link heuristics? a concise review and evaluation of link prediction methods. arXiv preprint
arXiv:2411.14711, 2024.

Kaiwen Dong, Zhichun Guo, and Nitesh Chawla. Pure message passing can estimate common
neighbor for link prediction. Advances in Neural Information Processing Systems, 37:73000–
73035, 2024.

14

http://arxiv.org/abs/1903.02428
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/2736277.2741093
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

0 5000 10000 15000 20000 25000 30000
Edge Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

JS
D

 V
al

ue

Jensen Shannon Distance (Original vs Orthogonalized CN)

Original JSD
Orthogonalized JSD

Density

0.1

0.0

0.1

0.2

0.3

0.4

0.5

JS
D

 D
if

fe
re

nc
e

Figure 6: This figure demonstrates that orthogonalization reduces redundancy in higher-order common
neighbors, as shown by the increased and concentrated JSD values, making the representations more
independent and distinguishable.

A Evaluating the Effectiveness of Orthogonalization

The orthogonalization process removes redundant information at the matrix granularity. However, for
the point pairs (i, j) that we are interested in, we need to measure the similarity of the distribution of
information between different k-hop CNs at different orders for this point pair. By comparing the
difference in similarity at the edge granularity before and after the orthogonalization process, we
can objectively assess the effectiveness of orthogonalization in eliminating redundant information at
a finer granularity. We introduce the Jensen-Shannon Divergence (JSD) as a metric, with the core
goal being to verify whether orthogonalization can effectively reduce the similarity of the common
neighbor matrices between different orders for each edge.

Let pe and qe represent the vector corresponding to edge e = (i, j) in the matrices of CNα and CNβ ,
respectively. We will normalize them: p̃e = pe∑

k pe,k
, q̃e =

qe∑
k qe,k

, and then substitute them into
the definition of Jensen-Shannon distance:

DJS(pe, qe) =
1

2
(DKL(p̃e ∥ m̃e) +DKL(q̃e ∥ m̃e)) , (8)

where m̃e and q̃e represent the average of p̃e and q̃e, which are defined as m̃e =
1
2 (p̃e + q̃e).

As shown in the left part of Figure 6, taking the Collab dataset’s CN1 and CN2 as an example, the
JSD values between each edge’s distribution of CN1 and CN2 are represented by the orange points.
The JSD values after orthogonalization (purple points) are generally higher and more concentrated,
indicating that the orthogonalization process has successfully transformed the higher-order CN
matrices into more independent and distinguishable representations for each node pair (i, j). The
density curve on the right reflects the difference before and after orthogonalization for each edge. It
is evident that the JSD values for the majority of (i, j) pairs have increased after orthogonalization.

B Detailed Representation and Meaning of High-order Common Neighbors

According to Equation (1), assuming there exist k-hop CNs for the two endpoints of interest, the
following cases arise:

For k-hop CNs, if l = 2λ (even), the path contains exactly one k-hop CN (each endpoint is k-hops
away from the CN). However, there might be more than one such k-hop path. In this case, we
construct ω as shown below:

{
ωi0···̂ik···i2k = Ak

i0ik
Ak

i2kik
∀ik ∈ V

ωi0 · · · îp · · · i2k = 0 p ∈ [0, 2k], p ∈ Z, p ̸= k
(9)

15

where Ak
abrepresents the element in the a-th row and b-th column of the k-th power of the adjacency

matrix. If l = 2λ− 1 (odd), the path contains two k-hop CNs. we construct ω as shown below:
ωi0···̂ik−1···i2k−1

= Ak−1
i0ik−1

Ak
i2k−1ik−1

, ∀ik−1 ∈ V
ωi0···̂ik···i2k−1

= Ak
i0ik

Ak−1
i2k−1ik

, ∀ik ∈ V
ωi0···̂ip...i2k−1

= 0,

p ∈ [0, 2k − 1], p ∈ Z, p ̸= k − 1, p ̸= k

(10)

As defined above which can be summarized plainly as: For each order k, we maintain three (h, n)-
shaped matrices. For example: For 4-order CN: Possible path length to (u, v) combinations are (4, 4),
(3, 4), or (4, 3). For 7-order CN: Possible combinations are (7, 7), (6, 7), or (7, 6).

Take a matrix representing (3, 4) distances as example: Element z at position (x, y) indicates: For
the x-th edge (u, v) in the batch, node y has exactly z paths to (u, v) with lengths precisely (3, 4). If
z = 0: Node y cannot reach (u, v) via any (3, 4)-length paths → it’s not a 4-order CN under (3, 4)
definition. It might still qualify as a 4-order CN under (4, 4) or (4, 3) definitions. If none apply: Node
y is not a 4-order CN for (u, v) at all.

C Proof of Convergence to Global Orthogonality.

Proof.

ξ̂t = (1− βt) ξ̂t−1 + βtξt (11)

=

t∏
i=1

(1− βi) ξ̂0 +
t∑

i=1

t∏
j=i

(1− βj+1)βjξi (12)

=
1

t+ 1
ξ̂0 +

t∑
i=1

1

t+ 1
ξi (13)

=
1

t+ 1

t∑
i=0

ξi ⇔ SMA (14)

The inner product ξit of each mini-batch is an independent and identically distributed (i. i. d.) random
variable with a finite expected value E[ξit] = ξi = ⟨CNk, OCN i⟩ which represents the global inner
product of the k-th CN vector with the i-th OCN vector over the entire graph. As t → ∞, the
running average of the inner product converges to its expectation.

D Related Derivation of normalizedCN.

Definition D.1. we introduce a latent space model [Sarkar et al., 2011] for link prediction that
describes a graph with N nodes, each associated with a location in the space:

P (i ∼ j|dij) =

{
1

1+eα(dij−max{ri,rj})
if dij ≤ max{ri, rj}

0 if dij > max{ri, rj}
(15)

where P (i ∼ j|dij) denotes the probability of forming an edge between nodes i and j . dij represents
the latent distance between nodes, indicating the likelihood of a link forming between them. The
model has two parameters, α and r, where α > 0 controls the steepness of the function. To ease the
analysis, we set α = +∞. ri is a connecting threshold parameter corresponding to node i. With
α = +∞, we have

1

1 + eα(dij−max{ri,rj})
= 0 if dij > max{ri, rj} (16)

otherwise (16) equals to 1.

16

The nodes are distributed uniformly across a D-dimensional Euclidean space, with each node having
an associated radius r and a corresponding volume V (r). The probability of establishing a connection
between any two nodes i and j, denoted as P (i ∼ j), is influenced by both the radii (ri, rj) and the
distance dij between them.

1. The volume of a ball with radius r is expressed as V (r) = V (1)rD, where V (r) refers to
the volume of a ball with radius r and V (1) is the volume of a unit-radius hypersphere.

2. The degree of a node i, represented by Deg(i), is proportional to the volume V (ri) of
the ball corresponding to the node’s radius, and is given by Deg(i) = NV (ri), where N
represents the total number of nodes.

The likelihood of a link between two nodes i and j forming as a function of their distance dij is given
by the following logistic expression:

P (i ∼ j | dij) =
1

1 + eα(dij−max{ri,rj})
, (17)

where P (i ∼ j | dij) signifies the probability of a connection between nodes i and j, α > 0 governs
the steepness of the transition, and max{ri, rj} defines the critical radius at which the likelihood
drops sharply.

In order to ensure the proper normalization of probabilities, we assume that all the nodes are contained
within a hypersphere of unit volume in the D-dimensional space. The maximum allowable radius,
denoted rMAX, is chosen such that:

V (rMAX) = V (1)rDMAX = 1, which implies that rMAX =

(
1

V (1)

)1/D

. (18)

For any pair of nodes i and j, the volume of the intersection of the balls with radii ri and rj , which
are separated by a distance dij , is represented by A(ri, rj , dij). The intersection volume is bounded
as follows using the properties of hyperspheres:

(
ri + rj − dij

2

)D

≤ A (ri, rj , dij)

V (1)
≤

((
rmax
ij

)2 − (dij
2

)2
)D/2

, (19)

where rmax
ij = max{ri, rj}. This relation connects the intersection volume A(ri, rj , dij) to the

distance dij through the volume of the unit hypersphere.

Definition D.2. (simple path and set) Given nodes i and j in a graph G(V,E), a simple path of
length ℓ from i to j is defined as a sequence path(i, k1, k2, . . . , kℓ−2, j), where i ∼ k1 ∼ k2 ∼ · · · ∼
kℓ−2 ∼ j, and Sℓ(i, j) represents the set of all such possible paths, where each intermediate node
k1, k2, . . . , kℓ−2 belongs to the set of vertices V .

Let Y (i, k1, k2, . . . , kℓ−2, j) be a random variable which takes the value 1 if the path
(i, k1, k2, . . . , kℓ−2, j) belongs to Sℓ(i, j), and 0 otherwise. The total number of paths of length
ℓ between i and j, denoted as ηℓ(i, j), is then given by:

ηℓ(i, j) =
∑

k1,...,kℓ−2∈Sℓ(i,j)

Y (i, k1, . . . , kℓ−2, j | dij) (20)

Lemma D.3.
∆ < N

(
1−

√
−2 ln δ/N

)
with probability at least 1− δ (21)

∆ > N
(
1 +

√
−3 ln δ/N

)
with probability at least 1− δ (22)

where ∆ is the maximum degree.

17

Proof. The degree Deg(k) of any node k is a binomial random variable with expectation E[Deg(k)] =
NV (rk), where Vrk is the volume of a hypersphere of radius rk. Thus, using the Chernoff bound [Lu-
gosi, 2008],

Deg(k) < NV (rk)
(
1−

√
−2 ln δ/NV (rk)

)
holds with probability at least 1− δ (23)

Deg(k) > NV (rk)
(
1 +

√
−3 ln δ/NV (rk)

)
holds with probability at least 1− δ (24)

Applying the union bound on all nodes yields the desired proposition, i. e. ,

∆ < NV (rMAX)
(
1−

√
−2 ln δ/NV (rMAX)

)
= N

(
1−

√
−2 ln δ/N

)
. (25)

∆ > NV (rMAX)
(
1 +

√
−3 ln δ/NV (rMAX)

)
= N

(
1 +

√
−3 ln δ/N

)
. (26)

Lemma D.4. For any graph with maximum degree ∆, we have:

ηℓ(i, j) ≤ ∆ℓ−1. (27)

Proof. This can be demonstrated using a straightforward inductive approach. When the graph is
represented by its adjacency matrix M , the number of paths of length ℓ between nodes i and j is
given by M ℓ(i, j). It is clear that M2(i, j) can be at most ∆, which occurs when both i and j have
degree ∆, and their respective neighbors form a perfect matching. Assuming the inductive hypothesis
holds for all m < ℓ, we obtain the following:

M ℓ(i, j) =
∑
p

M(i, p)M ℓ−1(p, j) ≤ ∆ℓ−2
∑
p

M(i, p) ≤ ∆ℓ−1. (28)

Lemma D.5. For ℓ < ∆,∣∣∣ηℓ (i, j | X1, . . . , Xp, . . . , XN)− ηℓ
(
i, j | X1, . . . , X̃p, . . . XN

)∣∣∣ ≤ ∆ℓ−2 (29)

Proof. Consider all paths where p ism hops from i (and hence ℓ−m hops from j). From Theorem D.4,
the number of such paths can be at most

∆m−1 ·∆ℓ−m−1 = ∆ℓ−2 (30)

With the groundwork laid above, we can now proceed to prove our main result in Theorem 5.3. Here,
we restate it once again:
Proposition D.6. (Latent space distance bound with k-hop CNs). For any δ > 0, with probability at
least 1− δ, we have

dij ≤
M−2∑
n=0

rn+

2

(
(rmax

M)2 −
(

η2k(i, j)

(N −
√
−2N ln δ)2k−1

− α
) 2

D(2k−1)

) 1
2

≤
M−2∑
n=0

rn + 2

√
(rmax

M)2 − (1− α)
2

D(2k−1)

(31)

where α =
√
N ln(1/2δ)/2/

(
N +

√
−3N ln δ

)
. rmax

M = max{rM}(M ∈ {1, · · · , 2k− 1}) is the
maximum of the feature radius for the set of intermediate nodes in D dimensional Euclidean space.

18

N is the number of nodes. k represents the order of the k-hop CNs. η2k(i, j) is the number of k-hop
CNs about (i, j). (The above only shows the case where the k-hop CNs are in symmetric positions,
as in (9). The asymmetric case, as in (10), is very similar.)

Proof. Define Pℓ(i, j) as the probability of observing an ℓ-hop path between points i and j. Next,
we compute the expected number of ℓ-hop paths.

Consider an ℓ-hop path between i, j, for clarity of notation, let us denote the distances di,k1 , dk1,k2 ,
etc. by a1, a2, up to aℓ−1 and radius ri, rk1 , . . . , rj by r0, r1, . . . , rℓ−1. We also denote the distances
djk1

, djk2
, . . . by d1, d2, . . . , dℓ−1. Note r′j = max(rj−1, rj), j ∈ {1, 2, . . . , ℓ− 1}.

From the triangle inequality,

dℓ−3 ≤ aℓ−2 + aℓ−1 ≤ rℓ−2 + rℓ−1, (32)

and by induction,

dk ≤
ℓ∑

m=k+1

rm. (33)

Similarly,
d1 ≥ (dij − a1)+ ≥ (dij − ri)+ , (34)

and by induction,

dk ≥

(
dij −

k−1∑
n=0

rn

)
+

. (35)

Case 1 (Symmetric case): The K-order common neighbor is located at the midpoint of the path.

P2k(i, j) = P (i ∼ k1 ∼ . . . ∼ k2k−1 ∼ j | dij)
= P

(
a1 ≤ r′1 ∩ . . . ∩ a2k ≤ r′2k−1 | dij

)
=

∫
d1,...,d2k−2

P
(
a1 ≤ r′1, . . . , a2k−1 ≤ r′2k−1, d1, . . . , d2k−2 | dij

)
=

∫ r2k−1+r2k

d2k−2=(dij−
∑2k−3

n=0 rn)
+

. . .

∫ ∑2k
m=2 rm

d1=(dij−r0)+

P (a1 ≤ r′1, d1 | dij) . . . P
(
a2k−1 ≤ r′2k−1, a2k ≤ r′2k | d2k−2

)
≤ A

(
r′1,

2k∑
m=2

rm, dij

)
×A

(
r′2,

2k∑
m=3

rm, (dij − r0)+

)
× . . .×A

(
r′2k−1, r2k,

(
dij −

2k−3∑
n=0

rn

)
+

)

≤
2k−1∏
p=1

A

(
r′p,

2k∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
(36)

E [η2k(i, j)] ≤ ∆2k−1

[
2k−1∏
p=1

A

(
r′p,

2k∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)]
(37)

Case 2 (Asymmetric case): The K-order common neighbor is located at positions on the path, at a
distance of k-1 hops and k hops from the endpoints, or at positions at a distance of k hops and k-1
hops from the endpoints.

Similarly,

E [η2k−1(i, j)] ≤ 2∆2k−2

[
2k−2∏
p=1

A

(
r′p,

2k−1∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)]
(38)

19

Due to the high similarity between the two cases above, in the following analysis, we will focus only
on the symmetric case.

Through empirical Bernstein bounds [McDiarmid et al., 1989], we have: For any t > 0,

Pr (f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
. (39)

Back to our main proof, so we have:

η2k(i, j) ≤ E [η2k(i, j)] + ∆2k−2

√
N ln(1/2δ)

2

≤ ∆2k−1

2k−1∏
p=1

A

(
r′p,

2k∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
+

√
N ln(1/2δ)

2

∆


≤

2k−1∏
p=1

A

(
r′p,

2k∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
+

√
N ln(1/2δ)

2

N +
√
−3N ln δ

 · (N −√−2N ln δ)2k−1

(40)

which can be rewritten as:

η2k(i, j) ≤ c(N, δ, k)
2k−1∏
p=1

A

(
r′p,

2k∑
m=p+1

rm,

(
dij −

p−2∑
n=0

rn

)
+

)
+ b(N, δ, k) (41)

where c(N, δ, k) = (N −
√
−2N ln δ)2k−1 and b(N, δ, k) =

√
N ln(1/2δ)

2

N+
√
−3N ln δ

· (N −
√
−2N ln δ)2k−1.

Note rmax
p = max{r′p,

∑2k
m=p+1 rm}, we have:

η2k(i, j) ≤ c(N, δ, k)
2k−1∏
p=1

(rmax
p)2 −


(
dij −

∑p−2
n=0 rn

)
+

2


2

D/2

+ b(N, δ, k)

= c(N, δ, k)

2k−1∏
p=1

(rmax
p)2 −

(
dij −

∑p−2
n=0 rn

2

)2
D/2

+ b(N, δ, k)

≤ c(N, δ, k)

2k−1∏
p=1

(rmax
M)2 −

(
dij −

∑M−2
n=0 rn
2

)2
D/2

+ b(N, δ, k) ∃M ∈ {1, · · · , 2k − 1}

≤ c(N, δ, k)

(rmax
M)2 −

(
dij −

∑M−2
n=0 rn
2

)2
D(2k−1)/2

+ b(N, δ, k)

(42)

i. e. ,

20

dij ≤
M−2∑
n=0

rn + 2

√
(rmax

M)2 −
(
η2k(i, j)− b(N, δ, k)

c(N, δ, k)

) 2
D(2k−1)

≤
M−2∑
n=0

rn + 2

√√√√√√(rmax
M)2 −

 η2k(i, j)

(N −
√
−2N ln δ)2k−1

−

√
N ln(1/2δ)

2

N +
√
−3N ln δ


2

D(2k−1)

≤
M−2∑
n=0

rn + 2

√√√√√√(rmax
M)2 −

1−

√
N ln(1/2δ)

2

N +
√
−3N ln δ


2

D(2k−1)

(43)

The motivation for introducing normalizedCN has been explained in detail in the main text. After
introducing normalizedCN, we will derive Theorem 5.4, which we restate here as follows:

Proposition D.7. (Latent space distance bound with k-hop CNs weighted by normalizedCN(i, j)).
Originally, the contribution of each k-hop CN was assigned a value of 1. However, after introducing
normalizedCN, the contribution of each k-hop CN is now given by

∑
c∈CNk(i,j)

1
|Pk(c)| . Therefore,

we simply need to modify the overall contribution η2k(i, j) to η2k(i,j)∑
c∈CNk(i,j)

1/|Pk(c)| . For any δ > 0,

with probability at least 1− δ, we have

dij ≤
M−2∑
n=0

rn + 2

√√√√√(rmax
M)

2 −

((
γ

(
ζ

2

)) 1
D(k−1)

· ρN
) 2k−2

2k−1

(44)

where ζ is the maximum degree of all k-hop CNs of (i, j) and ρ ∈ [0, 1] and γ =(
η2k(i,j)

(N−
√
−2N ln δ)2k−1 − α

)
. (The above only shows the case where the k-hop CNs are in symmetric

positions, as in (9). The asymmetric case, as in (10), is very similar.)

Proof. Consider the metric: the k-hop CNs we are interested in are also the k-hop CNs of several
other pairs. We record the reciprocal of the sum of these pairs as the weight of the k-hop CNs.

Pn
k (i, j) ⩾

[
k−1∏
p=1

A

(
r′p,

k∑
m=p+1

rm,

k∑
m=p

rm

)]n
·

[
1−

k−1∏
p=1

A

(
r′p,

k∑
m=p+1

rm,

(
Di −

p−2∑
n=0

rn

)
+

)]N−n−1

(45)

Pn
k (i, j) ⩽

[
k−1∏
p=1

A

(
r′p,

k∑
m=p+1

rm,

(
Di −

p−2∑
n=0

rn

)
+

)]n
·

[
1−

k−1∏
p=1

A

(
r′p,

k∑
m=p+1

rm,

k∑
m=p

rm

)]N−n−1

(46)

21

E
[
η∑

CNk
(i)
]
⩾

(
ζ

2

)[k−1∏
p=1

A

(
r′p,

k∑
m=p+1

rm,

k∑
m=p

rm

)]n
[
1−

k−1∏
p=1

A

(
r′p,

k∑
m=p+1

rm,

(
Di −

p−2∑
n=0

rn

)
+

)]N−n−1

⩾

(
ζ

2

)[(
r′min − rmin

2

)D(k−1)
]n1−

(rmax
M)

2 −

(
Di −

∑M−2
n=0 rn
2

)2


D(k−1)
2


N−n−1

(47)

η2k(i, j) ≤
E [η2k(i, j)]

(
ζ
2

)[(r′min −rmin

2

)D(k−1)
]n1− ((rmax

M)
2 −

(
Di−

∑M−2
n=0 rn
2

)2)D(k−1)
2

N−n−1
+∆2k−2

√
N ln(1/2δ)

2

(48)

Consider
(
ρD(k−1)

)n (
1− ρD(k−1)

)N−n−1
⩽ (max{ρ, ξ})D(k−1)N , where ρD(k−1) + ξD(k−1) =

1D(k−1). So We get :

η2k(i, j) ≤
E [η2k(i, j)](

ζ
2

)
(max{ρ, ξ})D(k−1)N

+∆2k−2

√
N ln(1/2δ)

2
(49)

Note χ =
(
ζ
2

)
(max{ρ, ξ})D(k−1)N , we have: c(N, δ, k)′ = c(N,δ,k)

χ and b(N, δ, k)′ = b(N, δ, k)

dij ≤
M−2∑
n=0

rn + 2

√
(rmax

M)2 −
(
η2k(i, j)− b(N, δ, k)′

c(N, δ, k)′

) 2
D(2k−1)

≤
M−2∑
n=0

rn + 2

√√√√√(rmax
M)2 −

(
η2k(i, j)− b(N, δ, k)

c(N,δ,k)
χ

) 2
D(2k−1)

≤
M−2∑
n=0

rn + 2

√√√√√√(rmax
M)2 − χ

1−

√
N ln(1/2δ)

2

N +
√
−3N ln δ


2

D(2k−1)

≤
M−2∑
n=0

rn + 2

√√√√√(rmax
M)

2 −

((
γ

(
ζ

2

)) 1
D(k−1)

· (max{ρ, ξ})N
) 2k−2

2k−1

=

M−2∑
n=0

rn + 2

√√√√√(rmax
M)

2 −

((
γ

(
ζ

2

)) 1
D(k−1)

· ρN
) 2k−2

2k−1

,

(50)

where γ =
(

η2k(i,j)

(N−
√
−2N ln δ)2k−1 − α

)
and ρ = max{ρ, ξ}.

Additionally, in negative curvature spaces, the contribution of high-hop common neighbors becomes
more significant. Euclidean space may underestimate it because the connectivity of nodes is more

22

dependent on local geometric structures, whereas in hyperbolic space, the global structure and
curvature effects between nodes have a more pronounced impact on path propagation, meaning
that the high-hop CNs information between nodes exhibits stronger structural dependence. In some
tree-like graph structures, or in regions of graphs with negative curvature, a large number of high-hop
CNs of various orders are more likely to occur. We hope that normalizedCN can assign a reasonable
weight to each k-hop CNs in the hyperbolic space.

Proposition D.8. When the latent space becomes a hyperbolic space with curvature κ, normalizedCN
still remains effective, without the need to explicitly introduce κ in the form of normalizedCN.

Proof. The volume of a sphere or a ball in hyperbolic n-space with sectional curvature κ is given by

Vκ(r) = cn−1

∫ r

0

(
sinh(

√
κt)√

κ

)n−1

dt, (51)

where cn−1 := 2πn/2

Γ(n/2) is the n− 1-dimensional area of a unit sphere in Rn (see [Chavel, 1995]).

Let R = 1√
−κ

, we have:

Vκ(r) = Cn−1R
n−1

∫ r

0

sinhn−1 t

R
dt (52)

Using the recurrence formula for integrals involving hyperbolic functions
∫
sinhn cxdx =

1
cn sinhn−1 cx cosh cx− n−1

n

∫
sinhn−2 cxdx (n > 0), we finally obtain:

1. When n is even (n = 2k):

An = f(n)+

n−2
2∑

k=1

(−1)k (n− 1)(n− 3) · · · [n− (2k − 1)]

n(n− 2)(n− 4) · · · [n− (2k − 2)]
f(n−2k)−(−1)

n−2
2

(n− 1)(n− 3) · · · 3 · 1
n(n− 2) · · · 4 · 2

r

(53)

2. When n is odd (n = 2k + 1):

An = f(n) +

n−1
2∑

k=1

(−1)k (n− 1)(n− 3) · · · [n− (2k − 1)]

n(n− 2)(n− 4) · · · [n− (2k − 2)]
f(n− 2k) (54)

Where f(n) = 1
an (sinh

n−1 ar)(cosh ar), a =
√
−κ, and Vκ(r) = Cn−1R

n−1An−1

It follows naturally that:

V (r) = V (1)

(
ear − e−ar

ea − e−a

)D

·
(
ear + e−ar

ea + e−a

)
(55)

Clearly, when κ approaches 0, which means the space degenerates from hyperbolic space to Euclidean
space, we have:

lim
κ→0

(
ear − e−ar

ea − e−a

)D

·
(
ear + e−ar

ea + e−a

)
= rD (56)

This is consistent with the result for Euclidean space.

We first need to find an upper bound for the volume of the intersection of two spheres in hyperbolic
n-space with centers at O1 and O2 by scaling. In this case, we assume symmetry, as shown in
Figure 7, where the upper bound for the volume of the intersection is the volume of a sphere with
radius τ . We can set up the following system of equations:

23

Figure 7: The upper bound for the volume of the intersection of two spheres in hyperbolic n-space
with centers at O1 and O2 is the volume of a sphere with radius τ .


cosh d = cosh2 r − sinh2 r · cosα
sinh d

sinα
=

sinh r

sin θ

cosh τ = cosh2 r − sinh2 r · cos(2θ)

(57)

Here, assuming the Gaussian curvature of the space is 1
π2 , d represents d

π , r represents r
π , and τ

represents τ
π for simplicity in form. The solution is:

cosh τ =
8y2(x− 1)

2x2 − 1
− 1 (58)

where x = cosh d and y = cosh r.

Thus, when D is greater than 64, we can almost assume that:

A (ri, rj , dij)

V (1)
⩽

(
ear − e−ar

ea − e−a

)D

·
(
ear + e−ar

ea + e−a

)
⩽
[
(
√
−κ)r

]D
(59)

Similar to (42), we can derive:

η2k(i, j) ⩽ c(N, δ, k)

(
√
κ
cosh−1

(
8y2(x−1)

2x2−1
−1

))D(2k−1)

+ b(N, δ, k) (60)

Since the range of dij is [0, 1], within this range, we can approximate x−1
2x2−1 as 1

5 (x− 1)
1
2 , which is

similar to the approach taken in Euclidean space. Ultimately, we can derive:

cosh
dij
κ

⩽

5

[
cosh

(
log√−κ

(
η−b
c

) 1
D(2k−1)

)
+ 1

]
8 cosh2

rmin
M

κ


2

+ 1 (61)

The form of (61) is very similar to (D). Following the same approach as in Euclidean space, after
introducing normalizedCN, we can finally conclude that the effect of dij brought by normalizedCN
is consistent with that in Euclidean space.

24

Table 3: Statistics of dataset.

Cora Citeseer Pubmed Collab PPA DDI Citation2
#Nodes 2, 708 3, 327 18, 717 235, 868 576, 289 4, 267 2, 927, 963
#Edges 5, 278 4, 676 44, 327 1, 285, 465 30, 326, 273 1, 334, 889 30, 561, 187
splits random random random fixed fixed fixed fixed
average degree 3.9 2.74 4.5 5.45 52.62 312.84 10.44

E Proof of Theorem 6.1

Proof. When algorithm A can distinguish all the link pairs that algorithm B can distinguish, we
consider algorithm A to be more expressive than algorithm B, provided there exists a pair of links that
A can distinguish but B cannot. Therefore, we can prove this by constructing a simple counterexample.

Graph Autoencoder’s prediction for link (i, j) is ⟨MPNN(i, A,X),MPNN(j, A,X)⟩. So
MPNN(i, A,X)⊙MPNN(j, A,X) leads to GAE which is a part of OCN, so OCN can also express
GAE. As MPNN can learn arbitrary functions of node degrees, OCN can express CN, RA, AA . we
construct an example in Figure 4. White, green, orange, and yellow represent node features 0, 1, 2,
and 3, respectively. v2 and v3 are symmetric, and GAE cannot distinguish (v1, v2) and (v1, v3). With
node features ignored, (v1, v2) and (v1, v3) are symmetric, so CN, RA, AA, Neo-GNN, and BUDDY
cannot distinguish them. NCN also degenerates into GAE, so it also cannot. However, (v1, v2) and
(v1, v3) have different 2-hop CNs, which allows OCN to distinguish them.

F Dataset Statistics

The statistics for each dataset are presented in Table 3. The data is randomly split with 70%, 10%,
and 20% allocated to the training, validation, and test sets, respectively. Unlike the others, the collab
dataset permits the use of validation edges as input for the test set.

Cora, Citeseer, and Pubmed are very small-scale graphs where link prediction is relatively easy.
Existing models have nearly saturated performance on these small graphs. The real challenge in link
prediction lies in large-scale graphs. Our model achieves significant performance improvements on
these high-value, challenging large graphs, particularly on ogbl-ppa and ogbl-ddi.

G Model Architecture

Figure 8: Architecture of OCN.

Target Link Removal. We do not modify the input graph during the validation and test phases,
where the target links remain hidden. For the training set, we remove the target links from A, and we
define the modified graph as Ā.

25

Table 4: Parameter configurations (OCN) across different datasets.

Dataset maskinput mplayers nnlayers hiddim ln lnnn res jk gnndp xdp tdp gnnedp predp preedp gnnlr prelr use_xlin tallact
Cora T 1 3 256 T T F T 0.05 0.7 0.3 0.0 0.05 0.4 0.0043 0.0024 T T
Citeseer T 2 3 512 F T T F 0.35 0.5 0.3 0.6 0.5 0.5 0.0005 0.0008 T F
Pubmed T 1 3 256 T T F T 0.1 0.3 0.0 0.0 0.05 0.0 0.0097 0.002 T T
Collab T 1 3 256 T T F T 0.05 0.7 0.3 0.0 0.05 0.4 0.0043 0.0024 T T
PPA T 1 3 64 T T F T 0.0 0.0 0.0 0.0 0.0 0.0 0.0013 0.0013 T T
Citation2 F 5 3 32 T F T T 0.28 0.5 0.3 0.2 0.1 0.12 0.00023 0.0009 T T
DDI T 3 3 64 F T T F 0.25 0.13 0.38 0.5 0.10 0.13 0.00086 0.0008 T F

MPNN. To generate the node representations h, we employ the MPNN framework. For each node i,
the representation is obtained by:

hi = MPNN(i, Ā,X) (62)

In the case of all target links, MPNN is executed only once.

Predictor. The link prediction task leverages node representations and the graph structure. The link
representations for OCN are computed as follows:

zij = MPNN(i, A,X)⊙MPNN(j, A,X) +

K∑
k=1

αk OCNk ·MPNN(A,X) (63)

Here, zij denotes the representation of the link (i, j), The resulting representation is then processed
to predict the likelihood of the link’s existence:

Âij = sigmoid(MLP(zij)) (64)

H Experimental Settings

Computing Setup. We utilize PyTorch Geometric [Fey and Lenssen, 2019] and PyTorch [Paszke
et al., 2019] for developing the models. All experiments are performed on a Linux server equipped
with an Nvidia 4090 GPU.

Baselines. The results reported in [Wang et al., 2024] are directly used for comparison.

Model Hyperparameters. For hyperparameter tuning, we employ Optuna [Akiba et al., 2019] to
conduct random search. The hyperparameters that yield the best validation scores are chosen for
each model. The complete hyperparameter configuration is listed in Table 4 and Table 5.The key
hyperparameters in our framework are defined as follows:

• maskinput: Boolean indicator for target link removal during training
• mplayers: Number of message passing layers in the GNN architecture
• nnlayers: Depth of Multilayer Perceptron (MLP) components
• ln: Layer normalization switch for MPNN modules
• lnnn: Layer normalization control for MLP components
• jk: Jumping Knowledge connection enablement
• gnndp: Dropout probability applied to GNN node representations
• gnnedp: Edge dropout ratio for graph adjacency matrices
• predp: Dropout rate in the prediction head network
• preedp: Edge dropout probability during prediction
• gnnlr: Learning rate for GNN parameter optimization
• prelr: Learning rate specific to predictor module

Training Procedure. We optimize models using the Adam optimizer. Results for all models are
averaged from 10 runs with different random seeds.

Computation Time. The total computational cost for reproducing all experiments is shown Table 6.

26

Table 5: Parameter configurations (OCNP) across different datasets.

Dataset maskinput mplayers nnlayers hiddim ln lnnn res jk gnndp xdp tdp gnnedp predp preedp gnnlr prelr use_xlin tallact
Cora T 1 3 256 T T F T 0.05 0.7 0.3 0.0 0.05 0.4 0.0043 0.0024 T T
Citeseer T 3 1 64 F T F T 0.12 0.73 0.88 0.07 0.19 0.06 0.0069 0.0010 T F
Pubmed T 1 3 256 T T F T 0.1 0.3 0.0 0.0 0.05 0.0 0.0097 0.002 T T
Collab T 1 3 256 T T F T 0.1 0.25 0.05 0.3 0.3 0.0 0.0082 0.0037 T T
PPA T 1 3 64 T T F T 0.0 0.0 0.0 0.0 0.0 0.0 0.0013 0.0013 T T
Citation2 F 5 3 32 T F T T 0.28 0.5 0.3 0.2 0.1 0.12 0.0002 0.0008 T T
DDI T 3 3 64 F T T F 0.25 0.13 0.38 0.5 0.10 0.13 0.0009 0.0008 T F

Table 6: Total time(s) needed in one run

CORA CITESEER PUBMED COLLAB PPA CITATION2 DDI

OCN 10 24 110 380 17010 18132 1600
OCNP 9 21 96 350 16770 21520 1131

I Time and Space Complexity

Let t represent the number of target links, n the total number of nodes in the graph, and d the
maximum degree of a node. The time and space complexities of the existing models can be written
as O(B + Ct) and O(D + Et), respectively. The constants B, C, D, and E are independent of t,
as summarized in Table 7. The derivation of complexity is as follows: models such as NCN [Wang
et al., 2024], GAE [Kipf and Welling, 2016], and GNN, which utilize different structural features
and operate on the original graph, exhibit similar complexities of ndF + nF 2. Specifically, the
method by BUDDY [Chamberlain et al., 2023] uses a simplified version of MPNN, simplifying
the complexity term B to ndF . Additionally, Neo-GNN [Yun et al., 2021] requires precomputing
the higher-order graph Al, which results in time and space complexity of O(ndl). BUDDY hashes
each node, resulting in O(nh) time and O(nh′) space complexity. In contrast, SEAL [Zhang and
Chen, 2018]’s B is 0, as it does not run MPNN on the original graph. For each target link, a
vanilla GNN simply requires feeding the feature vector to an MLP, yielding C = F 2. In addition to
GAE’s operation, BUDDY also hashes the structural features, which introduces a higher complexity
per edge, O(dl), where l is the number of hops Neo-GNN considers. For each target link, SEAL
segregates a subgraph of size O(dl

′
), where l′ represents the number of hops in the subgraph, and

runs MPNN on it, which gives C = dl
′
F 2 + dl

′+1F . NCN computes common neighbors in O(d)
time, pools the node embeddings with a complexity of O(dF), and feeds them into an MLP, resulting
in O(F 2). NCNC-1 runs NCN for each possible common neighbor, leading to a time complexity of
O(d2F + dF 2). For higher-order computations, NCNC-K executes O(d) times NCNC-K, resulting
in a time complexity of O(dK+1F + dKF 2). OCN computes k-hop CNs with complexity O(dk).
The process of Schmidt orthogonalization has a time complexity of O(k2n), and it computes (63)
with a complexity of O(dF). Finally, OCN feeds it into an MLP, resulting in O(F 2). Similarly,
the only difference between OCNP and OCN is that OCNP replaces the Schmidt orthogonalization
process with Polynomial Filters, which results in a time complexity of O(kn).

J OCNP

According to Equation (1), we can expressCNk and transform the Hadamard product into a Kronecker
product(⊗) with many desirable properties. We have:

CNk =
⋃

2(k−1)<k1+k2≤2k,k1≤k,k2≤k

(
P1A

k1
)
⊙
(
P2A

k2
)

= J
(
P1A

k1 ⊗ P2A
k2
)
K

= J (P1 ⊗ P2)
(
Ak1 ⊗Ak2

)
K

k1=k2=k
= J (P1 ⊗ P2) (A⊗A)kK

= J (P1 ⊗ P2) (W ⊗W)(Σ⊗ Σ)k
(
W⊤ ⊗W⊤)K,

(65)

27

Table 7: Scalability comparison. h, h′, h′′: the complexity of hash function in BUDDY, where all
d ≥ l. F : the dimension of node representations. When predicting the t target links, time and space
complexity of existing models can be expressed as O(B + Ct) and O(D + Et), respectively.

METHOD B C D E

GAE ndF + nF 2 F 2 nF F
NEO-GNN ndF + nF 2 + ndl dl + F 2 nF + ndl dl + F
BUDDY ndF + nh h′ + F 2 nF + nh′′ F + h′

SEAL 0 dl
′+1F + dl

′
F 2 0 dl

′+1F
NCN ndF + nF 2 dF + F 2 nF dF
NCNC ndF + nF 2 d2F + dF 2 nF d2F
OCN ndF + nF 2 dk + k2n+ dF + F 2 nF dF
OCNP ndF + nF 2 dk + kn+ dF + F 2 nF dF

where P1 and P2 are called selection matrices, defined as P [j, k] = δ(S[1, j], k), where S ∈ R2×h

describes the start and end points of each edge. Expanding (
∑
⊗
∑

)
k, we abbreviate it as [k]:

[k] :=
(∑

⊗
∑)k

=



λk1λ
k
1

λk1λ
k
2

. . .
λk1λ

k
h

λk2λ
k
1

. . .
λkhλ

k
h


, (66)

Therefore, we can write CNk as CNkn
= U [kn]V . We note that the Frobenius inner product in the

Schmidt orthogonalization process can be derived as follows:

⟨CNKA
, CNKB

⟩F =
1

4

(
∥CNKA

+ CNKB
∥2F − ∥CNKA

− CNKB
∥2F
)

=
1

4
∥U [kA + kB]V + U [kA − kB]V ∥ ∥U [kA + kB]V − U [kA − kB]V ∥

=

√√√√ n∑
i=1

σ2
i (U [kA]V) ·

√√√√ n∑
i=1

σ2
i (U [KB]V),

(67)

Here, σ2
i (A) represents the i-th singular value of A. Next, we abbreviate

√∑n
i=1 σ

2
i (U [kB]V) as√∑

σ2 (kB). Then, we can write the Schmidt orthogonalization process for B as follows:

B−⟨B,A1⟩A1 − ⟨B,A2⟩A2 · · · · · ·

= U [kB]V −
√∑

σ2 (kA)
√∑

σ2 (kB)U [k1]V −
√∑

σ2 (kB)
√∑

σ2 (KAi
)U [ki]V

= UΩV
(68)

For a given term λki λ
k
j in [k], we abbreviate it as λkij . Therefore, after undergoing Schmidt orthogo-

nalization, each eigenvalue in the diagonal matrix undergoes the following transformation:

28

λkB
ij →

√
Σσ2 (kB)

(√
1∑

σ2 (kB)
−
√∑

σ2 (k1)
λk1ij

λkB
ij

−
√
Σσ2 (k2)

λk2
ij

λkB
ij

· · · ·

)
λkB
ij

=

[
1−

(
kB−1∑
i=1

√∑
σ2 (kB)

√∑
σ2 (kB − i)λ−i

ij

)]
λkB
ij

(69)

That is to say, the original B is equivalent to the following transformation:

CNkB
= U


. . .

λkB
ij

. . .

V ⇒ U


. . . [

1−
(∑kB−1

i=1

√∑
σ2 (kB)

√∑
σ2 (kB − i)λ−i

ij

)]
λkB
ij

. . .

V

= CNkB


. . .

1−
(∑kB−1

i=1

√∑
σ2 (kB)

√∑
σ2 (kB − i)λ−i

ij

)
. . .


(70)

We abbreviate


. . .

1−
(∑kB−1

i=1

√∑
σ2 (kB)

√∑
σ2 (kB − i)λ−i

ij

)
. . .

 as g(kB). We then

select two different CNkA
and CNkB

to analyze the relationship between g(kA) and g(kB). When
kB is not significantly larger than kA, we note that there is:

[
1−

(
kA−1∑
i=1

√∑
σ2 (kA)

√∑
σ2 (kA − i)λ−i

ij

)]
·

[
1−

(
kB−1∑
i=1

√∑
σ2 (kB)

√∑
σ2 (kB − i)λ−i

ij

)]

=

[
1−

(
kA−1∑
i=1

√∑
σ2 (kA)

√∑
σ2 (kA − i)λ−i

ij

)]2

=

1−
kA−1∑

i=1

√√√√ n∑
i=1

σ2
i (U [kA]V)

√√√√ n∑
i=1

σ2
i (U [kA − i]V)λ−i

ij

2

(71)

We assume that the introduction of J (P1 ⊗ P2) and K does not significantly alter the larger eigen-
values in the adjacency matrix A. Therefore, we consider the larger singular values to correspond to
the larger eigenvalues. Assuming we only consider the top h largest singular values, we have:

g(kA)⊙ g(kB) =
∑
λ

1−
kA−1∑

i=1

√√√√ n∑
i=1

σ2
i (U [kA]V)

√√√√ n∑
i=1

σ2
i (U [kA − i]V)λ−i

ij

2

∼ h−

√
(h+ 1)2 (λ21 + λ22 + · · ·λ24)
λ21 + λ41 + · · ·+ λ2n + · · ·

∼ 0

(72)

This means that in our framework, g(kA) and g(kB) are approximately orthogonal.

Thus, we can obtain OCNP through the following operations: Let the k-th term of the selected
polynomials be Tn. Then, OCNk = CNk diag(Tk), and we only need to replace the step in
Algorithm 2 with:

29

Table 8: Results on link prediction benchmarks. The format is average score ± standard deviation.
+tricks means model with tricks of PLNLP.

COLLAB PPA CITATION2 DDI

METRIC HITS@50 HITS@100 MRR HITS@20

NODE2VEC 41.36±0.69 27.83±2.02 53.47±0.12 21.95±1.58
DEEPWALK 50.37±0.34 28.88±1.53 84.48±0.30 26.42±6.10
LINE 55.13±1.35 26.03±2.55 82.33±0.52 10.15±1.69
PLNLP 70.59±0.29 32.38±2.58 84.92±0.29 90.88±3.13
GIDN 70.96±0.55 - - -
OCN 72.43±3.75 69.79±0.85 88.57±0.06 97.42±0.34
OCNP 67.74±0.16 74.87±0.94 87.06±0.27 97.65±0.38
NCN+TRICKS 68.04±0.42 - - 90.83±2.83
OCN+TRICKS 69.03±0.94 69.23±0.39 88.97±0.12 94.25±0.71
OCNP+TRICKS 69.89±0.22 73.44±0.73 88.79±0.21 97.43±0.29

OCNk = CNk diag(Tk). (73)

K Comparison with other Link Prediction Models

A key strength of GNNs lies in their inherent capacity to preserve permutation equivariance, meaning
that edges with identical structural patterns—referred to as isomorphic edges—can give the same
prediction. On the other hand, traditional node embedding methods, such as Node2Vec [Grover
and Leskovec, 2016], LINE [Tang et al., 2015], and DeepWalk [Perozzi et al., 2014], often provide
inconsistent results for isomorphic edges, which can impair their ability to generalize. In our study, we
compared the performance of our proposed methods against these well-established node embedding
methods, using several OGB datasets. Furthermore, PLNLP [Wang et al., 2021] and GIDN [Wang
et al., 2022] improve their performance by employing a variety of training strategies, such as
adjustments to the loss function and data augmentation techniques. As seen in our experiments
(Table 8), we also applied the PLNLP tricks. While these adjustments did not yield substantial
improvements, our models still delivered superior performance compared to both the node embedding
methods and the models incorporating training tricks, irrespective of whether the tricks were applied.

L Ablation of MPNN

We provide an ablation study on the MPNN used in OCN and OCNP. The results are shown in Table 9.
The MPNN models include GIN [Xu et al., 2019], GraphSage [Hamilton et al., 2017], MPNN with
MAX aggregation, MPNN with SUM aggregation, MPNN with MEAN aggregation, and GCN [Kipf
and Welling, 2017].

M Scalability Comparison on Datasets

The time and memory consumption of models on different datasets are shown in Figure 9. On these
datasets, we observe results that are somewhat similar to those on the ogbl-collab dataset in Figure 5.
OCN and OCNP generally scale better than Neo-GNN. SEAL has the worst scalability. The memory
overhead of OCN is comparable to or slightly higher than NCN. In general, both the time and memory
overhead of OCNP are better than those of OCN.

Liang et al. [2024] experimentally emphasizes the importance of explicitly incorporating NCN
(number of common neighbors)-dependent structural information and highlights that ordinary GNNs
cannot learn such structural patterns. However, Dong et al. [2024] further demonstrates that while
ordinary GNNs indeed cannot learn CN, they can acquire CN knowledge by introducing noise as
auxiliary input (though the learned CN contains variance). This approach significantly increases
both parameter size and computational overhead, resulting in poor scalability. Our model exhibits
substantially better scalability and efficiency compared to MPLP [Dong et al., 2024].

30

Table 9: Ablation study on MPNN.

Dataset Model GCN GIN GraphSage MAX SUM MEAN

Cora GAE 89.01±1.32 70.45±1.88 70.59±1.70 61.63±4.43 - -
NCN 89.05±0.96 70.62±1.68 70.94±1.47 66.53±2.27 - -
OCN 89.82±0.91 73.55±1.91 53.14±1.87 46.94±1.84 45.46±1.32 45.29±1.70

OCNP 90.06±1.01 75.09±1.02 74.96±1.25 67.92±1.75 71.78±1.42 71.90±1.37

Citeseer GAE 91.78±0.94 61.21±1.18 61.23±1.28 53.02±3.75 - -
NCN 91.56±1.43 61.58±1.18 61.95±1.05 53.40±2.34 - -
OCN 89.57±1.97 66.29±4.09 65.87±3.73 88.91±3.27 90.05±2.28 93.62±1.30

OCNP 89.95±2.34 68.69±3.26 69.95±4.86 89.13±2.82 90.52±1.66 93.41±1.02

Pubmed GAE 78.81±1.64 59.00±0.31 57.20±1.37 55.08±1.43 - -
NCN 79.05±1.16 59.06±0.49 58.06±0.69 56.32±0.77 - -
OCN 83.96±0.51 65.10±1.14 63.80±1.06 52.43±6.07 61.82±0.58 52.62±6.01

OCNP 82.32±1.21 62.39±1.65 60.48±1.20 56.90±2.55 59.48±2.49 54.43±2.27

collab GAE 36.96±0.95 38.94±0.81 28.11±0.26 27.08±0.61 - -
NCN 64.76±0.87 64.38±0.06 63.94±0.43 64.19±0.18 - -
OCN 68.19±0.21 72.43±3.75 66.12±0.34 65.44±0.96 65.35±0.40 65.36±0.34

OCNP 67.74±0.16 57.70± 3.56 58.26±2.64 59.31±1.26 60.30±3.08 59.09±1.11

ppa GAE 19.49±0.75 18.20±0.45 11.79±1.02 20.86±0.81 - -
NCN 61.19±0.85 47.94±0.89 56.41±0.65 57.31±0.30 - -
OCN 69.79±0.85 67.29±0.91 OOM OOM 59.23±0.56 OOM

OCNP 74.87±0.94 73.08±1.03 OOM OOM 69.59±1.05 OOM

Citation2 OCN 88.57±0.06 70.09±2.77 OOM OOM 0.24±0.01 OOM
OCNP 87.06±0.27 OOM OOM OOM 0.34±0.09 OOM

DDI OCN 97.42±0.34 55.88±1.71 49.33±13.66 0.45±0.33 0.68±0.28 12.27±4.43
OCNP 97.65±0.38 52.38±2.98 49.03±12.72 0.19±0.15 1.04±0.46 6.94 ±2.71

N Discussion Highlighting Differences from NCN

The primary motivation of NCN (and NCNC) lies in proposing a new architecture - MPNN-then-SF
- aiming to address various limitations of the previous two major architectures (SF-then-MPNN and
SF-and-MPNN). Here, NCN is just one instantiation of MPNN-then-SF, while NCNC is merely an
iterative version of NCN. Neither focuses on incorporating higher-order CN; in fact, NCN found that
attempting to introduce higher-order CN leads to performance degradation, and causes out-of-memory
(OOM) issues on large graphs.

In contrast, our work directly targets the utilization of higher-order CN from the outset. We systemat-
ically investigate and summarize why existing methods of incorporating higher-order CN perform
poorly. Ultimately, we identified the two key phenomena mentioned in our study - these are precisely
what cause the performance deterioration when introducing higher-order CN. Therefore, our core
motivation is to unlock the potential of higher-order CN by addressing these two phenomena.

Equation (7) may appear similar to NCN at first glance. However, our primary motivation and
contribution lie in employing two key methods to incorporate higher-order CN for addressing the
two phenomena we first discovered. Thus, our core contribution focuses on the preprocessing of CN
before it reaches Equation (7) - the equation itself merely represents a summation step. The structural
resemblance to NCN exists because our innovation doesn’t involve architectural modifications,
hence we retained NCN’s MPNN-then-SF framework. We also analyzed the performance using
SF-and-MPNN structure in our ablation studies.

We focus on the values of: α1 for OCN1 and α2 for OCN2. To ensure fair comparison with OCN,
we also introduced higher-order CN to NCN and analyzed: α1 for CN1 and α2 for CN2. We present
the results from Figure 10a to Figure 10l.

31

(a)Cora (b)Citeseer

(c)Pubmed (d)Ogbl-ppa

(e)Ogbl-ddi (f)Ogbl-citation2

BUDDY SEAL Neo-GNN GAE NCN OCN OCNPNCNC

Figure 9: Inference time and GPU memory on datasets. The process we measure includes preprocess-
ing, MPNN, and predicting one batch of test links.

Across all datasets, the learned α1 and α2 values are highly consistent between OCN and OCNP.
Additionally, α1 and α2 remain relatively stable across all epochs (we only show epoch 1, epoch 50
and epoch 100 due to space limitations), with α1 always being greater than α2.

Through comparative analysis, we can draw the following conclusions:

1. The orthogonalization and normalization in our method lead to significantly faster convergence.

2. First-order neighbors are more important than second-order. Since NCN does not perform
orthogonalization between CN1 and CN2, it results in a certain similarity between CN1 and CN2,
which leads to instability in their importance. Therefore, NCN fails to maintain the inductive bias
where α2 < α1. On large graphs, NCN suffers from OOM issues and cannot complete the linear
combination of higher-order CN.

3. NCN reported performance degradation when incorporating higher-order CN which is likely
caused by the two key phenomena discovered in our work.

O Analysis of the Performance Gap Resulting from Changing the
Aggregation Strategy from Summation to Concatenation

We first formulate the final step of our original model OCN (OCNP) as:

MLP
(
MPNN(i, A,X)⊙MPNN(j, A,X) + α1 OCN1 ·MPNN(A,X) + α2 OCN2 ·MPNN(A,X)

)
(74)

And the final step of OCN-CAT (OCNP-CAT) is formulated as:

MLP
(
MPNN(i, A,X)⊙MPNN(j, A,X) ||α1 OCN1 ·MPNN(A,X) ||α2 OCN2 ·MPNN(A,X)

)
(75)

32

(a) OCN: Cora (b) OCNP: Cora

(c) NCN: Cora (d) OCN: Citeseer

(e) OCNP: Citeseer (f) NCN: Citeseer

(g) OCN: Pubmed (h) OCNP: Pubmed

(i) NCN: Pubmed (j) OCN: Collab

(k) OCNP: Collab (l) NCN: Collab

Figure 10: In the figure, α0, α1, and β represent the learned coefficients for OCN1, OCN2,
and MPNN(i, A,X) ⊙ MPNN(j, A,X) respectively in the expression MPNN(i, A,X) ⊙
MPNN(j, A,X) +

∑K
k=1 αk OCNk ·MPNN(A,X).

33

Algorithm 1 ORTHOGONALIZATIONOVERBATCH

Input: {CNk
t }Kk=1 over a mini-batch Bt = {{CNk

t }Kk=1}t;
Truncated polynomial order K;
Running inner product {{ξ̂i}Ki=1}t−1 over the last mini-batch.
Output: Orthogonalized data {OCNk

t }Kk=1

Initialize OCN1
t ← CN1

t /∥CN1
t ∥

for k = 2 to K do
if training then

for i = 1 to k − 1 do
ξit ← ⟨CNk

t , OCN
i
t ⟩ ▷ Inner product within this batch

βt ← 1/(t+ 1)

ξ̂it ← (1− βt)ξ̂it−1 + βtξ
i
t ▷ Maintain the global running inner product between

mini-batches
end for

end if
CNk⊥

t ←
∑k−1

i=1 ξ̂
i
t ·OCN i

t

OCNk
t ← CNk⊥

t /∥CNk⊥
t ∥

end for
return {OCNk

t }Kk=1

For the -CAT variant: 1. The MLP parameters are divided into three parts (W1||W2||W3). 2. The
norms of different parts and α values jointly determine the importance of different orders.

Experimental results show the norms of the linear layers as presented from Figure 11a to Fig-
ure 11e, where W1 corresponds to OCN1 W2 corresponds to OCN2 and W3 corresponds to
MPNN(i, A,X) ⊙ MPNN(j, A,X). For OCN (OCNP), the MLP parameters W do not need
to be split into (W1||W2||W3), and their norms are shown by the purple line (from Figure 11f to
Figure 11j).

Our empirical analysis reveals two key insights regarding the model’s learning behavior:

1. Norm Distribution Pattern: The parameter norms associated with higher-order neighbor
representations exhibit monotonic growth across network layers (i.e., ∥W (k)∥2 increases
with order k), indicating the model’s inherent preference for amplifying higher-order neigh-
borhood information through geometric scaling.

2. Operator Dynamics Comparison: Through controlled experiments comparing concatena-
tion (CAT) and summation (SUM) operators, we observe:

• Magnitude Disparity: CAT implementations consistently produce larger parameter
norms than their SUM counterparts (∥WCAT∥2 > ∥WSUM∥2)

• Control Mechanism: The SUM formulation fSUM = lin(
∑K

k=1 αkH
(k)) enables

explicit control over neighborhood order importance through learnable coefficients
{αk}Kk=1, where αk directly determines the relative contribution of k-th order features.

• Coupling Effect: In contrast, the CAT formulation fCAT = lin(∥Kk=1αkH
(k)) demon-

strates parameter entanglement between projection matrices and coefficients, as the
effective importance becomes jointly determined by αk and the induced ∥W [:, dk]∥2
norms in the linear transformation, where dk denotes the dimension slice for k-th order
features.

P Algorithm

Please refer to Algorithm 1 and Algorithm 2.

34

(a) -CAT: Cora (b) -CAT: Citeseer

(c) -CAT: Pubmed (d) -CAT: Collab

(e) -CAT: DDI (f) -SUM: Cora

(g) -SUM: Citeseer (h) -SUM: Pubmed

(i) -SUM: Collab (j) -SUM: DDI

Figure 11: Norms of the linear layers where W1 corresponds to OCN1 W2 corresponds to OCN2 and
W3 corresponds to MPNN(i, A,X) ⊙MPNN(j, A,X). For OCN (OCNP), the MLP parameters
W do not need to be split into (W1||W2||W3), and their norms are shown by the purple line.

35

Algorithm 2 OCNOVERBATCH

Input: {CNk
t }Kk=1 over a mini-batch Bt = {{CNk

t }Kk=1}t ;Truncated polynomial order
K;Running inner product {{ξ̂i}ki=1}t−1 and ψ̂k

t−1 over the last mini-batch;input graph A, a
node feature matrix X and target links {(i1, j1), (i2, j2), . . . , (it, jt)}
Learnable Parameters: αk, all parameters in MPNNs
Output: link existence probability Âij

for k = 1 to K do
if training then
ψk
t ← CNk⊤1h

γt ← 1/(1 + t)|
ψ̂k
t ← (1− γt)ψ̂k

t−1 + γtψ
k
t ▷ Convergence to the full graph of CNk ⊙ normalizedCNk

end if
CNk

t ← CNk
t · diag

((
ψ̂k
t

)−1
)

end for

{OCNk
t }Kk=1 ←ORTHOGONALIZATIONOVERBATCH (76)

({CNk
t }Kk=1,K, {{ξ̂i}ki=1}t−1) (77)

Zij ← OCN(i, j, A,X) as described in (7)
Âij ← σ(MLP(zij))
return Âij

Q Theoretical Analysis with Barabási-Albert Model

The theoretical analysis is conducted on random graph models, which may not fully capture the
structural properties of real-world networks. Therefore, we extend the theoretical arguments to the
more realistic Barabási-Albert model. Given the numerous variants and extensions of this model, we
select a class with broader universal significance. The specific construction method of a graph in this
model is as follows:
Definition Q.1. (Graph-Construction in Barabási-Albert) Form Gn from Gn−1 by adding vertex n,
sampling m (with replacement) vertices w1, . . . , wm from Gn−1, and connecting n to each wi.

Conditioned on the past, the wi are i.i.d.: for k < n

Pr(wi = k) =
degn−1(k)

Z
, Z =

n−1∑
k=1

degn−1(k). (78)

Definition Q.2. We define the score sij based on the linking probability of (i, j):

Pr(i ∼ j|sij , Gmax(i,j)−1) =
1

1 + eα(sij−rmin(i,j))
, (79)

where r satisfies deg(k) = NV (rk) = NV (1)rDk , N = #nodes.

Proposition Q.3. When connecting an edge at vertex b, the expectation of degree of vertex a
(assuming b > a) is:

E(degb(a)) = m
(2|a− b| − 1)!!

2|a−b||a− b|!
. (80)

Simultaneously,

E[Pr(a ∼ b|Gb−1)] =
1

4|a−b|

(
2|a−b|
|a−b|

)
∼ 1√

π|a− b|
∼ O(|a− b|− 1

2). (81)

Proof. Consider that when forming Gξ, the newly added vertex is ξ, and let the number of edges
connecting ξ to the previously existing vertices be m, i.e., degξ(ξ) = m. When forming Gξ+1, the

36

newly added vertex is ξ + 1, and it is clear that the expected contribution of ξ + 1 to the degree of ξ
at this time is

degξ+1(ξ) =
degξ(ξ)

2m(ξ − 1)
·m. (82)

By analogy, when forming Gξ+2, we have

degξ+2(ξ) =
degξ(ξ) + degξ+1(ξ)

2mξ
·m. (83)

At this point, we can restate the problem as the following problem of finding the general term of a
sequence:

The first term E1 = 0, the second term E2 = m, and for v ≥ 3, the recurrence formula is:

Ev =
E1 + E2 + · · ·+ Ev−1

2(v − 2)
. (84)

According to the recurrence formula, for v ≥ 3: Ev = Sv−1

2(v−2) .

Meanwhile, the partial sums satisfy: Sv = Sv−1 + Ev . Substituting Ev:

Sv = Sv−1 +
Sv−1

2(v − 2)
= Sv−1 ·

2v − 3

2(v − 2)
. (85)

Iterating from v = 3:

Sv = S2

v∏
j=3

2j − 3

2(j − 2)
= m

v∏
j=3

2j − 3

2(j − 2)
, v ≥ 2. (86)

Splitting the product into two parts:

v∏
j=3

2j − 3

2(j − 2)
=

 v∏
j=3

1

2

×
 v∏

j=3

2j − 3

j − 2

 . (87)

The first part:

v∏
j=3

1

2
=

(
1

2

)v−2

. (88)

For the second part, let k = j − 2, then when j = 3, k = 1, and when j = v, k = v − 2:

v∏
j=3

2j − 3

j − 2
=

v−2∏
k=1

2(k + 2)− 3

k
=

v−2∏
k=1

2k + 1

k
(89)

Now compute the product
∏m

k=1
2k+1

k , where m = v − 2:

m∏
k=1

2k + 1

k
=

∏m
k=1(2k + 1)∏m

k=1 k
=

∏m
k=1(2k + 1)

m!
(90)

Given:

m∏
k=1

(2k + 1) =
(2m+ 2)!

2m+1(m+ 1)!
(91)

37

Therefore:

v−2∏
k=1

2k + 1

k
=

(2(v − 2) + 2)!

2(v−2)+1((v − 2) + 1)!(v − 2)!
=

(2v − 2)!

2v−1(v − 1)!(v − 2)!
(92)

Sv = m ·
(
1

2

)v−2

· (2v − 2)!

2v−1(v − 1)!(v − 2)!
= m · 2−2v+3 · (2v − 2)!

(v − 1)!(v − 2)!
(93)

Note that:

(2v − 2)!

(v − 1)!(v − 2)!
= (v − 1)

(
2v − 2

v − 1

)
, (94)

Therefore:

Sv = m(v − 1)

(
2v − 2

v − 1

)
2−2v+3, v ≥ 2. (95)

Ev =
m(v − 2)

(
2v−4
v−2

)
2−2v+5

2(v − 2)
= m

(
2v − 4

v − 2

)
2−2v+4. (96)

That is:

Ev = m · 2
v−2(2(v − 2)− 1)!!

(v − 2)!
·
(
1

4

)v−2

= m · (2v − 5)!!

(v − 2)!
· 1

2v−2
(97)

Returning to our original problem, we consider the expectation of the degree of vertex a when
connecting an edge at vertex b, and we can clearly obtain:

E(degb(a)) = m
(2|a− b| − 1)!!

2|a−b||a− b|!
. (98)

And we have:

E[Pr(a ∼ b|Gb−1)] =
1

4|a−b|

(
2|a−b|
|a−b|

)
∼ 1√

π|a− b|
∼ O(|a− b|− 1

2). (99)

Proposition Q.4. For any δ > 0, with probability at least δ, we have

P2k(i, j) ≤
∏2k (2∆++1)!!

2∆+∆+!
+
√

∆+ ln δ−1

2

22k(min(i, k1, · · · , k2k−1, j)− 2)2k
, (100)

where ∆+ = max(|ki − ki+1|).

Proof. The idea of the proof is very similar to our previous proof of Theorem 5.3. First, from the
result of Theorem Q.3, we can easily obtain: For any t > 0,

Pr (degb(a)− E[degb(a)] ≥ t) ≤ exp

(
− 2t2

|a− b|m2

)
. (101)

Similar to the method used earlier to prove Theorem 5.3, we can similarly obtain:

38

P (a ∼ b) ≤
m(2|a−b|+1)!!
2|a−b||a−b|! +

√
|a−b| ln δ−1

2

2m(b− 2)
, (102)

Therefore we can obtain:

P2k(i, j) = P (a ∼ k1 ∼ k2 ∼ · · · ∼ b) ≤
∏2k (2∆++1)!!

2∆+∆+!
+
√

∆+ ln δ−1

2

22k(min(i, k1, · · · , k2k−1, j)− 2)2k
, (103)

Proposition Q.5. For any δ > 0, with probability at least δ, we have

sij ≤ 2k
[1
α
ln(

2(N − 2)
(2N+1)!!
2NN !

+
√
N ln δ−1

4

−1)+
[1

NV (1)
(m

(2N + 1)!!

2NN !
+

√
Nm2

2
ln δ−1)

] 1
D
]
, (104)

where N = #nodes,k represents the order of the k-hop CNs.

Proof. From the process of obtaining Equation (102) and Theorem Q.2, we can obtain:

1

1 + eα(dkiki+1
−rmin(ki,ki+1))

≥
m(2|ki+1−ki|+1)!!

2|ki+1−ki||ki+1−ki|!
+
√

|ki+1−ki| ln δ−1

2

2(max(ki+1, ki)− 2)
. (105)

Let |ki+1 − ki| = t, we can get:

dkiki+1
≤ 1

α
ln(

2((max(ki+1, ki)− 2)
(2t+1)!!

2tt! +
√
t ln δ−1

4

− 1) + rmin(ki,ki+1). (106)

So next we only need to compute rmin(ki,ki+1), let k− = min(ki, ki+1).

We have

deg(k−) = NV (rk−) = NV (1)rDk ≤
m(2|N − k−|+ 1)!!

2|N−k−||N − k−|!
+

√
|N − k−|m2 ln δ−1

2
, (107)

so:

rmin(ki,ki+1) ≤
[1

NV (1)
(
m(2|N − k−|+ 1)!!

2|N−k−||N − k−|!
+

√
|N − k−|m2 ln δ−1

2
)
] 1

D (108)

In summary,

dij ≤ 2k·dkiki+1 ≤ 2k
[1
α
ln(

2((max(ki+1, ki)− 2)
(2t+1)!!

2tt! +
√
t ln δ−1

4

−1)+
[1

NV (1)
(
m(2|N − k−|+ 1)!!

2|N−k−||N − k−|!
+

√
|N − k−|m2 ln δ−1

2
)
] 1

D
]
.

(109)

Proposition Q.6. After introducing normalizedCN, for any δ > 0, with probability at least δ, we have

sij ≤ 2k
[1
α
ln(
[
− n− 2

N − n− 1
W
(
−N − n− 1

n− 2
C

1
n−2

)]− 1
k−1)+

[1

NV (1)
(m

(2N + 1)!!

2NN !
+

√
Nm2

2
ln δ−1)

] 1
D
]
,

(110)
where W (·) is Lambert W function, ζ is the maximum degree of all k-hop CNs of (i, j), the total
number of paths of length l between i and j is denoted as ηl(i, j)

C =
1(
ζ
2

) D2k−1

η2k −D2k−2

√
N ln δ−1

4

, (111)

D is the maximum degree on the graph.

39

Proof. Using an idea very similar to the process of proving Theorem 5.4, we first obtain:

E
[
η∑

CNk
(i)
]
⩾

(
ζ

2

) ∏k (2∆++1)!!

2∆+∆+!
+
√

∆+ ln δ−1

2

2k(min(i, k1, · · · , k2k−1, j)− 2)k

n1− ∏k (2∆−+1)!!

2∆−∆−!
+
√

∆− ln δ−1

2

2k(max(i, k1, · · · , k2k−1, j)− 2)k

N−n−1

(112)

Let D be the maximum degree in the entire graph, then we have:

η∑
CNk

(i) ≤
D2k−1

∏2k (2∆++1)!!

2∆
+

∆+!
+

√
∆+ ln δ−1

2

22k(min(i,k1,··· ,k2k−1,j)−2)2k(
ζ
2

)[∏k (2∆++1)!!

2∆
+

∆+!
+

√
∆+ ln δ−1

2

2k(min(i,k1,··· ,k2k−1,j)−2)k

]n[
1−

∏k (2∆−+1)!!

2∆
−

∆−!
+

√
∆− ln δ−1

2

2k(max(i,k1,··· ,k2k−1,j)−2)k

]N−n−1
+D2k−2

√
N ln(2δ)−1

4

(113)

let P (∆+) =
(2∆++1)!!

2∆
+

∆+!
+

√
∆+ ln δ−1

2

2(min(i,k1,··· ,k2k−1,j)−2) , P (∆−) =
(2∆−+1)!!

2∆
−

∆−!
+

√
∆− ln δ−1

2

2(min(i,k1,··· ,k2k−1,j)−2) and
∏k

P (∆
++∆−

2) =

λ, we have:

η∑
CNk

(i) ≤ D2k−1(
ζ
2

)
λn(1− λ)N−n−1

+D2k−2

√
N ln(2δ)−1

4
. (114)

We then get:

(η∑
CNk

(i))n−2(1− η∑
CNk

(i))N−n−1 ≤ 1(
ζ
2

) D2k−1

η2k −D2k−2

√
N ln δ−1

4

(115)

So we can transform the problem into finding a closed-form upper bound for x based on the inequality
xn−2(1− x)N−n−1 ≤ C. We can solve this problem using the following method.

Clearly, we have:
xn−2(1− x)N−n−1 ≤ xn−2e−(N−n−1)x. (116)

Let k = n− 2, m = N − n− 1(> 0), and replace the original equation with the amplified upper
bound:

xke−mx = c. (117)

The left-hand side of it is always greater than or equal to the left-hand side of the original equation,
so its solution xup must be less than or equal to the true solution of the original equation.

xke−mx = c =⇒ k lnx−mx = ln c =⇒ x = e
ln c
k e

m
k x. (118)

xe−
m
k x = c1/k =⇒

(
−m
k
x
)
e−

m
k x = −m

k
c1/k. (119)

Let y = −m
k x, then yey = −m

k c
1/k.

Using the definition of the Lambert W function W (z)eW (z) = z, we obtain xup =

− k
mW

(
−m

k c
1/k
)

(k = n− 2,m = N − n− 1).

40

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have included discussion for our contributions in the Abstract and Intro-
duction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4.1, Section 4.2, and Section 6 all include discussions of the work’s
limitations from different perspectives.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

41

Answer: [Yes]

Justification: Please see theoretical appendix for details.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to the detailed elaboration of the methodology in the main text,
the algorithm information in the appendix and our submitted source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

42

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the source code along with our submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have shown detailed experimental settings/details in the Experiment and
Appendix section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided standard deviation as part of our experiment results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

43

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm this perform conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper does not perform societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

44

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not include any data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited correctly for the existing data and models we referred.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

45

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

46

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM was used solely for grammar checking purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

47

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Related Work
	Orthogonalization
	Scalable Orthogonalization
	Orthogonal Common Neighbor with Polynomial Filters

	Normalization
	Theoretical Justification for Normalization

	Orthogonal Common Neighbor
	Experiment
	Evaluation on Real-World Datasets
	Ablation Analysis
	Scalability

	Conclusion
	Evaluating the Effectiveness of Orthogonalization
	Detailed Representation and Meaning of High-order Common Neighbors
	Proof of Convergence to Global Orthogonality.
	Related Derivation of normalizedCN.
	Proof of Theorem 6.1
	Dataset Statistics
	Model Architecture
	 Experimental Settings
	 Time and Space Complexity
	OCNP
	Comparison with other Link Prediction Models
	Ablation of MPNN
	Scalability Comparison on Datasets
	Discussion Highlighting Differences from NCN
	Analysis of the Performance Gap Resulting from Changing the Aggregation Strategy from Summation to Concatenation
	Algorithm
	Theoretical Analysis with Barabási-Albert Model

