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ABSTRACT

Deep Learning models for image classification are known to be vulnerable to
adversarial examples. Adversarial training is one of the most effective ways to
provide defense against such threats, however it is a cumbersome process which
requires many data points and long computation times. In a setting where only
small amounts of data are available for this process, adversarial training may neg-
atively impact the classification performance on clean images by overfitting on
the small amount of data. This would be undesirable, especially when a large pre-
trained model with satisfactory performance on clean data is already available. We
propose a new strategy to make a previously-trained model more robust against
adversarial attacks, using scarce data and without degrading its performance on
clean samples. The proposed strategy consists in freezing the parameters of the
originally trained base model and adding small auxiliary networks along the ar-
chitecture, which process the features to reduce the effect of any adversarial per-
turbation. This method can be used to defend a model against any arbitrary attack.
A practical advantage of using auxiliary networks is that no modifications on the
originally trained base model is required. Therefore, it can serve as a patch or add
on to fix large and expensive existing deep learning models with little additional
resources. Experiments on the CIFAR10 dataset showed that using only 10% of
the full training set, the proposed method was able to adequately defend the model
against the AutoPGD attack while maintaining a classification accuracy on clean
images outperforming the model with adversarial training by 7%. Indeed, the
proposed method still performs reasonably well compared to adversarial training
using 1% of the full training set.

1 INTRODUCTION

Nowadays Deep Neural Networks (DNNs) have become the prominent kind of machine learning
model used in most fields. These models have millions of parameters and, with sufficient amounts of
labeled data, they usually provide satisfactory results for most tasks, such as image classification or
detection. With their increasing popularity and promising performances, these models are starting to
be deployed in a variety of real-world applications ranging from self-driving cars to healthcare. This
calls for greater robustness to previously unseen data and potential threats from a malicious agent. In
this regard, it has been discovered that DNNs are vulnerable to specifically-crafted variations in the
input data, known as adversarial attacks (Szegedy et al.,[2014), which are almost invisible to a human
observer but can cause dramatic changes to the prediction of a model. Image classification models
appear to be particularly vulnerable to this hazard and they are the main focus of this manuscript.

Adversarial training (Goodfellow et al., |2015)) is a well-known method for training models to be
robust against adversarial examples. However, it is fairly expensive as it generally requires big
quantities of data and substantial computational power. These conditions may not be readily sat-
isfied in every setting. Assume that a base model is given, trained on clean images to satisfactory
performance and arbitrarily big. If only limited data is available for adversarial training, the process
may degrade the ability of the base model to classify clean samples by overfitting on the new small
dataset.
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This work proposes a strategy to prevent the model from losing performance on clean images while
learning a defense mechanism against adversarial attacks with few available data. This is achieved
by modifying the architecture of the base model by adding one or more small networks (called
fixer modules), trained to enhance the defense capability of the model. A fixer module takes as
input a tensor of feature maps and processes them before adding them back to the input in a “skip
connection” fashion. A penalty term is introduced in the loss function with the aim of “fixing” the
features when the input is an adversarial example, to make them as close as possible to their natural
counterpart. The weights of the base model are frozen and only the parameters of the fixer modules
are tuned during the training phase, which is carried out using both the clean images and their
adversarial examples generated by a chosen attack. The choice of attack during training is arbitrary;
in the reported experiments the focus was on AutoPGD (Croce & Heinl 2020), Carlini-Wagner (CW)
(Carlini & Wagner, 2017b) and FGSM (Goodfellow et al.,2015).

Experiments were carried out on the CIFAR10 dataset and a dataset of medical images, a domain
where model robustness is fundamental. Results on the CIFAR10 dataset showed that the proposed
method was able to provide a satisfactory defense against the chosen attack, comparable to that
adversarial training. Furthermore, when using smaller subsets of the full training set to learn a
defense strategy, the proposed method provided a competitive defense with little degradation to the
performance on clean images. In particular, when using 10% of the training data for adversarial
training against the AutoPGD attack, the proposed method retained ~ 7% more accuracy on clean
samples than adversarial training while also providing a slightly better defense against the same
attack. Similarly, when using 1% of the training data, the proposed method achieved a defense
performance comparable to standard adversarial training with a positive difference of ~ 18% on
the classification of clean samples. All the implementations have been done using the Tensorflow 2
library (Abadi et al., 2016).

The rest of the work is organized as follows: section[2provides a short summary of related works in
the field of adversarial threats; section [3| presents the proposed method in detail; section ] describes
the experimental setup and the results obtained across a number of experiments; finally section [3]
concludes the work.

2 RELATED WORKS

The concept of adversarial examples was first introduced by Szegedy et al.|(2014)), highlighting the
vulnerability of DNNs to these specially crafted inputs. Given a model g described by the set of
parameters 6, the objective of an adversarial attack is to find a small enough perturbation £ such
that the input  + & would be misclassified by the model while keeping a natural appearance to the
human eye. Such attacks vary based on the knowledge that is assumed is possessed by the attacker
and their objective. Most adversarial attacks are untargeted, meaning that the objective is solely
to cause a misclassification. Targeted attacks on the other hand aim to change the classification
of a given input to a specific label or value. In general, perturbations are computed singularly for
each input. However, there is also ongoing research on universal adversarial perturbations (Zhang
et all [2021a); i.e. model-specific perturbations (rather than sample-specific) that would cause a
misclassification when applied to any sample from the domain of the classifier. Concerning the
knowledge of the attacker, attacks are generally divided in white- and black-box attacks (Papernot;
et al., 2017} Brendel et al.| 2018}; |Guo et al., 2019} [Kotyan & Vargas, [2020); the former assuming
that the attacker has full access to the architecture, parameters and output of the model, the latter
constraining the attacker only to the knowledge of the output of the model. FGSM (Fast Gradient
Sign Method) (Goodfellow et al.l[2015])) is one of the earliest and most widespread white-box attacks,
using the sign of the gradients of the output to generate a perturbation. The idea was further refined
as an iterative process in the PGD (Projected Gradient Descent) attack (Madry et al.l 2019). To
reduce the dependence of the attack from hyperparameters, a parameter-free version of this attack,
known as AutoPGD, was introduced in (Croce & Hein| (2020). Other notable white-box attacks are
DeepFool (Moosavi-Dezfooli et al., [2016)), which approximates the classifier to a linear decision
boundary, and the Carlini-Wagner (CW) attack (Carlini & Wagner, |2017b), an iterative method
aiming at minimizing a certain objective function dependent on the model’s output logits under
specified constraints.
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To defend against these attacks, the most direct method is adversarial training (Goodfellow et al.,
2015), which consists in training a model using the adversarial examples as training samples. This
method is known to be quite robust but is very data-dependent and requires substantial computa-
tional power as adversarial examples are continuously computed during training. The source of
the attack chosen for training also influences the computational complexity of this method. Some
defense methods attempt to preprocess inputs to reduce the perturbation introduced by the attacks
(Samangouei et al., 2018}, Song et al., 2018)) or to detect adversarial examples (Carlini & Wagner,
2017a). Transformation-based methods (Xie et al., [2018; |Prakash et al., 2018) apply a transforma-
tion to the input to deflect the attack while maintaining the performance on uncorrupted images. In
particular, the work by Kou et al|(2020) takes advantage of those by generating a distribution of the
logits from the transformed samples and using those to train a robust distribution classifier without
needing to generate adversarial examples at training time. To reduce the need for computationally
expensive adversarial examples, other methods propose building models intrinsically hard to attack
by a deeper understanding of their vulnerabilities (Papernot et al.l 2016b; |Li et al., 2019; [Zhang
et al.,|2021b; Paknezhad et al.l 2021). Similarly to this work, in Xie et al.| (2019) the architecture is
modified with small modules to denoise the features extracted by the model rather than preprocess-
ing the input features. Overall, the research community has been tackling the problem of adversarial
vulnerability in many different ways. As the field evolves, guidelines are being more clearly de-
fined (Carlini et al., 2019) and open-source libraries with multiple implementations of attacks and
defenses play a pivotal role (Papernot et al., [2016aj |Nicolae et al., |[2018]).

3 METHODS

3.1 FIXER MODULE

A deep learning base model g(x, 0) is given, parametrized by the set of parameters 6 such that
g : X — Y. The model takes as input an image z € X C RPo and maps it to a vector §(©) =
g(z,0) € Y C [0,1]¢ representing the predicted class of the input, where Dy is the dimension of
the input image (height xwidth x channels) and C'is the number of possible classes. The true value
of the label is encoded by the one-hot vector y € {0,1}“. The base model g can be decomposed
in a series of b sequential blocks such that g = g; 0 go--- 0 g, and 0 = gy(gp_1(--- g1(x))))).
The base model architecture is enhanced by the addition of fixer blocks (figure[I)), placed in between
each of the blocks (figure[2). These blocks aim to modify the learned feature maps to strengthen the
model against adversarial attacks.

A fixer module is represented in figure |1 it is inserted in between the blocks g; and g;+1, where
i € {1,...,b} indicates a block of the base model. It takes as input a tensor of feature maps
hEé) € RP¢ and outputs the tensor hgo) + 5¢>i(hl(-6)) € RP:, where § € [0, 1] is a scalar coefficient.
The input tensor goes through a function ¢; : RP: — RP: composed of two convolutional layers
parametrized by 6,,: the first is a 1 X 1 convolution which reduces the number of channels by a
factor p, the second is a 3 x 3 convolution with activation function {, which outputs a tensor with as
many feature channels as the input tensor. These operations maintain the same spatial dimensions

of the input tensor. The output of the fixer module is computed by adding the input hl@ to @; (hz@)
scaled by the scalar coefficient . In summary, the following relations exist among these variables

hD = gipa (B + 60:(R)) (1

A choice of 6 = 0 yields the unmodified base model g. Thus, a tensor hgo) indicates the output of
the i-th block obtained when all the ¢ are set to 0, which is equivalent to the output of the i-th block
in the base model.

The base model g, modified with the addition of fixer modules is indicated by the symbol g4 : X —
Yand gy = g4(x, 0,0,) , where 05 = {04,;Vi € {1,...,b—1}} is the set of parameters introduced
by the fixer modules. A representation of a generic model split in b = 3 blocks and with the addition
of fixer modules is shown in figure[2]

In the experiments, the base model architecture is that of a ResNet9, which has been splitin b = 3
blocks at arbitrarily chosen points.
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Figure 1: Representation of a generic fixer block and its operations. The input hl(-é) is a tensor of
dimensions H; X W; x C; where H; and W; are the spatial dimension and C} is the number of feature
maps (or channels). The parameter p, called compression factor, simply defines the compression of
the feature channels carried out by the 1 x 1 convolution; in the experiments p = 4.
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Figure 2: Representation of a model divided in b = 3 blocks with the addition of 2 fixer modules.

3.2 TRAINING AND LOSS FUNCTION

When training g4, the core idea is to keep the ability of the base model to classify natural images
and enhance it with robustness to adversarial examples. In this scenario, the base model has already
been trained to a sufficient level of performance. To retain this, its parameters @ are going to be
frozen. The only trainable parameters will be those of the fixer modules, indicated by 6.

With this in mind the model g is trained with the following strategy, exemplified for one generic
sample & with label y: for each natural image x, a chosen attack is executed against the base model
g to generate the corresponding adversarial sample x4, ; i.e.

T4y = any._attack(x, g) 2)

The attack function can be any attack from the literature. In the experiments AutoPGD (Croce &
Hein|, 2020) was used as the main attack during training phase due to its strength and parameter-free
nature. Additional experiments have also been conducted using FGSM (Goodfellow et al.[{(2015) and
Carlini-Wagner Carlini & Wagner| (2017b) (figure [6)).

Both natural and adversarial samples are used to update the weights 84 of the fixer modules. This
is done using a loss function with two terms: a cross-entropy loss term [ x g (in particular the focal
cross-entropy was used (Lin et al., 2017)) and a distillation term [, weighed by a parameter \. The
second penalty has the aim of making the features obtained from the adversarial sample closer to

the features of the natural sample in the base model; i.e. the term ¢ dh‘(h,(;&)) should compensate the
effect of the adversarial noise at a hidden feature level and be equal to zero when the sample is not
adversarial. To achieve this a distance metric has to be defined, in this work the standard ¢ norm
was used. In summary, given a sample x, the true label y and its adversarial example x4, (eq. [2),
the objective is to minimize the loss

r%in Ixe(Y,96()) +IxE(Y, 96(Tadv)) + Mp (T, Tadw) 3)

]

with Ip(x, Zegy) = Z Ly (hz(-[s), h"EO)) + £2(hz(‘j;a)dw hz(‘,oa)dv) “)
vie{l,..,b—1}

where hl(-‘s) and hl(-o) are obtained from equationwith x as an input to the model. Similarly, hg(sa) do

and h(.o)

i.adv are the output features of the i-th block when @4, is the input to the model.
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4 RESULTS

4.1 DATA

Experiments have been carried out on the CIFAR10 dataset (Krizhevsky et al.,|2009) and a dataset
of biomedical images (henceforth addressed as HIST). CIFAR10 (Krizhevsky et al.l[2009) is a well-
know collection of low-resolution (32 x 32 x 3) RGB natural images belonging to 10 categories.
The dataset is provided with a split into training Dy, (45k images), validation D,; and test Dy,
sets. In this work, the training set has been further sub-sampled in datasets that have 10% and
1% of its samples, DRO%} and ]Dl[flr%] respectively. Additional experiments were carried out using a
dataset of medical images, a domain where data and computational power are often scarce. Limited
attention is given to biomedical images in the adversarial domain [Bortsova et al.| (2021); Ma et al.
(2021), which could be a prime target for malicious agents. The HIST data is made up of 128x128
RGB patches cropped from the TCGA-LUAD slides (Albertina et al., 2016)) at 10x zoom level (1
micrometer/pixel at specimen-level). Each patch is assigned a label in one of four classes, based on
the region from where it comes in the whole slide: artifact, benign, malignant, and other. Data is
segregated at the patient level into “training” (20k patches) and “test” (14k patches) sets, meaning
that the patches cropped from a single patient are either in one or the other set but never both to
avoid patient-level data leakage |Oner et al.|(2020). Similar to the CIFAR10 dataset, the training set
has been sub-sampled to 10% and 1% to investigate the efficacy of the various methods with less
available data.

During the training phase, the input images are subject to a series of augmentation procedures at
each training iteration. Images are first padded on both sides, followed by a random crop of the
original shape of the image. This is followed by random flips and solarization. Finally, random
cutout of dimension 10 x 10 (DeVries & Taylor, |2017) is applied. This augmentation procedure
is followed both for training the base model (without adversarial samples) and the further defense
experiments. Do note that the augmentation procedure is applied before generating the adversarial
sample; i.e. the adversarial sample is a corrupted version of the augmented sample. Additional
augmentation details in section[A.3]

4.2 THREAT DEFINITION

Experiments test the ability of the proposed method to defend from adversarial attacks carried out
on the base model. It follows that the adversarial examples (both during training and testing) are
generated using the base model as a target for the attack. This means that the assumption is being
made that the attacker is unaware of the patch that has been applied on the base model. In the ex-
periments, this assumption holds at all times (i.e. both training and test phase). During the training
phase, adversarial examples can be generated using any attack of choice (as defined by Eq. [2). For
the reported experiments, the AutoPGD attack (Croce & Heinl |2020) was used as main attack for
generating adversarial samples during training, with additional experiments done with CW (Carlini
& Wagner, 2017b) and FGSM (Goodfellow et al.,2015). Unless specified otherwise, the maximum
allowed perturbation is e = 8/255. During testing, samples are generated using the attacks: Au-
toPGD with € = 8/255 (AutoPGD) and ¢ = 16/255 (AutoPGD-16); Carlini & Wagner attack (CW)
(Carlini & Wagner, [2017b)); Fast Gradient Sign Method (FGSM) (Goodfellow et al., [2015)); Pro-
jected Gradient Descent (PGD) (Madry et al.,|2019). All the attacks have been implemented using
the Adversarial Robustness Toolkit (ART) library (Nicolae et al.l 2018). Additional details on the
parameters of these attacks can be found in the appendix section|A.2]

4.3 BASE MODEL

The base model can be any arbitrary model as long as it can be split into subsequent function blocks.
For our experiments, the ResNet9 architecture has been chosen (details in section[A.4). This model
has been trained on the full training set Dy, of natural images to satisfactory performance on clean
images. Training is carried out using a focal cross-entropy loss function |Lin et al.|(2017)) and a SGD
implementing the OneCycle scheduler for the values of learning rate and momentum |Smith| (2018).
The same model architecture is used in the experiments for both CIFAR10 and HIST datasets.
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4.4 RESULTS ON CIFAR10

The base model trained on the CIFAR10 training set achieves an accuracy on 91.20 £ 0.80%[]_-] on
D;s. The same model performs at 4.6 + 0.40% accuracy when the same dataset is corrupted through
an AutoPGD attack. Further details on the performance of the base model can be found in table ]
and figure[d] All subsequent models are initialized with the weights of the base model.

Firstly an ablation study was carried out on some hyper-parameters of the proposed method, these
are: the activation function of each ¢; (¢ € {linear; tanh }, see ﬁgure; the coefficient § in equation
(6 € {0.1,1}); the coefficient of the distillation term in the loss function equation[3] (A € {0,1}).

Furthermore, the amount of data used to defend the pre-trained model is also investigated; the sub-

sets of the full training set, ]DETO] and ]D,[flroo], are employed. The investigated hyperparameters are

summarized in the appendix section

The plot in figure |3| summarizes the performance of the proposed method when trained on ID)BO%]

and using a variety of hyper-parameters. It appears that the choice of a low value of § coupled with
a hyperbolic tangent activation function does not work well, showing low values when defending
against the threats. The low activation values probably made the training harder for the model, which
appears to have retained a behavior mostly similar to the base model. A higher value of the activation
appears to provide better results both for natural and corrupted images. In most instances, the choice
of A = 1 yielded a more robust model than its counterpart with A = 0. As expected, the choice of
A = 1 reduced the degradation of performance on clean samples. Overall, the combination of “fx-a”
(linear, § = 1, A = 1) appears to perform the best: the linear activation function coupled with § = 1
allow for a wider range of behaviors for compensating the effect of the adversarial perturbation and
the A = 1 coefficient aids in maintaining the performance on clean samples.

The model was compared to other defense strategies available in the literature. The standard adver-
sarial training (adv train) Goodfellow et al.[(2015) fine-tunes the whole model by generating adver-
sarial examples of the samples in the dataset and training the model on those. For a fair comparison
with the proposed method, the model trained with adversarial training is also shown the pair of clean
and adversarial images at each epoch. The method proposed by Xie et al.|(2019) (denoise) proposes
to add denoising blocks along the architecture in a skip-connection fashion. This method has been
implemented by substituting the “fixer blocks” with “denoising blocks” as described in the original
work; in particular, the non-local means without embedding were chosen as denoising filters. Lastly
the distribution regression network (drn) proposed by |Kou et al.| (2020) was also employed. This
method uses a transformation strategy to generate several distorted versions of the input sample and
through Gaussian KDE estimates the distribution of their softmax logits. A Distribution Regression
Network (DRN) (Kou et al., |2019) is then used to classify the distribution into a target class. The
implementation used in this work employs the Random Resize and Padding (RRP) (Xie et al., [2018))
transformation strategy with N = 50 transformations and the same DRN network architecture as
(Kou et al., 2020). These two methods have been implemented by using the respective repositories
available online as a base, making the necessary changes to fit the different coding backends. While
Xie et al.|(2019) does not report performance on CIFAR10 data, the results using the DRN classifier
appear consistent with those reported in |Kou et al.| (2020).

Figure [ and table [T] report the performance of the proposed method and the defenses chosen from
the literature when the data available for training is a subset of 10% of the full training set which
was used to train the base model. Similarly, the plots in figure [5] show how these methods perform
when varying the amount of available training data. The proposed method (fx-a) satisfies well the
desiderata of low degradation of performance on natural images when using less training data. This
is particularly apparent when looking at the classification accuracy on the samples of the test set Dy,
that were correctly classified by the base model when clean. The degradation is comparable to the
“drn” method on clean uncorrupted samples, however, the model performs way better on AutoPGD
adversarial examples, successfully defending 95% of this subset.

With the lower number of trainable parameters and the constraints imposed by the loss function, the
proposed method appears to learn how to properly defend against the AutoPGD (against which it is
trained) when using fewer data points. However, the limitations imposed made the proposed method

!'The values of mean and standard deviation are obtained by splitting the test set into 5 parts and averaging
the results on each of them.
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Figure 3: Ablation study. Accuracy computed on the test set of CIFAR10 under different attacks.

All models have been trained using ID)BO%] (10% of the full training set). In the legend the triplet
in brackets represents activation function ¢, § (coefficient multiplying the output of each ¢;) and A
(coefficient of the distillation term in the loss function). The black dashed line is the performance of
the base model. Error bars are smaller than the size of the symbols.

Dy subset of Dy correctly classified by base
model clean images AutoPGD FGSM clean images  AutoPGD FGSM
base 91.20+0.80  4.60+0.40  17.10£0.30 || 100.00+0.00 0.00+0.00  13.00+0.60
fx-a 87.50£0.20 81.10+0.80 41.70+1.50 || 93.80+0.40 95.10£0.40  45.20+1.00
fx-b 67.30+0.50 74.60£0.90 45.60+0.60 || 71.40+0.40 75.70£1.30  48.40+1.20

adv train | 79.50+0.80 77.50+£0.50  72.10+0.40 | 84.40+0.40 79.40+0.70  75.40+0.70
denoise 75.60+0.50 73.20£0.90  69.40+0.70 || 80.30+0.40 77.30£0.80  72.90+0.50
drn 88.40+0.40 13.90+£0.80  39.90+1.00 || 94.80+0.10 10.10£0.30  37.80+1.10

Table 1: Accuracy on the CIFARI1O0 test set under different attacks. Comparison between the pro-

posed method (fx-a; fx-b), traditional adversarial training (adv train), feature denoising blocks (dns)

and distribution regression network (drn). All models are trained using DE.O%] (except for base,

which is trained on D;,.). The columns to the right report the accuracy on the subset of samples that
are correctly classified by the base model when clean.

less prone to learn a general defense strategy, which instead happens for the traditional adversarial
training. In other words, the proposed method does not appear to have learned a defense mechanism
that generalizes as well to other attacks.

For further comparison, the experiments have been repeated using other attacks during the training
phase other than AutoPGD. In particular, experiments have been done generating adversarial sam-
ples with FGSM and CW. The results are summarized in ﬁgure@when using 10% of the full training
set. Do note that the base method and “drn” do not require the generation of adversarial samples
during training, thus their performance is simply repeated in the different plots. Results show that
using AutoPGD for training tends to degrade more the performance on clean samples than when
using FGSM. In both cases, our method succeeds in having just a small degradation on this per-
formance. When training on FGSM our method learns a reasonably good defense against the same
attack, better than traditional adversarial training. In this experiment, the denoising blocks method
“dns” appears to learn a defense strategy that transfers well to other attacks, as was observed also
observed when training on AutoPGD. Surprisingly, the same transferability is not observed in the
case where CW attack is used for training of ”dns”. Training on this attack also appears less trans-
ferable for all the other methods; all of which have learned successful defense strategy against the
threat and also retained good performance on the clean samples. That would seem to indicate that,
given the choice of hyperparameters, the adversarial examples generated by the CW attack are very
similar to the clean images, thus generalize less to noisier attacks. At the same time, the adversarial
examples generated by CW were diverse enough from the original and succeeded in degrading the
base model performance to ~ 6% accuracy.
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Figure 4: Accuracy on the CIFAR1O0 test set under different attacks. Comparison between the pro-
posed method (fx-a; fx-b), traditional adversarial training (adv train) (Goodfellow et al., 2015),

feature denoising blocks (denoise) (Xie et al.,[2019) and distribution regression network (drn) (Kou

et al.,|2020). All models have been trained using ]DEO%] and adversarial samples generated using

AutoPGD where necessary (highlighted by dashed box). Base has been trained on the full training
set of clean images. Error bars are smaller than the size of the symbols.

100 clean images AutoPGD FGSM
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Figure 5: Accuracy on the CIFARI1O0 test set under different attacks varying the amount of data
available for training. Comparison between the proposed method (fx-a; fx-b), traditional adversarial
training (adv train), feature denoising blocks (denoise) and distribution regression network (drn).
AutoPGD (highlighted by dashed box) has been used to generate adversarial samples during train-
ing. Error bars are smaller than the size of the symbols.

4.5 RESULTS ON MEDICAL IMAGES

Additional experiments have been carried out on the HIST dataset, described in section@ Results
are summarized in figure[7] The base model ResNet9 trained on this dataset achieves an accuracy
of 92.70 & 0.50% on unseen data, showing adequate performance on clean samples. However, the
model appears vulnerable to adversarial data dropping its accuracy to 5.40 + 0.30% when attacked
by AutoPGD and 7.00 £ 0.30% by FGSM. For this dataset, the proposed method (fx-a, f-b) and
standard adversarial training (adv train) appear to have similar performance in most cases. When
using 10% of the data, the methods maintain a good performance on clean data and learn a successful
strategy against AutoPGD (against which they were trained). Unlike for the CIFAR10 dataset, the
proposed method appears to have learned a defense strategy that is adequately transferable to the
FGSM attack, performing slightly worse than adversarial training. The gap in the transferability
is more evident when using 1% of the data. However, in this scenario, the proposed method (fx-
a) was able to retain a slightly better performance on clean samples. The differences in behavior
compared to the CIFAR10 experiments may be due to the nature of the HIST data and the simplicity
of classifying its 4 classes (versus the 10 in CIFAR10).

5 CONCLUSION

With the rapid diffusion of Deep Learning models in many industry sectors, it is fundamental to
provide models that are robust against external threats. Adversarial attacks are particularly worrying
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Figure 6: Performance on the CIFAR10 test set under different attacks when changing the attack
used during training phase. Note that methods base and drn do not require generating adversarial
samples, thus their performance is the same across the plots. A dashed box highlights the attack

used for generating the adversarial samples in each plot. All models have been trained with ]D)gf)%].

Error bars are smaller than the size of the symbols.
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Figure 7: Accuracy on the histopathology (HIST) test set under different attacks varying the amount
of data available for training. Comparison between the proposed method (fx-a) and standard adver-
sarial training (adv train). All methods have been trained using AutoPGD (highlighted by dashed
box) to generate the adversarial samples. Error bars are smaller than the size of the symbols.

due to their ability to fool a human observer. The “adversarial training” defense strategy is concep-
tually simple and provides a good performance against most attacks. However, it is an expensive
process that requires many examples and updating all the parameters of a model. This strategy may
not be always applicable, especially when a model is very big and needs to be patched with a limited
set of new data. Carrying out adversarial training on a scarce set of samples may increase the ability
to defend against an attack but also degrade the performance on clean samples.

To address this problem, this work proposes a strategy to defend against adversarial threats using a
small amount of data and maintaining good performance on clean samples. A base model is given
with satisfactory performance on clean images in the chosen domain. The proposed method consists
in slightly modifying the base model with the addition of some small “fixer”” networks that process
the features to reduce the adversarial perturbations. During training, pairs of clean images and their
adversarial examples are used to update the parameters of the fixer modules, while the weights of
the base model stay frozen. With this strategy, the base model remains mostly unmodified and the
performance on clean images is retained even when using a small dataset to learn a defense mech-
anism. Experiments on the CIFAR10 dataset showed the competitiveness of the method compared
to adversarial training and two other defense methods from the literature. In particular, when using
smaller portions of the full training set (namely 10% and 1%), the proposed method was able to have
a minimal degradation of the performance on clean images and to provide a good defense against
adversarial samples when compared to traditional adversarial training. However, results also showed
that the defense mechanism learned by the proposed method appears to be more specific to the type
of attack that was used during training and generalizes less to other types of attacks.
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A APPENDIX

A.1 ABLATION STUDY PARAMETERS

The parameters investigated in the ablation study are summarized in table [2] the activation function
of each ¢; (¢ € {linear; tanh }, see figure|[I)); the coefficient & in[I| (6 € {0.1,1}); the coefficient of
the distillation term in the loss function equation [3|(A € {0,1}).

A.2 ADVERSARIAL ATTACKS

In the experiments a number of adversarial attacks have been used to attack the models and/or
generate adversarial examples during training. These are summarized in table. All attacks are un-
targeted. All the attacks have been implemented using the Adversarial Robustness Toolkit (ART)
library (Nicolae et al.,|2018)).

During testing, samples are generated using additional attacks: AutoPGD with ¢ = 16/255
(AutoPGD-16); Carlini & Wagner attack (CW) (Carlini & Wagner, [2017b); Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015)); Projected Gradient Descent (PGD) (Madry et al.,[2019).

A.3 DATA AUGMENTATION

Data augmentation is implemented using the Albumentations library (Buslaev et al.,[2020). During
training, each sample is augmented by a series of transformations as described in table [3] for the
CIFARI10 dataset and in table [4] for the HIST dataset. Note that the augmentation procedure is
applied before generating the adversarial sample; i.e. the adversarial sample is a corrupted version
of the augmented sample.

A.4 MODEL ARCHITECTURE

The architecture of the model used in the experiments is that of a ResNet9 defined as described in
table[8] The building blocks of the model are defined in the preceeding tables: ConvBlock (table [3)),
ResidualBlock (table[6) and FixerModule (table[7). Implementation using Python 3 and Tensorflow
2 (Abadi et al.| 2016).

parameter description value

) coefficient to fixer module outputin | 0 0.1 1.
equation ||

¢ activation function of second con- | linear | tanh
volution in ¢ (see figure|[T)

A coefficient to distillation term in | O 1
loss equation 3]

training dataset Dy, ID)EO%] ID)E%]

Table 2: Summary of investigated hyperparameters and their values. Combinations of these param-
eters have been explored in the ablation experiments; not all combinations have been investigated,
due to some being redundant.
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ID AutoPGD AutoPGD-16 | CW FGSM PGD
Attack AutoPGD AutoPGD Carlini- Fast Gradient | Projected
(Croce &| | (Croce & | Wagner Sign Method | Gradient De-
Hein, [2020) Hein, [2020) (Carlim & | (Goodfellow scent (Madry
Wagner, et al.L |2015) et al.,2019)
2017b)
Max perturba- | 8/255 16/255 8/255 8/255 8/255
tion €
€ step 0.005 0.005 - 0.005 0.005
# iterations 25 25 25 25 50
Norm Cing
Confidence - | - [ 0 | - | -
transformation | details prob. | out shape
Input - - (32, 32, 3)
Padding borq§r mi)de =reflect | (40, 40, 3)
position = center
Random Crop - 1. (32,32, 3)
Vertical Flip - 0.5 (32,32, 3)
Horizontal Flip | - 0.5 (32,32,3)
Solarize threshold = 0.5 0.3 (32,32, 3)
Coarse Dropout max holes = 1
(i.e. Cutout) hglght =10 0.5 (32,32,3)
width = 10

Table 3: Augmention details for the CIFAR10 dataset.

transformation | details prob. | out shape

Input - - (128, 128, 3)

Padding border mode = reflect | (160, 160, 3)
position = center

Random Crop - 1. (128, 128, 3)

Vertical Flip - 0.5 (128, 128, 3)

Horizontal Flip | - 0.5 (128, 128, 3)

Solarize threshold = 0.5 0.3 (128, 128, 3)

Coarse Dropout max holes = 8

(i.e. Cutout) hglght =10 0.5 (128, 128, 3)
width = 10

Table 4: Augmentation details for the HIST dataset.

Name | Operation Block
input | -
conv Conv2D(channels=channels, kernel _size=3x3)
bn Batch Normalization
relu ReLU

MaxPool2D(kernel _size=2) if pool=True
output Identity if pool=False

Table 5: Architecture of ConvBlock(channels, pool). Operation blocks are sequential.

Name Operation Block
input -
conv_block_a | ConvBlock(channels, False)
conv_block_b | ConvBlock(channels, False)
output input + conv_block_b

Table 6: Architecture of ResidualBlock(channels, pool). Operation blocks are sequential.
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Name | Operation Block

input -

conv_l | Conv2D(channels=channels/p, kernel size=1x1)

relu_1 | ReLU

conv_2 | Conv_2D(channels=channels, kernel_size=3x3, activation=()
add input + 0 * conv_2

output | ReLU

Table 7: Architecture of FixerModule(channels, 9, ¢, p). Operation blocks are sequential. Refer to
figure [I]for visual representation. In all the experiments p = 4.

Name Operation Block
input -
conv_block_1 | ConvBlock(64, False)

conv_block_2 | ConvBlock(128, True)

res_block_1 ResidualBlock (128, False)

fixer_mod_1 FixerModule(128, 6, ¢, p)

conv_block_3 | ConvBlock(256, False)

conv_block 4 | ConvBlock(512, True)

res_block_2 ResidualBlock (512, False)

fixer_-mod_2 FixerModule(512, 6, ¢, p)

pool_4 MaxPooling2D(kernel _size=4)

Flatten if dataset=CIFAR10
GlobalAveragePooling2D if dataset=HIST
output Dense(classes)

flatten

Table 8: Architecture of ResNet9 with hyper-parameters 9, (, p and dataset. In all the experiments
p = 4. Operation blocks are defined in tables [5|to[7] Base model architecture can be obtained by
removing the FixerModules or equivalently setting § = 0.
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