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ABSTRACT

A recourse action aims to explain a particular algorithmic decision by showing
one specific way in which the instance could be modified to receive an alternate
outcome. Existing recourse generation methods often assume that the machine
learning model does not change over time. However, this assumption does not
always hold in practice because of data distribution shifts, and in this case, the
recourse action may become invalid. To redress this shortcoming, we propose
the Distributionally Robust Recourse Action (DiRRAc) framework, which gener-
ates a recourse action that has a high probability of being valid under a mixture
of model shifts. We formulate the robustified recourse setup as a min-max opti-
mization problem, where the max problem is specified by Gelbrich distance over
an ambiguity set around the distribution of model parameters. Then we suggest
a projected gradient descent algorithm to find a robust recourse according to the
min-max objective. We show that our DiRRAc framework can be extended to
hedge against the misspecification of the mixture weights. Numerical experiments
with both synthetic and three real-world datasets demonstrate the benefits of our
proposed framework over state-of-the-art recourse methods.

1 INTRODUCTION

Post-hoc explanations of machine learning models are useful for understanding and making reliable
predictions in consequential domains such as loan approvals, college admission, and healthcare. Re-
cently, recourse has been rising as an attractive tool to diagnose why machine learning models have
made a particular decision for a given instance. A recourse action provides a possible modification
of the given instance to receive an alternate decision (Ustun et al., 2019). Consider, for example, the
case of loan approvals in which a credit application is rejected. Recourse will offer the reasons for
rejection by showing what the application package should have been to get approved. A concrete
example of a recourse in this case may be “the monthly salary should be higher by $500” or “20%
of the current debt should be reduced”.

A recourse action has a positive, forward-looking meaning: they list out a directive modification that
a person should implement so that they can get a more favorable outcome in the future. If a machine
learning system can provide the negative outcomes with the corresponding recourse action, it can
improve user engagement and boost the interpretability at the same time (Ustun et al., 2019; Karimi
et al., 2021b). Explanations thus play a central role in the future development of human-computer
interaction as well as human-centric machine learning.

Despite its attractiveness, providing recourse for the negative instances is not a trivial task. For real-
world implementation, designing a recourse needs to strike an intricate balance between conflicting
criteria. First and foremost, a recourse action should be feasible: if the prescribed action is taken,
then the prediction of a machine learning model should be flipped. Further, to avoid making a dras-
tic change to the characteristics of the input instance, a framework for generating recourse should
minimize the cost of implementing the recourse action. An algorithm for finding recourse must
make changes to only features that are actionable and should leave immutable features (relatively)
unchanged. For example, we must consider the date of birth as an immutable feature; in contrast,
we can consider salary or debt amount as actionable features.

Various solutions have been proposed to provide recourses for a model prediction (Karimi et al.,
2021b; Stepin et al., 2021; Artelt & Hammer, 2019; Pawelczyk et al., 2021; 2020; Verma et al.,
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2020). For instance, Ustun et al. (2019) used an integer programming approach to obtain actionable
recourses and also provide a feasibility guarantee for linear models. Karimi et al. (2020) proposed a
model-agnostic approach to generate the nearest counterfactual explanations and focus on structured
data. Dandl et al. (2020) proposed a method that finds the counterfactual by solving a multi-objective
optimization problem. Recently, Russell (2019) and Mothilal et al. (2020) focus on finding a set of
multiple diverse recourse actions, where the diversity is imposed by a rule-based approach or by
internalizing a determinant point process cost in the objective function.

These aforementioned approaches make a fundamental assumption that the machine learning model
does not change over time. However, the dire reality suggests that this assumption rarely holds. In
fact, data shifts are so common nowadays in machine learning that they have sparkled the emerg-
ing field of domain generalization and domain adaptation. Organizations usually retrain models
as a response to data shifts, and this induces corresponding shifts in the machine learning models
parameters, which in turn cause serious concerns for the feasibility of the recourse action in the
future (Rawal et al., 2021). In fact, all of the aforementioned approaches design the action which is
feasible only with the current model parameters, and they provide no feasibility guarantee for the
future parameters. If a recourse action fails to generate a favorable outcome in the future, then the
recourse action may become less beneficial (Venkatasubramanian & Alfano, 2020), the pledge of a
brighter outcome is shattered, and the trust in the machine learning system is lost (Rudin, 2019).

To tackle this challenge, Upadhyay et al. (2021) proposed ROAR, a framework for generating
instance-level recourses that are robust to shifts in the underlying predictive model. ROAR used
a robust optimization approach that hedges against an uncertainty set containing plausible values
of the future model parameters. However, it is well-known that robust optimization solutions can
be overly conservative because they may hedge against a pathological parameter in the uncertainty
set (Ben-Tal et al., 2017; Roos & den Hertog, 2020). A promising approach that can promote
robustness while at the same time prevent from over-conservatism is the distributionally robust op-
timization framework (El Ghaoui et al., 2003; Delage & Ye, 2010; Rahimian & Mehrotra, 2019;
Bertsimas et al., 2018). This framework models the future model parameters as random variables
whose underlying distribution is unknown but is likely to be contained in an ambiguity set. The
solution is designed to counter the worst-case distribution in the ambiguity set in a min-max sense.
Distributionally robust optimization is also gaining popularity in many estimation and prediction
tasks in machine learning (Namkoong & Duchi, 2017; Kuhn et al., 2019).

Contributions. This paper combines ideas and techniques from two principal branches of explain-
able artificial intelligence: counterfactual explanations and robustness to resolve the recourse prob-
lem under uncertainty. Concretely, our main contributions are the following:

1. We propose the framework of Distributionally Robust Recourse Action (DiRRAc) for design-
ing a recourse action that is robust to mixture shifts of the model parameters. Our DiRRAc
maximizes the probability that the action is feasible with respect to a mixture shift of model
parameters while at the same time confines the action in the neighborhood of the input instance.
Moreover, the DiRRAc model also hedges against the misspecification of the nominal distribu-
tion using a min-max form with a mixture ambiguity set prescribed by moment information.

2. We reformulate the DiRRAc problem into a finite-dimensional optimization problem with an
explicit objective function. We also provide a projected gradient descent to solve the problem.

3. We extend our DiRRAc framework along several axis to handle mixture weight uncertainty, to
minimize the worst-case component probability of receiving the unfavorable outcome, and also
to incorporate the Gaussian parametric information.

We first describe the recourse action problem with mixture shifts in Section 2. In Section 3, we
present our proposed DiRRAc framework, its reformulation and the numerical routine for solving
it. The extension to the parametric Gaussian setting will be discussed in Section 4. Section 5 reports
the numerical experiments showing the benefits of the DiRRAc framework and its extensions.

Notations. For each integer K, we have [K] = {1, . . . ,K}. We use Sd+ (Sd++) to denote the space
of symmetric positive semidefinite (definite) matrices. For any A ∈ Rm×m, the trace operator is
Tr
[
A
]

=
∑d
i=1Aii. If a distribution Qk has mean µk and covariance matrix Σk, we write Qk ∼

(µk,Σk). If additionally Qk is Gaussian, we write Qk ∼ N (µk,Σk). Writing Q ∼ (Qk, pk)k∈[K]

means Q is a mixture of K components, the k-th component has weight pk and distribution Qk.
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2 RECOURSE ACTION UNDER MIXTURE SHIFTS

We consider a binary classification setting with label Y = {0, 1}, where 0 represents the unfavorable
outcome while 1 denotes the favorable one. The covariate space is Rd, and any linear classifier
Cθ : Rd → Y characterized by the d-dimensional parameter θ is of the form

Cθ(x) =

{
1 if θ>x ≥ 0,

0 otherwise.

Note that the bias term can be internalized into θ by adding an extra dimension, and thus it is omitted.

Suppose that at this moment (t = 0), the current classifier is parametrized by θ0, and we are given
an input instance x0 ∈ Rd with unfavorable outcome, that is, Cθ0(x0) = 0. One period of time from
now (t = 1), the parameters of the predictive model will change stochastically and are represented
by a d-dimensional random vector θ̃. This paper focuses on finding a recourse action x which is
reasonably close to the instance x0, and at the same time, has a high probability of receiving a
favorable outcome in the future. Figure 1 gives a bird’s eye view of the setup.

Figure 1: A canonical setup of the recourse action under mixture shifts problem.

To measure the closeness between the action x and the input x0, we assume that the covariate space
is endowed with a non-negative, continuous cost function c. In addition, suppose temporarily that θ̃
follows a distribution P̂. Because maximizing the probability of the favorable outcome is equivalent
to minimizing the probability of the unfavorable outcome, the recourse can be found by solving

min
{
P̂(Cθ̃(x) = 0) : x ∈ X, c(x, x0) ≤ δ

}
. (1)

The parameter δ ≥ 0 in (1) governs how far a recourse action can be from the input instance x0.
Note that we constrain x in a set X which captures operational constraints, for example, the highest
education of a credit applicant should not be decreasing over time.

In this paper, we model the random vector θ̃ using a finite mixture of distributions with K com-
ponents, the mixture weights are p̂ satisfying

∑
k∈[K] p̂k = 1. Each component in the mixture

represents one specific type of model shifts: the weights p̂ reflect the proportion of the shift types
while the component distribution P̂k represents the (conditional) distribution of the future model
parameters in the k-th shift. Further information on mixture distributions and their applications
in machine learning can be found in (Murphy, 2012, §3.5). Note that the mixture model is not a
strong assumption. It is well-known that the Gaussian mixture model is a universal approximator
of densities, in the sense that any smooth density can be approximated with any specific nonzero
amount of error by a Gaussian mixture model with enough components (Goodfellow et al., 2016;
McLachlan & Peel, 2000). Thus, our mixture models are flexible enough to hedge against distribu-
tional perturbations of the parameters under large values of K. The design of the ambiguity set to
handle ambiguous mixture weights and under the Gaussian assumption is extensively studied in the
literature on distributionally robust optimization (Hanasusanto et al., 2015; Chen & Xie, 2021).

If each P̂k is a Gaussian distribution N (θ̂k, Σ̂k), then P̂ is a mixture of Gaussian distributions. The
objective of problem (1) can be expressed as

P̂(Cθ̃(x) = 0) =
∑
k∈[K]

p̂kP̂k(Cθ̃(x) = 0) =
∑
k∈[K]

p̂kΦ
( −x>θ̂k√

x>Σ̂kx

)
,

where the first equality follows from the law of conditional probability, and Φ is the cumulative
distribution function of a standard Gaussian distribution. Under the Gaussian assumption, we can
solve (1) using a projected gradient descent type of algorithm (Boyd & Vandenberghe, 2004).

3



Published as a conference paper at ICLR 2023

Remark 2.1 (Nonlinear models). Our analysis focuses on linear classifiers, which is a common
setup in the literature (Upadhyay et al., 2021; Ustun et al., 2019; Rawal et al., 2021; Karimi et al.,
2020; Wachter et al., 2018; Ribeiro et al., 2016). To extend to nonlinear classifiers, we can follow
a similar approach as in Rawal & Lakkaraju (2020b) and Upadhyay et al. (2021) by first using
LIME Ribeiro et al. (2016) to approximate the nonlinear classifiers locally with an interpretable
linear model, then subsequently applying our framework.

3 DISTRIBUTIONALLY ROBUST RECOURSE ACTION FRAMEWORK

Our Distributionally Robust Recourse Action (DiRRAc) framework robustifies formulation (1) by
relaxing the parametric assumption and hedging against distribution misspecification. First, we
assume that the mixture components P̂k are specified only through moment information, and no
particular parametric form of the distribution is imposed. In effect, P̂k is assumed to have mean
vector θ̂k ∈ Rd and positive definite covariance matrix Σ̂k � 0. Second, we leverage ideas from
distributionally robust optimization to propose a min-max formulation of (1), in which we consider
an ambiguity set which contains a family of probability distributions that are sufficiently close to the
nominal distribution P̂. We prescribe the ambiguity set using Gelbrich distance (Gelbrich, 1990).
Definition 3.1 (Gelbrich distance). The Gelbrich distance G between two tuples (θ,Σ) ∈ Rd × Sd+
and (θ̂, Σ̂) ∈ Rd × Sd+ amounts to G((θ,Σ), (θ̂, Σ̂)) ,

√
‖θ − θ̂‖22 + Tr

[
Σ + Σ̂− 2(Σ̂

1
2 ΣΣ̂

1
2 )

1
2

]
.

It is easy to verify that G is non-negative, symmetric and it vanishes to zero if and only if
(θ,Σ) = (θ̂, Σ̂). Further, G is a distance on Rd × Sd+ because it coincides with the type-2 Wasser-
stein distance between two Gaussian distributions N (µ,Σ) and N (µ̂, Σ̂) (Givens & Shortt, 1984).
Distributionally robust formulations with moment information prescribed by the G distance are
computationally tractable under mild conditions, deliver reasonable performance guarantees and
also generate a conservative approximation of the Wasserstein distributionally robust optimization
problem (Kuhn et al., 2019; Nguyen et al., 2021).

In this paper, we use the Gelbrich distance G to form a neighborhood around each P̂k as

Bk(P̂k) ,
{
Qk : Qk ∼ (θk,Σk), G((θk,Σk), (θ̂k, Σ̂k)) ≤ ρk

}
.

Intuitively, one can view Bk(P̂k) as a ball centered at the nominal component P̂k of radius ρk ≥
0 prescribed using the distance G. This component set Bk(P̂k) is non-parametric, and the first
two moments of Qk are sufficient to decide whether Qk belongs to Bk(P̂k). Moreover, if Qk ∈
Bk(P̂k), then any distribution Q′k with the same mean vector and covariance matrix as Qk also
belongs to Bk(P̂k). Notice that even when the radius ρk is zero, the component set Bk(P̂k) does not
collapse into a singleton. Instead, if ρk = 0 then Bk(P̂k) still contains all distributions of the same
moment (θ̂k, Σ̂k) with the nominal component distribution P̂k, and consequentially it possesses the
robustification effects against the parametric assumption on P̂k. The component sets are utilized to
construct the ambiguity set for the mixture distribution as

B(P̂) ,
{
Q : ∃Qk ∈ Bk(P̂k) ∀k ∈ [K] such that Q ∼ (Qk, p̂k)k∈[K]

}
.

Any Q ∈ B(P̂) is also a mixture distribution with K components, with the same mixture weights p̂.
Thus, B(P̂) contains all perturbations of P̂ induced separately on each component by Bk(P̂k).

We are now ready to introduce our DiRRAc model, which is a min-max problem of the form

inf
x∈X

sup
Q∈B(P̂)

Q(Cθ̃(x) = 0)

s. t. c(x, x0) ≤ δ
sup

Qk∈Bk(P̂k)

Qk(Cθ̃(x) = 0) < 1 ∀k ∈ [K].
(2)

The objective of (2) is to minimize the worst-case probability of unfavorable outcome of the recourse
action. Moreover, the last constraint imposes that for each component, the worst-case conditional
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probability of unfavorable outcome should be strictly less than one. Put differently, this last con-
straint requires that the action should be able to lead to favorable outcome for any distribution in
Bk(P̂k). By definition, each supremum subproblem in (2) is an infinite-dimensional maximization
problem over the space of probability distributions, and thus it is inherently difficult. Fortunately,
because we use the Gelbrich distance to prescribe the set Bk(P̂k), we can solve these maximization
problems analytically. This consequentially leads to a closed-form reformulation of the DiRRAc
model into a finite-dimensional problem. Next, we will reformulate the DiRRAc problem (2), pro-
vide a sketch of the proof and propose a numerical solution routine.

3.1 REFORMULATION OF DIRRAC

Each supremum in (2) is an infinite-dimensional optimization problem on the space of probability
distributions. We now show that (2) can be reformulated as a finite-dimensional problem. Towards
this end, let X be the following d-dimensional set.

X ,
{
x ∈ X : c(x, x0) ≤ δ, −θ̂>k x+ ρk‖x‖2 < 0 ∀k ∈ [K]

}
. (3)

The next theorem asserts that the DiRRAc problem (2) can be reformulated as a d-dimensional
optimization problem with an explicit, but complicated, objective function.
Theorem 3.2 (Equivalent form of DiRRAc). Problem (2) is equivalent to the finite-dimensional
optimization problem

inf
x∈X

∑
k∈[K]

p̂kfk(x)2, (4)

where the function fk admits the closed-form expression

fk(x) =
ρkθ̂
>
k x‖x‖2 +

√
x>Σ̂kx

√
(θ̂>k x)2 + x>Σ̂kx− ρ2

k‖x‖22
(θ̂>k x)2 + x>Σ̂kx

.

Next, we sketch a proof of Theorem 3.2 and a solution procedure to solve problem (4).

3.2 PROOF SKETCH

For any component k ∈ [K], define the following worst-case probability of unfavorable outcome

fk(x) , sup
Qk∈Bk(P̂k)

Qk(Cθ̃(x) = 0) = sup
Qk∈Bk(P̂k)

Qk(θ̃>x ≤ 0) ∀k ∈ [K]. (5)

To proceed, we rely on the following elementary result from (Nguyen, 2019, Lemma 3.31).
Lemma 3.3 (Worst-case Value-at-Risk). For any x ∈ Rd and β ∈ (0, 1), we have

inf

{
τ : sup

Qk∈Bk(P̂k)

Qk(θ̃>x ≤ −τ) ≤ β

}
= −θ̂>k x+

√
1− β
β

√
x>Σ̂kx+

ρk√
β
‖x‖2. (6)

Note that the left-hand side of (6) is the worst-case Value-at-Risk with respect to the ambiguity set
Bk(P̂k). Leveraging this result, the next proposition provides the analytical form of fk(x).

Proposition 3.4 (Worst-case probability). For any k ∈ [K] and (θ̂k, Σ̂k, ρk) ∈ Rd × Sd+ × R+,

define the following constants Ak , −θ̂>k x, Bk ,
√
x>Σ̂kx, and Ck , ρk‖x‖2. We have

fk(x) , sup
Qk∈Bk(P̂k)

Qk(θ̃>x ≤ 0) =

{
1 if Ak + Ck ≥ 0,(
−AkCk+Bk

√
A2
k+B2

k−C
2
k

A2
k+B2

k

)2

∈ (0, 1) if Ak + Ck < 0.

The proof of Theorem 3.2 follows by noticing that the DiRRAc problem (2) can be reformulated
using the elementary functions fk as

min
x∈X

 ∑
k∈[K]

p̂kfk(x) : c(x, x0) ≤ δ, fk(x) < 1 ∀k ∈ [K]

 ,
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where the objective function follows from the definition of the set B(P̂). It suffices now to combine
with Proposition 3.4 to obtain the necessary result. The detailed proof is relegated to the Appendix.
Next we propose a projected gradient descent algorithm to solve the problem (4).

3.3 PROJECTED GRADIENT DESCENT ALGORITHM

We consider in this section an iterative numerical routine to solve the DiRRAc problem in the equiv-
alent form (4). First, notice that the second constraint that defines X in (3) is a strict inequality, thus
the set X is open. We thus modify slightly this constraint by considering the following set

Xε =
{
x ∈ X : c(x, x0) ≤ δ, −θ̂>k x+ ρk‖x‖2 ≤ −ε ∀k ∈ [K]

}
for some value ε > 0 sufficiently small. Moreover, if the parameter δ is too small, it may happen
that the set Xε becomes empty. Define δmin ∈ R+ as the optimal value of the following problem

inf
{
c(x, x0) : x ∈ X, − θ̂>k x+ ρk‖x‖2 ≤ −ε ∀k ∈ [K]

}
. (7)

Then it is easy to see that Xε is non-empty whenever δ ≥ δmin. In addition, because c is continuous
and X is closed, the set Xε is compact. In this case, we can consider problem (4) with the feasible
set being Xε, for which the optimal solution is guaranteed to exist. Let us now define the projection
operator ProjXε as ProjXε(x

′) , arg min
{
‖x− x′‖22 : x ∈ Xε

}
. If X is convex and c(·, x0) is a

convex function, then Xε is also convex, and the projection operation can be efficiently computed
using convex optimization.

In particular, suppose that c(x, x0) = ‖x− x0‖2 is the Euclidean norm and X is second-order cone
representable, then the projection is equivalent to a second-order cone program, and can be solved
using off-the-shelf solvers such as GUROBI Gurobi Optimization, LLC (2021) or Mosek (MOSEK
ApS, 2019). The projection operator ProjXε now forms the building block of a projected gradient
descent algorithm with a backtracking linesearch. The details regarding the algorithm, along with
the convergence guarantee, are presented in Appendix E.

To conclude this section, we visualize the geometrical intuition of our method in Figure 2.

Figure 2: The feasible set X in (3) is shaded in blue.
The circular arc represents the proximity boundary
c(x, x0) = δ with c being an Euclidean distance.
Dashed lines represent the hyperplane −θ̂>k x = 0 for
different k, while elliptic curves represent the robust
margin −θ̂>k x + ρk‖x‖ = 0 with matching color. In-
creasing the ambiguity size ρk brings the elliptic curves
towards the top-right corner and farther away from the
dash lines. The set X taken as the intersection of ellip-
tical and promixity constraints will move deeper into
the interior of the favorable prediction region, resulting
in more robust recourses.

4 GAUSSIAN DIRRAC FRAMEWORK

We here revisit the Gaussian assumption on the component distributions, and propose the parametric
Gaussian DiRRAc framework. We make the temporary assumption that P̂k are Gaussian for all
k ∈ [K], and we will robustify against only the misspecification of the nominal mean vector and
covariance matrix (θ̂k, Σ̂k). To do this, we first construct the Gaussian component ambiguity sets

∀k : BNk (P̂k) ,
{
Qk : Qk ∼ N (θk,Σk), G((θk,Σk), (θ̂k, Σ̂k)) ≤ ρk

}
,

where the superscript emphasizes that the ambiguity sets are neighborhoods in the space of Gaussian
distributions. The resulting ambiguity set for the mixture distribution is

BN (P̂) =
{
Q : ∃Qk ∈ BNk (P̂k) ∀k ∈ [K] such that Q ∼ (Qk, p̂k)k∈[K]

}
.
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The Gaussian DiRRAc problem is formally defined as

min
x∈X

sup
Q∈BN (P̂)

Q(Cθ̃(x) = 0)

s. t. c(x, x0) ≤ δ
sup

Qk∈BN
k (P̂k)

Qk(Cθ̃(x) = 0) < 1
2 ∀k ∈ [K].

(8)

Similar to Section 3, we will provide the reformulation of the Gaussian DiRRAc formulation and a
sketch of the proof in the sequence. Note that the last constraint in (8) has margin 1

2 instead of 1 as
in the DiRRAc problem (2). The detailed reason will be revealed in the proof sketch in Section 4.2.

4.1 REFORMULATION OF GAUSSIAN DIRRAC

Remind that the feasible set X is defined as in (3). The next theorem asserts the equivalent form of
the Gaussian DiRRAc problem (8).
Theorem 4.1 (Gaussian DiRRAc reformulation). The Gaussian DiRRAc problem (8) is equivalent
to the finite-dimensional optimization problem

min
x∈X

1−
∑
k∈[K]

p̂kΦ(gk(x)), (9)

where the function gk admits the closed-form expression

gk(x) =
(θ̂>k x)2 − ρ2

k‖x‖22

θ̂>k x

√
x>Σ̂kx+ ρk‖x‖2

√
(θ̂>k x)2 + x>Σ̂kx− ρ2

k‖x‖22
.

Problem (9) can be solved using the projected gradient descent algorithm discussed in Section 3.3.

4.2 PROOF SKETCH

The proof of Theorem 4.1 relies on the following analytical form of the worst-case Value-at-Risk
(VaR) under parametric Gaussian ambiguity set (Nguyen, 2019, Lemma 3.31).
Lemma 4.2 (Worst-case Gaussian VaR). For any x ∈ Rd and β ∈ (0, 1

2 ], let t = Φ−1(1−β). Then

inf

{
τ : sup

Qk∈BN
k (P̂k)

Qk(θ̃>x ≤ −τ) ≤ β

}
= −θ̂>k x+ t

√
x>Σ̂kx+ ρ

√
1 + t2‖x‖2. (10)

It is important to note that Lemma 4.2 is only valid for β ∈ (0, 0.5]. Indeed, for β > 1
2 , evaluat-

ing the infimum problem in the left-hand side of (10) requires solving a non-convex optimization
problem as t = Φ−1(1 − β) < 0. As a consequence, the last constraint of the Gaussian DiRRAc
formulation (8) is capped at a probability value of 0.5 to ensure the convexity of the feasible set
in the reformulation (9). The proof of Theorem 4.1 follows a similar line of argument as for the
DiRRAc formulation, with gk being the worst-case Gaussian probability

gk(x) , sup
Qk∈BN

k (P̂k)

Qk(Cθ̃(x) = 0) = sup
Qk∈BN

k (P̂k)

Qk(θ̃>x ≤ 0) ∀k ∈ [K].

To conclude this section, we provide a quick sanity check: by setting K = 1 and ρ1 = 0, we have a
special case in which θ̃ follows a Gaussian distribution N (µ̂1, Σ̂1). Thus, θ̃>x ∼ N (µ̂>1 x, x

>Σ̂1x)
and it is easy to verify from the formula of g1 in the statement of Theorem 4.1 that g1(x) =

(θ̂>1 x)/(x>Σ̂1x)
1
2 , which recovers the value of Pr(θ̃>x ≤ 0) under the Gaussian distribution.

5 NUMERICAL EXPERIMENTS

We compare extensively the performance of our DiRRAc model (2) and Gaussian DiRRAc
model (8) against four strong baselines: ROAR (Upadhyay et al., 2021), CEPM (Pawelczyk et al.,
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2020), AR (Ustun et al., 2019) and Wachter (Wachter et al., 2018). We conduct the experiments
on three real-world datasets (German, SBA, Student). Appendix A provides further comparisons
with more baselines: Nguyen et al. (2022), Karimi et al. (2021a) and ensemble variants of ROAR,
along with the sensitivity analysis of hyperparameters. Appendix A also contains the details about
the datasets and the experimental setup.

Metrics. For all experiments, we use the l1 distance c(x, x0) = ‖x−x0‖1 as the cost function. Each
dataset contains two sets of data (the present and shifted data). The present data is to train the current
classifier for which recourses are generated while the remaining data is used to measure the validity
of the generated recourses under model shifts. We choose 20% of the shifted data randomly 100
times and train 100 classifiers respectively. The validity of a recourse is computed as the fraction
of the classifiers for which the recourse is valid. We then report the average of the validity of all
generated recourses and refer this value as M2 validity. We also report M1 validity, which is the
fraction of the instances for which the recourse is valid with respect to the original classifier.

Results on real-world data. We use three real-world datasets which capture different data distri-
bution shifts (Dua & Graff, 2017): (i) the German credit dataset, which captures a correction shift.
(ii) the Small Business Administration (SBA) dataset, which captures a temporal shift. (iii) the Stu-
dent performance dataset, which captures a geospatial shift. Each dataset contains original data and
shifted data. We normalize all continuous features to [0, 1]. Similar to Mothilal et al. (2020), we
use one-hot encodings for categorial features, then consider them as continuous features in [0, 1]. To
ease the comparison, we choose K = 1. The choices of K are discussed further in Appendix A.
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Figure 3: Comparison of M2 validity as a function of the l1 distance between input instance and the
recourse for our DiRRAc method and ROAR on real datasets.

Table 1: Benchmark of M1 and M2 validity, l1 and l2 cost for linear models on real datasets.

Dataset Methods M1 validity M2 validity l1 cost l2 cost

German AR 1.00 ± 0.00 0.76 ± 0.26 0.61 ± 0.40 0.43 ± 0.25
Wachter 1.00 ± 0.00 0.82 ± 0.24 0.81 ± 0.51 0.41 ± 0.25
CEPM 1.00 ± 0.00 0.83 ± 0.38 1.30 ± 0.02 1.02 ± 0.04
ROAR 1.00 ± 0.00 0.94 ± 0.15 3.88 ± 0.54 1.61 ± 0.22
DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.62 ± 0.30 1.25 ± 0.21
Gaussian DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.62 ± 0.30 1.05 ± 0.23

SBA AR 1.00 ± 0.00 0.41 ± 0.18 0.61 ± 0.42 0.56 ± 0.36
Wachter 1.00 ± 0.00 0.55 ± 0.22 2.30 ± 2.39 0.77 ± 0.66
CEPM 1.00 ± 0.00 0.94 ± 0.24 5.30 ± 0.01 2.18 ± 0.02
ROAR 1.00 ± 0.00 1.00 ± 0.00 3.10 ± 0.72 1.35 ± 0.30
DiRRAc 1.00 ± 0.00 1.00 ± 0.00 1.74 ± 0.44 1.34 ± 0.40
Gaussian DiRRAc 1.00 ± 0.00 0.99 ± 0.02 1.60 ± 0.62 0.98 ± 0.42

Student AR 1.00 ± 0.00 0.48 ± 0.19 0.29 ± 0.21 0.26 ± 0.18
Wachter 1.00 ± 0.00 0.53 ± 0.19 0.60 ± 0.43 0.30 ± 0.22
CEPM 1.00 ± 0.00 0.91 ± 0.15 4.52 ± 0.01 2.03 ± 0.01
ROAR 1.00 ± 0.00 0.94 ± 0.10 2.02 ± 0.38 0.96 ± 0.18
DiRRAc 1.00 ± 0.00 0.95 ± 0.09 1.55 ± 0.34 1.07 ± 0.23
Gaussian DiRRAc 1.00 ± 0.00 0.74 ± 0.18 0.78 ± 0.30 0.54 ± 0.21

We split 80% of the original dataset and train a logistic classifier. This process is repeated 100 times
independently to obtain 100 observations of the model parameters. Then we compute the empirical
mean and covariance matrix for (θ̂1, Σ̂1). To evaluate the trade-off between l1 cost and M2 validity
of DiRRAc and ROAR, we compute l1 cost and the M2 validity by running DiRRAc with varying
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values of δadd and ROAR with varying values of λ. We define δ = δmin + δadd, δmin is specified
in (7). Figure 3 shows that the frontiers of DiRRAc dominate the frontiers of ROAR. This indicates
that DiRRAc achieves a far smaller l1 cost for the robust recourses than ROAR. Next, we evaluate
the l1 and l2 cost,M1 andM2 validity of DiRRAc, ROAR and other baselines. The results in Table 1
demonstrate that DiRRAc has high validity in all three datasets while preserving low costs (l1 and l2
cost) in comparison to ROAR. Our DiRRAc framework consistently outperforms the AR, Wachter,
and CEPM in terms of M2 validity.

Nonlinear models. Following the previous work as in Rawal et al. (2021); Upadhyay et al. (2021)
and Bui et al. (2022), we adapt our DiRRAc framework and other baselines (AR and ROAR) to
non-linear models by first generating local linear approximations using LIME (Ribeiro et al., 2016).
For each instance x0, we first generate a local linear model for the MLPs classifier 10 times using
LIME, each time using 1000 perturbed samples. To estimate (θ̂1, Σ̂1), we compute the mean and
covariance matrix of parameters θx0

of 10 local linear models. We randomly choose 10% of the
shifted dataset and concatenate with training data of the original dataset 10 times, then train a shifted
MLPs classifier. According to Table 2. On the German Credit and Student dataset, DiRRAc has a
higher M2 validity than other baselines, and a slightly lower M2 validity on the SBA dataset than
ROAR, while maintaining a low l1 cost relative to ROAR and CEPM.
Table 2: Benchmark of M1 and M2 validity, l1 and l2 cost for non-linear models on real datasets.

Dataset Methods M1 validity M2 validity l1 cost l2 cost

German LIME-AR 0.72 ± 0.45 0.71 ± 0.27 1.05 ± 0.20 1.00 ± 0.03
Wachter 1.00 ± 0.00 0.55 ± 0.42 0.20 ± 0.26 0.11 ± 0.16
CEPM 1.00 ± 0.00 0.74 ± 0.40 1.30 ± 0.01 1.02 ± 0.00
LIME-ROAR 0.60 ± 0.49 0.69 ± 0.27 2.52 ± 0.20 1.25 ± 0.07
LIME-DiRRAc 0.78 ± 0.42 0.75 ± 0.27 1.14 ± 0.27 1.02 ± 0.05
LIME-Gaussian DiRRAc 0.70 ± 0.46 0.70 ± 0.31 1.11 ± 0.26 1.00 ± 0.06

SBA LIME-AR 0.65 ± 0.48 0.60 ± 0.49 0.53 ± 0.23 0.44 ± 0.23
Wachter 1.00 ± 0.00 0.61 ± 0.45 0.30 ± 0.24 0.11 ± 0.09
CEPM 1.00 ± 0.00 0.80 ± 0.40 2.24 ± 0.01 1.42 ± 0.00
LIME-ROAR 0.97 ± 0.16 0.97 ± 0.16 4.05 ± 0.36 1.45 ± 0.12
LIME-DiRRAc 0.93 ± 0.26 0.93 ± 0.26 1.10 ± 0.11 1.07 ± 0.05
LIME-Gaussian DiRRAc 0.82 ± 0.38 0.80 ± 0.38 0.64 ± 0.29 0.43 ± 0.32

Student LIME-AR 0.66 ± 0.48 0.53 ± 0.45 0.53 ± 0.63 0.37 ± 0.32
Wachter 1.00 ± 0.00 0.43 ± 0.39 0.40 ± 0.27 0.20 ± 0.14
CEPM 1.00 ± 0.00 0.70 ± 0.46 4.51 ± 0.00 2.03 ± 0.01
LIME-ROAR 0.97 ± 0.18 0.95 ± 0.20 6.30 ± 0.19 1.97 ± 0.16
LIME-DiRRAc 0.97 ± 0.18 0.97 ± 0.18 1.12 ± 0.23 1.12 ± 0.23
LIME-Gaussian DiRRAc 0.69 ± 0.46 0.59 ± 0.46 0.58 ± 0.54 0.50 ± 0.51

Concluding Remarks. In this work, we proposed the Distributionally Robust Recourse Action
(DiRRAc) framework to address the problem of recourse robustness under shifts in the parame-
ters of the classification model. We introduced a distributionally robust optimization approach for
generating a robust recourse action using a projected gradient descent algorithm. The experimental
results demonstrated that our framework has the ability to generate the recourse action that has high
probability of being valid under different types of data distribution shifts with a low cost. We also
showed that our framework can be adapted to different model types, linear and non-linear models,
and allows for actionability constraints of the recourse action.

Remark 5.1 (Extensions). The DiRRAc framework can be extended to hedge against the misspec-
ification of the mixture weights p̂. Alternatively, the objective function of DiRRAc can be modified
to minimize the worst-case component probability. These extensions are explored in Section C.
Corresponding extensions for the Gaussian DiRRAc framework are presented in Section D.

Remark 5.2 (Choice of ambiguity set). This paper’s results rely fundamentally on the design of
ambiguity sets using a Gelbrich distance on the moment space. This Gelbrich ambiguity set leads to
the ‖·‖2-regularizations of the worst-case Value-at-Risk in Lemmas 3.3 and 4.2. If we consider other
moment ambiguity sets, for example, the moment bounds in Delage & Ye (2010) or the Kullback-
Leibler-type sets in Taskesen et al. (2021), then these regularization equivalence are not available,
and there is no trivial way to extend the results to reformulate the (Gaussian) DiRRAc framework.
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A ADDITIONAL EXPERIMENT RESULTS

Here, we provide further details about the datasets, experimental settings, and additional results.
Source code can be found at https://github.com/duykhuongnguyen/DiRRAc.

A.1 DATASETS

Real-world datasets. We use three real-world datasets which are popular in the settings of ro-
bust algorithmic recourse: German credit (Dua & Graff, 2017), SBA Li et al. (2018), and Student
performance Cortez & Silva (2008). We select a subset of features from each dataset:

• For the German credit dataset from the UCI repository, we choose five features: Status, Dura-
tion, Credit amount, Personal Status, and Age. We found in the descriptions of two datasets
that feature Status in the data correction shift dataset corrects the coding errors in the original
dataset (Dua & Graff, 2017).

• For the SBA dataset, we follow Li et al. (2018) and Upadhyay et al. (2021) and we choose 13
features: Selected, Term, NoEmp, CreateJob, RetainedJob, UrbanRural, ChgOffPrinGr, GrAppv,
SBA Appv, New, RealEstate, Portion, Recession. We use the instances during 1989-2006 as
original data and the remaining instances as shifted data.

• For the Student Performance dataset, motivated by Cortez & Silva (2008), we choose G3 - final
grade for deciding the label pass or fail for each student. The student who has G3< 12 is labeled
0 (failed) and 1 (passed) otherwise. For input features, we choose 9 features: Age, Study time,
Famsup, Higher, Internet, Health, Absences, G1, G2. We separate the dataset into the original
and the geospatial shift data by 2 different schools.

We report the accuracy of the current classifiers and shifted classifiers for two types of models:
logistics classifiers (LR) and MLPs classifiers (MLPs) on each dataset in Table 3.

Table 3: Accuracy of the underlying classifiers.

Dataset Methods Accuracy

German LR 0.72 ± 0.00
MLPs 0.76 ± 0.01

Shifted German LR 0.7 ± 0.00
MLPs 0.72 ± 0.01

SBA LR 0.79 ± 0.01
MLPs 0.93 ± 0.02

Shifted SBA LR 0.77 ± 0.01
MLPs 0.89 ± 0.01

Student LR 0.84 ± 0.01
MLPs 0.91 ± 0.01

Shifted Student LR 0.91 ± 0.00
MLPs 0.99 ± 0.01

Synthetic data. We synthesize two-dimensional data and simulate the shifted data by using K = 3
different shifts similar to Upadhyay et al. (2021): mean shift, covariance shift, mean and covariance
shift. First, we fix the unshifted conditional distributions with X|Y = y ∼ N (µy,Σy) ∀y ∈ Y .
For mean shift, we replace µ0 by µshift

0 = µ0 + [α, 0]>, where α is a mean shift magnitude. For
covariance shift, we replace Σ0 by Σshift

0 = (1 +β)Σ0, where β is a covariance shift magnitude. For
mean and covariance shift, we replace (µ0,Σ0) by (µshift

0 ,Σshift
0 ). We generate 500 samples for each

class from the unshifted distribution with µ0 = [−3;−3], µ1 = [3; 3], and Σ0 = Σ1 = I .

To visualize the decision boundaries of the linear classifiers for synthetic data, we synthesize the
shifted data in total 100 times including 33 mean shifts, 33 covariance shifts and 34 both shifts, then
we visualize the 100 model’s parameters in a two-dimensional space in Figure 4 and Figure 5.
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Figure 4: Synthetic data shifts and the corresponding model parameter shifts (decision boundaries).

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

1

Original
Mean shift
Cov shift
Both shift

Figure 5: Parameter θ of the classifier with different types of data distribution shifts.

A.2 EXPERIMENTAL SETTINGS

Implementation details. For all the baselines, we use the implementation of CARLA (Pawelczyk
et al., 2021). We use the hyperparameters of AR, Wachter and CEPM that are provided by CARLA.
For ROAR, we use the same parameters as in ROAR (Upadhyay et al., 2021).

Experimental settings. The experimental settings for the experiments in the main text are as fol-
lows:

• In Figure 3, we fix ρ1 = 0.1 and vary δadd ∈ [0, 2.0] for DiRRAc. Then we fix δmax = 0.1 and
vary λ ∈ [0.01, 0.2] for ROAR.

• In Table 1 and Table 2, we first initialize ρ1 = 0.1 and we choose the δadd that maximizes the
M1 validity. We follow the same procedure as in the original paper for ROAR (Upadhyay et al.,
2021): choose δmax = 0.1 and find the value of λ that maximizes the M1 validity. The detailed
settings are provided in Table 4.

Table 4: Parameters for the experiments with real-world data in Table 1.

Parameters Values
K 1
δadd 1.0
p̂ [1]
ρ [0.1]
λ 0.7
ζ 1
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Choice of number of componentsK for real-world datasets. To chooseK for real-world datasets,
we use the same procedure in Section 5 to obtain 100 observations of the model parameters. Then
we determine the number of components K on these observations by using K-means clustering and
Elbow method (Thorndike, 1953; Ketchen & Shook, 1996). Then we train a Gaussian mixture model
on these observations and obtain p̂k, θ̂k, Σ̂k for the optimal number of components K. The Elbow
method visualization for each dataset is shown in Figure 6.
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Figure 6: Elbow method for determining the optimal number of components for parameter shifts.
Dashed lines represent the optimalK for three real-world datasets. German Credit: Elbow atK = 5.
SBA: Elbow at K = 4. Student Performace: Elbow at K = 6.

Table 5: Performance of DiRRAc and Gaussian DiRRAc with K components on three real-world
datasets.

Dataset Methods M1 validity M2 validity l1 cost l2 cost

German DiRRAc (K = 5) 1.00 ± 0.00 0.99 ± 0.07 1.73 ± 0.31 1.40 ± 0.20
Gaussian DiRRAc (K = 5) 1.00 ± 0.00 0.99 ± 0.07 1.73 ± 0.31 1.23 ± 0.23

SBA DiRRAc (K = 4) 1.00 ± 0.00 1.00 ± 0.00 1.83 ± 0.49 1.48 ± 0.29
Gaussian DiRRAc (K = 4) 1.00 ± 0.00 0.99 ± 0.02 1.67 ± 0.68 0.98 ± 0.42

Student DiRRAc (K = 6) 1.00 ± 0.00 0.96 ± 0.09 1.59 ± 0.33 1.04 ± 0.22
Gaussian DiRRAc (K = 6) 1.00 ± 0.00 0.75 ± 0.19 0.82 ± 0.30 0.53 ± 0.21

The results in Table 5 indicate that as we deploy our framework with the optimal number of com-
ponents K, then DiRRAc delivers a smaller cost in all three datasets. The M2 validity of Gaussian
DiRRAc slightly increases in the Student Performance dataset.

Sensitivity analysis of hyperparameters δadd and ρk. Here we analyze the sensitivity of the
hyperparameters δadd and ρk to the l1 cost of recourses and M2 validity of DiRRAc.

From the results in Figure 3, we can observe that as δadd increases, both the cost and the robustness
of the recourse increase.

We study the sensitivity of hyperparameters ρk toM2 validity by first fixing the δadd = 0.1 and vary
ρk ∈ [0.0, 0.5]. According to Figure 7, we can observe that as ρk increases, the cost of recourses
rises as well, yielding in more robust recourses.
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Figure 7: Sensitivity analysis of hyperparameters ρk to l1 cost and M2 validity of DiRRAc.

A.3 RESULTS ON REAL-WORLD DATA

Experiments with prior on Σ̂. In some cases, we presume, we may not have access to the training
data. We set θ̂1 = θ0, where θ0 is the parameters of the original classifier. Then we choose Σ̂1 = τI
with τ = 0.1. We generate recourse for each input instance and compute the M1 validity using the
original classifier and the M2 validity using the shifted classifiers. The results in Table 6 show that
our methods produce the same performance while at the same time keeping the l1 and l2 cost lower
than ROAR in all three datasets.

Table 6: Benchmark ofM1 validity, M2 validity, l1 and l2 using θ̂1 = θ0 and Σ̂1 = 0.1I on different
real-world datasets.

Dataset Methods M1 validity M2 validity l1 cost l2 cost

German ROAR 1.00 ± 0.00 0.94 ± 0.15 3.88 ± 0.54 1.61 ± 0.22
DiRRAc 1.00 ± 0.00 0.96 ± 0.07 1.48 ± 0.39 1.34 ± 0.41
Gaussian DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.58 ± 0.29 1.35 ± 0.24

SBA ROAR 1.00 ± 0.00 1.00 ± 0.00 3.10 ± 0.72 1.35 ± 0.30
DiRRAc 1.00 ± 0.00 1.00 ± 0.00 1.64 ± 0.37 1.27 ± 0.30
Gaussian DiRRAc 1.00 ± 0.00 1.00 ± 0.00 1.64 ± 0.37 1.25 ± 0.26

Student ROAR 1.00 ± 0.00 0.94 ± 0.10 2.02 ± 0.38 0.96 ± 0.18
DiRRAc 1.00 ± 0.00 0.97 ± 0.06 1.81 ± 0.19 1.47 ± 0.13
Gaussian DiRRAc 1.00 ± 0.00 0.88 ± 0.14 1.18 ± 0.26 0.82 ± 0.18

Experiments with actionability constraints. Using our two methods (DiRRAc and Gaussian
DiRRAc) and the AR method (Ustun et al., 2019), we analyze how the actionability constraints
affect the cost and validity of the recourse. We select a subset of features from each dataset and
define each feature as immutable or non-decreasing as follows:

• In the German credit dataset, we select Personal status as an immutable attribute because it is
challenging to impose changes in an individual‘s status and sex. We view age as a non-decreasing
feature.

• In the SBA dataset, we select UrbanRural and Recession as two immutable attributes since it
will be difficult to change these features in the near future. RetainedJob is another feature that
we view as non-decreasing.

• In the Student Performance dataset, we assume that a student’s Higher education would not
change, and select higher education as an immutable feature. Age and Absences are considered
as non-decreasing.
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The above specifications are aligned with the existing numerical setup in algorithmic recourse (Us-
tun et al., 2019; Rawal & Lakkaraju, 2020a).

For each dataset, we run the process of generating the recourse action by adding constraints to the
projected gradient descent algorithm. The experimental setup on three different real-world datasets
is the same as in Section 5.

The results in Table 7 indicate that the M2 validity of our 2 methods drops in the German Credit
dataset. The validity in shifted data of AR also decreases in this dataset. In other datasets, the
performance of our 2 methods remains the same. The l1 and l2 cost of DiRRAc slightly increase in
the Student Performance dataset. Furthermore, there exists recourse for every input instance.

Table 7: Benchmark ofM1 validity,M2 validity, l1 and l2 using actionability constraints on different
real-world datasets.

Dataset Methods M1 validity M2 validity l1 cost l2 cost

German AR 1.00 ± 0.00 0.76 ± 0.26 0.61 ± 0.40 0.43 ± 0.25
DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.62 ± 0.30 1.27 ± 0.20
Gaussian DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.62 ± 0.30 1.09 ± 0.24

SBA AR 1.00 ± 0.00 0.41 ± 0.18 0.61 ± 0.42 0.56 ± 0.36
DiRRAc 1.00 ± 0.00 1.00 ± 0.00 1.74 ± 0.44 1.34 ± 0.40
Gaussian DiRRAc 1.00 ± 0.00 0.99 ± 0.02 1.60 ± 0.62 0.98 ± 0.42

Student AR 1.00 ± 0.00 0.48 ± 0.19 0.29 ± 0.21 0.26 ± 0.18
DiRRAc 1.00 ± 0.00 0.95 ± 0.09 1.61 ± 0.31 1.08 ± 0.24
Gaussian DiRRAc 1.00 ± 0.00 0.74 ± 0.18 0.81 ± 0.27 0.55 ± 0.21

Comparison with RBR. Here we compare our approach on the nonlinear model settings to a more
recent approach on robust recourse (Nguyen et al., 2022).

Table 8: Comparison with RBR for non-linear models on real datasets.

Dataset Methods M1 validity M2 validity l1 cost l2 cost

German RBR 0.98 ± 0.13 0.71 ± 0.25 1.11 ± 0.10 0.50 ± 0.07
LIME-DiRRAc 0.78 ± 0.42 0.75 ± 0.27 1.14 ± 0.27 1.02 ± 0.05
LIME-Gaussian DiRRAc 0.70 ± 0.46 0.70 ± 0.31 1.11 ± 0.26 1.00 ± 0.06

SBA RBR 1.00 ± 0.00 0.97 ± 0.12 1.42 ± 0.45 0.59 ± 0.18
LIME-DiRRAc 0.93 ± 0.26 0.93 ± 0.26 1.10 ± 0.11 1.07 ± 0.05
LIME-Gaussian DiRRAc 0.82 ± 0.38 0.80 ± 0.38 0.64 ± 0.29 0.43 ± 0.32

Student RBR 1.00 ± 0.00 0.90 ± 0.23 1.02 ± 0.53 0.42 ± 0.20
LIME-DiRRAc 0.97 ± 0.18 0.97 ± 0.18 1.12 ± 0.23 1.12 ± 0.23
LIME-Gaussian DiRRAc 0.69 ± 0.46 0.59 ± 0.46 0.58 ± 0.54 0.50 ± 0.51

We provide the results in Table 8: we can observe that RBR has (nearly) perfect M1 validity. This
result is natural because RBR is designed to handle the nonlinear predictive model directly. Our
methods do not have the perfect M1 validity because we use the LIME approximation. However,
it is important to note that in the problem of robust recourse facing future model shifts, we regard
the M2 validity as the most crucial metric because it is the proportion of recourse instances that are
valid with respect to the shifted (future) models.

In terms of l1 cost andM2 validity, the results demonstrate that our method has a competitive perfor-
mance compared to the existing state-of-the-art methods. In particular, LIME-DiRRAc outperforms
RBR in terms of M2 validity for two datasets (German and Student). In the SBA dataset, our ap-
proach has a lowerM2 validity, but the cost of recourses generated by our method is also lower. This
result is consistent with our discussion about the l1 cost and M2 validity trade-off in the Appendix.

Comparison with MINT on German Credit datasets. We add a more recent baseline MINT
proposed by Karimi et al. (2021a) for comparison purpose. MINT requires a causal graph; thus, we
restrict the experiment to the German Credit dataset (the specifications of the causal graphs are not
available for SBA and Student Performance). We do not consider MACE as a baseline for nonlinear
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model comparison because MACE is not applicable to neural network target models due to its high
computational cost. We use the same set of features as in the MINT and ROAR paper (Karimi et al.,
2021a; Upadhyay et al., 2021) with four features: Sex, Age, Credit Amount and Duration. The
results in Table 9 demonstrate that the recourse generated by our framework is more robust to model
shifts, but it has a higher l1 cost.

Table 9: Comparison with MINT on German Credit dataset.

Methods M1 validity M2 validity l1 cost

MINT 1.00 ± 0.00 0.87 ± 0.09 0.77 ± 0.23
DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.62 ± 0.30
Gaussian DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.62 ± 0.30

Comparison with ensemble baselines. Prior work suggested that model ensembles can be effective
for out-of-distribution prediction (Ovadia et al., 2019; Fort et al., 2019). Now we explore a model
ensemble method to generate recourse based on ROAR as follows. First we follow the procedure
in Section 5 to obtain 100 model parameters θi with i ∈ {1, . . . , 100}. Then we find recourse by
solving the following problem:

x′′ = arg min
x′′∈A

max
δ∈∆

max
i∈{1,...,100}

`
(
Cθiδ (x′′) , 1

)
+ λc (x0, x

′′) ,

where ` is the cross-entropy loss function.

Second, we use the same 100 models and generate recourse for each model independently. Then we
average the ROAR recourses across those 100 models as follows.

x′′ =
1

100

100∑
i=1

arg min
x′′∈A

max
δ∈∆

`
(
Cθiδ (x′′) , 1

)
+ λc (x0, x

′′) .

Table 10: Benchmark of different variants of ROAR on three real-world datasets.

Dataset Methods M1 validity M2 validity l1 cost l2 cost

German ROAR 1.00 ± 0.00 0.94 ± 0.15 3.88 ± 0.54 1.61 ± 0.22
ROAR-Ensemble 1.00 ± 0.00 0.95 ± 0.15 5.11 ± 0.59 2.12 ± 0.24
ROAR-Avg 1.00 ± 0.00 0.95 ± 0.15 4.46 ± 0.36 2.00 ± 0.14
DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.62 ± 0.30 1.25 ± 0.21
Gaussian DiRRAc 1.00 ± 0.00 0.99 ± 0.06 1.62 ± 0.30 1.05 ± 0.23

SBA ROAR 1.00 ± 0.00 1.00 ± 0.00 3.10 ± 0.72 1.35 ± 0.30
ROAR-Ensemble 1.00 ± 0.00 1.00 ± 0.00 4.54 ± 0.95 1.91 ± 0.38
ROAR-Avg 1.00 ± 0.00 1.00 ± 0.00 2.86 ± 0.70 1.78 ± 0.35
DiRRAc 1.00 ± 0.00 1.00 ± 0.00 1.74 ± 0.44 1.34 ± 0.40
Gaussian DiRRAc 1.00 ± 0.00 0.99 ± 0.02 1.60 ± 0.62 0.98 ± 0.42

Student ROAR 1.00 ± 0.00 0.94 ± 0.10 2.02 ± 0.38 0.96 ± 0.18
ROAR-Ensemble 1.00 ± 0.00 0.98 ± 0.05 3.73 ± 0.50 1.43 ± 0.19
ROAR-Avg 1.00 ± 0.00 0.97 ± 0.10 2.78 ± 0.31 1.31 ± 0.17
DiRRAc 1.00 ± 0.00 0.95 ± 0.09 1.55 ± 0.34 1.07 ± 0.23
Gaussian DiRRAc 1.00 ± 0.00 0.74 ± 0.18 0.78 ± 0.30 0.54 ± 0.21

In Table 10, we provide results for the ROAR ensemble method as ROAR-Ensemble and the average
ROAR recourses as ROAR-Avg. From this table, the M1 and M2 validity of ROAR-Ensemble and
ROAR-Avg remain the same for all datasets. In almost every benchmark, the recourses generated by
those two approaches are more costly than ROAR. In comparison with our framework, our DiRRAc
and Gaussian DiRRAc methods demonstrate advantages in terms of the cost of recourses.

More discussions about cost-validity trade-off. Previous work about robust recourses have sug-
gested that recourses are more robust with the expense of higher costs (Rawal et al., 2021; Upadhyay
et al., 2021; Pawelczyk et al., 2020; Black et al., 2022). Our results with DiRRAc and Gaussian
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DiRRAc are consistent with this suggestion. However, our framework can achieve robust and ac-
tionable recourses with a far smaller cost than ROAR (Upadhyay et al., 2021) and CEPM (Pawelczyk
et al., 2020).

Comparison of run time. Table 11 reports the average run time: we observe that Wachter has the
smallest run time, and our (Gaussian) DiRRAc has a smaller run time than ROAR in all datasets.

Table 11: Average runtime (seconds).

Methods German SBA Student

AR 0.027 0.046 0.039
Wachter 0.006 0.011 0.006
ROAR 0.396 0.355 0.412
DiRRAc 0.208 0.363 0.244
Gaussian DiRRAc 0.091 0.117 0.124

A.4 RESULTS ON SYNTHETIC DATA

We define the adaptive mean and covariance shift magnitude as α = µadapt×iter, β = Σadapt×iter
with µadapt,Σadapt are the factor of data shifts, iter is the index of iterative loop of synthesizing
process.
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Figure 8: Comparison of M2 validity as a function of the l1 distance between input instance and the
recourse for our DiRRAc method and ROAR on synthetic data.

For data distribution shifts, we generate mean shifts and covariance shifts 50 times each type with
adaptive mean and covariance shift magnitude, with the parameters µadapt = Σadapt = 0.1. To
estimate θ̂k and Σ̂k, we define valid mixture weights p̂ and generate data for each component for
100 times with the same ratio as the mixture weight. We train 100 logistic classifiers to compute the
empirical mean θ̂k and the empirical covariance matrix Σ̂k for the k-th component. We generate a
recourse for each test instance that belongs to the negative class. In Figure 8, we present the results
of the cost-robustness analysis of DiRRAc and ROAR on synthetic data.
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Figure 9: Impact of distribution shifts to the empirical validity. Left: mean shifts parametrized by
α; Center: covariance shifts parametrized by β; Right: Mean and covariance shifts with α = β.
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B PROOFS

B.1 PROOFS OF SECTION 3

To prove Proposition 3.4, we are using the notion of Value-at-Risk which is defined as follows.

Definition B.1 (Value-at-Risk). For any fixed distribution Qk of θ̃, the Value-at-Risk at the risk
tolerance level β ∈ (0, 1) of the loss θ̃>x is defined as

Qk- VaRβ(θ̃>x) , inf{τ ∈ R : Qk(θ̃>x ≤ τ) ≥ 1− β}.

We are now ready to provide the proof of Proposition 3.4.

Proof of Proposition 3.4. Using the definition of the Value-at-Risk in Definition B.1, we have

sup
Qk∈Bk(P̂k)

Qk(θ̃>x ≤ 0) = inf

{
β : β ∈ [0, 1], sup

Qk∈Bk(P̂k)

Qk(θ̃>x ≤ 0) ≤ β

}

= inf

{
β : β ∈ [0, 1], sup

Qk∈Bk(P̂k)

Qk- VaRβ(−θ̃>x) ≤ 0

}
By Nguyen (2019, Lemma 3.31), we can reformulate the worst-case value-at-risk as

sup
Qk∈Bk(P̂k)

Qk- VaRβ(−θ̃>x) = −θ̂>k x+

√
1− β
β

√
x>Σ̂kx+

ρk√
β
‖x‖2.

It is now easy to observe that in the first case when −θ̂>k x + ρk‖x‖2 ≥ 0, then we should have
supQk∈Bk(P̂k) Qk(θ̃>x ≤ 0) = 1.

We now consider the second case when −θ̂>k x+ ρk√
β
‖x‖2 < 0. It is easy to see, by the monotocity

of the worst-case value-at-risk with respect to β, that the minimal value β? should satisfies

−θ̂>k x+

√
1− β?
β?

√
x>Σ̂kx+

ρk√
β?
‖x‖2 = 0.

Using the transformation t←
√
β?, we have

−θ̂>k xt+
√

1− t2
√
x>Σ̂kx+ ρk‖x‖2 = 0.

By rearranging terms and then squaring up both sides, we have the equivalent quadratic equation

(A2
k +B2

k)t2 + 2AkCkt+ C2
k −B2

k = 0

with Ak , −θ̂>k x ≤ 0, Bk ,
√
x>Σ̂kx ≥ 0, and Ck , ρk‖x‖2 ≥ 0 as defined in the statement of

the proposition. Note, moreover, that we also have A2
k ≥ C2

k . This leads to the solution

t =
−AkCk +Bk

√
A2
k +B2

k − C2
k

A2
k +B2

k

≥ 0.

Thus, we find

fk(x) =
(−AkCk +Bk

√
A2
k +B2

k − C2
k

A2
k +B2

k

)2

.

This completes the proof.

We now provide the proof of Theorem 3.2.
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Proof of Theorem 3.2. We first consider the objective function f of (2), which can be re-expressed
as

f(x) = sup
P∈B(P̂)

P(Cθ̃(x) = 0)

= sup
Qk∈Bk(P̂k) ∀k

∑
k∈[K]

p̂kQk(θ̃>x ≤ 0)

=
∑
k∈[K]

p̂k × sup
Qk∈Bk(P̂k)

Qk(θ̃>x ≤ 0)

=
∑
k∈[K]

p̂k × fk(x),

where the equality in the second line follows from the non-negativity of p̂k, and the last equality fol-
lows from the definition of fk(x) in (5). Applying Proposition 3.4, we obtain the objective function
of problem (4).

Consider now the last constraint of (2). Using the result of Proposition 3.4, this constraint is equiv-
alent to

−θ̂>k x+ ρk‖x‖2 < 0 ∀k ∈ [K].

This leads to the feasible set X as is defined in (3). This completes the proof.

B.2 PROOFS OF SECTION 4

To prove Theorem 4.1, we first define the following worst-case Gaussian component probability
function

fNk (x) , sup
Qk∈BN

k (P̂k)

Qk(Cθ̃(x) = 0) = sup
Qk∈BN

k (P̂k)

Qk(θ̃>x ≤ 0) ∀k ∈ [K]. (11)

The next proposition provides the reformulation of fNk .

Proposition B.2 (Worst-case probability - Gaussian). For any x ∈ Rd, any k ∈ [K] and any

(θ̂k, Σ̂k, ρk) ∈ Rd × Sd+ × R+, define the following constants Ak , −θ̂>k x, Bk ,
√
x>Σ̂kx, and

Ck , ρk‖x‖2. The following holds:

(i) We have fNk (x) < 1
2 if and only if Ak + Ck < 0.

(ii) If x satisfies fNk (x) < 1
2 , then

fNk (x) = 1− Φ
( A2

k − C2
k

−AkBk + Ck
√
A2
k +B2

k − C2
k

)
.

Proof of Proposition B.2. We first prove Assertion (i). Pick any Qk ∈ BNk (P̂k), then Qk is a Gaus-
sian distribution Qk ∼ N (θk,Σk), and thus

Qk(θ̃>x ≤ 0) = Φ
( −θ>k x√

x>Σx

)
.

Guaranteeing fNk (x) < 1
2 is equivalent to guaranteeing

sup
G((θk,Σk),(θ̂k,Σ̂k))≤ρk

− θ>k x ≤ 0.

Note that we also have

sup
G((θk,Σk),(θ̂k,Σ̂k))≤ρk

− θ>k x = sup
θk:‖θk−θ̂k‖2≤ρk

− θ>k x = −θ̂>k x+ ρk‖x‖2

by the properties of the dual norm. This leads to the equivalent condition that Ak + Ck < 0.
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We now prove Assertion (ii). Using the definition of the Value-at-Risk in Definition B.1, we have

sup
Qk∈BN

k (P̂k)

Qk(θ̃>x ≤ 0) = inf

{
β : β ∈ [0,

1

2
), sup

Qk∈BN
k (P̂k)

Qk(θ̃>x ≤ 0) ≤ β

}

= inf

{
β : β ∈ [0,

1

2
), sup

Qk∈BN
k (P̂k)

Qk- VaRβ(−θ̃>x) ≤ 0

}
Using the result from Nguyen (2019, Lemma 3.31), we have

sup
Qk∈Bk(P̂k)

Qk- VaRβ(−θ̃>x) = −θ̂>k x+ t

√
x>Σ̂kx+ ρ

√
1 + t2‖x‖2 = Ak +Bkt+ Ck

√
1 + t,

with t = Φ−1(1 − β). Taking the infimum over β is then equivalent to finding the root of the
equation

Ak + tBk + Ck
√

1 + t2 = 0.

Using a transformation τ = 1/t, the above equation becomes

Akτ +Bk + Ck
√

1 + τ2 = 0

with solution

τ =
−AkBk + Ck

√
A2
k +B2

k − C2
k

A2
k − C2

k

> 0.

Notice thatAk+Ck < 0, and we also haveA2
k > C2

k , thus τ is well-defined. The result now follows
by noticing that fNk (x) = 1− Φ(t) = 1− Φ(1/τ).

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Problem (8) is equivalent to

min
∑
k∈[K] p̂k × fNk (x)

s. t. c(x, x0) ≤ δ
fNk (x) < 1

2 ∀k ∈ [K].

Applying Proposition B.2, we obtain the necessary result.

C EXTENSIONS OF THE DIRRAC FRAMEWORK

Throughout this section, we explore two extensions of our DiRRAc framework. In Section C.1,
we study an additional layer of robustification with respect to the mixture weights p̂. Next, in
Section C.2, we consider an alternative formulation of the objective function to minimize the worst-
case component probability.

C.1 ROBUSTIFICATION AGAINST MIXTURE WEIGHT UNCERTAINTY

The DiRRAc problem considered in Section 3 only robustifies the component distributions P̂k. We
now discuss a plausible approach to robustify against the misspecification of the mixture weights
p̂. Because the mixture weights should form a probability vector, it is convenient to model the
perturbation in the mixture weights using the φ-divergence.
Definition C.1 (φ-divergence). Let φ : R → R be a convex function on the domain R+, φ(1) = 0,
0 × φ(a/0) = a × limt↑∞ φ(t)/t for a > 0, and 0 × φ(0/0) = 0. The φ-divergence Dφ between
two probability vectors p, p̂ ∈ RK+ amounts to Dφ(p ‖ p̂) ,

∑
k∈[K] p̂k × φ(pk/p̂k).

The family of φ-divergences contains many well-known statistical divergences such as the Kullback-
Leibler divergence, the Hellinger distance, etc. Further discussion on this family can be found
in Pardo (2018). Distributionally robust optimization models with φ-divergence ambiguity set were
originally studied in decision-making problems (Ben-Tal et al., 2013; Bayraksan & Love, 2015) and
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have recently gained attention thanks to their successes in machine learning tasks (Namkoong &
Duchi, 2017; Hashimoto et al., 2018; Duchi et al., 2021).

Let ε ≥ 0 be a parameter indicating the uncertainty level of the mixture weights. The uncertainty
set for the mixture weights is formally defined as

∆ ,
{
p ∈ [0, 1]K : 1>p = 1, Dφ(p ‖ p̂) ≤ ε

}
,

which contains all K-dimensional probability vectors which are of φ-divergence at most ε from the
nominal weights p̂. The ambiguity set of the mixture distributions that hedge against the weight
misspecification is

U(P̂) ,
{
Q : ∃p ∈ ∆, ∃Qk ∈ Bk(P̂k) ∀k ∈ [K] such that Q ∼ (Qk, pk)

}
,

where the component sets Bk(P̂k) are defined as in Section 3. The DiRRAc problem with respect to
the ambiguity set U(P̂) becomes

min sup
P∈U(P̂)

P(Cθ̃(x) = 0)

s. t. c(x, x0) ≤ δ
sup

Qk∈Bk(P̂k)

Qk(Cθ̃(x) = 0) < 1 ∀k ∈ [K].
(12)

It is important to note at this point that the feasible set of (12) coincides with the feasible set of (2).
Thus, to resolve problem (12), it suffices to analyze the objective function of (12). Given the function
φ, we define its conjugate function φ∗ : R→ R ∪ {∞} by

φ∗(s) = sup
t≥0
{ts− φ(t)} .

The next theorem asserts that the worst-case probability under U(P̂) can be computed by solving a
convex program.
Theorem C.2 (Objective value). The feasible set of problem (12) coincides with X . Further, for
every x ∈ X , the objective value of (12) equals to the optimal value of a convex optimization
problem

sup
P∈U(P̂)

P(Cθ̃(x) = 0) = min
λ∈R+, η∈R

η + ελ+ λ
∑
k∈[K]

p̂kφ
∗
(fk(x)− η

λ

)
,

where fk(x) are computed using Proposition 3.4.

Proof of Theorem C.2. From the definition of the set U(P̂), we can rewrite F using a two-layer
decomposition

F (x) = sup
P∈U(P̂)

P(Cθ̃(x) = 0) = sup
p∈∆

sup
Qk∈Bk(P̂k) ∀k

∑
k∈[K]

pkQk(θ̃>x ≤ 0)

= sup
p∈∆

∑
k∈[K]

pk × sup
Qk∈Bk(P̂k)

Qk(θ̃>x ≤ 0)

= sup
p∈∆

∑
k∈[K]

pk × fk(x),

where the equality in the second line follows from the non-negativity of pk, and the last equal-
ity follows from the definition of fk(x) in (5). By applying the result from Ben-Tal et al. (2013,
Corollary 4.2), we have

F (x) =

 min η + ελ+ λ
∑
k∈[K]

p̂kφ
∗
(fk(x)− η

λ

)
s. t. λ ∈ R+, η ∈ R.

The proof is complete.

From the result of Theorem C.2, we can derive the gradient of the objective function of (12) using
Danskin’s theorem Shapiro et al. (2009, Theorem 7.21), or simply using auto-differentiation. Fur-
thermore, φ∗ is convex, and thus solving the minimization problem in Theorem C.2 can be done
efficiently using convex optimization algorithms.
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C.2 MINIMIZING THE WORST-CASE COMPONENT PROBABILITY

Instead of minimizing the (total) probability of unfavorable outcome, we can consider an alternative
formulation where the recourse action minimizes the worst-case conditional probability of unfavor-
able outcome over all K components. Mathematically, if we opt for the component ambiguity sets
Bk(P̂k) constructed in Section 3, then we can solve

min max
k∈[K]

sup
Qk∈Bk(P̂k)

Qk(Cθ̃(x) = 0)

s. t. c(x, x0) ≤ δ
sup

Qk∈Bk(P̂k)

Qk(Cθ̃(x) = 0) < 1 ∀k ∈ [K].
(13a)

Interestingly, problem (13a) does not involve the mixture weighs p̂. As a consequence, a trivial ad-
vantage of this model is that it hedges automatically against the misspecification of p̂. To complete,
we provide its equivalent finite-dimensional form.
Corollary C.3 (Component Probability DiRRAc). Problem (13a) is equivalent to

min
x∈X

max
k∈[K]

ρkθ̂
>
k x‖x‖2 +

√
x>Σ̂kx

√
(θ̂>k x)2 + x>Σ̂kx− ρ2

k‖x‖22
(θ̂>k x)2 + x>Σ̂kx

. (13b)

D EXTENSIONS OF THE GAUSSIAN DIRRAC FRAMEWORK

In this section, we leverage the results in Section C to extend the Gaussian DiRRAc framework to
(i) handle the uncertainty of the mixture weight and (ii) minimize the worst-case modal probability.
Remind that each individual mixture ambiguity set BNk (P̂k) is of the form

BNk (P̂k) =
{
Qk : Qk ∼ N (θk,Σk), G((θk,Σk), (θ̂k, Σ̂k)) ≤ ρk

}
,

which is a ball in the space of Gaussian distributions.

D.1 HANDLING MIXTURE WEIGHT UNCERTAINTY - GAUSSIAN DIRRAC

Following the notations in Section C.1, we define the set of possible mixture weights as

∆ =
{
p ∈ [0, 1]K : 1>p = 1, Dφ(p ‖ p̂) ≤ ε

}
and the ambiguity set with Gaussian information is defined as

UN (P̂) =
{
Q : ∃p ∈ ∆, ∃Qk ∈ BNk (P̂k) ∀k ∈ [K] such that Q ∼ (Qk, pk)k∈[K]

}
.

The distributionally robust problem with respect to the ambiguity set U(P̂) is

inf sup
P∈UN (P̂)

P(Cθ̃(x) = 0)

s. t. c(x, x0) ≤ δ
sup

Qk∈BN
k (P̂k)

Qk(Cθ̃(x) = 0) < 1
2 ∀k ∈ [K].

(14)

Following the results in Section 4, the feasible set of (14) coincides with the set X . It suffices now
to provide the reformulation for the objective function of (14).
Corollary D.1. For any x ∈ X , we have

sup
P∈UN (P̂)

P(Cθ̃(x) = 0) =

 inf η + ελ+ λ
∑
k∈[K]

p̂kφ
∗
(fNk (x)− η

λ

)
s. t. λ ∈ R+, η ∈ R,

where the values fNk (x) are obtained in Proposition B.2.

Corollary D.2 follows from Theorem D.2 by replacing the quantities fk(x) by fNk (x) to take into
account the Gaussian parametric information. The proof of Corollary D.2 is omitted.
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D.2 MINIMIZING WORST-CASE COMPONENT PROBABILITY

We now consider the Gaussian DiRRAc that minimizes the worst-case modal probability of infeasi-
bility. More concretely, we consider the recourse action obtained by solving

inf max
k∈[K]

sup
Qk∈BN

k (P̂k)

Qk(Cθ̃(x) = 0)

s. t. c(x, x0) ≤ δ
sup

Qk∈BN
k (P̂k)

Qk(Cθ̃(x) = 0) < 1
2 ∀k ∈ [K].

(15a)

The next corollary provides the equivalent form of the above optimization problem.
Corollary D.2. Problem (15a) is equivalent to

inf
x∈X

max
k∈[K]

1− Φ

(
(θ̂>k x)2 − ρ2

k‖x‖22

θ̂>k x

√
x>Σ̂kx+ ρk‖x‖2

√
(θ̂>k x)2 + x>Σ̂kx− ρ2

k‖x‖22

) . (15b)

E PROJECTED GRADIENT DESCENT ALGORITHM

The pseudocode of the algorithm is presented in Algorithm 1. The convergence guarantee for Algo-
rithm 1 follows from Beck (2017, Theorem 10.15), and is distilled in the next theorem.

Algorithm 1 Projected gradient descent algorithm with backtracking line-search

Input: Input instance x0, feasible set Xε and objective function f
Line search parameters: λ ∈ (0, 1), ζ > 0 (Default values: λ = 0.7, ζ = 1)
Initialization: Set x0 ← ProjXε(x0)
for t = 0, . . . , T − 1 do

Find the smallest integer i ≥ 0 such that

f
(
ProjXε(x

t − λiζ∇f(xt))
)
≤ f(xt)− 1

2λiζ
‖xt − ProjXε(x

t − λiζ∇f(xt))‖22.

Set xt+1 = ProjXε(x
t − λiζ∇f(xt)).

end for
Output: xT

Theorem E.1 (Convergence guarantee). Let {xt}t=0,1,...,T be the sequence generated by Algo-
rithm 1. Then, all limit points of the sequence {xt}t=0,1,...,T are stationary points of problem (4)
with the modified feasible set Xε. Furthermore, there exists some constant C > 0 such that for any
T ≥ 1, we have

min
t=0,1,...,T

∥∥xt − ProjXε (xt − ζ∇f(xt))
∥∥

2

ζ
≤ C√

T
.
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