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ABSTRACT

Actor-critic (AC) is a powerful method for learning an optimal policy in reinforce-
ment learning, where the critic uses algorithms, e.g., temporal difference (TD)
learning with function approximation, to evaluate the current policy and the actor
updates the policy along an approximate gradient direction using information from
the critic. This paper provides the tightest non-asymptotic convergence bounds for
both the AC and natural AC (NAC) algorithms. Specifically, existing studies show
that AC converges to an ϵ+ εcritic neighborhood of stationary points with the best
known sample complexity of O(ϵ−2) (up to a log factor), and NAC converges to
an ϵ+ εcritic +

√
εactor neighborhood of the global optimum with the best known

sample complexity of O(ϵ−3), where εcritic is the approximation error of the critic
and εactor is the approximation error induced by the insufficient expressive power
of the parameterized policy class. This paper analyzes the convergence of both
AC and NAC algorithms with compatible function approximation. Our analysis
eliminates the term εcritic from the error bounds while still achieving the best known
sample complexities. Moreover, we focus on the challenging single-loop setting
with a single Markovian sample trajectory. Our major technical novelty lies in
analyzing the stochastic bias due to policy-dependent and time-varying compatible
function approximation in the critic, and handling the non-ergodicity of the MDP
due to the single Markovian sample trajectory.

1 INTRODUCTION

Actor-Critic (AC) (Barto et al., 1983; Konda & Tsitsiklis, 2003) is a reinforcement learning algorithm
that combines the advantages of actor-only methods and critic-only methods by alternatively perform-
ing policy gradient update (actor) and action-value function estimation (critic) in an online fashion.
Specifically, the critic uses a parameterized function to estimate the value function of the current
policy, e.g., temporal difference (TD) (Sutton, 1988) and Q-learning (Watkins & Dayan, 1992). Then
the actor updates the policy along an approximate gradient direction based on the estimate from
the critic using approaches such as policy gradient (Sutton et al., 1999) and natural policy gradient
(Kakade, 2001). In contrast to critic-only methods, AC methods, which are gradient based, usually
have desirable convergence properties when combined with the approach of function approximation.
However, critic-only methods may not converge or even diverge when applied together with function
approximation (Baird, 1995; Gordon, 1996). Moreover, AC methods also enjoy a reduced variance
due to the critic, and thus their convergence is typically more stable and faster than actor only
methods.

While the asymptotic convergence for AC and NAC has been well understood in the literature, e.g.,
(Bhatnagar et al., 2009; Kakade, 2001; Konda & Tsitsiklis, 2003), its non-asymptotic convergence
analysis has been largely open until very recently. The non-asymptotic analysis is of great practical
importance as it answers the questions that how many samples are needed and how to appropriately
choose the different learning rates for the actor and the critic. Existing studies show that AC converges
to an ϵ+ εcritic neighborhood of stationary points with the best known sample complexity of O

(
ϵ−2
)

(Chen et al., 2021; Olshevsky & Gharesifard, 2022; Xu et al., 2020a), and NAC converges to an
ϵ + εcritic +

√
εactor neighborhood of the global optimum with the best known sample complexity

of O(ϵ−3) (Chen et al., 2022; Xu et al., 2020a), where εcritic is the approximation error of the
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critic and εactor is the approximation error induced by the insufficient expressive power of the
parameterized policy class. In this paper, when presenting sample complexity, we omit the log factors.
In these studies, the critic employs a fixed class of parameterized functions (typically linear function
approximation with fixed feature), which may not satisfy the compatible condition (Sutton et al.,
1999) (see Section 2 for details). This will result in a non-diminishing bias in the policy gradient
estimate, and therefore, an additional error term εcritic is incurred in the overall error bound. Several
works (Cayci et al., 2022; Wang et al., 2019) propose to use overparameterized neural networks in
the critic to mitigate this issue, where εcritic diminishes as the network size increases. However, the
convergence of the critic requires stringent conditions that are hard to verify (Cayci et al., 2022;
Wang et al., 2019), and large neural network introduces expensive computational and memory costs.
Actually, if the critic employs the approach of compatible function approximation, which is linear,
then εcritic vanishes without introducing additional computational and memory costs (Sutton et al.,
1999) (see details in Section 2). Moreover, for NAC applied with fixed function approximation in
the critic, one needs to explicitly estimate the Fisher information matrix and compute its inverse,
which will be computationally and memory expensive. Another advantage of compatible function
approximation when applied with NAC is that the inverse of the Fisher information in the natural
gradient will cancel out with the policy gradient (see Proposition 2), and thus there is no need to
estimate the Fisher information matrix anymore.

1.1 CHALLENGES AND CONTRIBUTIONS

Though AC and NAC with compatible function approximation enjoy no approximation error from
the critic and no need of estimating the Fisher information matrix (for NAC), their non-asymptotic
convergence analyses are much more challenging than the ones with fixed function approximation. To
the best of the authors’ knowledge, this paper develops the tightest non-asymptotic error bounds for
AC and NAC algorithms, and our analyses are for the challenging case of single Markovian sample
trajectory. We prove that AC with compatible function approximation converges to an ϵ stationary
point with sample complexity O(ϵ−2), and NAC with compatible function approximation converges
to an ϵ+

√
εactor neighborhood of the globally optimal policy with sample complexity O(ϵ−3). Our

non-asymptotic error bounds outperform the best known AC and NAC bounds in the literature by a
constant εcritic and achieve the same sample complexity: O(ϵ−2) for AC and O(ϵ−3) for NAC (see
Tables 1 and 2). We note that this constant εcritic is due to the approximation error of the function
class used by the critic, and does not diminish with time.

One of the biggest challenges in the analysis is due to the time-varying critic feature function.
Specifically, the critic with compatible function approximation employs an ω-dependent linear
function class, where ω is the policy parameter. As the actor updates the policy, the feature function
of the critic also changes with ω. Therefore, the critic is using a linear function with time-varying
ω-dependent feature to track the value function of the current policy πω , which is also time varying.
This makes the analysis of the tracking error, i.e., the error between the ideal limit of the critic given
the current policy and its current estimate, challenging. In this paper, we design a novel approach to
explicitly bound this error. The central idea is to construct an auxiliary eligibility trace with fixed
feature to approximate the eligibility trace with time-varying feature (in the critic, we use k-step TD
with compatible function approximation).

In this paper, we focus on the challenging single-loop setting with a single Markovian sample
trajectory. Some studies tried to decouple the updates of the actor and the critic using approaches,
e.g., nested loop (Qiu et al., 2021; Agarwal et al., 2021; Chen et al., 2022; Xu et al., 2020a), and
to further develop the non-asymptotic analysis. Specifically, after the actor updates the policy, then
the policy is fixed and the critic starts an inner loop to iterate sufficient number of steps until it gets
a perfect evaluation of the current policy. This decoupling approach makes it easier to analyze as
there is no need to analyze the interaction between the actor and the critic. However, this decoupling
approach does not enjoy benefits from the two time-scale structure in the original AC and NAC
algorithms (Konda & Tsitsiklis, 2003; Bhatnagar et al., 2009), e.g., algorithmic simplicity and
statistical efficiency, and techniques therein cannot be generalized to analyze the single-loop single-
trajectory two time-scale AC and NAC algorithms. Moreover, analyses therein require some kind of
i.i.d. assumptions or require trajectories starting from any arbitrary state, which might be difficult
to guarantee in practice. To develop the tightest bound, we develop a novel approach that bounds
the tracking error as a function of the policy gradient norm (for AC) and the optimality gap (for
NAC). We also note that our analysis for NAC does not need the smoothness assumption on the
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Table 1: Comparison of sample complexity of AC
Reference Single-loop Sample size Error Comments

(Wang et al., 2019) × O
(
ϵ−6
)

ϵ+ εcritic Critic: neural
(Zhou & Lu, 2022)

√
O
(
ϵ−1
)

ϵ LQR
(Zhang et al., 2020b)

√
Asymptotic

(Qiu et al., 2021) × O
(
ϵ−4
)

Actor:
(Kumar et al., 2023) × O(ϵ−3) non-linear, smooth
(Kumar et al., 2023)

(Xu et al., 2020b) × O
(
ϵ−2.5

)
ϵ+ εcritic Critic: linear

(Xu et al., 2020a) × O
(
ϵ−2
)

function approx.
(Barakat et al., 2022)

(Wu et al., 2020)
√

O
(
ϵ−2.5

)
(Olshevsky & Gharesifard, 2022)

(Chen et al., 2021)
√

O
(
ϵ−2
)

Our Work
√

O(ϵ−2) ϵ

Table 2: Comparison of sample complexity of NAC
Reference Single-loop Sample size Error Comments

(Khodadadian et al., 2022)
√

O
(
ϵ−6
)

(Khodadadian et al., 2021) × O
(
ϵ−3
)

ϵ Tabular case
(Wang et al., 2019) × O

(
ϵ−6
)

ϵ+ εcritic
(Cayci et al., 2022) × O

(
ϵ−3
)

+
√
εactor Critic: neural

(Agarwal et al., 2021) × O
(
ϵ−6
)

Actor:
(Xu et al., 2020a) × O

(
ϵ−3
)

ϵ+ εcritic non-linear, smooth
(Xu et al., 2020b) × O

(
ϵ−4
)

+
√
εactor Critic: linear

(Chen et al., 2022) × O
(
ϵ−3
)

function approx.
Our Work

√
O(ϵ−3) ϵ+

√
εactor

parameterized policy, which is typically required in existing NAC and AC analyses (Chen et al., 2021;
Olshevsky & Gharesifard, 2022).

1.2 RELATED WORK

In this section, we review recent relevant works on non-asymptotic analyses on reinforcement learning
algorithms with function approximation. We provide a detailed comparison between our results and
existing studies on AC and NAC in Tables 1 and 2. The "Sample complexity" in the table is the one
needed to guarantee the gradient norm/optimality gap less than or equal to the "Error".

Actor-critic analyses. We list recent works on non-asymptotic analyses for AC in Table 1. Based on
whether the updates of actor and critic are decoupled, the results can be grouped into "single-loop"
and "nested-loop/decoupling" approaches. For a general MDP, the best known sample complexity for
both single-loop and nested-loop approaches is O(ϵ−2) (Chen et al., 2021; Olshevsky & Gharesifard,
2022; Xu et al., 2020a). The only exception is (Zhou & Lu, 2022), which is due to the special
structure of the LQR problem. These studies all use a fixed function class in the critic, and therefore,
the convergence error consists of a non-diminishing constant term of εcritic. In this paper, we analyze
the AC with compatible function approximation, and we obtain a strictly tighter error bound without
εcritic. Our analysis is also much more challenging than the ones in the literature, which is mainly due
to that the function class in the critic varies with the policy in the actor.

Natural actor-critic analyses. We list recent works on non-asymptotic analyses for NAC in Ta-
ble 2. The best sample complexity for single-loop NAC is O

(
ϵ−6
)

and it is for the tabular case
(Khodadadian et al., 2022), whereas the best sample complexity for nested-loop/decoupling NAC
is O

(
ϵ−3
)

with an error of ϵ+ εcritic +
√
εactor (Chen et al., 2022; Xu et al., 2020a). There exists a

gap of O
(
ϵ−3
)

between these two approaches, which is mainly due to the challenge in bounding the
tracking error for NAC in the single-loop setting. In this paper, we close this gap and show that NAC
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in the single-loop setting can also achieve the sample complexity of O(ϵ−3), and more importantly
with a reduced error of ϵ+

√
εactor.

Actor/critic only analyses. Non-asymptotic analyses for critic only methods have been extensively
studied recently, e.g., TD (Srikant & Ying, 2019; Lakshminarayanan & Szepesvari, 2018; Bhandari
et al., 2018; Cai et al., 2019; Sun et al., 2019; Xu & Gu, 2020), SARSA (Zou et al., 2019), gradient
TD (GTD) method (Dalal et al., 2018; Xu et al., 2019; Wang et al., 2021; 2017; Liu et al., 2015;
Gupta et al., 2019; Kaledin et al., 2020; Ma et al., 2020; 2021; Wang & Zou, 2020). There are also
non-asymptotic analyses for actor only method, e.g., (Bhandari & Russo, 2021; 2019; Agarwal et al.,
2021; Mei et al., 2020; Li et al., 2021a; Laroche & des Combes, 2021; Zhang et al., 2021; Cen et al.,
2021; Zhang et al., 2020a; Lin, 2022). In this paper, we focus on AC and NAC algorithms, where
how the errors in the actor and the critic affects the other needs to be analyzed.

2 PRELIMINARIES

Markov Decision Processes Consider a general reinforcement learning setting, where an agent
interacts with a stochastic environment modeled as a Markov decision process (MDP). An MDP can
be represented by a tuple ⟨S,A, P,R⟩, where S denotes the state space, A denotes the discrete finite
action space, R(·, ·) : S × A → [0, Rmax] is the reward function. The transition kernel P (·|s, a)
denotes the distribution of the next state if taking action a at state s, ∀s ∈ S, a ∈ A.

A stationary policy π maps a state s ∈ S to a probability distribution π (·|s) over the action
space A. Then the expected long term average reward for a policy π is defined as follows:
J (π) = limN→∞

1
NE

[∑N−1
t=0 R(st, at)|π

]
= Es∼dπ,a∼π(·|s) [R(s, a)] , where we denote by dπ

the stationary distribution dπ(s) = limN→∞
1
N

∑N−1
t=0 P (st = s|π) , denote by Dπ = dπ × π the

state-action stationary distribution. We rewrite Rt := R(st, at). For a given policy π and an initial
state s, the relative value function is defined as V π(s) = E [

∑∞
t=0 Rt − J(π)|s0 = s, π] ,∀s ∈ S.

Given initial state s and action a, the relative action value function (Q function) for a given policy
π is defined as Qπ(s, a) = E [

∑∞
t=0 Rt − J(π)|s0 = s, a0 = a, π] ,∀(s, a) ∈ S ×A. The goal is to

find the optimal policy π∗ that maximizes the long term average reward: maxπ J(π).

(Natural) Actor-Critic with Compatible Function Approximation Consider a parameterized
policy class Πω = {πω : ω ∈ W}, where W ⊆ Rd. Then the problem in Section 2 can be solved by
optimizing over the parameter space W . Specifically, the actor updates the policy via the approach of
(natural) policy gradient, where the policy gradient is given by (Sutton et al., 1999)

∇J(π) = EDπω
[Qπω (s, a)ϕω(s, a)] , (1)

where ϕω(s, a) = ∇ω log πω(a|s). We further let Φω denote the feature matrix, which is the stack of
all feature vectors. Specifically, Φω ∈ R|S||A|×d and the (s, a)-row of Φω is ϕ⊤

ω (s, a). On the other
hand, the critic estimates the Q function in Equation (1) via the approach of TD learning, and the
Q function is usually parameterized using linear function approximation in the existing literature,
i.e., Q = {Qθ(s, a) = ϕ(s, a)⊤θ, θ ∈ Θ} where ϕ denotes the feature vector and Θ ⊆ Rd. However,
as summarized in Tables 1 and 2, using a fixed ϕ introduces an additional non-vanishing error term
εcritic to the gradient estimate.

To avoid the critic’s function approximation error, (Konda & Tsitsiklis, 2003) proposed a smart idea
of compatible function approximation, which uses the compatible feature vector ϕω that depends on
the policy parameter ω. To explain, in order to approximate the value function Qπω associated with
policy πω, we can set the feature vector as ϕω(s, a) := ∇ω log πω(a|s) and solve for the best linear
approximation parameter θ̄∗ω via the following optimization problem.

θ̄∗ω ∈ argmin
θ

EDπω

[(
Qπω (s, a)− ϕ⊤

ω (s, a)θ
)2]

. (2)

Proposition 1 (Konda & Tsitsiklis (2003)). With compatible function approximation, the policy
gradient ∇J(πω) can be rewritten as:

∇J(πω) = EDπω
[∇ log πω(a|s)Qπω (s, a)] = EDπω

[
ϕω(s, a)(ϕ

⊤
ω (s, a) θ̄∗ω)

]
. (3)

This implies that as long as we can solve the finite dimensional problem Equation (2), linear
function approximation with the compatible feature ϕω and parameter θ̄∗ω does not induce any
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Algorithm 1 (Natural) Actor-Critic with Compatible Function Approximation
1: Initialization: k, η0, ω0, π0 = πω0

, θ0, ϕ0 = ∇ log π0, s0, a0 ∼ π0(·|s0), z0 = 0
2: for t = 0, ..., T − 1 do
3: Observe Rt

4: st+1 ∼ P (·|st, at); at+1 ∼ πt(·|st+1)
5: ϕt(s, a) = ∇ω log πt(a|s) /*Compatible function approximation*/
6: Critic: δt(θt) = Rt − ηt + ϕ⊤

t (st+1, at+1)θt − ϕ⊤
t (st, at)θt /*TD error*/

7: zt =
∑t

j=t−k ϕj(sj , aj) /*eligibility trace*/
8: ηt+1 = ηt + γt(Rt − ηt) /*average reward update*/
9: θt+1 = Π2,B(θt + αtδt(θt)zt) /*TD update*/

10: Option I: ωt+1 = ωt + βtϕ
⊤
t (st, at)θtϕt(st, at) /*Actor update in AC*/

11: Option II: ωt+1 = ωt + βtθt /*Actor update in NAC*/
12: end for

function approximation error. This approach is referred to as compatible function approximation
(Konda & Tsitsiklis, 2003), i.e., estimating Qπω using an ω-dependent linear function class: Qω =
{ϕ⊤

ω (s, a)θ, θ ∈ Θ}. To solve Equation (2) for the compatible function approximation parameter, we
use the k-step TD algorithm with compatible feature ϕω (Konda & Tsitsiklis, 2003).

The actor can also use the following natural policy gradient to update the policy (Kakade, 2001).
∇̃J(πω) = F−1

ω ∇J(πω), where the matrix Fω denotes the Fisher information matrix: Fω =

EDπω

[
∇ log πω(a|s) (∇ log πω(a|s))⊤

]
.

Proposition 2 (Peters & Schaal (2008)). With compatible function approximation, natural policy
gradient is reduced to: ∇̃J(πω) = θ̄∗ω.

That is, there is no need to estimate the Fisher information matrix and compute its inverse, which is
typically computationally expensive.

3 MAIN RESULTS

The detailed AC and NAC algorithms with compatible function approximation is summarized in Algo-
rithm 1. In the critic update, αt is the stepsize, and denote by Π2,B(v) = argmin∥ω∥2≤B ∥v − ω∥2
for any v ∈ Rd the project operator, and B is the radius. Next, we present the non-asymptotic bounds
for the AC and NAC with compatible function approximation in Algorithm 1.
Assumption 1. (Uniform Ergodicity) Consider the MDP with policy πω and transition kernel P , there
exists constants m > 0, and ρ ∈ (0, 1) such that sups∈S ∥P (st ∈ ·|s0 = s)−Dπω

(·)∥T V ≤ mρt.

Here ∥·∥T V denotes the total variation distance between two distributions. Assumption 1 is widely
used in the literature to handle the Markovian noise, e.g., (Srikant & Ying, 2019; Zou et al., 2019;
Bhandari et al., 2018). We further assume that the d feature functions, ϕω,i, i = 1, ..., d, are linearly
independent, i.e., the feature matrix Φω is full rank when |S||A| ≥ d. This is also commonly used in
the literature of analyzing RL algorithms with linear function approximation (Srikant & Ying, 2019;
Zou et al., 2019; Bhandari et al., 2018).

3.1 CRITIC:k-STEP TD

Consider the critic update, where the TD method is used to learn the relative value function under
the average-reward setting. It is known that the feature function needs to satisfy certain condition
(Assumption 2 in (Tsitsiklis & Van Roy, 1999)) so that the limit of the TD method is unique. In the
following proposition, we show that compatible function approximation automatically satisfy the
assumption needed in (Tsitsiklis & Van Roy, 1999), and therefore guarantees the convergence of the
critic without the need of any additional assumptions.
Proposition 3. For any ω ∈ W and θ ∈ Θ, Φωθ ̸= e, where e ∈ Rd is an all-one vector.

We note that the results in (Wu et al., 2020) use a different assumption from the one in (Tsitsiklis &
Van Roy, 1999) to guarantee the convergence of the critic in the average-reward setting (Assumption
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Algorithm 2 Compatible k-step TD Algorithm
1: Initialization: k, η, θ0, ϕ = ∇ log πω, s0, a0 ∼ πω(·|s0), z0 = 0
2: for t = 0, ..., T − 1 do
3: Observe Rt

4: st+1 ∼ P (·|st, at); at+1 ∼ πω(·|st+1)
5: δ(θt) = Rt − η + ϕ⊤(st+1, at+1)θt − ϕ⊤(st, at)θt /*TD error*/
6: zt =

∑t
j=t−k ϕ(sj , aj) /*eligibility trace*/

7: η = η + γt(Rt − η) /*average reward update*/
8: θt+1 = Π2,B(θt + αtδ(θt)zt) /*TD update*/
9: end for

4.1 in (Wu et al., 2020)): the matrix E[ϕ(s)(ϕ(s′)− ϕ(s))⊤] is negative definite, where ϕ is the fixed
feature function, s is the current state and s′ is the subsequent state.

As discussed in Section 2, we would like the critic to find the solution of Equation (2). However, the
objective in Equation (2) requires the knowledge of Qπω , which is unavailable. Therefore, in the
critic, we propose to use the method of k-step TD, so that as k enlarges, the solution from the k-step
TD converges to the solution of Equation (2). We present the k-step TD algorithm in Algorithm 2.
Here, the AC and NAC algorithms in Algorithm 1 are single-loop, single sample trajectory and two
time-scale. We introduce the k-step TD algorithm in Algorithm 2 only to illustrate the basic idea.

Based on Proposition 3, Assumption 1, and the assumption that Φω is full rank, from (Tsitsiklis &
Van Roy, 1999, Theorem 1), we can show that the k-step TD algorithm in Algorithm 2 has a unique
solution, denoted by θ∗ω:

EDπω

[
ϕ⊤
ω (s, a)

(
T (k)
πω

ϕ⊤
ω (s, a)θ

∗
ω − ϕ⊤

ω (s, a)θ
∗
ω

)]
= 0, (4)

where T (k)
πω (Q(s, a)) = E[

∑k−1
j=0 (Rj − J(πω)) +Q(sk, ak)|s0 = s, a0 = a, πω].

Assume that EDw

[
ϕw(s, a)ϕ

⊤
w(s, a)

]
is positive definite with the minimum eigenvalue λmin > 0.

This is to guarantee that the solution to Equation (2) is unique. We can remove this assumption by
adding a regularizer λ∥θ∥22 to Equation (2) to guarantee the solution to the regularized Equation (2)
is unique, and bounding the difference.

Then we bound the difference between the solution to Equation (2) and the solution to the k-step TD
algorithm in the following proposition.

Proposition 4. For any ω ∈ W , the difference between θ∗ω and θ̄∗ω can be bounded as follows:∥∥θ∗ω − θ̄∗ω
∥∥
2
≤ Cgapmρk

λmin
, where Cgap = C2

ϕB + CϕRmax
1

1−ρ .

It can be seen that the bound diminishes exponentially with k. Therefore by picking a large k, the
k-step TD is expected to solve Equation (2) to a desired accuracy.

3.2 NON-ASYMPTOTIC BOUND FOR AC

Assumption 2. (Smoothness and Boundedness) For any ω, ω′ ∈ Rd and any state-action pair
(s, a) ∈ S ×A, there exist positive constants Lϕ, Cϕ, Cπ and Lδ such that

1) ∥ϕω(s, a)− ϕω′(s, a)∥2 ≤ Lϕ ∥ω − ω′∥2 ; 2) ∥ϕω(s, a)∥2 ≤ Cϕ;

3) ∥πω(·|s)− πω′(·|s)∥T V ≤ Cπ ∥ω − ω′∥2 ; 4)
∥∥∇2πω(·|s)−∇2πω′(·|s)

∥∥
2
≤ Lδ ∥ω − ω′∥2 .

The first three assumptions in Assumption 2 assume the policy and feature function ϕω is smooth
and bounded. The fourth one in Assumption 2 is only needed for the AC analysis. For the NAC
analysis, it is not necessary. We note that these assumptions can be easily satisfied by choosing a
proper policy parameterization. For example, if the policy is parameterized using neural network,
then these assumptions can be satisfied if the activation function is Lipschitz and smooth (Du et al.,
2019; Miyato et al., 2018; Neyshabur, 2017).
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We first present the bound on the tracking error, which measures how the critic tracks its ideal limit:
1
T

∑T−1
t=0 E

[
∥θ∗t − θt∥22

]
. Here, θt is the critic parameter at time t of Algorithm 1, and we rewrite

θ∗t = θ∗ωt
and J(ωt) = J(πωt) for convenience. In the AC algorithm, we set αt = α, βt = β,

γt = γ, and k = O (log T ) such that γ ≥ α ≥ β ≥ mρk. Note that we use a projection in Line 8 in
Algorithm 1. In order for convergence and optimality, we require that all ∥θ∗ω∥ ≤ B. A sufficient
condition to guarantee this is to set B =

mRmaxCϕ

(1−ρ)(λmin−C2
ϕdmρk)

(see Appendix A for the proof).

Proposition 5. The tracking error of the AC algorithm in Algorithm 1 can be bounded as follows:

1

T

T−1∑
t=0

E
[
∥θ∗t − θt∥22

]
≤
(
cαβ

α
+

cηβ

γ

)
1

T

T−1∑
t=0

E
[
∥∇J(ωt)∥22

]
+O

(
1

Tα

)
+O

(
log2 T

Tγ

)
+O

(
α log2 T

)
+O

(
β log3 T

)
+O

(
γ log3 T

)
+O

(
β2 log2 Tα−1

)
+O

(
β2γ−1

)
,

where cα and cη is a positive constant defined in Appendix B. Set γ = O( 1√
T
), α, β = O( 1√

T log2 T
),

we have 1
T

∑T−1
t=0 E

[
∥θ∗t − θt∥22

]
≤ 1

4C4
ϕ

1
T

∑T−1
t=0 E

[
∥∇J(ωt)∥22

]
+O

(
log3 T√

T

)
.

For simplicity, we only present the order of the bound here, and the detailed non-asymptotic bound
can be found in the Appendix B. The key novelty in the analysis is that we bound the tracking error as
a function of the policy gradient, and we also bound the policy gradient as a function of the tracking
error. By applying the bound recursively, we get a tight bound on the tracking error in Proposition 5.
Many existing studies in the two time-scale analysis upper bound the policy gradient in the tracking
error using its maximum norm, which is constant-level. However, as we see in the following theorem,
the policy gradient shall also decrease to zero. Therefore, the above approach does not obtain the
tightest bound, and leads to a higher-order sample complexity.

Theorem 1. Consider the AC algorithm in Algorithm 1. It can be shown that

1

T

T−1∑
t=0

E
[
∥∇J(ωt)∥22

]
≤ C4

ϕ

1

T

T−1∑
t=0

E
[
∥θ∗t − θt∥22

]
+O

(
1

Tβ

)
+O

(
β log2 T

)
. (5)

Set γ = O( 1√
T
), α, β = O( 1√

T log2 T
), then 1

T

∑T−1
t=0 E

[
∥∇J(ωt)∥22

]
≤ O

(
log3 T√

T

)
.

Theorem 1 implies that the AC algorithm with compatible function approximation converges to an
ϵ-stationary point with sample complexity ϵ−2. This improves the best known error bound by a
constant εcritic (Wang et al., 2019; Zhang et al., 2020b; Qiu et al., 2021; Kumar et al., 2023; Xu et al.,
2020b; Barakat et al., 2022; Wu et al., 2020; Chen et al., 2021; Olshevsky & Gharesifard, 2022;
Xu et al., 2020a), and matches the best known sample complexity (Chen et al., 2021; Olshevsky &
Gharesifard, 2022; Xu et al., 2020a).

3.3 NON-ASYMPTOTIC BOUND FOR NAC

In this section, we present the non-asymptotic bound for the NAC algorithm in Algorithm 1. It was
shown in (Agarwal et al., 2021) that due to the parameter invariant property of the natural policy
gradient update, natural policy gradient is able to converge to the globally optimal policy with a gap
that depends on the capacity of the policy class. Define the compatible linear function approxima-
tion error εactor = maxω∈W

{
minθ EDπω

[∥∥Qπω (s, a)− ϕ⊤
ω (s, a)θ

∥∥2
2

]}
. This error represents the

approximation error due to the insufficient expressive power of the policy parameterization, and shall
decrease if a large neural network is used.

Using the same idea as the one in AC, we can also develop a tight bound on the tracking error:
O
(
T− 1

3

)
, where now we bound the tracking error as a function of the optimality gap instead of the

gradient norm. We then also develop bound of the optimality gap as a function of the tracking error.
Applying them recursively, we obtain the tightest bound on the tracking error and the tightest bound
on the optimality gap in the following theorem. We set αt = α, βt = β, γt = γ, and k = O (log T )
such that γ ≥ α ≥ β ≥ mρk.

7
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Assumption 3. There exist a constant C∞ < ∞ such that supω∈W

∥∥∥Dπ∗ (s,a)
Dπω (s,a)

∥∥∥
∞

≤ C∞.

Assumption 3 guarantees that the policy is sufficiently exploratory, and is commonly used in NAC
analyses, e.g., (Cayci et al., 2022; Xu et al., 2020a; Agarwal et al., 2021). Approaches to guarantee
this assumption were also studied in (Khodadadian et al., 2021; 2022).
Theorem 2. Consider the NAC algorithm in Algorithm 1. Then, we have that

min
t<T

E [J(π∗)− J(ωt)] ≤ O
(
log2 T

Tα

)
+O

(
log T

Tβ

)
+O

(
log2 T

T
√
αβ

)
+O

(√
γβ log2 T√

α

)
+O

(
γ log2 T√

α

)
+O

(
β log2 T√

α

)
+O

(√
α log2 T

)
+O

(√
β log2 T

)
+O (

√
εactor) .

If we set γ = O(T− 2
3 ), α = O(T− 2

3 log−2 T ), β = O(T− 2
3 log−2 T ), we have

min
t<T

E[J(π∗)− J(ωt)] ≤ O
(
T− 1

3 log4 T
)
+O (

√
εactor) . (6)

Remark 1. Unlike the results for AC in Theorem 1, Theorem 2 for NAC only needs the first three
assumptions in Assumption 2. This is one advantage of using compatible function approximation in
NAC. As we can see from Line 11 in Algorithm 1 and Proposition 2, the inverse of the Fisher informa-
tion matrix is cancelled out. Therefore, there is no stochastic noise from using ϕω(st, at)ϕ

⊤
ω (st, at)

in the analysis of NAC. However, in AC, we need to handle this noise, and therefore, the fourth
assumption in Assumption 2 is needed for the AC algorithm.

Theorem 2 implies that NAC with compatible function approximation converges to an ϵ+
√
εactor-

neighborhood of the globally optimal policy π∗ with sample complexity O(ϵ−3). Compared to
existing studies, our work eliminate the approximation error of the critic, εcritic, from the overall
error bound (Wang et al., 2019; Cayci et al., 2022; Agarwal et al., 2021; Xu et al., 2020a;b; Chen
et al., 2022). Moreover, as summarized in Table 2, the best known sample complexity of NAC is ϵ−3,
which however is for the nested-loop NAC variant (Xu et al., 2020a; Chen et al., 2022). Our results
achieves this sample complexity, and is for the challenging single-loop NAC algorithm with a single
Markovian sample trajectory.

Here we provide a proof sketch for the NAC algorithm to highlight major challenges and our technical
novelties. The analysis of NAC contains of most major technical novelty in the AC analysis.

Proof sketch. For simplicity of presentation, we set t̂ = ⌈ 3 log T
λ̄minα

⌉ and T̃ = t̂⌈ T
t̂ log T

⌉. We denote by
Mt = E[||θt − θ∗t ||22] + E[(ηt − J(ωt))

2] the sum of the tracking error and the estimation error of
the average reward. Denote by D(ωt) = KL(π∗|πt) the KL divergence between policy π∗ and πt.

Step 1 (Error decomposition): According to the smoothness property of D(ω) with respect to
ω, we bound the performance gap between the current policy and the optimal policy (optimality

gap) as follows: 1

T̃

∑t+T̃−1
j=t E[J(π∗) − J(ωj)] ≤ D(ωt+T̃ )−D(ωt)

T̃ β
+ O

(√
1

T̃

∑t+T̃−1
j=t Mj

)
+

O(C∞
√
εactor + β +mρk).

Step 2 (Estimation error in the average reward): In this step, we analyze estimation error in the
average reward: ηt − J(ωt). We provide a tight characterization of this error:

E[(ηt+1 − J(ωt+1))
2] ≤ (1− γ)E[(ηt − J(ωt))

2] +O(βE[||∇J(ωt)||22])
+O(mρkγ + k2γ2 + k2β2). (7)

One of our key novelties lies in that we bound this estimation error using the gradient norm
E[||∇J(ωt)||22]. The above bound itself is tighter than the existing one in (Wu et al., 2020).

Step 3 (Tracking error): In this step, we bound the tracking error in the critic: ||θt − θ∗t ||22. By the
TD error step in Algorithm 1, we decompose the term ||θt+1 − θ∗t+1||22 as follows: ||θt+1 − θ∗t+1||22 ≤
||θt−θ∗t ||22+α2||δtzt||22+||θ∗t−θ∗t+1||22+2α⟨θt−θ∗t , δtzt⟩+2α⟨δtzt, θ∗t−θ∗t+1⟩+2⟨θt−θ∗t , θ

∗
t−θ∗t+1⟩.

Another key challenge lies in how to bound the term E[⟨θt− θ∗t , δtzt⟩]. We develop a novel technique
of auxiliary Markov chain to decompose this error into two parts: 1) error due to time-varying

8
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feature function and 2) error due to time-varying policy. Specifically, consider the first Markov chain
generated from the algorithm:

s0, a0
π0×P→ s1, a1 → ... → st, at

πt×P→ st+1, at+1,

where at each time j, the action is chosen according to πj and the transition kernel is P . Here
zt =

∑t
j=t−k ϕj(sj , aj) is the eligibility trace used in the algorithm. It can be seen that in zt, the

feature ϕj changes with j, and the distribution of sj , aj depends on the time-varying policy πj . We
then design an auxiliary eligibility trace ẑt =

∑t
j=t−k ϕt(sj , aj), where the feature is fixed to be ϕt,

and only the the distribution of sj , aj depends on the time-varying policy πj . To further handle the
time-varying distribution of sj , aj , we design an auxiliary Markov chain (denoted by A1) as follows:

A1 : (s0, ã0) ∼ πt
πt×P→ s̃1, ã1

πt×P→ ...
πt×P→ s̃t, ãt

πt×P→ s̃t+1, ãt+1,

where the action at each time j is always chosen according to a fixed policy πt. Based on this
auxiliary Markov chain, we introduce another auxiliary eligibility trace z̃t =

∑t
j=t−k ϕt(s̃j , ãj),

where it uses a fixed feature ϕt, and samples from this auxiliary Markov chain. Lastly, we design a
second auxiliary Markov chain (denoted by A2):

A2 : (s̄0, ā0) ∼ Dt
πt×P→ s̄1, ā1

πt×P→ ...
πt×P→ s̄t, āt

πt×P→ s̄t+1, āt+1

where the only difference between A2 and A1 lies in the initial state distribution. Then we define the
last auxiliary eligibility trace as z̄t =

∑t
j=t−k ϕt(s̄j , āj).

The difference between zt and ẑt measures the error due to the time-varying compatible feature
function. We bound this error using the Lipschitz continuity of the feature function. The difference
between ẑt and z̃t measures the error due to the time-varying sampling policy. The difference
between z̃t and z̄t measures the error due to the difference between the stationary distribution and the
actual distribution of the samples, which can be bounded based on Assumption 1. By such a error
decomposition, we can show that

E[||θt+1 − θ∗t+1||22] ≤ (1− λ̄minα/2)E[||θt − θ∗t ||22] +O(k2αE[(ηt − J(ωt))
2])

+O(βE[||∇J(ωt)||22]) +O(k2α2 + k3β2 +mρkα). (8)

Step 4 (Bound on gradient): As we can see from Steps 2 and 3, we bound the estimation error of
the average reward and the tracking error using the gradient norm ∥∇J(ωt)∥22. Therefore, in order
to derive the tightest bound, we further develop a novel bound on the gradient norm ∥∇J(ωt)∥22.
Note that the idea is novel as it serves as a pivotal link connecting the analysis of the tracking
error/estimation error in the average reward and the optimality gap. Specifically, we bound the
gradient norm using the estimation error in the average reward and tracking error. By the smoothness
of J(ω), we have that
t+T̃−1∑
j=t

E[||∇J(ωj)||22]
T̃

≤ 2Cϕ
J(ω∗)− E[J(ωt)]

βT̃
+O

 1

T̃

t+T̃−1∑
j=t

E[||θj − θ∗j ||22]

+O(mρk + β).

We also note that we bound the gradient norm using the optimality gap, and this is of great importance
to establish the tight bound in this paper. In previous works, this term E[J(ωt+T̃ )] − E[J(ωt)] is
bounded by a constant, and thus the overall complexity is not as tight.

Step 5: Combining steps 1-4, we conclude the proof.

4 CONCLUSION

In this paper, we develop the tightest non-asymptotic convergence bounds for both the AC and
NAC algorithms with compatible function approximation. For the AC algorithm, our results achieve
the best sample complexity of ϵ−2 with a reduced error from ϵ + εcritic to ϵ, where εcritic is a non-
diminishing constant. For the NAC algorithm, our results is the first one in the literature that analyze
the single-loop NAC with a single Markovian trajectory, and we achieve the best known sample
complexity of ϵ−3 also with a reduced error of ϵ+

√
εactor. Our results demonstrate the advantage

of compatible function approximation when applied in AC and NAC algorithms, including relaxed
technical condition to guarantee convergence, no need of estimating Fisher information matrix, and
no approximation error from the critic. Our technical novelty lies in analyzing the error due to use of
a time-varying and policy dependent feature in the critic.
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