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Abstract—Parkinson’s Disease (PD) is a progressive neurode-
generative disorder that affects motor and speech functions.
Early and accurate detection of PD is crucial for timely medical
intervention. This study uses machine learning techniques to de-
velop a non-invasive classification model based on vocal biomark-
ers extracted from the UCI Parkinson’s Disease dataset that in-
cludes jitter, shimmer, fundamental frequency, recurrence period
density entropy (RPDE), and pitch period entropy (PPE), which
have been previously identified as indicators of PD. To classify
PD patients from healthy individuals, ten machine learning
models were evaluated, including LightGBM, XGBoost, Random
Forest, AdaBoost, Bagging, Decision Tree, Logistic Regression,
Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
and Naı̈ve Bayes. Feature selection techniques were employed
to enhance model efficiency by reducing redundancy while
maintaining classification performance. Experimental results
demonstrated that LightGBM achieved the highest accuracy of
98.00% with an AUC of 97.00%, outperforming other classifiers.
This study highlights the potential of machine learning-based
speech analysis for early, cost-effective, and scalable PD detec-
tion, providing a foundation for future clinical applications in
non-invasive neurological assessments.

Index Terms—Parkinson’s Disease, Vocal Biomarkers, Health
Care, Machine Learning, Speech Analysis.

I. INTRODUCTION

Parkinson’s Disease (PD) is a chronic and progressive
neurodegenerative disorder that affects millions of individuals
worldwide [1]. It is primarily characterized by the degenera-
tion of dopaminergic neurons in the substantia nigra, leading
to motor symptoms such as tremors, bradykinesia, rigidity,
and postural instability [2]. While these motor impairments
are the most visible indicators of PD, vocal impairments
are also prevalent, affecting nearly 90% of PD patients at
some stage of the disease [3]. These vocal abnormalities
include dysphonia, reduced loudness, breathy or hoarse voice,

imprecise articulation, and monotonic speech, all of which
significantly impact the patient’s communication abilities and
quality of life. Given that these vocal impairments often man-
ifest before severe motor dysfunction, they offer a unique op-
portunity for early and non-invasive detection of PD through
computational analysis [4].

Traditionally, PD diagnosis is based on neurological exam-
inations, clinical assessments such as the Unified Parkinson’s
Disease Rating Scale (UPDRS), and imaging techniques
such as MRI and PET scans [5]. However, these diagnostic
approaches are often costly, time-consuming, and require
specialized medical infrastructure, limiting their accessibility,
particularly in resource-constrained settings. Consequently,
automated and non-invasive diagnostic approaches based on
vocal biomarkers and machine learning have gained increas-
ing attention as potential alternatives for early PD detection.

Machine learning (ML) techniques have demonstrated re-
markable advancements in speech and signal processing, en-
abling the automated extraction and classification of disease-
related patterns in vocal signals. The ability to analyze
vocal biomarkers computationally provides a scalable and
efficient way to screen for PD with minimal patient burden.
By leveraging acoustic and speech features such as jitter,
shimmer, fundamental frequency variations, recurrence period
density entropy (RPDE), noise-to-harmonic ratio (NHR), and
pitch period entropy (PPE), ML algorithms can distinguish
PD patients from healthy individuals with high accuracy
[6]. These approaches have the potential to revolutionize
early-stage PD diagnosis, disease progression monitoring, and
treatment evaluation.

Despite the promise of ML-based PD detection, challenges
remain in developing robust, interpretable, and scalable mod-
els that can generalize across diverse patient populations. This



study aims to enhance the performance of Parkinson’s disease
detection using machine learning models trained on vocal
biomarkers. By integrating all features and machine learning
techniques, we seek to improve classification accuracy, model
interpretability, and clinical applicability.

This paper presents a comprehensive analysis of PD de-
tection using machine learning models applied to the UCI
Parkinson’s dataset, which contains 195 vocal samples from
31 individuals [7]. The experimental results highlight the
effectiveness of machine learning in accurately extracting
meaningful representations from vocal features while main-
taining high diagnostic accuracy. The findings contribute to
advancing automated, non-invasive, and scalable diagnostic
frameworks for Parkinson’s Disease, with the potential for
future clinical implementation [8].

II. LITERATURE REVIEW

The use of machine learning and deep learning for the de-
tection of Parkinson’s Disease (PD) through vocal biomarkers
has gained significant attention in recent years. Numerous
studies have explored various methodologies for speech-based
PD classification, ranging from machine learning algorithms
to deep learning architectures. In this section we review key
contributions in this field, focusing on advances, challenges,
and potential areas for improvement.

One of the earliest studies to apply machine learning
techniques to PD detection was conducted by Little et al. [9],
who analyzed dysphonia measures using the UCI Parkinson’s
dataset. They extracted vocal features such as jitter, shimmer,
fundamental frequency (F0), and noise-to-harmonics ratio
(NHR) and evaluated the performance of Support Vector
Machines (SVM) and Decision Trees. Their results demon-
strated that SVM achieved an accuracy of 91.4%, proving
the feasibility of using vocal biomarkers for automated PD
detection. However, their study was limited by the reliance
on manually selected features, which may not fully capture
complex vocal variations.

Building upon this work, Tsanas et al. [10] introduced
additional dysphonia measures such as Recurrence Period
Density Entropy (RPDE) and Detrended Fluctuation Analysis
(DFA), improving classification accuracy. They demonstrated
that ensemble models such as Random Forest and Gradient
Boosting could outperform SVM in certain cases, reaching
an AUC of 96%. Their study reinforced the importance of
feature selection in improving classification performance but
highlighted the challenge of dataset limitations, as the small
sample size could lead to overfitting.

Further refinements in machine learning-based PD classifi-
cation were explored by Gupta & Arora [11], who conducted
a comparative analysis of multiple classifiers, including Light-
GBM, XGBoost, and K-Nearest Neighbors (KNN). Their
results showed that LightGBM outperformed other models,
achieving a classification accuracy of 95%. They also ap-
plied Recursive Feature Elimination (RFE) to optimize the
feature set, reducing model complexity while maintaining
high performance. However, their study, like previous ones,

suffered from the constraint of small datasets, limiting the
generalizability of their findings.

While traditional machine learning models have shown
promise, deep learning approaches have emerged as powerful
alternatives due to their ability to learn feature representations
automatically. Arora et al. [12] applied 1D Convolutional
Neural Networks (CNNs) to vocal data for PD classification,
achieving a classification accuracy of 97%. Their study high-
lighted the effectiveness of CNNs in capturing spectral and
temporal patterns in speech signals. However, CNNs alone
are limited in modeling sequential dependencies in speech,
necessitating the use of recurrent models.

To address this limitation, Mandrekar [13] explored the use
of Long Short-Term Memory (LSTM) networks, which are
well-suited for sequence modeling. Their results demonstrated
that LSTMs could achieve a sensitivity of 98.2%, making
them highly effective in classifying PD patients based on
vocal biomarkers. However, LSTM models are computation-
ally expensive and require large datasets, which remain a
challenge in PD detection research.

A hybrid approach combining CNN and LSTM was pro-
posed by Dua & Graff [14], where CNNs extracted spatial fea-
tures from speech spectrograms, while LSTMs captured long-
term dependencies in vocal patterns. Their model achieved an
AUC of 98.5%, outperforming standalone CNN and LSTM
models. Despite these improvements, the study noted the ne-
cessity of larger datasets and better interpretability to enhance
clinical applicability.

A major issue in PD classification research is the limited
availability of large-scale datasets. The widely used UCI
Parkinson’s dataset, containing only 195 samples from 31
individuals, presents a significant limitation in terms of model
generalization. To mitigate this, Tsanas et al. [15] employed
Synthetic Minority Oversampling Technique (SMOTE) to
balance the dataset, reducing bias in classification. Simi-
larly, Gupta & Arora (2022) explored transfer learning using
Wav2Vec and Whisper models, showing that pretrained em-
beddings could enhance generalization when fine-tuned on
small PD datasets.

While previous studies have made significant advance-
ments, several challenges remain unaddressed. Deep learning
models, despite their high accuracy, often function as black-
box models, making it difficult for clinicians to interpret their
predictions. Mandrekar [13] attempted to integrate Explain-
able AI (XAI) techniques such as SHAP and LIME to provide
insights into feature importance, demonstrating that jitter,
RPDE, and shimmer were among the most influential features
for PD detection. However, the need for more interpretable
models remains a critical area of future research.

III. DATASET INFORMATION

The dataset used in this study is sourced from the UCI Ma-
chine Learning Repository [16]. It was originally developed
by Max Little at the University of Oxford in collaboration
with the National Centre for Voice and Speech in Denver,
Colorado, where the speech recordings were collected. The



dataset was designed to analyze vocal characteristics associ-
ated with Parkinson’s Disease (PD) and has been widely used
for machine learning-based diagnosis models. The feature
extraction techniques applied in this dataset were introduced
in the original study on general voice disorders [17].

The dataset consists of 195 voice samples collected from
31 individuals, including 23 Parkinson’s Disease patients and
8 healthy controls. Each row in the dataset represents a single
voice recording, while each column corresponds to a specific
vocal feature. The target variable, ”status”, indicates whether
the speaker is healthy (0) or diagnosed with PD (1). The
primary goal of this dataset is to differentiate between PD
patients and healthy individuals based on biomedical voice
measurements.

Fig. 1: Co-relation Matrix of Variables.

This dataset includes 24 clinical attributes, capturing var-
ious vocal characteristics that are known to be affected
by Parkinson’s Disease. These features are categorized
into: Fundamental Frequency Measures: MDVP:Fo(Hz) –
Average fundamental frequency, MDVP:Fhi(Hz) – Maxi-
mum fundamental frequency, and MDVP:Flo(Hz) – Min-
imum fundamental frequency. Frequency Variation (Jitter)
Measures: MDVP:Jitter(%), MDVP:Jitter(Abs), MDVP:RAP,
MDVP:PPQ, Jitter:DDP, Amplitude Variation (Shimmer)
Measures: MDVP:Shimmer, MDVP:Shimmer(dB), Shim-
mer:APQ3, Shimmer:APQ5, MDVP:APQ, Shimmer:DDA
Noise-to-Tone Ratio Measures: NHR (Noise-to-Harmonic Ra-
tio), HNR (Harmonic-to-Noise Ratio). Nonlinear Dynamical
Complexity Measures: RPDE (Recurrence Period Density
Entropy), D2 (Correlation Dimension). Signal Fractal Scaling
and Frequency Spread: DFA (Detrended Fluctuation Analy-
sis), Spread1, Spread2, PPE (Pitch Period Entropy)

This dataset contains one dependent variable (status) and
23 independent variables used as predictors. These features
have been extensively studied as biomarkers for Parkinson’s
Disease, making this dataset a valuable resource for develop-
ing predictive models.

To further explore the relationships between different vocal
features, a correlation matrix is used to identify strongly corre-
lated variables. The correlation matrix helps understand how
these attributes interact and contribute to PD classification.
This visualization aids in feature selection and dimensional-
ity reduction, improving the efficiency of machine learning
models [18].

IV. METHODOLOGY

This study follows a structured approach to analyze the
Parkinson’s Disease dataset using machine learning models.
The methodology consists of three key stages: dataset collec-
tion, data preprocessing, and validation. Each step showed in
figure 2 ensures that the dataset is well-prepared for model
training and evaluation.

A. Data Collection

In this study, we utilized a publicly available dataset
from the UCI Machine Learning Repository that contains
vocal biomarkers for Parkinson’s Disease (PD) detection [16].
The dataset was originally compiled through a collaboration
between the University of Oxford and the National Centre
for Voice and Speech, Denver, Colorado. The data acquisition
process involved recording sustained phonations of the vowel
sound /a/ from individuals, ensuring consistency in vocal
characteristics across participants. These recordings were then
analyzed to extract relevant speech features associated with
PD symptoms.

Unlike the dataset description section, which details the
dataset structure, this section emphasizes the data acquisition
methodology and its significance in the context of machine
learning applications. The dataset consists of 195 vocal sam-
ples collected from 31 individuals, including 23 diagnosed
PD patients and 8 healthy controls. The extracted vocal
biomarkers include fundamental frequency variations, ampli-
tude perturbations, noise-to-harmonics ratio, and nonlinear
dynamic measures, all of which serve as potential indicators
of neurodegenerative changes [19].

The choice of this dataset aligns with our objective of
developing a non-invasive and scalable approach for PD
detection. By emphasize this well-structured dataset, we
aim to enhance predictive accuracy using machine learning
techniques while ensuring the applicability of our model in
clinical and telemonitoring settings.

B. Data Preprocessing

Before training machine learning models, data prepro-
cessing is performed to enhance model performance and
reliability. The dataset does not contain missing values, as
it was preprocessed in its original study [17]. However, an
initial data integrity check is conducted to ensure consistency.
Since the dataset contains features with different scales, such
as frequency (Hz) and amplitude ratios, Min-Max Scaling
is applied to normalize all values between 0 and 1. The
normalization formula is expressed as follows:



Fig. 2: Flow Chart Diagram.

Xscaled =
X −Xmin

Xmax −Xmin
(1)

This step ensures that models relying on distance-based
metrics, such as Support Vector Machines (SVM) and k-
Nearest Neighbors (KNN), perform optimally. To analyze
the relationships between features, a correlation matrix is
computed. Features with high correlation (above 0.85) are
considered for removal to reduce redundancy and improve
generalization [15]. Additionally, Recursive Feature Elimi-
nation (RFE) is applied to retain only the most relevant
predictors. Finally, the dataset is split into training (80%) and
testing (20%) subsets using stratified sampling, ensuring that
the proportion of PD and healthy samples remains balanced
across sets.

C. Validation Process

To ensure model reliability, k-fold cross-validation is ap-
plied to mitigate overfitting and improve generalization [20].
A 10-fold cross-validation strategy is used, where the dataset
is split into 10 equal parts. Each model is trained on 9 folds
and tested on the remaining fold, with the process repeated
until every sample has been used in validation. The final
model performance is reported as the average accuracy across
all folds.

To evaluate the classification performance, several perfor-
mance metrics are computed [21]. Accuracy measures the
proportion of correctly classified samples, while precision
and recall assess the model’s ability to correctly identify
PD patients. The F1-score, which is the harmonic mean of

precision and recall, provides a balanced evaluation of the
classifier’s effectiveness. Additionally, the AUC-ROC curve
is used to analyze the model’s ability to distinguish between
PD and healthy individuals. These validation steps ensure
the robustness, reliability, and clinical applicability of the
proposed Parkinson’s Disease detection models [22].

V. RESULTS AND DISCUSSION

Table I presents the performance comparison of various
machine learning models, including LightGBM, Random For-
est, XGBoost, AdaBoost, Bagging, Decision Tree, Logistic
Regression, Support Vector Machine, K-Nearest Neighbor,
and Naı̈ve Bayes for Parkinson’s Disease (PD) detection.
The models are evaluated based on Accuracy, Sensitivity,
Specificity, AUC (Area Under the Curve), and F1-score.
Figures 3 and 4 further illustrate the model performance
through visual comparisons.

TABLE I: Performance Comparison of Machine Learning
Models for Parkinson’s Disease Detection.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) F1-score (%)

LightGBM 98.00 100.00 95.50 97.00 91.00

Random Forest 93.50 100.00 90.32 99.00 85.50

XGBoost 92.00 90.00 90.00 98.00 82.00

AdaBoost 90.00 80.00 92.87 95.00 84.80

Bagging 85.62 80.00 90.00 98.00 85.50

Decision Tree 85.80 82.00 91.00 95.00 78.50

Logistic Regression 85.20 85.71 84.38 95.00 70.00

Support Vector Machine 84.00 70.00 85.10 95.00 68.70

K-Nearest Neighbor 78.00 73.30 81.25 89.00 65.60

Naı̈ve Bayes 68.30 60.70 92.00 96.00 62.00

From Table I, it is evident that LightGBM demonstrates
the best overall performance, achieving an accuracy of 98%,
sensitivity of 100%, specificity of 95.50%, AUC of 97%, and
an F1-score of 91%. This indicates that LightGBM effectively
distinguishes between PD patients and healthy individuals
while maintaining a high balance between precision and
recall.Random Forest also achieves strong results, closely
following LightGBM. It achieves an accuracy of 93.50%,
sensitivity of 100%, specificity of 90.32%, AUC of 99%, and
an F1-score of 85.50%. These results suggest that ensemble
learning techniques like LightGBM and Random Forest are
particularly effective for PD classification due to their ability
to handle complex relationships in the dataset.On the other
hand, Naı̈ve Bayes exhibits the lowest performance among
all classifiers. It achieves an accuracy of 68.30%, sensitivity
of 60.70%, specificity of 92%, AUC of 96%, and an F1-
score of 62%. The lower sensitivity suggests that Naı̈ve Bayes
struggles to correctly identify PD cases, likely due to its
assumption of feature independence, which does not hold well
for biomedical data [23].To provide a clearer comparison,
Figure 3 presents a bar chart visualization highlighting the
accuracy and AUC of different models. These metrics are
crucial as they provide insight into both the overall correct-
ness of classification (accuracy) and the model’s ability to
distinguish between PD and non-PD cases (AUC) [24].



Fig. 3: Output grap for AUC: a. LightGBM, b. Random
Forest, c. XGBoost, d. AdaBoost, e. Bagging, f. Decision
Tree, g. Logistic Regression, h. Support Vector Machine, i.
K-Nearest Neighbor, and j. Naı̈ve Bayes.

The AUC (Area Under the Curve) metric plays a crucial
role in evaluating classification models for Parkinson’s Dis-
ease (PD) detection. Unlike accuracy, which simply measures
the proportion of correctly classified instances, AUC assesses
a model’s ability to distinguish between positive (PD) and
negative (healthy) cases across various classification thresh-
olds. A higher AUC score indicates a stronger discriminative
ability and a more reliable classification model [25]. Accord-
ing to Hanley & McNeil (1982), an AUC of 0.5 suggests
no discrimination (random classification), whereas a score
between 0.7 and 0.8 indicates acceptable performance. AUC
values ranging from 0.8 to 0.9 signify good classification
ability, while models with AUC ≥ 0.9 demonstrate excellent
performance in distinguishing PD cases. Based on this scale,

Fig. 4: Models Comparison among Accuracy, AUC, and F1-
score.

LightGBM and XGBoost, which achieved AUC scores of
97% and 99%, respectively, exhibit outstanding classification
performance. Figure 3 presents AUC plots for the tested
models, illustrating their ability to differentiate between PD-
positive and PD-negative cases.

VI. CONCLUSION

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder that significantly impacts motor function, speech, and
cognition. Early detection plays a crucial role in effective
disease management and improving patient outcomes. In this
study, we utilized machine learning algorithms to classify
PD patients using vocal biomarkers from the UCI Machine
Learning Repository dataset. Since the dataset was imbal-
anced, we applied SMOTE for oversampling and evaluated
ten machine learning models, including LightGBM, Random
Forest, XGBoost, AdaBoost, Bagging, Decision Tree, Support
Vector Machine, Logistic Regression, K-Nearest Neighbor,
and Naı̈ve Bayes.Among these models, LightGBM outper-
formed the others, achieving an accuracy of 98%, sensitivity
of 100%, specificity of 95.50%, AUC of 97%, and F1-score of
91%. These results demonstrate that ensemble learning meth-
ods are highly effective in detecting PD from vocal features
and could serve as non-invasive diagnostic tools for early-
stage PD screening.For future work, we aim to explore deep
learning techniques, such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), to improve
feature extraction and classification accuracy. Additionally,
integrating larger and more diverse datasets from real-world
clinical sources can enhance the model’s generalization and
robustness. Finally, developing an interpretable AI framework
will help increase trust and adoption in clinical applications,
facilitating early and automated PD diagnosis.
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