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General Debiasing for Graph-based Collaborative Filtering via
Adversarial Graph Dropout

Anonymous Author(s)

ABSTRACT
Graph neural networks (GNNs) have shown impressive perfor-

mance in recommender systems, particularly in collaborative filter-

ing (CF). The key lies in aggregating neighborhood information on

a user-item interaction graph to enhance user/item representations.

However, we have discovered that this aggregation mechanism

comes with a drawback – it amplifies biases present in the inter-

action graph. For instance, a user’s interactions with items can be

driven by both unbiased true interest and various biased factors

like item popularity or exposure. But the current aggregation ap-

proach combines all information, both biased and unbiased, leading

to biased representation learning. Consequently, graph-based rec-

ommenders can learn distorted views of users/items, hindering the

modeling of their true preferences and generalization.

To address this issue, we introduce a novel framework called

Adversarial Graph Dropout (AdvDrop). It differentiates between

unbiased and biased interactions, enabling unbiased representa-

tion learning. For each user/item, AdvDrop employs adversarial

learning to split the neighborhood into two views: one with bias-

mitigated interactions and the other with bias-aware interactions.

After view-specific aggregation, AdvDrop ensures that the bias-

mitigated and bias-aware representations remain invariant, shield-

ing them from the influence of bias. We validate AdvDrop’s ef-

fectiveness on six public datasets that cover both general and

specific biases, demonstrating significant improvements. Further-

more, our method exhibits meaningful separation of subgraphs

and achieves unbiased representations for graph-based CF models,

as revealed by in-depth analysis. Our code is publicly available at

https://anonymous.4open.science/r/INV-LGN-C23D/.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Collaborative Filtering, Popularity Distribution Shift, Debiasing

1 INTRODUCTION
Collaborative Filtering (CF) [39] plays a vital role in recommender

systems. It basically hypothesizes that behaviorally similar users

would share preferences for items [38, 39]. On this hypothesis,

graph-based CF has emerged as a dominant line [13, 25, 26, 34, 48, 50,

56], which often recasts user-item interactions as a bipartite graph

and exploits it to learn the collaborative signals among users. Hence,

employing graph neural networks (GNNs) [19] on the interaction

graph becomes a natural and prevalent solution. At the core is

hiring multiple graph convolutional layers to iteratively aggregate

information among multi-hop neighbors, instantiate the CF signals

as the high-order connectivities, and gather them into user and

item representations.

Despite the impressive performance of graph-based CF mod-

els, we contend that the interaction graph usually contains biased

user-item interactions, such as noise-injected observations [12]

and missing-not-at-random issue [40]. Worse still, such data biases

could be amplified through the GNN mechanism, especially when

applying multiple graph convolutional layers [2, 69]. To showcase

such a bias amplification, consider a real example in Figures 1 and

2, where LightGCN [26] with zero, two, and four graph convolu-

tional layers (i.e.,MF [39], LightGCN-2, and LightGCN-4) is selected

as the representative graph-based CF model trained on the Coat

dataset [41]. By examining specific factors (e.g., item popularity,

user gender) and quantifying prediction disparities across factor

groups, we can delineate prediction biases [7] and find:

• Popular items and active users, as highly centralized nodes in the

interaction graph, exert a dominant influence over information

propagation. For example, we divide item representations into

head, middle, and tail groups, based on popularity. With the

layer depth increase from zero to four (cf. Figures 1e-1g), head
items cluster closer at the origin while tail items keep spreading

outwardly, indicating that the GNN mechanism encourages the

domination of popular items.

• Conformity and sensitive attributes of users, even not used dur-

ing training, exhibit over-aggregation through multi-hop neigh-

bors. This results in undesirable clustering of user representa-

tions — a clear indication of conformity bias [67] and fairness

issues [7, 36]. Take user gender as an example of a sensitive

attribute. With the increase of layer depth from zero to four (cf.
Figures 1a-1c), user representations aremore compactly clustered

w.r.t. two gender groups.

Conclusively, data biases risk amplification via the GNNmechanism

[65], potentially leading a GNN backbone to generate representa-

tions more biased thanMF counterparts. This not only compromises

out-of-distribution generalization in wild environments [3, 29], but

may also increase the risks of leaking private attributes.

In response to such negative influences, recent debiasing strate-

gies [7, 11, 52, 53, 55, 67] have emerged. However, we argue that

there are several limitations: (1) Data Bias Perspective: Typically,

only one specific factor is considered to be mitigated, such as item

popularity [15, 23, 55], user conformity [67], and sensitive attributes

[7]. However, interaction data is often riddled with various biases,

whether predefined or arising from latent confounders. (2) Bias

Amplification Perspective. The debiased GNN mechanism is tailor-

made for a particular bias. For instance, tailored specifically for

popularity bias, they randomly sample interaction subgraphs [56]

and alter the information propagation scheme [68], but might fail in

other biases. Here we argue that, for graph-based CF models, effec-

tive debiasing should comprehensively address both biases present

in interaction data and those amplified by the GNN mechanism.

While conceptually compelling, such general debiasing remains

1
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Figure 1: T-SNE [44] visualizations of user and item representations learned by MF [39], LightGCN [26], and our proposed
AdvDrop. Note that MF, LightGCN-2, and LightGCN-4 are specialized with zero, two, and four graph convolutional layers,
respectively. Subfigures 1a-1d show the representation distribution w.r.t. two groups of user gender (i.e., female, male), while
Subfigures 1e-1h depict the representation distribution w.r.t. three groups of item popularity (i.e., head, middle, tail).

Figure 2: Recommendation Performance

largely unexplored in literature [47] — a gap our work seeks to

bridge.

This motivates us to develop a general debiasing strategy for

graph-based CF models, which can autonomously identify and

eliminate biases during information propagation. We anchor our

approach on the principles of invariant learning [3, 29, 64], which

encourages the representation learning to best support the pre-

diction, while remaining invariant to varying factors. Hence, we

propose Adversarial Graph Dropout (AdvDrop). Specifically, by
learning to employ the edge dropout on the interaction graph, it

adversarially identifies bias-mitigated and bias-aware subgraphs,

and makes the representations derived from one subgraph invariant

to the counterparts from the other subgraph. By framing the bias-

aware subgraph generation as the bias identification stage and the

invariant learning as the debiasing stage, our AdvDrop is distilled

into an iterative optimization process under a min-max framework:

• In the debiased representation learning stage, AdvDrop refines

user/item representations by concurrently optimizing the recom-

mendation objective and minimizing the discrepancy between

the representations learned from sampled bias-mitigated and

bias-aware subgraphs.

• In the bias identification stage, AdvDrop determines the bias

distributions of interaction in an adversarial manner by max-
imizing discrepancy between user/item representations that

come from sampled subgraphs.

As a result, AdvDrop is able to simultaneously discover various

biases during information propagation, and achieve debiased repre-

sentation learning, thus acting as a simple yet effective debiasing

plugin for graph-based CF models. Empirical validations, especially

in datasets characterized by the general bias and multiple specific

biases, show that our AdvDrop consistently surpasses leading de-

biasing baselines (e.g., CVIB [52], InvPref [53], sDRO [55]). The

improvements in recommendation accuracy (cf. Figure 1) coupled
with unbiased distributions w.r.t. bias factors (cf. Figures 1d and 1h)

clearly demonstrate the effectiveness of AdvDrop.

Our main contributions are summarized as:

• We uncover the problem of model inherent bias for graph-based

CF models, which is important and widespread but far from

being well-studied.

• We propose a new debiasing framework in an adversarial manner,

named as AdvDrop, which forces the representations learned

from different subgraphs generated by bias-aware dropout to be

consistent with each other.

• Through extensive experiments including both general and spe-

cific bias scenarios as well as visualization of learned representa-

tions and bias distributions, we validate the universal effective-

ness of AdvDrop.

2 PRELIMINARY
We start by presenting an overview of CF and the general frame-

work of graph-based CF.

2
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2.1 Collaborative Filtering (CF)
Collaborative Filtering (CF) [39] is fundamental in recommender

systems, which basically assumes that users with similar behavioral

patterns are likely to exhibit shared preferences for items. Here we

focus on CF with implicit feedback (e.g., clicks, views, purchases)
[38, 39]. LetU and I be the sets of users and items, respectively.

Each user 𝑢 ∈ U has interacted with a set of items denoted by I+

𝑢 ,

while I−𝑢 = I−I+

𝑢 collects her/his non-interacted items. Such user-

item interactions can be summarized as the matrix Y, where 𝑦𝑢𝑖 = 1

indicates that user 𝑢 has adopted item 𝑖 , and 𝑦𝑢𝑖 = 0 indicates no

interaction.

Following prior studies [25, 26], we can construct a bi-partite

graph G = (V, E), by combining all users and items into the node

set V = U ∪ I, and treating their observed interactions as the

edges E. The adjacency matrix A of G can be derived as follows:

A =

[
0 Y

YT 0

]
. (1)

The primary goal of recommendation is to identify a list of items

that potentially align with the preferences of each user 𝑢. This task

can be viewed as a link prediction problem within the bipartite

graph G.

2.2 Graph-based CF Framework
Graph-based CF aims to leverage the bipartite interaction graph,

capturing the collaborative signals between users and thereby pre-

dicting user preferences towards items. To this end, employing

graph neural networks (GNNs) [19] on the graph becomes an in-

tuitive and widely accepted strategy. At the core is, for each ego

user/item node, employing multiple graph convolutional layers to

learn the representation. These layers function to iteratively aggre-

gate information among multi-hop neighbors, instantiate the CF

signals as the higher-order connectivities, and subsequently gather

them into the user/item representations. Formally, the information

aggregation can be summarized as:

Z(𝑙 )
= AGG(Z(𝑙−1),A), (2)

where Z(𝑙 )
represents the node representations after 𝑙 graph convo-

lutional layer, and Z(0)
is initialized as the embeddings of users and

items [26, 48]. The aggregation function AGG(·) is to integrate the

useful information from a node’s neighbors to refine its representa-

tion. Taking a user 𝑢 as an example, the aggregation function can

be expressed as:

z(𝑙 )
𝑢 = 𝑓

combine
(z(𝑙−1)

𝑢 , 𝑓aggregate({z(𝑙−1)

𝑖
|A𝑢𝑖 = 1})), (3)

where 𝑢’s representation at the 𝑙-th layer, z(𝑙 )
𝑢 , is obtained by first

aggregating her/his neighbors’ representations from the (𝑙 − 1)-

th layer via 𝑓aggregate(·), and then combining with her/his own

representation z(𝑙−1)

𝑢 via 𝑓
combine

(·). Finally, we employ a readout

function on the user representations derived from different layers

to get the final representation:

z𝑢 = 𝑓
readout

({z(𝑙 )
𝑢 |𝑙 = [0, · · · , 𝐿]}). (4)

Analogously, we can get an item 𝑖’s final representation, z𝑖 . For
brevity, we summarize the procedure of applying GNN on graph

G to obtain aggregated representations of users/items as a single

equation:

Z𝑈 ,Z𝐼 = GNN(G|Θ), (5)

where Z𝑈 and Z𝐼 collect representations of all users and items,

respectively; Θ represents all trainable parameters.

Having obtained the final representations of a user 𝑢 and an

item 𝑖 , we can build a similarity function upon them to predict how

likely 𝑢 will interact with 𝑖:

𝑦𝑢𝑖 = 𝑠(z𝑢 , z𝑖 ), (6)

where the similarity function 𝑠(·) can be set as inner product, cosine

similarity, and neural networks; the predictive score 𝑦𝑢𝑖 indicates

the preference of user 𝑢 towards item 𝑖 .

To learn the model parameters, we utilize the observed interac-

tions as the supervision signal. Then, we encourage the predictive

score 𝑦𝑢𝑖 to either align with the ground-truth value 𝑦𝑢𝑖 for point-

wise learning [42] or preserve the preference order of {𝑦𝑢𝑖 |𝑖 ∈ N𝑢 }
for pair-wise [39] and list-wise learning [9]. In this work, we adopt

the Bayesian Personalized Ranking (BPR) loss [39] as our training

objective, which is a widely-used choice for pair-wise learning:

LBPR =

∑︁
(𝑢,𝑖, 𝑗 )∈O

− log𝜎(𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ), (7)

where O = {(𝑢, 𝑖, 𝑗 )|𝑢 ∈ U, 𝑖 ∈ I+

𝑢 , 𝑗 ∈ I−𝑢 } is the training data.

This objective enforces that the prediction of an observed interac-

tion should receive a higher score than its unobserved counterparts.

This serves as our primary supervision signal during training.

3 METHODOLOGY
Here we present our Adversarial Graph Dropout (AdvDrop) frame-

work, as Figure 3 illustrates. It aims to combat the intrinsic biases

emerging during graph-based CF. See the comprehensive literature

review on debiasing in Appendix A.1. Specifically, our AdvDrop

comprises two training stages, mapping to a min-max optimization:

• Debiased Representation Learning. To mitigate biases during

representation learning, we employ a bias measurement function

𝑃𝐵 to quantify the bias of each interaction. Leveraging 𝑃𝐵 , we

construct two bias-related views of nodes and aim for embedding-

level invariance to varying biases. Specifically, we create bias-

aware and bias-mitigated subgraphs by performing random edge

dropout according to 𝑃𝐵 and 1 − 𝑃𝐵 , respectively. Neighbor ag-
gregation is then separately performed on these subgraph views.

On the view-specific representations, a contrastive learning loss

is minimized between them to ensure representation-level in-

variance, alongside the primary recommendation objective (e.g.,
Equation (7)).

• Bias Identification. To obtain the bias measurement function

𝑃𝐵 , the AdvDrop framework proposes an adversarial learning

approach. Specifically, we learn 𝑃𝐵 by adversarially maximizing

the divergence between the bias-aware and bias-mitigated node

representations. This enables us to identify and quantify the bias

in the recommendation system.

By alternating between these stages, AdvDrop not only identifies

biases but also mitigates them iteratively. In the following sections,

we will provide further details on each of these stages.

3
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Figure 3: The overall framework of AdvDrop.

3.1 Debiased Representation Learning
To quantify bias within the interaction graph G and amplified

through the GNN mechanism, AdvDrop incorporates a learnable

bias measurement function 𝑃𝐵 . The level of bias associated with an

interaction between a user 𝑢 and an item 𝑖 is represented as follows:

𝑏𝑢𝑖 = 𝑃𝐵 (𝑢, 𝑖). (8)

The bias measurement function 𝑃𝐵 outputs values within [0, 1],

reflecting the extent to which an interaction is affected by bias

factors. A score of 1 indicates that the interaction is entirely biased,

whereas a score of 0 suggests that the interaction is solely based on

the user’s genuine preference. We will elaborate on how to obtain

this bias measurement function 𝑃𝐵 in the Bias Identification stage

(cf. Section 3.2).

Using the bias measurement function 𝑃𝐵 , we derive two distinct

views of the interaction graph: bias-aware G+
and bias-mitigated

G− . Specifically, these views are subgraphs of the original interac-
tion graph G, obtained by performing edge dropout according to

𝑃𝐵 and 1 − 𝑃𝐵 . Their respective adjacency matrices are defined as:

A+
= A ⊙M+,

A− = A ⊙M−,
(9)

where M+
and M− are the view-specific masks; the element-wise

product ⊙ is applied to perform the edge dropout based on these

masks, resulting in the bias-aware and bias-mitigated subgraphs.

Specifically, M+
and M− are constructed such that each edge (𝑢, 𝑖)’s

masks𝑚+

𝑢𝑖
and𝑚−

𝑢𝑖
follow a Bernoulli distribution with parameters

𝑃𝐵 (𝑢, 𝑖) and 1 − 𝑃𝐵 (𝑢, 𝑖), respectively:

M+ ∼ 𝑃𝐵 (G+
) =

∏
{(𝑢,𝑖) |𝐴𝑢𝑖=1}

Bern(𝑚+

𝑢𝑖 ; 𝑃𝐵 (𝑢, 𝑖)),

M− ∼ 𝑃𝐵 (G−) =

∏
{(𝑢,𝑖) |𝐴𝑢𝑖=1}

Bern(𝑚−𝑢𝑖 ; 1 − 𝑃𝐵 (𝑢, 𝑖)).
(10)

At the beginning of each training epoch, we sample the masks

using Equation (10) and then leverage them to create the bias-

aware and bias-mitigated views, G+
and G− , based on Equation

(9). During training, the GNN encoder within the graph-based CF

models, characterized by parameters Θ𝐸 , is separately applied to

these two views like Equation (5). As a result, we obtain the view-

centric representations for both users and items from each view:

Z+

𝑈 ,Z
+

𝐼 = GNN(G+ |Θ𝐸 ),

Z−𝑈 ,Z
−
𝐼 = GNN(G− |Θ𝐸 ).

(11)

Following SimCLR [14], we use the InfoNCE loss as an auxiliary

objective to enforce the representation-level invariance [3, 29, 53,

64] — that is, encouraging the consistency in representations of

the same node across both views, while distinguishing between

representations of different nodes:

Linv

𝑈 =

∑︁
𝑢∈U
− log

exp(𝑠(z+

𝑢 , z−𝑢 /𝜏))∑
𝑢′∈U exp(𝑠(z+

𝑢 , z−𝑢′ ))/𝜏))

,

Linv

𝐼 =

∑︁
𝑖∈I
− log

exp(𝑠(z+

𝑖
, z−
𝑖
/𝜏))∑

𝑖′∈I exp(𝑠(z+

𝑖
, z−
𝑖′ ))/𝜏))

,

(12)

where 𝑠(·) is the similarity function. For a user/item node, promoting

consistency between its bias-aware and bias-mitigated representa-

tions allows the model to capture the invariant signal, regardless

of the variations caused by bias. This aids in distilling essential

user preferences while mitigating the impact of bias on the learned

representations. The final contrastive loss is obtained by combining

the two terms:

Linv
= Linv

𝑈 + Linv

𝐼 , M+ ∼ 𝑃𝐵 (G+
), M− ∼ 𝑃𝐵 (G−). (13)

We then combine this contrastive loss with the recommendation

loss, utilizing BPR on the bias-aware and bias-mitigated graphs as

Equation (7):Lrec
= L+

BPR
+L−

BPR
. Consequently, the final objective

of the Debiased Representation Learning stage is formalized as:

min

Θ𝐸

Lrec
+ 𝜆Linv, (14)

where 𝜆 is a hyperparameter to control the strength of representation-

level invariance, and Θ𝐸 collects the model parameters of GNNs.

3.2 Bias Identification
To identify the underlying bias of each interaction, AdvDrop adopts

an adversarial approach in learning the bias measurement function

4
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Algorithm 1 AdvDrop Algorithm for General Debias

Input: Training dataset D consist of (𝑢, 𝑣) pairs, the number of

stage 1 epochs 𝐾𝑠𝑡𝑎𝑔𝑒1, and number of stage 2 epochs 𝐾𝑠𝑡𝑎𝑔𝑒2.

Output: Debiased user representations Z𝑈 and debiased item

representations Z𝐼 .

Initialize: initialize Θ𝐸 and Θ𝐵 .

while not converged do
Stage 1: Debiased Representation Learning:

Fix bias measurement function parameters Θ𝐵 .

for 𝑘1 ≤ 𝐾𝑠𝑡𝑎𝑔𝑒1 do
Compute L𝑟𝑒𝑐

and L𝑖𝑛𝑣
by Equations (7) and (13).

Update Θ𝐸 by Equation (14).

𝑘1 ← 𝑘1 + 1

end for
Stage 2: Bias Identification:
Fix graph neural networks parameters Θ𝐸 .

for 𝑘2 ≤ 𝐾𝑠𝑡𝑎𝑔𝑒2 do
Recompute 𝑃𝐵 and resample G− and G+.

Compute ∇𝑓𝐵L𝑖𝑛𝑣
by Equation (19) and Corollary 3.2.

Obtain gradients by back-propagation and update Θ𝐵 .

𝑘2 ← 𝑘2 + 1

end for
end while
Compute Z𝑈 and Z𝐼 by Equation (20).

return Z𝑈 and Z𝐼 .

𝑃𝐵 . Here, we first present the function as:

𝑃𝐵 (𝑢, 𝑖 |Θ𝐵 ) = 𝜎(𝑓𝐵 (Z|Θ𝐵 )) = 𝜎(W𝐵[z(0)

𝑢 | |z
(0)

𝑖
] + 𝑏𝐵 ), (15)

where z(0)

𝑢 and z(0)

𝑖
represent the base embeddings of user𝑢 and item

𝑖 at layer 0, respectively. The operator (·| |·) denotes vector concate-
nation, and Θ𝐵 = (W𝐵, 𝑏𝐵 ) represents the parameters of the neural

network. Importantly, this design allows 𝑃𝐵 (𝑢, 𝑖) ̸= 𝑃𝐵 (𝑖, 𝑢), which

means that the bias measurement might differ when considering

the message passing from user-to-item versus item-to-user. Such

distinction accounts for potential differences in biases between

users and items during the messaging process.

Building upon the defined bias measurement function, we draw

inspiration from the adversarial environment inference [18] and

directly maximize the contrastive learning loss (cf. Equation (13)):

max

Θ𝐵

L𝑖𝑛𝑣 . (16)

Intuitively, this maximization prompts the bias measurement func-

tion to learn two distinct edge drop distributions, which in turn

enlarges the representation discrepancy across the two views. We

find that training with this objective yields a meaningful bias mea-

surement function suitable for different training stages, empow-

ering the Debias Representation Learning objective to iteratively

mitigate bias. See Section 4 for further interpretation of 𝑃𝐵 .

3.3 Model Optimization for AdvDrop
We integrate the loss functions of both learning stages into a unified

objective as:

min

Θ𝐸

[L𝑟𝑒𝑐
+ 𝜆max

Θ𝐵

L𝑖𝑛𝑣
]. (17)

During training, we first fix the bias measurement function’s pa-

rameters Θ𝐵 and perform optimization on the GNNs’ parameters

Θ𝐸 in the Debias Representation Learning stage, then fix Θ𝐸 and

optimize Θ𝐵 in the Bias Identification stage.

However, direct optimization of Θ𝐵 presents challenges owing

to the discrete nature of sampled M+
and M− . To address this, we

adopt augment-REINFORCE-merge (ARM), a recently proposed

unbiased gradient estimator for stochastic binary optimization [61].

Specifically, the key theorem for ARM is shown as follows:

Theorem 3.1. For a vector of 𝑁 binary random variables x =

(𝑥1, . . . , 𝑥𝑁 )
𝑇 , and any function 𝑓 , the gradient of

E(𝝓) = Ex∼∏𝑁
𝑛=1

Bern(𝑥𝑛 ;𝜎(𝜙𝑛 ))
[𝑓 (x)]

with respect to 𝝓 = (𝜙1, . . . , 𝜙𝑁 )
𝑇 , the logits of the Bernoulli proba-

bility parameters, can be expressed as:

∇𝝓E(𝝓) = E𝒗∼∏𝑁
𝑛=1

Uniform(𝑣𝑛 ;0,1)

[
(𝑓 (I[𝒗 > 𝜎(−𝝓)])

−𝑓 (I[𝒗 < 𝜎(𝝓)]))(𝒗 − 1

2

)

]
,

where I[𝒗 > 𝜎(−𝜙)] := (I[𝑣1 > 𝜎(−𝜙1)], . . . , I[𝑣𝑁 > 𝜎(−𝜙𝑁 )])
𝑇 , and

𝜎(·) is the sigmoid function.

This theorem provides an unbiased estimator for gradients of

Bernoulli variables, requiring merely an antithetically coupled pair

of samples drawn from the uniform distribution. In alignment with

Theorem 3.1, we sample two random variables 𝒗1 and 𝒗2 from

uniform distribution 𝑈G =

∏
{(𝑖, 𝑗 ) |𝐴𝑖 𝑗=1)} Uniform(𝑣𝑖 𝑗 , 0, 1). The

contrastive loss, based on 𝒗1 and 𝒗2, is defined as:

L𝑖𝑛𝑣
𝑃𝐵 ,>

:= (L𝑖𝑛𝑣
𝑈 + L𝑖𝑛𝑣

𝐼 )

���𝑀+=I[𝒗1>𝜎(−𝑓𝐵 (Z |Θ𝐵 ))]

𝑀−=I[𝒗2>𝜎(𝑓𝐵 (Z |Θ𝐵 ))]

,

L𝑖𝑛𝑣
𝑃𝐵 ,<

:= (L𝑖𝑛𝑣
𝑈 + L𝑖𝑛𝑣

𝐼 )

��� 𝑀+=I[𝒗1<𝜎(𝑓𝐵 (Z |Θ𝐵 ))]

𝑀−=I[𝒗2<𝜎(−𝑓𝐵 (Z |Θ𝐵 ))]

.

(18)

Then an unbiased estimation of gradients can be computed accord-

ing to the following corollary of Theorem 3.1:

Corollary 3.2. The gradient of contrastive loss L𝑖𝑛𝑣 in AdvDrop
with respect to logits of the Bernoulli probability parameters 𝑓𝐵 can
be expressed as:

∇𝑓𝐵L
𝑖𝑛𝑣

= E𝒗1,𝒗2∼𝑈G
[
(L𝑖𝑛𝑣

𝑃𝐵 ,>
− L𝑖𝑛𝑣

𝑃𝐵 ,<
)(𝒗1 − 𝒗2)

]
, (19)

where𝑈G =

∏
{(𝑖, 𝑗 ) |𝐴𝑖 𝑗=1)} Uniform(𝑣𝑖 𝑗 , 0, 1), L𝑖𝑛𝑣

𝑃𝐵 ,>
and L𝑖𝑛𝑣

𝑃𝐵 ,>
are

defined according to Equation 18.

The gradients of Θ𝐵 can thus be obtained by back-propagation

after obtaining the gradientsw.r.t. 𝑓𝐵 . During inference, we compute

the representations Z𝑈 and Z𝐼 respectively without graph dropout:

Z𝑈 ,Z𝐼 = GNN(G|Θ𝐸 ). (20)

The overall algorithm of AdvDrop is summarized in Algorithm 1.

4 EXPERIMENTS
To validate the effectiveness of AdvDrop, we conduct extensive

experiments targeting the following research queries::

• RQ1: How does Advdrop perform compared with other baseline

models on general debiasing datasets?

• RQ2: Can Advdrop successfully address various specific biases?

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: General debiasing performance on Coat, Yahoo, and KuaiRec. The top-performingmethod for eachmetric is highlighted
in bold, with the runner-up underlined. The improvements achieved by AdvDrop are statistically significant (𝑝-value≪ 0.05).

Coat Yahoo KuaiRec

NDCG@3 Recall@3 NDCG@3 Recall@3 NDCG@20 Recall@20

LightGCN 0.499 0.394 0.610 0.640 0.334 0.073

IPS-CN 0.516
+3.41%

0.406
+3.05%

0.598
−1.97%

0.628
−1.88%

0.014
−95.81%

0.002
−97.26%

DR 0.506
+1.40%

0.416
+5.58%

0.611
+0.16%

0.637
−0.47%

0.037
−88.92%

0.010
−86.30%

CVIB 0.488
−2.20%

0.386
−2.03%

0.597
−2.13%

0.632
−1.25%

0.342
+2.40%

0.079
+8.22%

InvPref 0.365
−26.85%

0.293
−25.63%

0.594
−2.62%

0.621
−2.97%

- -

AutoDebias 0.502
+0.60%

0.401
+1.78%

0.601
−1.48%

0.627
−2.03%

0.327
−2.10%

0.072
−1.37%

AdvDrop 0.532∗+6.61% 0.418∗+6.09% 0.617∗+1.15% 0.643∗+0.47% 0.362∗+8.38% 0.089∗+21.92%

• RQ3:Within AdvDrop, what pivotal insights does the adversarial

learning framework extract, and how do these influence the

learned representations?

4.1 Experimental Settings
Datasets. We perform experiments on four real-world benchmark

datasets, spanning both general and specific bias settings: Yahoo

[35], Coat [41], KuaiRec [21], and Yelp2018 [26] for item. See Ap-

pendix A.2 for the dataset details and Table 6 for the data statistics.

EvaluationMetrics. To evaluate the performance of the model, we

use three metrics: NDCG@K [64], Recall@K [64], and Prediction

bias [7]. See Appendix A.3 for the metric details.

Baselines. We adopt various baselines tailored for mitigating gen-

eral biases and specific biases. See Appendix A.4 for the details.

• Mitigating General Bias: IPS-CN [24], DR [51], CVIB [52],

InvPref [53], AutoDeibas [11];

• Mitigating Specific Biases: IPS-CN [24] for item popularity,

CDAN [16] for item popularity, sDRO [55] for item popularity,

and CFC [6] for attribute unfairness.

4.2 Performance w.r.t. General Bias (RQ1)
Motivation. Current recommendation debiasing approaches, tar-

geting general bias, primarily focus on an unbiased test set derived

from completely missing-at-random (MAR) user feedback. Yet, in

real-world applications, an effective general debiasing algorithm

should excel in situations with unidentified distribution shifts in

user-item interactions, such as temporal or demographic shifts. In

our experiments, we assess the conventional MAR setting in Yahoo

& Coat, without any prior knowledge of the test distribution.

Results. Table 1 presents the general debiasing performance of

AdvDrop in contrast with various baselines. See Table 5 in the

appendix for more results. The results yield the following insights::

• AdvDrop consistently outperforms various baselines for
general debiaing across the benchmark datasets. Specifi-
cally, on Coat, Yahoo, and KuaiRec, it achieves relative improve-

ments of 6.61%, 1.15%, and 8.38% in NDCG compared to the

LightGCN backbone. These improvements are more significant

than those observed with other debiasing baselines. We ascribe

the robust performance across diverse bias scenarios to Adv-

Drop’s ability to iteratively identify the interaction bias from

the interaction graph, capture the bias amplification within the

GNN mechanism, and adversarially mitigate them without prior

assumptions of the test distribution.

• General debiasing baselines exhibit varying performances
across MAR and temporal-split settings, which might be
critically affected by the model-inherent biases. Compared

to AdvDrop which is tailored to mitigate both general biases

and bias amplification inherent in the GNN mechanism, most

baselines tend to overlook the biases introduced by the GNN it-

self. A closer look reveals: IPS-CN excels in the small-scale MAR

setting of Coat, but underperforms in other contexts; DR per-

forms well in MAR settings, but fails when applied to temporal

distribution shift, mainly due to the misestimations of observa-

tion probabilities on unknown distributions; CVIB consistently

underperforms the LightGCN backbone on Yahoo. These results

underscore the importance of direct interaction bias learning

without presupposing test distribution or bias factors. Surpris-

ingly, while InvPref paired with LightGCN struggles to capture

the general bias across all datasets, the combination of MF and

InvPref effectively addresses this issue [53]. This discrepancy

implies the latent biases within the GNN mechanism, further

emphasizing the importance of considering both data-centric

and GNN-inherent biases.

4.3 Performance on Specific Bias (RQ2)
Motivation. Intuitively, general debiasing strategies should be able
to handle a range of specific biases that exist in recommendation

scenarios, performing at par with strategies designed for particu-

lar biases. To further validate AdvDrop’s capabilities, we conduct

experiments focusing on two prevalent bias-related challenges:

popularity bias and attribute unfairness. Resolving popularity bias

requires the model to perform well when facing popularity-related

distribution shifts, while addressing attribute unfairness empha-

sizes both representation-level and prediction-level parity for sen-

sitive user or item attributes. These two scenarios together demand

the OOD generalization, while ensuring unbiased predictions and

representations.

4.3.1 Popularity Bias. Table 3 presents the results dealing with

popularity bias. We can observe that AdvDrop achieves significant

improvements over the LightGCN backbone on both ID and OOD

test sets, outperforming all compared baselines. With further anal-

ysis of AdvDrop in Section 4.4.1, we attribute the ID performance

gain primarily stems from the contrastive objective within the De-

biased Representation Learning phase, and the OOD performance
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Table 2: Performance of mitigating attribute unfairness on Coat.

Evaluation Metrics

Performance Metrics Fairness Metric (Prediction Bias)

NDCG@3 NDCG@5 Recall@3 Recall@5 user gender item colour item gender

MF 0.473 0.508 0.349 0.501 0.102 0.175 0.091

LGN 0.499 0.523 0.394 0.519 0.420 0.589 0.468

AdvDrop 0.532 0.553 0.418 0.540 0.142 0.053 0.062

+Embed info 0.518 0.560 0.418 0.578 0.052 0.032 0.046

+Mask info 0.512 0.554 0.425 0.581 0.045 0.024 0.039

CFC 0.485 0.513 0.395 0.517 0.012 0.011 0.012

Table 3: Performance of mitigating popularity bias on
Yelp2018.

Test Split Test ID Test OOD

Metrics NDCG@20 Recall@20 NDCG@20 Recall@20

LightGCN 0.0371 0.0527 0.0028 0.0026

IPS-CN 0.0337 0.0470 0.0033 0.0030

CDAN 0.0496 0.0703 0.0037 0.0037

sDRO 0.0492 0.0702 0.0035 0.0034

AdvDrop 0.0608 0.0817 0.0066 0.0073

gain can be credited to both Debias Representation Learning and

Bias Identification stages.

4.3.2 Attribute Unfairness. Table 2 delineates the results ad-

dressing the attribute unfairness. We evaluate debiasing strategies

against the MF and LightGCN backbones by analyzing both the

recommendation performance and the fairness metric related to

group-wise prediction bias. Note that CFC epitomizes prevalent

techniques used for recommendation fairness, strictly applying an

adversarial constraint at the embedding level to obscure sensitive

attributes. This strategy aims to deceive classifiers reliant on these

learned representations. In this sense, CFC’s prediction bias can

be viewed as a lower bound for fairness metric, regardless of its

recommendation performance. From the results, we find:

• From the perspective of performance, AdvDrop exhibits
a substantial performance boost over the LightGCN back-
bone and sustains a prediction bias comparable to MF. This
contrasts notably with many conventional fairness-centric meth-

ods which often sacrifice model efficacy to minimize prediction

bias. Moreover, introducing attribute information at the embed-

ding layer (+Embed info) or further constraining 𝑃𝐵 based on

attribute categories (+Mask Info) allows AdvDrop to further

enhance the recommendation performance while reducing pre-

diction bias, approaching the CFC’s fairness metric lower bound.

• From the perspective of representations, AdvDrop allevi-
ates undesired clustering of user/items sharing sensitive
attributes and moderates the emphasis on trending items
during neighbor aggregation. Specifically, we can view the

item popularity and user gender as the attributes of items and

users, and plot T-SNE visualization of learned user/item repre-

sentations w.r.t each attribute in Figure 1. For the user gender,

clear clustering trends manifest from Figures 1a, 1b to 1c 1d, in-

dicating that the bias w.r.t. gender amplifies with the increase of

graph convolution layers. In contrast, representations from Adv-

Drop exhibit a more dispersed pattern, akin to MF, showing that

AdvDrop shields the amplification from the GNN mechanism.

Table 4: Ablation study of AdvDrop on Yelp2018.

Test Split Test ID Test OOD

Metrics NDCG@20 Recall@20 NDCG@20 Recall@20

AdvDrop 0.0608 0.0817 0.0066 0.0073
w/o 𝑃𝐵 0.0575 0.0781 0.0060 0.0060

w/o 𝑃𝐵 & L𝑖𝑛𝑣 0.0371 0.0528 0.0027 0.0024

These two observations together clearly demonstrate that AdvDrop

mitigates the intrinsic bias in graph-based CF. This not only en-

hances the model generalization, but also encourages the fairness

of recommendation.

4.4 Study of AdvDrop (RQ3)
4.4.1 Ablation Study. To further investigate the effectiveness of

AdvDrop’s components, we conduct an ablation study on Yelp2018

and present the results in Table 4. We observe that:

• When removing the adversarial learning of 𝑃𝐵 (denoted as

“w/o 𝑃𝐵”), the ID performance slightly drops (with NDCG@20

decreasing from 0.817 to 0.781), while the OOD performance

sees a more signification reduction (with NDCG@20 decreasing

from 0.0073 to 0.0060). Note that such an ablated model, leverag-

ing only the contrastive loss L𝑖𝑛𝑣 from two randomly dropout

graph views, is similar to the recent models like RDrop [31]

and SGL [56]. The observed performance boost compared to the

graph-based backbone can be attributed to the data augmenta-

tions achieved through crafting random views of the original

interaction graph.

• When further discarding the contrastive learning objective
L𝑖𝑛𝑣 (denoted as “w/o 𝑃𝐵 & L𝑖𝑛𝑣”), the model is restricted to

learn solely via random graph dropout, leading to performance

metrics falling short of those achieved with the graph-based

backbone.

This evidence implies that the superior performance of Adv-
Drop results from both learning stages: the Debias Representa-
tion Learning stage fundamentally improves representation quality,

while the Bias Identification stage actively seeks meaningful bias-

related views that further boost model generalization performance.

4.4.2 Visualization of Bias Measurement Function 𝑃𝐵 . To un-
derstand the crucial information captured by the Bias Identification

stage, we visualize the learned bias measurement function 𝑃𝐵 w.r.t.
item popularity. Specifically, we sort all items based on popularity,

then split them into four groups from 0 to 3 with ascending pop-

ularity. We compute the average 𝑃𝐵 of interactions connected to

items within each group, shown in in Figure 4. Clearly, only the
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Figure 4: Visualization of learned biasmeasurement function
𝑃𝐵 w.r.t. item popularity.

interactions associated with the top quartile (group 3) — represent-

ing the most popular items — have an average 𝑃𝐵 exceeding 0.5.

In contrast, the other three quartiles have a 𝑃𝐵 average below this

threshold. Moreover, there’s a clear trend: the average 𝑃𝐵 increases

congruent with item popularity. These insights suggest that the

model not only learns 𝑃𝐵 with a prudent tendency around 0.5 but

also adeptly mirrors the long-tailed distribution of user-item in-

teractions. This indicates the Bias Identification stage effectively

captures the information about interaction bias.

4.4.3 Interpretation of AdvDrop for Debiased Learning. We

present an intriguing interpretation of how AdvDrop effectively

conducts general debiasing to achieve superior performance. Figure

5 shows The relationship between recommendation performance

(measured by NDCG@3) and model bias (quantified by prediction

bias) during training on Coat for MF, LightGCN, and AdvDrop. Our

analysis yielded the following insights:

• Both MF and LightGCN’s recommendation performance im-

proves consistently with more training steps. This suggests that

as they enhance recommendation performance during training,

they also accrue representational bias. Notably, the LightGCN

demonstrated superior NDCG@3 compared to MF, albeit with a

higher degree of prediction bias, reflecting its heightened recom-

mendation accuracy and exacerbated inherent bias.

• Contrary to a consistent improvement, AdvDrop’s performance

experienced a slight decrease during training before recovering

and subsequently improving, whereas the prediction bias first

accumulated but was subsequently mitigated. This trajectory in-

dicates AdvDrop’s ability to iteratively optimize by first reducing

the bias and then enhancing the recommendation performance.

Tracing AdvDrop’s training might reveal a sequence: an initial

boost in recommendation performance with bias accumulation,

a subsequent performance dip with continued bias accumulation

or at bias removal’s onset, and a final surge in performance once

the bias is eradicated.

• For AdvDrop, the time order between re-improvement of recom-

mendation performances and bias removal differs across different

attributes. Specifically, the bias mitigation either precedes, co-

incides with, or follows performance enhancements for various

attributes, respectively. This indicates that the bias identification

(a)

(b) (c)

(d) (e)

Figure 5: (a) The overall recommendation performance v.s.
epochs during training. (b) ∼ (e) The debiasing performance
w.r.t. epochs on user age, user popularity, item gender, and
item popularity attributes, respectively.

and removal in AdvDrop is conducted in an ordered manner, and

the superior performance can be attributed to the ensemble of

orderly removal for different biases.

In a nutshell, these observations clearly depict the bias identifi-

cation and bias removal process in AdvDrop, accounting for its

superiority. The orderly removal of bias in AdvDrop is an interest-

ing phenomenon that possibly implies implicit ordering in different

recommendation biases, which we will explore in future work.

5 CONCLUSION
In this work, we proposed a novel framework AdvDrop, which

is designed to alleviate both general biases and inherent bias am-

plification in graph-based CF, by enforcing embedding-level in-

variance from learned bias-related views. Grounded by extensive

experiments and interpretable visualization, AdvDrop successfully

identifies various bias factors and performs iterative bias removal to

achieve superior OOD generalization performance for recommenda-

tion. For future work, it would be worthwhile to design algorithms

that consider bias-related views for both data and graph, or to ex-

plore the theoretical guarantee for convergence of AdvDrop. We

believe that AdvDrop points in a promising direction for general

debiasing in graph-based CF models and will inspire more work in

the future.
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A APPENDIX
A.1 Related Work
A.1.1 Specific Debiasing in recommender systems. . Recom-

mender systems usually face various bias issues due to the discrep-

ancies between observed behavioral data and users’ true prefer-

ences. The common biases include 1) Popularity Bias 2) Exposure

Bias, 3) Conformity Bias, and 4) Unfairness.

Popularity Bias. Recommender systems often exhibit a bias to-

wards popular items, as these items are frequently presented to

users and thus have a higher likelihood of being clicked. Various

methods have been proposed to counteract this popularity bias: 1)

Regularization-based frameworks [1, 16, 17, 55] balance the trade-

off between accuracy and coverage by incorporating penalty terms.

For instance, ESAM [17] leverages center-wise clustering and self-

training regularization to enhance the influence of long-tail items.

CDAN [16] employs the Pearson coefficient correlation as a regu-

larization measure to separate item property representations from

their popularity. 2) Sample re-weighting methods [8, 24, 27, 41]

adjust the loss of each instance by inversely weighting the item

propensity score in the training dataset, also known as IPS. Given

that propensity scores in IPS approaches can exhibit high variance,

many studies [8, 24] have turned to normalization or smoothing

penalties to ensure model stability. Recent works [45, 54, 55, 57]

have drawn inspiration from Stable Learning and Causal Inference.

For instance, MACR [54] conducts counterfactual inference using a

causal graph, postulating that popularity bias originates from the

item node influencing the ranking score. Meanwhile, sDRO [55] in-

tegrates a Distributionally Robust Optimization (DRO) framework

to minimize loss variances in long-tailed data distributions. How-

ever, devising these causal graphs and understanding the environ-

mental context often hinge on heuristic insights from researchers.

Exposure Bias. User behaviors are easily affected by the exposure

policy of a recommender system, which deviates user actions from

true preference. To address exposure bias, researchers have pro-

posed two primary methods: 1) Reweighting methods [30, 40, 62]

treat all the unobserved interactions as negative and reweight them

by specifying their confidence scores. For instance, AMAN [30] de-

fines the user-item feature similarity as the confidence score. UBPR

[40] proposes a new weighting strategy with a propensity score

to estimate confidence. 2) Causal Inference methods [46, 57, 58]

mitigate exposure bias by leveraging counterfactual inference. For

example, DCCF [57] utilizes a specific causal technique, forward

door criterion, to mitigate the effects of unobserved confounders.

Conformity Bias. Conformity bias arises as users within a group

display similar behaviors, even if such actions deviate from their

genuine preferences. To counteract this bias, leading debiasing

methods roughly fall into two main categories: 1) Modeling popu-

larity influence methods [32, 66, 67] aim to counteract conformity

bias by factoring them in popularity. CM-C [32] utilizes previous

ratings to estimate and predict unknown ratings, considering group

size, cohesion, and unanimity factors. DICE [67] disentangle con-

formity embeddings and interest embeddings in the popularity

perspective to enforce the model invariant to conformity bias. 2)

Modeling social influence methods [10, 33, 49] consider the user’s
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ratings as user preference and social influence. In particular, PTPMF

[49] proposes a Probabilistic Matrix Factorization model that con-

siders the distinction between strong and weak social ties to learn

personalized preference.

Unfairness. Unfairness in recommender systems is often attrib-

uted to the system’s predisposition to generate biased predictions

and representations concerning specific user or item attributes.

Efforts to tackle this unfairness have led to several methodolo-

gies, primarily falling under three categories: 1) Rebalancing-based

methods [20, 22, 37, 43] draw inspiration from solutions to the

class imbalance problem, focusing on balancing recommendation

outputs in relation to sensitive attributes. For instance, HyPER

[20] constructs user-user and item-item similarity measures while

considering content and demographic data to balance discrepan-

cies across groups. Fairwalk [37] utilizes random walks on graph

structures, leveraging sensitive attributes to derive unbiased em-

beddings. 2) Regularization-based frameworks [28, 59, 60] integrate

fairness criteria as regularizers, aiming to minimize group discrep-

ancies. An exemplary model, IERS [28] devises a fairness regular-

izer that factors in the expected independence between sensitive

attributes and the resultant predictions. 3) Adversarial learning-

based frameworks[4, 6, 70] operate by alternately optimizing a

primary prediction model and an adversarial model dedicated to

debiasing. For instance, CFC [6] employs filters to extract sensitive

information and counteracts these with discriminators, which at-

tempt to predict sensitive attributes from the sanitized embeddings.

A.1.2 General Debiasing in recommender systems. It aims to

address multiple underlying data biases in a dataset simultaneously.

Without knowing the exact type of bias, general debiasing requires

the model to yield satisfactory performance on various bias-related

distributions. However, general debiasing in recommender systems

remains largely unexplored. In the early stage, DR [51] utilizes a

small part of missing-at-random data in the test set to generally mit-

igate various biases in the data set. CausE [5] introduces a domain

adaptation algorithm to extract insights from logged data that has

been subjected to random exposure. More recent research trends fo-

cus on the active identification of latent bias structures followed by

their removal [52, 53]. For instance, InvPref [53] proposes to learn

invariant embeddings and perform environment label assignment

alternately. Motivated by the recent success of invariant learning

in computer vision and natural language processing areas, we be-

lieve our work is the first to enforce embedding-level invariance

w.r.t. adversarially learned views of interaction graphs for general

debiasing.

A.2 Datasets
• Yahoo [35] & Coat [41]. Both datasets are commonly used

as benchmarks for general debiasing in recommendation. They

both consist of a biased training set of normal user interactions

and an unbiased uniform test set collected by a random logging

policy. During data collection, users interact with items by giving

ratings (1-5). In our experiments, interactions with scores ≥ 4 are

considered positive samples, and negative samples are collected

from all possible user-item pairs.

• KuaiRec [21]. This dataset originates from real-world recom-

mendation logs of KuaiShou, a prominent short video-sharing

platform. Distinctively, the testing dataset contains dense ratings,

encompassing feedback from a total of 1,411 users across 3,327

items, whereas the training dataset is relatively sparse. We treat

items with a viewing duration that surpasses twice the stipulated

length of the corresponding short video as constituting positive

interactions.

• Yelp2018 [26]. This dataset is adopted from the 2018 edition of

the Yelp challenge. Users visiting local businesses are recorded as

interactions. Following previous work[63], we split the dataset

into in-distribution (ID) and out-of-distribution (OOD) test splits

with respect to popularity.

A.3 Evaluation Metrics
• NDCG@K measures the ranking quality by discounting impor-

tance based on position and is defined as below:

𝐷𝐶𝐺𝑢@𝐾 =

∑︁
(𝑢,𝑣)∈𝐷𝑡𝑒𝑠𝑡

𝐼 (𝑟𝑢,𝑖 ≤ 𝐾 )

log(𝑟𝑢,𝑣 + 1)

𝑁𝐷𝐶𝐺𝑢@𝐾 =

1

|U|
∑︁
𝑢∈U

𝐷𝐶𝐺𝑢@𝐾

𝐼𝐷𝐶𝐺𝑢@𝐾
,

where 𝐷𝑡𝑒𝑠𝑡 is the test dataset, 𝑟𝑢,𝑖 is the rank of item i in the list

of relevant items of u,U is the set of all users, and 𝐼𝐷𝐶𝐺𝑢@𝐾

is the ideal 𝐷𝐶𝐺𝑢@𝐾 .

• Recall@K measures the percentage of the recommended items

in the user-interacted items. The formula is as below:

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝐾 =

∑
(𝑢,𝑖)∈𝐷𝑡𝑒𝑠𝑡

𝐼 (𝑟𝑢,𝑖 ≤ 𝐾 )

|𝐷𝑢
𝑡𝑒𝑠𝑡 |

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =

1

|U|
∑︁
𝑢∈U

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝐾,

where 𝐷𝑢
𝑡𝑒𝑠𝑡 is the set of all interactions of user u in the test

dataset 𝐷𝑡𝑒𝑠𝑡 .

• Prediction bias measure the level of parity regarding predicted

recommendation ratings w.r.t. a given attribute. Prediction bias

of a certain user attribution is given by:

𝛾𝑏𝑖𝑎𝑠 =

1

|I |
∑︁
𝑖∈I

max

𝑎1,𝑎2∈𝐴
𝑎1 ̸=𝑎2

���Avg{𝑢 |𝑎𝑢=𝑎1 } (𝑦𝑢𝑖 ) − Avg{𝑣 |𝑎𝑣=𝑎2 } (𝑦𝑣𝑖 )
���,

where 𝑎1,𝑎2 are two user attribute labels, 𝐴 is the set of user at-

tribute labels, and I is the set of items. Item attribute’s prediction

bias can be obtained likewise.

A.4 Baselines
We compare with general debiasing strategies in various research

lines. We also compare with representative methods for popularity

bias and fairness issues. The adopted baselines include:

• IPS-CN [24]: IPS [36] re-weights training samples inversely to

the estimated propensity score. IPS-CN adds clipping and nor-

malization on plain IPS to achieve lower variance. For a fair

comparison, we implemented IPS-CN with propensity score ac-

cording to item popularity in the training set without introducing

other user/item attributes.
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Table 5: Comparison of general debiasing performance on Coat, Yahoo, and KuaiRec. The improvements over the baselines are
statistically significant at 0.05 level (𝑝-value≪ 0.05).

Coat Yahoo KuaiRec

NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@30 Recall@30

LightGCN 0.523 0.519 0.673 0.804 0.331 0.114

IPS-CN 0.538
+2.87%

0.524
+0.96%

0.664
−1.34%

0.797
−0.87%

0.014
−95.77%

0.003
−97.37%

DR 0.524
+0.19%

0.534
+2.89%

0.677
+0.59%

0.805
+0.12%

0.035
−89.43%

0.013
−88.60%

CVIB 0.528
+0.96%

0.538
+3.66%

0.657
−2.38%

0.787
−2.11%

0.336
+1.51%

0.118
+3.51%

InvPref 0.421
−19.50%

0.438
−15.61%

0.653
−2.97%

0.773
−3.86%

- -

AutoDebias 0.529
+1.15%

0.527
+1.54%

0.658
−2.23%

0.782
−2.74%

0.316
−4.53%

0.105
−7.89%

AdvDrop 0.553∗+5.74% 0.540∗+4.05% 0.681∗+1.19% 0.807∗+0.37% 0.351∗+6.04% 0.130∗+14.04%

• DR [51]: This method combines a data imputation method that

assigns predefined scores to interactions with basic IPS. Unbiased

learning can be achieved as long as one of the components is

accurate.

• CVIB [52]: This method incorporates a contrastive informa-

tion loss and an additional output confidence penalty, which

facilitates balanced learning between factual and counterfactual

domains to achieve unbiased learning.

• InvPref [53]: It iteratively decomposed the invariant preference

and variant preference by estimating heterogeneous environ-

ments adversarially, which is the first attempt to actively identify

and remove latent bias for general debia purposes.

• AutoDebias [11]: This model leverages a small set of uniform

data to optimize the debiasing parameters with meta-learning,

followed by utilizing the parameters to guide the learning of the

recommendation model.

• CDAN [16]: This model uses Pearson coefficient correlation

as regularization to disentangle item property representations

from item popularity representation, and introduces additional

unexposed items to align prediction distributions for head and

tail items.

• sDRO [55]: This model adds streaming optimization improve-

ment to the Distributionally Robust Optimization (DRO) frame-

work, which mitigates the amplification of Empirical Risk Mini-

mization on popularity bias.

• CFC [6]: This model tackles representation level unfairness in

recommendation by adversarially training filters for removing

sensitive information against discriminators that predict sensi-

tive attributes from filtered embeddings.

A.5 Implementation Details
In our experiments, we trained all models on a single Tesla-V100

GPU with the number of layers of LightGCN set to 2. Adam is

used as the optimization algorithm for both learning stages. For the

Debiased Representation Learning stage, we randomly sampled 100

users/items as negative samples and set 𝜏 = 0.1 for the contrastive

objective. The coefficient 𝜆 that combines the recommendation

objective and contrastive objective is set to 1. Other hyperparam-

eters regarding training batch size, embedding size, and epochs

& learning rate for both stages on different datasets are shown in

table 7. Batch size and embedding size for training are fixed on each

individual dataset across all compared methods.

Table 6: Dataset statistics.

Coat Yahoo KuaiRec(train) KuaiRec(test) Yelp2018

#Users 290 14,382 7176 1411 4886

#Items 295 1000 10,729 3327 4804

#Interactions 2776 5,397,926 12,530,806 4,676,570 134,031

Density 0.032 0.009 0.134 0.996 0.006

Table 7: Hyper-parameters of AdvDrop on different datasets.

AdvDrop hyper-parameters

𝐾𝑠𝑡𝑎𝑔𝑒1 𝐾𝑠𝑡𝑎𝑔𝑒2 𝑙𝑟𝑚𝑎𝑖𝑛 𝑙𝑟𝑎𝑑𝑣 embed_size batch_size

Coat 7 10 1e-3 1e-2 30 128

Yahoo 15 5 31e-3 1e-3 30 128

KuaiRec 3 5 5e-4 1e-3 30 512

Yelp2018 7 15 5e-4 1e-2 64 1024
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