
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

General Debiasing for Graph-based Collaborative Filtering via
Adversarial Graph Dropout

Anonymous Author(s)

ABSTRACT
Graph neural networks (GNNs) have shown impressive perfor-

mance in recommender systems, particularly in collaborative filter-

ing (CF). The key lies in aggregating neighborhood information on

a user-item interaction graph to enhance user/item representations.

However, we have discovered that this aggregation mechanism

comes with a drawback – it amplifies biases present in the inter-

action graph. For instance, a user’s interactions with items can be

driven by both unbiased true interest and various biased factors

like item popularity or exposure. But the current aggregation ap-

proach combines all information, both biased and unbiased, leading

to biased representation learning. Consequently, graph-based rec-

ommenders can learn distorted views of users/items, hindering the

modeling of their true preferences and generalization.

To address this issue, we introduce a novel framework called

Adversarial Graph Dropout (AdvDrop). It differentiates between

unbiased and biased interactions, enabling unbiased representa-

tion learning. For each user/item, AdvDrop employs adversarial

learning to split the neighborhood into two views: one with bias-

mitigated interactions and the other with bias-aware interactions.

After view-specific aggregation, AdvDrop ensures that the bias-

mitigated and bias-aware representations remain invariant, shield-

ing them from the influence of bias. We validate AdvDrop’s ef-

fectiveness on six public datasets that cover both general and

specific biases, demonstrating significant improvements. Further-

more, our method exhibits meaningful separation of subgraphs

and achieves unbiased representations for graph-based CF models,

as revealed by in-depth analysis. Our code is publicly available at

https://anonymous.4open.science/r/INV-LGN-C23D/.

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Collaborative Filtering, Popularity Distribution Shift, Debiasing

1 INTRODUCTION
Collaborative Filtering (CF) [39] plays a vital role in recommender

systems. It basically hypothesizes that behaviorally similar users

would share preferences for items [38, 39]. On this hypothesis,

graph-based CF has emerged as a dominant line [13, 25, 26, 34, 48, 50,

56], which often recasts user-item interactions as a bipartite graph

and exploits it to learn the collaborative signals among users. Hence,

employing graph neural networks (GNNs) [19] on the interaction

graph becomes a natural and prevalent solution. At the core is

hiring multiple graph convolutional layers to iteratively aggregate

information among multi-hop neighbors, instantiate the CF signals

as the high-order connectivities, and gather them into user and

item representations.

Despite the impressive performance of graph-based CF mod-

els, we contend that the interaction graph usually contains biased

user-item interactions, such as noise-injected observations [12]

and missing-not-at-random issue [40]. Worse still, such data biases

could be amplified through the GNN mechanism, especially when

applying multiple graph convolutional layers [2, 69]. To showcase

such a bias amplification, consider a real example in Figures 1 and

2, where LightGCN [26] with zero, two, and four graph convolu-

tional layers (i.e.,MF [39], LightGCN-2, and LightGCN-4) is selected

as the representative graph-based CF model trained on the Coat

dataset [41]. By examining specific factors (e.g., item popularity,

user gender) and quantifying prediction disparities across factor

groups, we can delineate prediction biases [7] and find:

• Popular items and active users, as highly centralized nodes in the

interaction graph, exert a dominant influence over information

propagation. For example, we divide item representations into

head, middle, and tail groups, based on popularity. With the

layer depth increase from zero to four (cf. Figures 1e-1g), head
items cluster closer at the origin while tail items keep spreading

outwardly, indicating that the GNN mechanism encourages the

domination of popular items.

• Conformity and sensitive attributes of users, even not used dur-

ing training, exhibit over-aggregation through multi-hop neigh-

bors. This results in undesirable clustering of user representa-

tions — a clear indication of conformity bias [67] and fairness

issues [7, 36]. Take user gender as an example of a sensitive

attribute. With the increase of layer depth from zero to four (cf.
Figures 1a-1c), user representations aremore compactly clustered

w.r.t. two gender groups.

Conclusively, data biases risk amplification via the GNNmechanism

[65], potentially leading a GNN backbone to generate representa-

tions more biased thanMF counterparts. This not only compromises

out-of-distribution generalization in wild environments [3, 29], but

may also increase the risks of leaking private attributes.

In response to such negative influences, recent debiasing strate-

gies [7, 11, 52, 53, 55, 67] have emerged. However, we argue that

there are several limitations: (1) Data Bias Perspective: Typically,

only one specific factor is considered to be mitigated, such as item

popularity [15, 23, 55], user conformity [67], and sensitive attributes

[7]. However, interaction data is often riddled with various biases,

whether predefined or arising from latent confounders. (2) Bias

Amplification Perspective. The debiased GNN mechanism is tailor-

made for a particular bias. For instance, tailored specifically for

popularity bias, they randomly sample interaction subgraphs [56]

and alter the information propagation scheme [68], but might fail in

other biases. Here we argue that, for graph-based CF models, effec-

tive debiasing should comprehensively address both biases present

in interaction data and those amplified by the GNN mechanism.

While conceptually compelling, such general debiasing remains

1

https://anonymous.4open.science/r/INV-LGN-C23D/.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) User Gender (MF) (b) User Gender (LightGCN-2) (c) User Gender (LightGCN-4) (d) User Gender (AdvDrop)

(e) Item Popularity (MF) (f) Item Popularity (LightGCN-2) (g) Item Popularity (LightGCN-4) (h) Item Popularity (AdvDrop)

Figure 1: T-SNE [44] visualizations of user and item representations learned by MF [39], LightGCN [26], and our proposed
AdvDrop. Note that MF, LightGCN-2, and LightGCN-4 are specialized with zero, two, and four graph convolutional layers,
respectively. Subfigures 1a-1d show the representation distribution w.r.t. two groups of user gender (i.e., female, male), while
Subfigures 1e-1h depict the representation distribution w.r.t. three groups of item popularity (i.e., head, middle, tail).

Figure 2: Recommendation Performance

largely unexplored in literature [47] — a gap our work seeks to

bridge.

This motivates us to develop a general debiasing strategy for

graph-based CF models, which can autonomously identify and

eliminate biases during information propagation. We anchor our

approach on the principles of invariant learning [3, 29, 64], which

encourages the representation learning to best support the pre-

diction, while remaining invariant to varying factors. Hence, we

propose Adversarial Graph Dropout (AdvDrop). Specifically, by
learning to employ the edge dropout on the interaction graph, it

adversarially identifies bias-mitigated and bias-aware subgraphs,

and makes the representations derived from one subgraph invariant

to the counterparts from the other subgraph. By framing the bias-

aware subgraph generation as the bias identification stage and the

invariant learning as the debiasing stage, our AdvDrop is distilled

into an iterative optimization process under a min-max framework:

• In the debiased representation learning stage, AdvDrop refines

user/item representations by concurrently optimizing the recom-

mendation objective and minimizing the discrepancy between

the representations learned from sampled bias-mitigated and

bias-aware subgraphs.

• In the bias identification stage, AdvDrop determines the bias

distributions of interaction in an adversarial manner by max-
imizing discrepancy between user/item representations that

come from sampled subgraphs.

As a result, AdvDrop is able to simultaneously discover various

biases during information propagation, and achieve debiased repre-

sentation learning, thus acting as a simple yet effective debiasing

plugin for graph-based CF models. Empirical validations, especially

in datasets characterized by the general bias and multiple specific

biases, show that our AdvDrop consistently surpasses leading de-

biasing baselines (e.g., CVIB [52], InvPref [53], sDRO [55]). The

improvements in recommendation accuracy (cf. Figure 1) coupled
with unbiased distributions w.r.t. bias factors (cf. Figures 1d and 1h)

clearly demonstrate the effectiveness of AdvDrop.

Our main contributions are summarized as:

• We uncover the problem of model inherent bias for graph-based

CF models, which is important and widespread but far from

being well-studied.

• We propose a new debiasing framework in an adversarial manner,

named as AdvDrop, which forces the representations learned

from different subgraphs generated by bias-aware dropout to be

consistent with each other.

• Through extensive experiments including both general and spe-

cific bias scenarios as well as visualization of learned representa-

tions and bias distributions, we validate the universal effective-

ness of AdvDrop.

2 PRELIMINARY
We start by presenting an overview of CF and the general frame-

work of graph-based CF.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

General Debiasing for Graph-based Collaborative Filtering via Adversarial Graph Dropout WWW ’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.1 Collaborative Filtering (CF)
Collaborative Filtering (CF) [39] is fundamental in recommender

systems, which basically assumes that users with similar behavioral

patterns are likely to exhibit shared preferences for items. Here we

focus on CF with implicit feedback (e.g., clicks, views, purchases)
[38, 39]. LetU and I be the sets of users and items, respectively.

Each user 𝑢 ∈ U has interacted with a set of items denoted by I+

𝑢 ,

while I−𝑢 = I−I+

𝑢 collects her/his non-interacted items. Such user-

item interactions can be summarized as the matrix Y, where 𝑦𝑢𝑖 = 1

indicates that user 𝑢 has adopted item 𝑖 , and 𝑦𝑢𝑖 = 0 indicates no

interaction.

Following prior studies [25, 26], we can construct a bi-partite

graph G = (V, E), by combining all users and items into the node

set V = U ∪ I, and treating their observed interactions as the

edges E. The adjacency matrix A of G can be derived as follows:

A =

[
0 Y

YT 0

]
. (1)

The primary goal of recommendation is to identify a list of items

that potentially align with the preferences of each user 𝑢. This task

can be viewed as a link prediction problem within the bipartite

graph G.

2.2 Graph-based CF Framework
Graph-based CF aims to leverage the bipartite interaction graph,

capturing the collaborative signals between users and thereby pre-

dicting user preferences towards items. To this end, employing

graph neural networks (GNNs) [19] on the graph becomes an in-

tuitive and widely accepted strategy. At the core is, for each ego

user/item node, employing multiple graph convolutional layers to

learn the representation. These layers function to iteratively aggre-

gate information among multi-hop neighbors, instantiate the CF

signals as the higher-order connectivities, and subsequently gather

them into the user/item representations. Formally, the information

aggregation can be summarized as:

Z(𝑙)
= AGG(Z(𝑙−1),A), (2)

where Z(𝑙)
represents the node representations after 𝑙 graph convo-

lutional layer, and Z(0)
is initialized as the embeddings of users and

items [26, 48]. The aggregation function AGG(·) is to integrate the

useful information from a node’s neighbors to refine its representa-

tion. Taking a user 𝑢 as an example, the aggregation function can

be expressed as:

z(𝑙)
𝑢 = 𝑓

combine
(z(𝑙−1)

𝑢 , 𝑓aggregate({z(𝑙−1)

𝑖
|A𝑢𝑖 = 1})), (3)

where 𝑢’s representation at the 𝑙-th layer, z(𝑙)
𝑢 , is obtained by first

aggregating her/his neighbors’ representations from the (𝑙 − 1)-

th layer via 𝑓aggregate(·), and then combining with her/his own

representation z(𝑙−1)

𝑢 via 𝑓
combine

(·). Finally, we employ a readout

function on the user representations derived from different layers

to get the final representation:

z𝑢 = 𝑓
readout

({z(𝑙)
𝑢 |𝑙 = [0, · · · , 𝐿]}). (4)

Analogously, we can get an item 𝑖’s final representation, z𝑖 . For
brevity, we summarize the procedure of applying GNN on graph

G to obtain aggregated representations of users/items as a single

equation:

Z𝑈 ,Z𝐼 = GNN(G|Θ), (5)

where Z𝑈 and Z𝐼 collect representations of all users and items,

respectively; Θ represents all trainable parameters.

Having obtained the final representations of a user 𝑢 and an

item 𝑖 , we can build a similarity function upon them to predict how

likely 𝑢 will interact with 𝑖:

𝑦𝑢𝑖 = 𝑠(z𝑢 , z𝑖), (6)

where the similarity function 𝑠(·) can be set as inner product, cosine

similarity, and neural networks; the predictive score 𝑦𝑢𝑖 indicates

the preference of user 𝑢 towards item 𝑖 .

To learn the model parameters, we utilize the observed interac-

tions as the supervision signal. Then, we encourage the predictive

score 𝑦𝑢𝑖 to either align with the ground-truth value 𝑦𝑢𝑖 for point-

wise learning [42] or preserve the preference order of {𝑦𝑢𝑖 |𝑖 ∈ N𝑢 }
for pair-wise [39] and list-wise learning [9]. In this work, we adopt

the Bayesian Personalized Ranking (BPR) loss [39] as our training

objective, which is a widely-used choice for pair-wise learning:

LBPR =

∑︁
(𝑢,𝑖, 𝑗)∈O

− log𝜎(𝑦𝑢𝑖 − 𝑦𝑢 𝑗), (7)

where O = {(𝑢, 𝑖, 𝑗)|𝑢 ∈ U, 𝑖 ∈ I+

𝑢 , 𝑗 ∈ I−𝑢 } is the training data.

This objective enforces that the prediction of an observed interac-

tion should receive a higher score than its unobserved counterparts.

This serves as our primary supervision signal during training.

3 METHODOLOGY
Here we present our Adversarial Graph Dropout (AdvDrop) frame-

work, as Figure 3 illustrates. It aims to combat the intrinsic biases

emerging during graph-based CF. See the comprehensive literature

review on debiasing in Appendix A.1. Specifically, our AdvDrop

comprises two training stages, mapping to a min-max optimization:

• Debiased Representation Learning. To mitigate biases during

representation learning, we employ a bias measurement function

𝑃𝐵 to quantify the bias of each interaction. Leveraging 𝑃𝐵 , we

construct two bias-related views of nodes and aim for embedding-

level invariance to varying biases. Specifically, we create bias-

aware and bias-mitigated subgraphs by performing random edge

dropout according to 𝑃𝐵 and 1 − 𝑃𝐵 , respectively. Neighbor ag-
gregation is then separately performed on these subgraph views.

On the view-specific representations, a contrastive learning loss

is minimized between them to ensure representation-level in-

variance, alongside the primary recommendation objective (e.g.,
Equation (7)).

• Bias Identification. To obtain the bias measurement function

𝑃𝐵 , the AdvDrop framework proposes an adversarial learning

approach. Specifically, we learn 𝑃𝐵 by adversarially maximizing

the divergence between the bias-aware and bias-mitigated node

representations. This enables us to identify and quantify the bias

in the recommendation system.

By alternating between these stages, AdvDrop not only identifies

biases but also mitigates them iteratively. In the following sections,

we will provide further details on each of these stages.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: The overall framework of AdvDrop.

3.1 Debiased Representation Learning
To quantify bias within the interaction graph G and amplified

through the GNN mechanism, AdvDrop incorporates a learnable

bias measurement function 𝑃𝐵 . The level of bias associated with an

interaction between a user 𝑢 and an item 𝑖 is represented as follows:

𝑏𝑢𝑖 = 𝑃𝐵 (𝑢, 𝑖). (8)

The bias measurement function 𝑃𝐵 outputs values within [0, 1],

reflecting the extent to which an interaction is affected by bias

factors. A score of 1 indicates that the interaction is entirely biased,

whereas a score of 0 suggests that the interaction is solely based on

the user’s genuine preference. We will elaborate on how to obtain

this bias measurement function 𝑃𝐵 in the Bias Identification stage

(cf. Section 3.2).

Using the bias measurement function 𝑃𝐵 , we derive two distinct

views of the interaction graph: bias-aware G+
and bias-mitigated

G− . Specifically, these views are subgraphs of the original interac-
tion graph G, obtained by performing edge dropout according to

𝑃𝐵 and 1 − 𝑃𝐵 . Their respective adjacency matrices are defined as:

A+
= A ⊙M+,

A− = A ⊙M−,
(9)

where M+
and M− are the view-specific masks; the element-wise

product ⊙ is applied to perform the edge dropout based on these

masks, resulting in the bias-aware and bias-mitigated subgraphs.

Specifically, M+
and M− are constructed such that each edge (𝑢, 𝑖)’s

masks𝑚+

𝑢𝑖
and𝑚−

𝑢𝑖
follow a Bernoulli distribution with parameters

𝑃𝐵 (𝑢, 𝑖) and 1 − 𝑃𝐵 (𝑢, 𝑖), respectively:

M+ ∼ 𝑃𝐵 (G+
) =

∏
{(𝑢,𝑖) |𝐴𝑢𝑖=1}

Bern(𝑚+

𝑢𝑖 ; 𝑃𝐵 (𝑢, 𝑖)),

M− ∼ 𝑃𝐵 (G−) =

∏
{(𝑢,𝑖) |𝐴𝑢𝑖=1}

Bern(𝑚−𝑢𝑖 ; 1 − 𝑃𝐵 (𝑢, 𝑖)).
(10)

At the beginning of each training epoch, we sample the masks

using Equation (10) and then leverage them to create the bias-

aware and bias-mitigated views, G+
and G− , based on Equation

(9). During training, the GNN encoder within the graph-based CF

models, characterized by parameters Θ𝐸 , is separately applied to

these two views like Equation (5). As a result, we obtain the view-

centric representations for both users and items from each view:

Z+

𝑈 ,Z
+

𝐼 = GNN(G+ |Θ𝐸),

Z−𝑈 ,Z
−
𝐼 = GNN(G− |Θ𝐸).

(11)

Following SimCLR [14], we use the InfoNCE loss as an auxiliary

objective to enforce the representation-level invariance [3, 29, 53,

64] — that is, encouraging the consistency in representations of

the same node across both views, while distinguishing between

representations of different nodes:

Linv

𝑈 =

∑︁
𝑢∈U
− log

exp(𝑠(z+

𝑢 , z−𝑢 /𝜏))∑
𝑢′∈U exp(𝑠(z+

𝑢 , z−𝑢′))/𝜏))

,

Linv

𝐼 =

∑︁
𝑖∈I
− log

exp(𝑠(z+

𝑖
, z−
𝑖
/𝜏))∑

𝑖′∈I exp(𝑠(z+

𝑖
, z−
𝑖′))/𝜏))

,

(12)

where 𝑠(·) is the similarity function. For a user/item node, promoting

consistency between its bias-aware and bias-mitigated representa-

tions allows the model to capture the invariant signal, regardless

of the variations caused by bias. This aids in distilling essential

user preferences while mitigating the impact of bias on the learned

representations. The final contrastive loss is obtained by combining

the two terms:

Linv
= Linv

𝑈 + Linv

𝐼 , M+ ∼ 𝑃𝐵 (G+
), M− ∼ 𝑃𝐵 (G−). (13)

We then combine this contrastive loss with the recommendation

loss, utilizing BPR on the bias-aware and bias-mitigated graphs as

Equation (7):Lrec
= L+

BPR
+L−

BPR
. Consequently, the final objective

of the Debiased Representation Learning stage is formalized as:

min

Θ𝐸

Lrec
+ 𝜆Linv, (14)

where 𝜆 is a hyperparameter to control the strength of representation-

level invariance, and Θ𝐸 collects the model parameters of GNNs.

3.2 Bias Identification
To identify the underlying bias of each interaction, AdvDrop adopts

an adversarial approach in learning the bias measurement function

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

General Debiasing for Graph-based Collaborative Filtering via Adversarial Graph Dropout WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1 AdvDrop Algorithm for General Debias

Input: Training dataset D consist of (𝑢, 𝑣) pairs, the number of

stage 1 epochs 𝐾𝑠𝑡𝑎𝑔𝑒1, and number of stage 2 epochs 𝐾𝑠𝑡𝑎𝑔𝑒2.

Output: Debiased user representations Z𝑈 and debiased item

representations Z𝐼 .

Initialize: initialize Θ𝐸 and Θ𝐵 .

while not converged do
Stage 1: Debiased Representation Learning:

Fix bias measurement function parameters Θ𝐵 .

for 𝑘1 ≤ 𝐾𝑠𝑡𝑎𝑔𝑒1 do
Compute L𝑟𝑒𝑐

and L𝑖𝑛𝑣
by Equations (7) and (13).

Update Θ𝐸 by Equation (14).

𝑘1 ← 𝑘1 + 1

end for
Stage 2: Bias Identification:
Fix graph neural networks parameters Θ𝐸 .

for 𝑘2 ≤ 𝐾𝑠𝑡𝑎𝑔𝑒2 do
Recompute 𝑃𝐵 and resample G− and G+.

Compute ∇𝑓𝐵L𝑖𝑛𝑣
by Equation (19) and Corollary 3.2.

Obtain gradients by back-propagation and update Θ𝐵 .

𝑘2 ← 𝑘2 + 1

end for
end while
Compute Z𝑈 and Z𝐼 by Equation (20).

return Z𝑈 and Z𝐼 .

𝑃𝐵 . Here, we first present the function as:

𝑃𝐵 (𝑢, 𝑖 |Θ𝐵) = 𝜎(𝑓𝐵 (Z|Θ𝐵)) = 𝜎(W𝐵[z(0)

𝑢 | |z
(0)

𝑖
] + 𝑏𝐵), (15)

where z(0)

𝑢 and z(0)

𝑖
represent the base embeddings of user𝑢 and item

𝑖 at layer 0, respectively. The operator (·| |·) denotes vector concate-
nation, and Θ𝐵 = (W𝐵, 𝑏𝐵) represents the parameters of the neural

network. Importantly, this design allows 𝑃𝐵 (𝑢, 𝑖) ̸= 𝑃𝐵 (𝑖, 𝑢), which

means that the bias measurement might differ when considering

the message passing from user-to-item versus item-to-user. Such

distinction accounts for potential differences in biases between

users and items during the messaging process.

Building upon the defined bias measurement function, we draw

inspiration from the adversarial environment inference [18] and

directly maximize the contrastive learning loss (cf. Equation (13)):

max

Θ𝐵

L𝑖𝑛𝑣 . (16)

Intuitively, this maximization prompts the bias measurement func-

tion to learn two distinct edge drop distributions, which in turn

enlarges the representation discrepancy across the two views. We

find that training with this objective yields a meaningful bias mea-

surement function suitable for different training stages, empow-

ering the Debias Representation Learning objective to iteratively

mitigate bias. See Section 4 for further interpretation of 𝑃𝐵 .

3.3 Model Optimization for AdvDrop
We integrate the loss functions of both learning stages into a unified

objective as:

min

Θ𝐸

[L𝑟𝑒𝑐
+ 𝜆max

Θ𝐵

L𝑖𝑛𝑣
]. (17)

During training, we first fix the bias measurement function’s pa-

rameters Θ𝐵 and perform optimization on the GNNs’ parameters

Θ𝐸 in the Debias Representation Learning stage, then fix Θ𝐸 and

optimize Θ𝐵 in the Bias Identification stage.

However, direct optimization of Θ𝐵 presents challenges owing

to the discrete nature of sampled M+
and M− . To address this, we

adopt augment-REINFORCE-merge (ARM), a recently proposed

unbiased gradient estimator for stochastic binary optimization [61].

Specifically, the key theorem for ARM is shown as follows:

Theorem 3.1. For a vector of 𝑁 binary random variables x =

(𝑥1, . . . , 𝑥𝑁)
𝑇 , and any function 𝑓 , the gradient of

E(𝝓) = Ex∼∏𝑁
𝑛=1

Bern(𝑥𝑛 ;𝜎(𝜙𝑛))
[𝑓 (x)]

with respect to 𝝓 = (𝜙1, . . . , 𝜙𝑁)
𝑇 , the logits of the Bernoulli proba-

bility parameters, can be expressed as:

∇𝝓E(𝝓) = E𝒗∼∏𝑁
𝑛=1

Uniform(𝑣𝑛 ;0,1)

[
(𝑓 (I[𝒗 > 𝜎(−𝝓)])

−𝑓 (I[𝒗 < 𝜎(𝝓)]))(𝒗 − 1

2

)

]
,

where I[𝒗 > 𝜎(−𝜙)] := (I[𝑣1 > 𝜎(−𝜙1)], . . . , I[𝑣𝑁 > 𝜎(−𝜙𝑁)])
𝑇 , and

𝜎(·) is the sigmoid function.

This theorem provides an unbiased estimator for gradients of

Bernoulli variables, requiring merely an antithetically coupled pair

of samples drawn from the uniform distribution. In alignment with

Theorem 3.1, we sample two random variables 𝒗1 and 𝒗2 from

uniform distribution 𝑈G =

∏
{(𝑖, 𝑗) |𝐴𝑖 𝑗=1)} Uniform(𝑣𝑖 𝑗 , 0, 1). The

contrastive loss, based on 𝒗1 and 𝒗2, is defined as:

L𝑖𝑛𝑣
𝑃𝐵 ,>

:= (L𝑖𝑛𝑣
𝑈 + L𝑖𝑛𝑣

𝐼)

���𝑀+=I[𝒗1>𝜎(−𝑓𝐵 (Z |Θ𝐵))]

𝑀−=I[𝒗2>𝜎(𝑓𝐵 (Z |Θ𝐵))]

,

L𝑖𝑛𝑣
𝑃𝐵 ,<

:= (L𝑖𝑛𝑣
𝑈 + L𝑖𝑛𝑣

𝐼)

��� 𝑀+=I[𝒗1<𝜎(𝑓𝐵 (Z |Θ𝐵))]

𝑀−=I[𝒗2<𝜎(−𝑓𝐵 (Z |Θ𝐵))]

.

(18)

Then an unbiased estimation of gradients can be computed accord-

ing to the following corollary of Theorem 3.1:

Corollary 3.2. The gradient of contrastive loss L𝑖𝑛𝑣 in AdvDrop
with respect to logits of the Bernoulli probability parameters 𝑓𝐵 can
be expressed as:

∇𝑓𝐵L
𝑖𝑛𝑣

= E𝒗1,𝒗2∼𝑈G
[
(L𝑖𝑛𝑣

𝑃𝐵 ,>
− L𝑖𝑛𝑣

𝑃𝐵 ,<
)(𝒗1 − 𝒗2)

]
, (19)

where𝑈G =

∏
{(𝑖, 𝑗) |𝐴𝑖 𝑗=1)} Uniform(𝑣𝑖 𝑗 , 0, 1), L𝑖𝑛𝑣

𝑃𝐵 ,>
and L𝑖𝑛𝑣

𝑃𝐵 ,>
are

defined according to Equation 18.

The gradients of Θ𝐵 can thus be obtained by back-propagation

after obtaining the gradientsw.r.t. 𝑓𝐵 . During inference, we compute

the representations Z𝑈 and Z𝐼 respectively without graph dropout:

Z𝑈 ,Z𝐼 = GNN(G|Θ𝐸). (20)

The overall algorithm of AdvDrop is summarized in Algorithm 1.

4 EXPERIMENTS
To validate the effectiveness of AdvDrop, we conduct extensive

experiments targeting the following research queries::

• RQ1: How does Advdrop perform compared with other baseline

models on general debiasing datasets?

• RQ2: Can Advdrop successfully address various specific biases?

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: General debiasing performance on Coat, Yahoo, and KuaiRec. The top-performingmethod for eachmetric is highlighted
in bold, with the runner-up underlined. The improvements achieved by AdvDrop are statistically significant (𝑝-value≪ 0.05).

Coat Yahoo KuaiRec

NDCG@3 Recall@3 NDCG@3 Recall@3 NDCG@20 Recall@20

LightGCN 0.499 0.394 0.610 0.640 0.334 0.073

IPS-CN 0.516
+3.41%

0.406
+3.05%

0.598
−1.97%

0.628
−1.88%

0.014
−95.81%

0.002
−97.26%

DR 0.506
+1.40%

0.416
+5.58%

0.611
+0.16%

0.637
−0.47%

0.037
−88.92%

0.010
−86.30%

CVIB 0.488
−2.20%

0.386
−2.03%

0.597
−2.13%

0.632
−1.25%

0.342
+2.40%

0.079
+8.22%

InvPref 0.365
−26.85%

0.293
−25.63%

0.594
−2.62%

0.621
−2.97%

- -

AutoDebias 0.502
+0.60%

0.401
+1.78%

0.601
−1.48%

0.627
−2.03%

0.327
−2.10%

0.072
−1.37%

AdvDrop 0.532∗+6.61% 0.418∗+6.09% 0.617∗+1.15% 0.643∗+0.47% 0.362∗+8.38% 0.089∗+21.92%

• RQ3:Within AdvDrop, what pivotal insights does the adversarial

learning framework extract, and how do these influence the

learned representations?

4.1 Experimental Settings
Datasets. We perform experiments on four real-world benchmark

datasets, spanning both general and specific bias settings: Yahoo

[35], Coat [41], KuaiRec [21], and Yelp2018 [26] for item. See Ap-

pendix A.2 for the dataset details and Table 6 for the data statistics.

EvaluationMetrics. To evaluate the performance of the model, we

use three metrics: NDCG@K [64], Recall@K [64], and Prediction

bias [7]. See Appendix A.3 for the metric details.

Baselines. We adopt various baselines tailored for mitigating gen-

eral biases and specific biases. See Appendix A.4 for the details.

• Mitigating General Bias: IPS-CN [24], DR [51], CVIB [52],

InvPref [53], AutoDeibas [11];

• Mitigating Specific Biases: IPS-CN [24] for item popularity,

CDAN [16] for item popularity, sDRO [55] for item popularity,

and CFC [6] for attribute unfairness.

4.2 Performance w.r.t. General Bias (RQ1)
Motivation. Current recommendation debiasing approaches, tar-

geting general bias, primarily focus on an unbiased test set derived

from completely missing-at-random (MAR) user feedback. Yet, in

real-world applications, an effective general debiasing algorithm

should excel in situations with unidentified distribution shifts in

user-item interactions, such as temporal or demographic shifts. In

our experiments, we assess the conventional MAR setting in Yahoo

& Coat, without any prior knowledge of the test distribution.

Results. Table 1 presents the general debiasing performance of

AdvDrop in contrast with various baselines. See Table 5 in the

appendix for more results. The results yield the following insights::

• AdvDrop consistently outperforms various baselines for
general debiaing across the benchmark datasets. Specifi-
cally, on Coat, Yahoo, and KuaiRec, it achieves relative improve-

ments of 6.61%, 1.15%, and 8.38% in NDCG compared to the

LightGCN backbone. These improvements are more significant

than those observed with other debiasing baselines. We ascribe

the robust performance across diverse bias scenarios to Adv-

Drop’s ability to iteratively identify the interaction bias from

the interaction graph, capture the bias amplification within the

GNN mechanism, and adversarially mitigate them without prior

assumptions of the test distribution.

• General debiasing baselines exhibit varying performances
across MAR and temporal-split settings, which might be
critically affected by the model-inherent biases. Compared

to AdvDrop which is tailored to mitigate both general biases

and bias amplification inherent in the GNN mechanism, most

baselines tend to overlook the biases introduced by the GNN it-

self. A closer look reveals: IPS-CN excels in the small-scale MAR

setting of Coat, but underperforms in other contexts; DR per-

forms well in MAR settings, but fails when applied to temporal

distribution shift, mainly due to the misestimations of observa-

tion probabilities on unknown distributions; CVIB consistently

underperforms the LightGCN backbone on Yahoo. These results

underscore the importance of direct interaction bias learning

without presupposing test distribution or bias factors. Surpris-

ingly, while InvPref paired with LightGCN struggles to capture

the general bias across all datasets, the combination of MF and

InvPref effectively addresses this issue [53]. This discrepancy

implies the latent biases within the GNN mechanism, further

emphasizing the importance of considering both data-centric

and GNN-inherent biases.

4.3 Performance on Specific Bias (RQ2)
Motivation. Intuitively, general debiasing strategies should be able
to handle a range of specific biases that exist in recommendation

scenarios, performing at par with strategies designed for particu-

lar biases. To further validate AdvDrop’s capabilities, we conduct

experiments focusing on two prevalent bias-related challenges:

popularity bias and attribute unfairness. Resolving popularity bias

requires the model to perform well when facing popularity-related

distribution shifts, while addressing attribute unfairness empha-

sizes both representation-level and prediction-level parity for sen-

sitive user or item attributes. These two scenarios together demand

the OOD generalization, while ensuring unbiased predictions and

representations.

4.3.1 Popularity Bias. Table 3 presents the results dealing with

popularity bias. We can observe that AdvDrop achieves significant

improvements over the LightGCN backbone on both ID and OOD

test sets, outperforming all compared baselines. With further anal-

ysis of AdvDrop in Section 4.4.1, we attribute the ID performance

gain primarily stems from the contrastive objective within the De-

biased Representation Learning phase, and the OOD performance

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

General Debiasing for Graph-based Collaborative Filtering via Adversarial Graph Dropout WWW ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Performance of mitigating attribute unfairness on Coat.

Evaluation Metrics

Performance Metrics Fairness Metric (Prediction Bias)

NDCG@3 NDCG@5 Recall@3 Recall@5 user gender item colour item gender

MF 0.473 0.508 0.349 0.501 0.102 0.175 0.091

LGN 0.499 0.523 0.394 0.519 0.420 0.589 0.468

AdvDrop 0.532 0.553 0.418 0.540 0.142 0.053 0.062

+Embed info 0.518 0.560 0.418 0.578 0.052 0.032 0.046

+Mask info 0.512 0.554 0.425 0.581 0.045 0.024 0.039

CFC 0.485 0.513 0.395 0.517 0.012 0.011 0.012

Table 3: Performance of mitigating popularity bias on
Yelp2018.

Test Split Test ID Test OOD

Metrics NDCG@20 Recall@20 NDCG@20 Recall@20

LightGCN 0.0371 0.0527 0.0028 0.0026

IPS-CN 0.0337 0.0470 0.0033 0.0030

CDAN 0.0496 0.0703 0.0037 0.0037

sDRO 0.0492 0.0702 0.0035 0.0034

AdvDrop 0.0608 0.0817 0.0066 0.0073

gain can be credited to both Debias Representation Learning and

Bias Identification stages.

4.3.2 Attribute Unfairness. Table 2 delineates the results ad-

dressing the attribute unfairness. We evaluate debiasing strategies

against the MF and LightGCN backbones by analyzing both the

recommendation performance and the fairness metric related to

group-wise prediction bias. Note that CFC epitomizes prevalent

techniques used for recommendation fairness, strictly applying an

adversarial constraint at the embedding level to obscure sensitive

attributes. This strategy aims to deceive classifiers reliant on these

learned representations. In this sense, CFC’s prediction bias can

be viewed as a lower bound for fairness metric, regardless of its

recommendation performance. From the results, we find:

• From the perspective of performance, AdvDrop exhibits
a substantial performance boost over the LightGCN back-
bone and sustains a prediction bias comparable to MF. This
contrasts notably with many conventional fairness-centric meth-

ods which often sacrifice model efficacy to minimize prediction

bias. Moreover, introducing attribute information at the embed-

ding layer (+Embed info) or further constraining 𝑃𝐵 based on

attribute categories (+Mask Info) allows AdvDrop to further

enhance the recommendation performance while reducing pre-

diction bias, approaching the CFC’s fairness metric lower bound.

• From the perspective of representations, AdvDrop allevi-
ates undesired clustering of user/items sharing sensitive
attributes and moderates the emphasis on trending items
during neighbor aggregation. Specifically, we can view the

item popularity and user gender as the attributes of items and

users, and plot T-SNE visualization of learned user/item repre-

sentations w.r.t each attribute in Figure 1. For the user gender,

clear clustering trends manifest from Figures 1a, 1b to 1c 1d, in-

dicating that the bias w.r.t. gender amplifies with the increase of

graph convolution layers. In contrast, representations from Adv-

Drop exhibit a more dispersed pattern, akin to MF, showing that

AdvDrop shields the amplification from the GNN mechanism.

Table 4: Ablation study of AdvDrop on Yelp2018.

Test Split Test ID Test OOD

Metrics NDCG@20 Recall@20 NDCG@20 Recall@20

AdvDrop 0.0608 0.0817 0.0066 0.0073
w/o 𝑃𝐵 0.0575 0.0781 0.0060 0.0060

w/o 𝑃𝐵 & L𝑖𝑛𝑣 0.0371 0.0528 0.0027 0.0024

These two observations together clearly demonstrate that AdvDrop

mitigates the intrinsic bias in graph-based CF. This not only en-

hances the model generalization, but also encourages the fairness

of recommendation.

4.4 Study of AdvDrop (RQ3)
4.4.1 Ablation Study. To further investigate the effectiveness of

AdvDrop’s components, we conduct an ablation study on Yelp2018

and present the results in Table 4. We observe that:

• When removing the adversarial learning of 𝑃𝐵 (denoted as

“w/o 𝑃𝐵”), the ID performance slightly drops (with NDCG@20

decreasing from 0.817 to 0.781), while the OOD performance

sees a more signification reduction (with NDCG@20 decreasing

from 0.0073 to 0.0060). Note that such an ablated model, leverag-

ing only the contrastive loss L𝑖𝑛𝑣 from two randomly dropout

graph views, is similar to the recent models like RDrop [31]

and SGL [56]. The observed performance boost compared to the

graph-based backbone can be attributed to the data augmenta-

tions achieved through crafting random views of the original

interaction graph.

• When further discarding the contrastive learning objective
L𝑖𝑛𝑣 (denoted as “w/o 𝑃𝐵 & L𝑖𝑛𝑣”), the model is restricted to

learn solely via random graph dropout, leading to performance

metrics falling short of those achieved with the graph-based

backbone.

This evidence implies that the superior performance of Adv-
Drop results from both learning stages: the Debias Representa-
tion Learning stage fundamentally improves representation quality,

while the Bias Identification stage actively seeks meaningful bias-

related views that further boost model generalization performance.

4.4.2 Visualization of Bias Measurement Function 𝑃𝐵 . To un-
derstand the crucial information captured by the Bias Identification

stage, we visualize the learned bias measurement function 𝑃𝐵 w.r.t.
item popularity. Specifically, we sort all items based on popularity,

then split them into four groups from 0 to 3 with ascending pop-

ularity. We compute the average 𝑃𝐵 of interactions connected to

items within each group, shown in in Figure 4. Clearly, only the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: Visualization of learned biasmeasurement function
𝑃𝐵 w.r.t. item popularity.

interactions associated with the top quartile (group 3) — represent-

ing the most popular items — have an average 𝑃𝐵 exceeding 0.5.

In contrast, the other three quartiles have a 𝑃𝐵 average below this

threshold. Moreover, there’s a clear trend: the average 𝑃𝐵 increases

congruent with item popularity. These insights suggest that the

model not only learns 𝑃𝐵 with a prudent tendency around 0.5 but

also adeptly mirrors the long-tailed distribution of user-item in-

teractions. This indicates the Bias Identification stage effectively

captures the information about interaction bias.

4.4.3 Interpretation of AdvDrop for Debiased Learning. We

present an intriguing interpretation of how AdvDrop effectively

conducts general debiasing to achieve superior performance. Figure

5 shows The relationship between recommendation performance

(measured by NDCG@3) and model bias (quantified by prediction

bias) during training on Coat for MF, LightGCN, and AdvDrop. Our

analysis yielded the following insights:

• Both MF and LightGCN’s recommendation performance im-

proves consistently with more training steps. This suggests that

as they enhance recommendation performance during training,

they also accrue representational bias. Notably, the LightGCN

demonstrated superior NDCG@3 compared to MF, albeit with a

higher degree of prediction bias, reflecting its heightened recom-

mendation accuracy and exacerbated inherent bias.

• Contrary to a consistent improvement, AdvDrop’s performance

experienced a slight decrease during training before recovering

and subsequently improving, whereas the prediction bias first

accumulated but was subsequently mitigated. This trajectory in-

dicates AdvDrop’s ability to iteratively optimize by first reducing

the bias and then enhancing the recommendation performance.

Tracing AdvDrop’s training might reveal a sequence: an initial

boost in recommendation performance with bias accumulation,

a subsequent performance dip with continued bias accumulation

or at bias removal’s onset, and a final surge in performance once

the bias is eradicated.

• For AdvDrop, the time order between re-improvement of recom-

mendation performances and bias removal differs across different

attributes. Specifically, the bias mitigation either precedes, co-

incides with, or follows performance enhancements for various

attributes, respectively. This indicates that the bias identification

(a)

(b) (c)

(d) (e)

Figure 5: (a) The overall recommendation performance v.s.
epochs during training. (b) ∼ (e) The debiasing performance
w.r.t. epochs on user age, user popularity, item gender, and
item popularity attributes, respectively.

and removal in AdvDrop is conducted in an ordered manner, and

the superior performance can be attributed to the ensemble of

orderly removal for different biases.

In a nutshell, these observations clearly depict the bias identifi-

cation and bias removal process in AdvDrop, accounting for its

superiority. The orderly removal of bias in AdvDrop is an interest-

ing phenomenon that possibly implies implicit ordering in different

recommendation biases, which we will explore in future work.

5 CONCLUSION
In this work, we proposed a novel framework AdvDrop, which

is designed to alleviate both general biases and inherent bias am-

plification in graph-based CF, by enforcing embedding-level in-

variance from learned bias-related views. Grounded by extensive

experiments and interpretable visualization, AdvDrop successfully

identifies various bias factors and performs iterative bias removal to

achieve superior OOD generalization performance for recommenda-

tion. For future work, it would be worthwhile to design algorithms

that consider bias-related views for both data and graph, or to ex-

plore the theoretical guarantee for convergence of AdvDrop. We

believe that AdvDrop points in a promising direction for general

debiasing in graph-based CF models and will inspire more work in

the future.

REFERENCES
[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Control-

ling popularity bias in learning-to-rank recommendation. In Proceedings of the
eleventh ACM conference on recommender systems. 42–46.

[2] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher.

2019. The Unfairness of Popularity Bias in Recommendation. In RMSE@RecSys
(CEUR Workshop Proceedings, Vol. 2440).

[3] Martín Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019.

Invariant Risk Minimization. CoRR abs/1907.02893 (2019).

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

General Debiasing for Graph-based Collaborative Filtering via Adversarial Graph Dropout WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[4] Ghazaleh Beigi, Ahmadreza Mosallanezhad, Ruocheng Guo, Hamidreza Alvari,

Alexander Nou, and Huan Liu. 2020. Privacy-aware recommendation with

private-attribute protection using adversarial learning. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 34–42.

[5] Stephen Bonner and Flavian Vasile. 2018. Causal embeddings for recommenda-

tion. In Proceedings of the 12th ACM conference on recommender systems. 104–112.
[6] Avishek Bose and William Hamilton. 2019. Compositional fairness constraints

for graph embeddings. In International Conference on Machine Learning. PMLR,

715–724.

[7] Avishek Joey Bose and William L. Hamilton. 2019. Compositional Fairness

Constraints for Graph Embeddings. In ICML.
[8] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max

Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013.

Counterfactual Reasoning and Learning Systems: The Example of Computational

Advertising. Journal of Machine Learning Research 14, 11 (2013).

[9] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to

rank: from pairwise approach to listwise approach. In ICML, Vol. 227. 129–136.
[10] Allison JB Chaney, DavidMBlei, and Tina Eliassi-Rad. 2015. A probabilistic model

for using social networks in personalized item recommendation. In Proceedings
of the 9th ACM Conference on Recommender Systems. 43–50.

[11] Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli Lin,

and Keping Yang. 2021. AutoDebias: Learning to Debias for Recommendation.

In SIGIR.
[12] Jiawei Chen, Hande Dong, XiangWang, Fuli Feng, MengWang, and Xiangnan He.

2023. Bias and Debias in Recommender System: A Survey and Future Directions.

ACM Trans. Inf. Syst. 41, 3 (2023), 67:1–67:39.
[13] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional

Network Approach. In AAAI.
[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.

A Simple Framework for Contrastive Learning of Visual Representations. In

ICML. 1597–1607.
[15] Zhihong Chen, Jiawei Wu, Chenliang Li, Jingxu Chen, Rong Xiao, and Bin-

qiang Zhao. 2022. Co-training Disentangled Domain Adaptation Network for

Leveraging Popularity Bias in Recommenders. In SIGIR.
[16] Zhihong Chen, Jiawei Wu, Chenliang Li, Jingxu Chen, Rong Xiao, and Binqiang

Zhao. 2022. Co-training Disentangled Domain Adaptation Network for Leverag-

ing Popularity Bias in Recommenders. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
60–69.

[17] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and

HongboDeng. 2020. Esam: Discriminative domain adaptationwith non-displayed

items to improve long-tail performance. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
579–588.

[18] Elliot Creager, Jörn-Henrik Jacobsen, and Richard S. Zemel. 2021. Environment

Inference for Invariant Learning. In ICML, Vol. 139. 2189–2200.
[19] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent,

Yoshua Bengio, and Xavier Bresson. 2023. Benchmarking Graph Neural Networks.

JMLR 24 (2023), 43:1–43:48.

[20] Golnoosh Farnadi, Pigi Kouki, Spencer K Thompson, Sriram Srinivasan, and Lise

Getoor. 2018. A fairness-aware hybrid recommender system. arXiv preprint
arXiv:1809.09030 (2018).

[21] Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang,

Xiangnan He, Jiaxin Mao, and Tat-Seng Chua. 2022. KuaiRec: A Fully-Observed

Dataset and Insights for Evaluating Recommender Systems. In CIKM. 540–550.

[22] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-

aware ranking in search & recommendation systems with application to linkedin

talent search. In Proceedings of the 25th acm sigkdd international conference on
knowledge discovery & data mining. 2221–2231.

[23] Alois Gruson, Praveen Chandar, Christophe Charbuillet, James McInerney,

Samantha Hansen, Damien Tardieu, and Ben Carterette. 2019. Offline Evaluation

to Make Decisions About Playlist Recommendation Algorithms. InWSDM.

[24] Alois Gruson, Praveen Chandar, Christophe Charbuillet, James McInerney,

Samantha Hansen, Damien Tardieu, and Ben Carterette. 2019. Offline evalua-

tion to make decisions about playlistrecommendation algorithms. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining.
420–428.

[25] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In NIPS.
[26] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In SIGIR.
[27] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased

learning-to-rank with biased feedback. In Proceedings of the tenth ACM interna-
tional conference on web search and data mining. 781–789.

[28] Toshihiro Kamishima and Shotaro Akaho. 2017. Considerations on recommen-

dation independence for a find-good-items task. (2017).

[29] David Krueger, Ethan Caballero, Jörn-Henrik Jacobsen, Amy Zhang, Jonathan

Binas, Dinghuai Zhang, Rémi Le Priol, and Aaron C. Courville. 2021. Out-of-

Distribution Generalization via Risk Extrapolation (REx). In ICML, Vol. 139.
5815–5826.

[30] Yanen Li, Jia Hu, ChengXiang Zhai, and Ye Chen. 2010. Improving one-class

collaborative filtering by incorporating rich user information. In Proceedings of
the 19th ACM international conference on Information and knowledge management.
959–968.

[31] Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen,

Min Zhang, and Tie-Yan Liu. 2021. R-Drop: Regularized Dropout for Neural

Networks. In NeurIPS. 10890–10905.
[32] Yiming Liu, Xuezhi Cao, and Yong Yu. 2016. Are you influenced by others when

rating? Improve rating prediction by conformity modeling. In Proceedings of the
10th ACM conference on recommender systems. 269–272.

[33] HaoMa, Irwin King, andMichael R Lyu. 2009. Learning to recommendwith social

trust ensemble. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval. 203–210.

[34] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.

2021. UltraGCN: Ultra Simplification of Graph Convolutional Networks for

Recommendation. In CIKM.

[35] Benjamin M. Marlin and Richard S. Zemel. 2009. Collaborative prediction and

ranking with non-random missing data. In RecSys.
[36] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram

Galstyan. 2022. A Survey on Bias and Fairness in Machine Learning. ACM
Comput. Surv. 54, 6 (2022), 115:1–115:35.

[37] Tahleen Rahman, Bartlomiej Surma, Michael Backes, and Yang Zhang. 2019.

Fairwalk: Towards fair graph embedding. (2019).

[38] Steffen Rendle. 2022. Item Recommendation from Implicit Feedback. In Recom-
mender Systems Handbook. Springer US, 143–171.

[39] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2012. BPR: Bayesian Personalized Ranking from Implicit Feedback.

CoRR abs/1205.2618.

[40] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.

2020. Unbiased Recommender Learning from Missing-Not-At-Random Implicit

Feedback. In WSDM. 501–509.

[41] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and

Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning

and evaluation. In international conference on machine learning. PMLR, 1670–

1679.

[42] Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and J. C. Mao. 2016.

Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial

Features. In KDD. ACM, 255–262.

[43] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2219–2228.

[44] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using

t-SNE. Journal of machine learning research 9, 11 (2008).

[45] Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua.

2020. Click” is not equal to “like”: Counterfactual recommendation for mitigating

clickbait issue. arXiv preprint arXiv:2009.09945 (2020).
[46] Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua.

2021. Clicks can be cheating: Counterfactual recommendation for mitigating

clickbait issue. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1288–1297.

[47] Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, Min Lin, and Tat-Seng Chua.

2022. Causal Representation Learning for Out-of-Distribution Recommendation.

InWWW.

[48] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural Graph Collaborative Filtering. In SIGIR.
[49] Xin Wang, Steven CH Hoi, Martin Ester, Jiajun Bu, and Chun Chen. 2017. Learn-

ing personalized preference of strong and weak ties for social recommendation.

In Proceedings of the 26th International Conference onWorldWideWeb. 1601–1610.
[50] Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, and Qingyong Li. 2020. Multi-

Component Graph Convolutional Collaborative Filtering. In AAAI.
[51] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2019. Doubly robust joint

learning for recommendation on data missing not at random. In International
Conference on Machine Learning. PMLR, 6638–6647.

[52] ZifengWang, Xi Chen, RuiWen, Shao-Lun Huang, Ercan E. Kuruoglu, and Yefeng

Zheng. 2020. Information Theoretic Counterfactual Learning from Missing-Not-

At-Random Feedback. In NeurIPS.
[53] Zimu Wang, Yue He, Jiashuo Liu, Wenchao Zou, Philip S. Yu, and Peng Cui. 2022.

Invariant Preference Learning for General Debiasing in Recommendation. In

KDD.
[54] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He.

2021. Model-agnostic counterfactual reasoning for eliminating popularity bias

in recommender system. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1791–1800.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[55] Hongyi Wen, Xinyang Yi, Tiansheng Yao, Jiaxi Tang, Lichan Hong, and Ed H

Chi. 2022. Distributionally-robust Recommendations for Improving Worst-case

User Experience. InWWW.

[56] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,

and Xing Xie. 2021. Self-supervised Graph Learning for Recommendation. In

SIGIR.
[57] Shuyuan Xu, Juntao Tan, Shelby Heinecke, Jia Li, and Yongfeng Zhang. 2021.

Deconfounded causal collaborative filtering. arXiv preprint arXiv:2110.07122
(2021).

[58] Mengyue Yang, Quanyu Dai, Zhenhua Dong, Xu Chen, Xiuqiang He, and Jun

Wang. 2021. Top-n recommendation with counterfactual user preference simula-

tion. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management. 2342–2351.

[59] Sirui Yao and Bert Huang. 2017. Beyond parity: Fairness objectives for collabora-

tive filtering. Advances in neural information processing systems 30 (2017).
[60] Sirui Yao and Bert Huang. 2017. New fairness metrics for recommendation that

embrace differences. arXiv preprint arXiv:1706.09838 (2017).
[61] Mingzhang Yin and Mingyuan Zhou. 2019. ARM: Augment-REINFORCE-Merge

Gradient for Stochastic Binary Networks. In ICLR (Poster). OpenReview.net.
[62] Hsiang-Fu Yu, Mikhail Bilenko, and Chih-Jen Lin. 2017. Selection of negative

samples for one-class matrix factorization. In Proceedings of the 2017 SIAM Inter-
national Conference on Data Mining. SIAM, 363–371.

[63] An Zhang, Wenchang Ma, Xiang Wang, and Tat-Seng Chua. 2022. Incorporating

Bias-aware Margins into Contrastive Loss for Collaborative Filtering. arXiv
preprint arXiv:2210.11054 (2022).

[64] An Zhang, Jingnan Zheng, XiangWang, Yancheng Yuan, and Tat seng Chua. 2023.

Invariant Collaborative Filtering to Popularity Distribution Shift. InWWW.

[65] Minghao Zhao, Le Wu, Yile Liang, Lei Chen, Jian Zhang, Qilin Deng, Kai Wang,

Xudong Shen, Tangjie Lv, and Runze Wu. 2022. Investigating Accuracy-Novelty

Performance for Graph-based Collaborative Filtering. (2022).

[66] Zihao Zhao, Jiawei Chen, Sheng Zhou, Xiangnan He, Xuezhi Cao, Fuzheng

Zhang, and Wei Wu. 2022. Popularity bias is not always evil: Disentangling

benign and harmful bias for recommendation. IEEE Transactions on Knowledge
and Data Engineering (2022).

[67] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.

Disentangling User Interest and Conformity for Recommendation with Causal

Embedding. In WWW. 2980–2991.

[68] Huachi Zhou, Hao Chen, Junnan Dong, Daochen Zha, Chuang Zhou, and Xiao

Huang. 2023. Adaptive Popularity Debiasing Aggregator for Graph Collaborative

Filtering. In SIGIR.
[69] Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee.

2021. Popularity-Opportunity Bias in Collaborative Filtering. InWSDM. ACM,

85–93.

[70] Ziwei Zhu, Jianling Wang, and James Caverlee. 2020. Measuring and mitigating

item under-recommendation bias in personalized ranking systems. In Proceedings
of the 43rd international ACM SIGIR conference on research and development in
information retrieval. 449–458.

A APPENDIX
A.1 Related Work
A.1.1 Specific Debiasing in recommender systems. . Recom-

mender systems usually face various bias issues due to the discrep-

ancies between observed behavioral data and users’ true prefer-

ences. The common biases include 1) Popularity Bias 2) Exposure

Bias, 3) Conformity Bias, and 4) Unfairness.

Popularity Bias. Recommender systems often exhibit a bias to-

wards popular items, as these items are frequently presented to

users and thus have a higher likelihood of being clicked. Various

methods have been proposed to counteract this popularity bias: 1)

Regularization-based frameworks [1, 16, 17, 55] balance the trade-

off between accuracy and coverage by incorporating penalty terms.

For instance, ESAM [17] leverages center-wise clustering and self-

training regularization to enhance the influence of long-tail items.

CDAN [16] employs the Pearson coefficient correlation as a regu-

larization measure to separate item property representations from

their popularity. 2) Sample re-weighting methods [8, 24, 27, 41]

adjust the loss of each instance by inversely weighting the item

propensity score in the training dataset, also known as IPS. Given

that propensity scores in IPS approaches can exhibit high variance,

many studies [8, 24] have turned to normalization or smoothing

penalties to ensure model stability. Recent works [45, 54, 55, 57]

have drawn inspiration from Stable Learning and Causal Inference.

For instance, MACR [54] conducts counterfactual inference using a

causal graph, postulating that popularity bias originates from the

item node influencing the ranking score. Meanwhile, sDRO [55] in-

tegrates a Distributionally Robust Optimization (DRO) framework

to minimize loss variances in long-tailed data distributions. How-

ever, devising these causal graphs and understanding the environ-

mental context often hinge on heuristic insights from researchers.

Exposure Bias. User behaviors are easily affected by the exposure

policy of a recommender system, which deviates user actions from

true preference. To address exposure bias, researchers have pro-

posed two primary methods: 1) Reweighting methods [30, 40, 62]

treat all the unobserved interactions as negative and reweight them

by specifying their confidence scores. For instance, AMAN [30] de-

fines the user-item feature similarity as the confidence score. UBPR

[40] proposes a new weighting strategy with a propensity score

to estimate confidence. 2) Causal Inference methods [46, 57, 58]

mitigate exposure bias by leveraging counterfactual inference. For

example, DCCF [57] utilizes a specific causal technique, forward

door criterion, to mitigate the effects of unobserved confounders.

Conformity Bias. Conformity bias arises as users within a group

display similar behaviors, even if such actions deviate from their

genuine preferences. To counteract this bias, leading debiasing

methods roughly fall into two main categories: 1) Modeling popu-

larity influence methods [32, 66, 67] aim to counteract conformity

bias by factoring them in popularity. CM-C [32] utilizes previous

ratings to estimate and predict unknown ratings, considering group

size, cohesion, and unanimity factors. DICE [67] disentangle con-

formity embeddings and interest embeddings in the popularity

perspective to enforce the model invariant to conformity bias. 2)

Modeling social influence methods [10, 33, 49] consider the user’s

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

General Debiasing for Graph-based Collaborative Filtering via Adversarial Graph Dropout WWW ’24, May 13–17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

ratings as user preference and social influence. In particular, PTPMF

[49] proposes a Probabilistic Matrix Factorization model that con-

siders the distinction between strong and weak social ties to learn

personalized preference.

Unfairness. Unfairness in recommender systems is often attrib-

uted to the system’s predisposition to generate biased predictions

and representations concerning specific user or item attributes.

Efforts to tackle this unfairness have led to several methodolo-

gies, primarily falling under three categories: 1) Rebalancing-based

methods [20, 22, 37, 43] draw inspiration from solutions to the

class imbalance problem, focusing on balancing recommendation

outputs in relation to sensitive attributes. For instance, HyPER

[20] constructs user-user and item-item similarity measures while

considering content and demographic data to balance discrepan-

cies across groups. Fairwalk [37] utilizes random walks on graph

structures, leveraging sensitive attributes to derive unbiased em-

beddings. 2) Regularization-based frameworks [28, 59, 60] integrate

fairness criteria as regularizers, aiming to minimize group discrep-

ancies. An exemplary model, IERS [28] devises a fairness regular-

izer that factors in the expected independence between sensitive

attributes and the resultant predictions. 3) Adversarial learning-

based frameworks[4, 6, 70] operate by alternately optimizing a

primary prediction model and an adversarial model dedicated to

debiasing. For instance, CFC [6] employs filters to extract sensitive

information and counteracts these with discriminators, which at-

tempt to predict sensitive attributes from the sanitized embeddings.

A.1.2 General Debiasing in recommender systems. It aims to

address multiple underlying data biases in a dataset simultaneously.

Without knowing the exact type of bias, general debiasing requires

the model to yield satisfactory performance on various bias-related

distributions. However, general debiasing in recommender systems

remains largely unexplored. In the early stage, DR [51] utilizes a

small part of missing-at-random data in the test set to generally mit-

igate various biases in the data set. CausE [5] introduces a domain

adaptation algorithm to extract insights from logged data that has

been subjected to random exposure. More recent research trends fo-

cus on the active identification of latent bias structures followed by

their removal [52, 53]. For instance, InvPref [53] proposes to learn

invariant embeddings and perform environment label assignment

alternately. Motivated by the recent success of invariant learning

in computer vision and natural language processing areas, we be-

lieve our work is the first to enforce embedding-level invariance

w.r.t. adversarially learned views of interaction graphs for general

debiasing.

A.2 Datasets
• Yahoo [35] & Coat [41]. Both datasets are commonly used

as benchmarks for general debiasing in recommendation. They

both consist of a biased training set of normal user interactions

and an unbiased uniform test set collected by a random logging

policy. During data collection, users interact with items by giving

ratings (1-5). In our experiments, interactions with scores ≥ 4 are

considered positive samples, and negative samples are collected

from all possible user-item pairs.

• KuaiRec [21]. This dataset originates from real-world recom-

mendation logs of KuaiShou, a prominent short video-sharing

platform. Distinctively, the testing dataset contains dense ratings,

encompassing feedback from a total of 1,411 users across 3,327

items, whereas the training dataset is relatively sparse. We treat

items with a viewing duration that surpasses twice the stipulated

length of the corresponding short video as constituting positive

interactions.

• Yelp2018 [26]. This dataset is adopted from the 2018 edition of

the Yelp challenge. Users visiting local businesses are recorded as

interactions. Following previous work[63], we split the dataset

into in-distribution (ID) and out-of-distribution (OOD) test splits

with respect to popularity.

A.3 Evaluation Metrics
• NDCG@K measures the ranking quality by discounting impor-

tance based on position and is defined as below:

𝐷𝐶𝐺𝑢@𝐾 =

∑︁
(𝑢,𝑣)∈𝐷𝑡𝑒𝑠𝑡

𝐼 (𝑟𝑢,𝑖 ≤ 𝐾)

log(𝑟𝑢,𝑣 + 1)

𝑁𝐷𝐶𝐺𝑢@𝐾 =

1

|U|
∑︁
𝑢∈U

𝐷𝐶𝐺𝑢@𝐾

𝐼𝐷𝐶𝐺𝑢@𝐾
,

where 𝐷𝑡𝑒𝑠𝑡 is the test dataset, 𝑟𝑢,𝑖 is the rank of item i in the list

of relevant items of u,U is the set of all users, and 𝐼𝐷𝐶𝐺𝑢@𝐾

is the ideal 𝐷𝐶𝐺𝑢@𝐾 .

• Recall@K measures the percentage of the recommended items

in the user-interacted items. The formula is as below:

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝐾 =

∑
(𝑢,𝑖)∈𝐷𝑡𝑒𝑠𝑡

𝐼 (𝑟𝑢,𝑖 ≤ 𝐾)

|𝐷𝑢
𝑡𝑒𝑠𝑡 |

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =

1

|U|
∑︁
𝑢∈U

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝐾,

where 𝐷𝑢
𝑡𝑒𝑠𝑡 is the set of all interactions of user u in the test

dataset 𝐷𝑡𝑒𝑠𝑡 .

• Prediction bias measure the level of parity regarding predicted

recommendation ratings w.r.t. a given attribute. Prediction bias

of a certain user attribution is given by:

𝛾𝑏𝑖𝑎𝑠 =

1

|I |
∑︁
𝑖∈I

max

𝑎1,𝑎2∈𝐴
𝑎1 ̸=𝑎2

���Avg{𝑢 |𝑎𝑢=𝑎1 } (𝑦𝑢𝑖) − Avg{𝑣 |𝑎𝑣=𝑎2 } (𝑦𝑣𝑖)
���,

where 𝑎1,𝑎2 are two user attribute labels, 𝐴 is the set of user at-

tribute labels, and I is the set of items. Item attribute’s prediction

bias can be obtained likewise.

A.4 Baselines
We compare with general debiasing strategies in various research

lines. We also compare with representative methods for popularity

bias and fairness issues. The adopted baselines include:

• IPS-CN [24]: IPS [36] re-weights training samples inversely to

the estimated propensity score. IPS-CN adds clipping and nor-

malization on plain IPS to achieve lower variance. For a fair

comparison, we implemented IPS-CN with propensity score ac-

cording to item popularity in the training set without introducing

other user/item attributes.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’24, May 13–17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 5: Comparison of general debiasing performance on Coat, Yahoo, and KuaiRec. The improvements over the baselines are
statistically significant at 0.05 level (𝑝-value≪ 0.05).

Coat Yahoo KuaiRec

NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@30 Recall@30

LightGCN 0.523 0.519 0.673 0.804 0.331 0.114

IPS-CN 0.538
+2.87%

0.524
+0.96%

0.664
−1.34%

0.797
−0.87%

0.014
−95.77%

0.003
−97.37%

DR 0.524
+0.19%

0.534
+2.89%

0.677
+0.59%

0.805
+0.12%

0.035
−89.43%

0.013
−88.60%

CVIB 0.528
+0.96%

0.538
+3.66%

0.657
−2.38%

0.787
−2.11%

0.336
+1.51%

0.118
+3.51%

InvPref 0.421
−19.50%

0.438
−15.61%

0.653
−2.97%

0.773
−3.86%

- -

AutoDebias 0.529
+1.15%

0.527
+1.54%

0.658
−2.23%

0.782
−2.74%

0.316
−4.53%

0.105
−7.89%

AdvDrop 0.553∗+5.74% 0.540∗+4.05% 0.681∗+1.19% 0.807∗+0.37% 0.351∗+6.04% 0.130∗+14.04%

• DR [51]: This method combines a data imputation method that

assigns predefined scores to interactions with basic IPS. Unbiased

learning can be achieved as long as one of the components is

accurate.

• CVIB [52]: This method incorporates a contrastive informa-

tion loss and an additional output confidence penalty, which

facilitates balanced learning between factual and counterfactual

domains to achieve unbiased learning.

• InvPref [53]: It iteratively decomposed the invariant preference

and variant preference by estimating heterogeneous environ-

ments adversarially, which is the first attempt to actively identify

and remove latent bias for general debia purposes.

• AutoDebias [11]: This model leverages a small set of uniform

data to optimize the debiasing parameters with meta-learning,

followed by utilizing the parameters to guide the learning of the

recommendation model.

• CDAN [16]: This model uses Pearson coefficient correlation

as regularization to disentangle item property representations

from item popularity representation, and introduces additional

unexposed items to align prediction distributions for head and

tail items.

• sDRO [55]: This model adds streaming optimization improve-

ment to the Distributionally Robust Optimization (DRO) frame-

work, which mitigates the amplification of Empirical Risk Mini-

mization on popularity bias.

• CFC [6]: This model tackles representation level unfairness in

recommendation by adversarially training filters for removing

sensitive information against discriminators that predict sensi-

tive attributes from filtered embeddings.

A.5 Implementation Details
In our experiments, we trained all models on a single Tesla-V100

GPU with the number of layers of LightGCN set to 2. Adam is

used as the optimization algorithm for both learning stages. For the

Debiased Representation Learning stage, we randomly sampled 100

users/items as negative samples and set 𝜏 = 0.1 for the contrastive

objective. The coefficient 𝜆 that combines the recommendation

objective and contrastive objective is set to 1. Other hyperparam-

eters regarding training batch size, embedding size, and epochs

& learning rate for both stages on different datasets are shown in

table 7. Batch size and embedding size for training are fixed on each

individual dataset across all compared methods.

Table 6: Dataset statistics.

Coat Yahoo KuaiRec(train) KuaiRec(test) Yelp2018

#Users 290 14,382 7176 1411 4886

#Items 295 1000 10,729 3327 4804

#Interactions 2776 5,397,926 12,530,806 4,676,570 134,031

Density 0.032 0.009 0.134 0.996 0.006

Table 7: Hyper-parameters of AdvDrop on different datasets.

AdvDrop hyper-parameters

𝐾𝑠𝑡𝑎𝑔𝑒1 𝐾𝑠𝑡𝑎𝑔𝑒2 𝑙𝑟𝑚𝑎𝑖𝑛 𝑙𝑟𝑎𝑑𝑣 embed_size batch_size

Coat 7 10 1e-3 1e-2 30 128

Yahoo 15 5 31e-3 1e-3 30 128

KuaiRec 3 5 5e-4 1e-3 30 512

Yelp2018 7 15 5e-4 1e-2 64 1024

12

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Collaborative Filtering (CF)
	2.2 Graph-based CF Framework

	3 Methodology
	3.1 Debiased Representation Learning
	3.2 Bias Identification
	3.3 Model Optimization for AdvDrop

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance w.r.t. General Bias (RQ1)
	4.3 Performance on Specific Bias (RQ2)
	4.4 Study of AdvDrop (RQ3)

	5 Conclusion
	References
	A Appendix
	A.1 Related Work
	A.2 Datasets
	A.3 Evaluation Metrics
	A.4 Baselines
	A.5 Implementation Details

