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Abstract

Synthesizing radio-frequency (RF) data given the transmitter and receiver posi-
tions, e.g., received signal strength indicator (RSSI), is critical for wireless net-
working and sensing applications, such as indoor localization. However, it remains
challenging due to complex propagation interactions, including reflection, diffrac-
tion, and scattering. State-of-the-art neural radiance field (NeRF)-based methods
achieve high-fidelity RF data synthesis but are limited by long training times and
high inference latency. We introduce GSRF, a framework that extends 3D Gaussian
Splatting (3DGS) from the optical domain to the RF domain, enabling efficient RF
data synthesis. GSRF realizes this adaptation through three key innovations: First,
it introduces complex-valued 3D Gaussians with a hybrid Fourier-Legendre basis to
model directional and phase-dependent radiance. Second, it employs orthographic
splatting for efficient ray—Gaussian intersection identification. Third, it incorpo-
rates a complex-valued ray tracing algorithm, executed on RF-customized CUDA
kernels and grounded in wavefront propagation principles, to synthesize RF data
in real time. Evaluated across various RF technologies, GSRF preserves high-
fidelity RF data synthesis while achieving significant improvements in training
efficiency, shorter training time, and reduced inference latency.

1 Introduction

Wireless networks, e.g., WiFi and Fifth Generation (5G) cellular networks, are increasingly tasked
with supporting both communication and sensing applications through deep learning (DL) models,
including indoor localization [1, 2, 3]. However, training these DL models requires large-scale
radio-frequency (RF) datasets, e.g., received signal strength indicator (RSSI) measurements across
different transmitter and receiver positions within a 3D space, which are typically collected through
site surveys. These site surveys involve labor-intensive and time-consuming RF signal measurements
across numerous transmitter—receiver locations [4, 5, 6].

Inspired by the success of generative models in computer vision [7, 8, 9, 10], a natural alternative
approach is to synthesize RF data through propagation modeling, which computes the received RF
signal at a receiver given a transmitter emitting signals from a specific position [11]. However,
generating high-fidelity RF data is challenging due to complex propagation interactions between RF
signals and surrounding objects, including reflection, diffraction, and scattering.
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Neural Radiance Field (NeRF) [7]-based methods [12, 13] address these challenges by extend-
ing NeRF to the RF domain, achieving state-of-the-art fidelity in RF data synthesis. These NeRF-
based methods adopt continuous RF scene representations to effectively model complex RF interac-
tions. However, their stochastic sampling process and Multi-layer Perceptron (MLP) optimization are
computationally intensive and slow, limiting real-time applicability. Efficient training and inference
in the RF domain are crucial for applications such as real-time localization and tracking [14, 6].

This paper proposes GSRF, an efficient RF data synthesis framework that extends 3D Gaussian
Splatting (3DGS) [8, 15], developed for real-time novel view synthesis, to the RF domain. However,
this adaptation introduces challenges due to inherent differences between visible light and RF signals:

* (i) Directional and Phase Modeling. In 3DGS [8, 16], the color attribute of a Gaussian distribution
is parameterized by spherical harmonics (SH) coefficients [17, 8] to capture directional variations
caused by optical propagation effects such as reflections and shading. In contrast, RF signals
with centimeter-scale wavelengths exhibit complex phenomena such as diffraction [18] and phase-
dependent interference (constructive and destructive), which SH coefficients struggle to capture [19].

¢ (ii) Data Capture Mechanism. In visible light, images are captured by camera sensors (e.g., CMOS
or CCD) on a 2D image plane, allowing splatting through classical transformation matrices that
project 3D Gaussians onto the plane to identify ray-Gaussian intersections. In contrast, RF signals
are collected by antenna arrays over a spherical region centered at the RF antenna. This fundamental
difference makes splatting algorithms designed for visible light unsuitable for the RF domain.

* (iii) Rendering Algorithm. In 3DGS, point-based rendering algorithm aggregates amplitude-based
attributes, e.g., color, to compute pixel values along each ray. In contrast, RF signal synthesis needs to
consider both amplitude and phase to model interference patterns. This necessitates a complex-valued
rendering algorithm, along with CUDA kernels that jointly process amplitude and phase information.

By tackling the three challenges above, we make the following key contributions:

* Fourier-Legendre Radiance Fields. A scene is represented using 3D Gaussian distributions, each
characterized by four attributes: a mean and covariance matrix, along with two RF-specific attributes,
which are complex-valued RF radiance and transmittance. The directional radiance is modeled using
a Fourier-Legendre Expansion (FLE) [20]. FLE leverages Fourier basis functions for the azimuthal
angle o and Legendre polynomials for the elevation angle 3, with complex coefficients ¢,,; € C
encoding both amplitude and phase. Additionally, the complex-valued transmittance models signal
amplitude attenuation and phase shifts as the RF signal propagates through a Gaussian.

* Orthographic Splatting. To determine ray-Gaussian intersections, GSRF introduces an orthographic
splatting method for the RF domain. GSRF operates on the Ray Emitting Spherical Surface (RESS),
a spherical region where RF signals are captured. Each 3D Gaussian is then splatted onto this region
via orthographic projection, enabling identification of intersecting Gaussians for each ray.

* Complex-Valued Ray Tracing. GSRF incorporates a complex-valued ray tracing algorithm for RF
signals, executed on RF-customized CUDA kernels. Building on the Huygens-Fresnel principle [21],
which states that each point on a wavefront acts as a source of secondary wavelets, GSRF models
each Gaussian as an RF source. GSRF emits rays from the RESS, identifies intersecting Gaussians
through the adapted splatting method, and employs a complex-valued ray tracing algorithm to jointly
process amplitude and phase attributes along each ray, computing the received RF signal data.

* GSRF is trained with an RF-customized loss function derived from both time and frequency domains
using 2D Fourier transforms to capture the intricate propagation characteristics of RF signals.

We evaluate GSRF on various RF technologies, including radio-frequency identification (RFID), Blue-
tooth Low Energy (BLE), and 5G networks, to synthesize different types of RF data, including RSSI,
spatial spectra, and complex-valued channel state information (CSI). Results show that GSRF achieves
significantly higher efficiency than existing methods, with improvements in training data efficiency,
training time, and inference latency. We release our code at this GitHub repository.

2 Preliminaries

RF Signal Propagation Characteristics. Wireless systems, such as WiFi, rely on RF signals
propagating between transmitters and receivers [22, 23]. A transmitted signal can be represented as:

s(t) = A/ It )
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where A is the amplitude, f. is the carrier frequency (e.g., 2.4 GHz), and 6 is the initial phase. As the
signal propagates through the scene, it encounters obstacles that cause reflections, diffraction, and
scattering, resulting in multiple propagation paths. The received signal is the sum of these paths:

N
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where NN is the number of paths, c is the RF signal speed, A; is the attenuated amplitude, ¢; is the
phase shift, 7; is the time delay of path length d;, and 6; is the phase change from reflections.

The phase greatly affects the received signal, as illustrated in the following example. For two paths
with lengths d; = 3m and do = 3.0625 m at a carrier frequency of f. = 2.4 GHz, the corresponding
delays are 77 = 10ns and 75 = 10.208 ns. The phase shifts are ¢; = 0 and ¢o = 7, resulting in
a phase difference of A¢ = m, which causes destructive interference, i.e., the two signals cancel
each other out, leading to a reduction or complete loss of signal strength. Conversely, when A¢ = 0,
constructive interference occurs, amplifying the signal [22]. Therefore, synthesizing RF data requires
modeling these amplitude and phase interactions across all paths.

3D Gaussian Splatting (3DGS). It is a real-time rendering technique for novel view synthesis in 3D
scenes [8]. It represents a 3D scene as a collection of 3D Gaussian ellipsoids {(1, ...,k }, where
each Gaussian primitive (j, is defined by a 3D Gaussian distribution:

1
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where y;, € R? is the center position and ¥;, € R3*3 is the covariance matrix. It is decomposed
as: Y = RkSkS,IRZ, where Ry, and Sy are learnable rotation and scaling matrices that ensure
positive semi-definiteness [8]. Each Gaussian also includes an opacity term p; € [0, 1] and SH
coefficients shy, € R?, making each Gaussian primitive represented as: (x, = (ug, Rk, Sk, pr, Sh) -

To render an image, 3DGS projects these 3D Gaussians onto a 2D image plane, forming 2D Gaussians:

GiP (rypP . 22P)  with  pP =map (k). SR = JWEWTIT, )
where J is the Jacobian of the projective transformation, and W is the world-to-camera transformation
matrix [8]. The pixel color C (r) at location 7 € R? is computed via a-blending:

C(r)= Z wiP (r) ¢ (shy,7), 5)
kes,
where 8, C {1,...,K} is the subset of indices of Gaussians that contribute to pixel . The
term w? (r) represents the contribution of each Gaussian, computed as:
k-1
wiP (r) = peGP (2 S3P) T (1 = 0 G237 (r5137,237)) (6)
j=1

where the Gaussians are ordered by increasing depth (i.e., from front to back) to ensure correct
rendering. Finally, ¢ (shg, r) is the color decoded from the SH coefficients shy.

3 Related Work

Conventional RF data synthesis methods include simulations [24, 25, 26], empirical models [22, 27,
28], and physics-unaware DL models [29, 30, 31], but all suffer from low modeling fidelity due to
inherent limitations. Simulations require accurate scene Computer-Aided Design (CAD) models,
which are often unavailable. Empirical models oversimplify propagation with limited parameters,
predicting only coarse signal power. Physics-unaware DL models map inputs to labels but fail to
capture the underlying physics of RF propagation. NeRF-based methods [12, 13, 32] introduce
voxel-based scene representations to capture scene impact on RF signal propagation and employ
ray tracing algorithms to achieve state-of-the-art fidelity in RF data synthesis. However, they suffer
from low efficiency, requiring long training times and exhibiting high inference latency. This work
proposes a 3DGS-based method to achieve high training and inference efficiency.

Two recent works, RF-3DGS [33] and WRF-GS [34], propose 3DGS-inspired techniques for RF
data synthesis, yet both face limitations. RF-3DGS [33] employs a two-stage training process to
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Figure 1: Overview of GSRF architecture. The RF scene is represented by Gaussian primitives with
mean u, covariance X, and complex-valued radiance v and transmittance p, whose attributes are
updated via gradient-based optimization with adaptive density control. For rendering, rays vy are
emitted from the receiver, Gaussians are splatted onto a 2D receiving RF plane, and the received data
is obtained by aggregating complex-valued contributions along each ray.

learn scene representations using Gaussian primitives defined by mean, covariance, opacity, and path
loss. First, optical 3DGS optimizes mean, covariance, and opacity from visual images, then these
parameters are fixed to train path loss with RF data. However, merging visible light and RF signals is
challenging due to their distinct properties. Moreover, visual data is often unavailable in RF domains.

WRF-GS [34] assigns each Gaussian four attributes: mean, covariance, radiance, and attenuation.
It adopts a NeRF-inspired approach to learn radiance and attenuation by optimizing a large MLP
with each Gaussian’s position as input. This dependence on a computationally intensive MLP
results in inefficiency and introduces NeRF-like bottlenecks: (i) dense querying of the MLPs for
attribute prediction during training and inference, (ii) expensive backpropagation through deep
networks for every Gaussian update, which scales poorly with scene complexity, and (iii) high
inference latency due to per-query MLP evaluations (e.g., for novel transmitter positions). In
contrast, GSRF eliminates MLP regressors entirely by directly optimizing per-Gaussian attributes as
learnable parameters. Combined with Fourier-Legendre radiance fields, orthographic splatting, and
complex-valued ray tracing, this design achieves faster training and inference compared to WRF-GS.

WRF-GS+ is an extension of WRF-GS [34]. It introduces deformable Gaussians that decouple
static components (e.g., path loss) and dynamic components (e.g., multipath) via learned offsets,
thereby improving synthesis quality and mitigating the inefficiencies of WRF-GS’s MLP-based
attributes. While effective, this approach remains distinct from GSRF, which offers a unified, complex-
valued, MLP-free pipeline for RF propagation modeling; nevertheless, deformable mechanisms could
be explored in future extensions of our framework.

4 Methodology

4.1 Problem Formulation

Given a transmitter at a fixed position emitting RF signals (e.g., a WiFi router) and a receiver (e.g.,
a smartphone) distributed throughout a scene, the objective is to synthesize the received RF data.
Formally, for a transmitter located at t = (x, Y, 2x) and a set of receiver positions {ri}ilil,
where r; = (Zrxi, Urx,i» 2rx,i)» the goal is to estimate a model with parameters 6 that synthesizes the

received RF data .S; at each receiver r;:
0* = argmax p ({Si}i]il | t, {ri}ivzl ,9) , @)
6

where S; € C represents the received complex-valued RF data at receiver r;, encapsulating both
amplitude and phase. For specific RF technologies or applications, S; may represent a scalar signal
power S; € R or a spatial spectrum S; € R¥=*Na gver azimuth o and elevation 3 angles. For
example, with a one-degree angular resolution, we have N,, = 360 and N = 180.

Model Overview. Figure 1 illustrates the GSRF. First, the scene is represented using 3D Gaussian
distributions, each characterized by a mean pj, € R3, a covariance matrix ¥, € R3*3 and two RF-
specific complex-valued attributes: radiance ¢y, € C and transmittance p;, € C. To initialize the mean
and covariance matrix, the scene is partitioned into equal-sized cubes, deriving initial scene point
clouds without Structure-from-Motion (SfM) algorithms [35, 36], which are inapplicable to the RF
domain. Next, each 3D Gaussian is projected onto the receiver’s receiving region, using orthographic
projection to efficiently identify ray-Gaussian intersections. For each ray, intersecting Gaussians are



sorted by depth, and a complex-valued ray tracing algorithm is applied to compute the received signal.
Model optimization is performed by minimizing the loss function. Explicit gradients are computed
to update the primitives via stochastic gradient descent, adjusting parameters (g, X%, Yk, px) and
refining primitive density through gradient-driven cloning, splitting, or removal.

4.2 Fourier-Legendre Radiance Fields
Each Gaussian primitive in GSRF is represented as a tuple:

G = (ks Riey Sk iy pr) - with Xy, = RSy Sy RJL. (8)

The pair (u, Rk, Sk) defines a 3D Gaussian distribution resembling an ellipsoid, representing a
probability distribution in 3D space. Its probability density function (PDF) is given by Equation (3).

The transmittance pr € C models the effect of an RF signal passing through the k-th Gaussian,
resulting in an amplitude reduction |pg| and a phase shift Zpy. According to Maxwell’s equations [37],
transmittance depends on the material properties at the Gaussian’s location p;. Therefore, py primarily
captures the physical interaction of the RF signal with the medium.

The radiance v, € C represents the complex-valued RF signal emitted by the k-th Gaussian. To
model its directional dependency, ¥ is defined using a Fourier-Legendre Expansion (FLE) [20],
which leverages Fourier basis functions for the azimuthal angle « and Legendre polynomials for
the elevation angle (5. This approach is physically grounded in the Huygens-Fresnel principle [21],
which posits that each point on a wavefront, such as the k-th Gaussian at position ug, acts as a
source of secondary spherical wavelets. The emitted RF signal is modeled as a solution to the wave
equation in spherical coordinates, where spherical harmonics—comprising Fourier functions ‘™
and associated Legendre polynomials P/™ (cos 3)—form a complete basis for representing directional
wave fields on the unit sphere. Specifically, for a direction («, ), the radiance is expressed as:

L 1
k) _ima pm
Ui (o, B) = > clhle™ P (cos B, ©)
=0 m=—1
where c;’fl) € C are complex coefficients encoding the amplitude and phase of the radiance for

the k-th Gaussian. This representation effectively captures phase-dependent interference crucial,
as the separation of o and [ aligns with their geometric roles in spherical coordinates, while the
complex coefficients model the interference effects stemming from the wave nature of RF signals.

4.3 Orthographic Splatting
For a receiver positioned at r = (X, Yix, 2ix ), rays are emitted to sample the RF signal across various
directions around the receiver r. Each ray is parameterized as:

Y(d) =r+dv, d>ry, (10)

where d is the distance along the ray from the receiver, and V is the unit direction vector. Therefore,
rays are emitted from the Ray Emitting Spherical Surface (RESS), which is a sphere centered at r
with radius 7, and extend outward. For a one-degree angular resolution, N,, = 360 and N = 180,
resulting in a total of 360 x 180 rays being emitted, covering all directions around the receiver.

2D Receiving RF Plane. To enable splatting in the RF domain, where an image plane is absent, we
map the RESS onto a 2D RF plane. Consider a point p = (, %, 2) € R? on the RESS, satisfying ||p—
r|| = rx. We transform the Cartesian coordinates of p into spherical coordinates ((, «, ), where ¢
is the radial distance, @ € [0, 27) is the azimuthal angle, and 8 € [—7/2,7/2] is the elevation angle:

(= Va2 +y?+ 22 = ry,

a = arctan 2(y, x),

8= T_ arccos <Z) .
2 Trx

We then project o and 3 onto a 2D grid with one-degree resolution, defined as:

{(»ISOJ V~180
’ v =
™

™

(I

+90J , (12)

where | -] denotes the floor function. The resulting coordinates (u, v) define the 2D RF plane.



Splatting Process. Each 3D Gaussian, with mean z;, € R? and covariance X;, € R3*3, is projected
onto the 2D RF plane to identify ray-Gaussian intersections. The unit direction vector from the
receiver position r € R? to the k-th Gaussian center iy, is given by:

V= Mk (13)

[[r =l
The projected center u2” = (uy, vx,) is computed from Equations (11) and (12), with the vector v,
as input. The 3D covariance ¥y, is projected onto the 2D plane as $7° = J¥;J T, where J is the
Jacobian matrix, and the 2D spread is approximated by radius r; = 31/ Amax, With Apax as the largest

eigenvalue of $2P. Rays at points (u, v) intersect the Gaussian if: \/(u — uk)2 + (v — vk)Q < rg.

4.4 Complex-Valued Ray Tracing Algorithm

The received signal S € C for a ray is computed by aggregating the contributions from all inter-
secting Gaussians, considering their geometric influence, radiance, and transmittance. The intersect-
ing Gaussians are sorted in ascending order of their distance from the receiver along the ray path to
ensure correct accumulation of transmittance effects. The received signal is computed as:

Kimr . k—1 .
S = Sk (@eppi s Z) - ([wl €Y%) - TT (Il €727 (14)
k=1 Gaussian weight Complex radiance =

Cumulative transmittance

where K is the number of Gaussians intersecting the ray, and Gy (x; ug, Xk ) is the probability
density function of the k-th Gaussian, evaluated at the representative intersection point Zyep , € R,
which is the midpoint of the intersection points between the ray trajectory and the ellipsoid defined by
the Gaussian’s mean /15, € R3 and covariance ), € R3*3. The term Gy, (Zrep i} ik, Li;) Weights the
radiance based on the Gaussian’s density at the intersection point, while the product term accumulates
both amplitude attenuation and phase shifts from all preceding Gaussians, capturing both amplitude
reduction and phase shifts during propagation. The detail of proor is provided in Appendix A.

Loss Function. The loss function is designed based on the receiver antenna type.

ANTENNA ARRAY. For a receiver equipped with antenna arrays, the signal power across all directions
is represented as a ground-truth spatial spectrum matrix S € R™=>Ne ‘spanning N,, azimuth and N
elevation angles. The predicted spatial spectrum is denoted as S € RNuxNea_ The loss function £
combines the £ loss, the Structural Similarity Index Measure (SSIM) loss, and a Fourier-based loss:

L=(1-X —X2) L1+ M Lssim + A2 Lrourier, (15)

where £, = ﬁ ijﬁl i\];'l ‘S(u, v) — S(u, v)’ measures the average absolute difference be-

tween the predicted and ground-truth spectra. The term Lggpy captures spatial RF pattern similarity
across directions. The term Lpourier quantifies the difference in the frequency domain:

Crarer = 3o Py 5(8) G £) = 5(8) (s )] (16)

where F (S) (fu, fv) and F (S) (fu, fv) are the 2D Fourier transforms of the predicted and ground-

truth spectra, respectively, with f,, and f, representing the frequency indices in the azimuth and
elevation dimensions. This term promotes consistency in the frequency domain, which is important for
learning RF propagation behavior. The squared magnitude penalizes discrepancies in both amplitude
and phase, enhancing the fidelity of synthesized signals.

SINGLE ANTENNA. For a receiver equipped with a single antenna, the ground-truth received
signal S represents either a real-valued power measurement or a complex -valued signal encom-
passing both amphtude and phase information. The synthesized signal S is computed as S =

Zivﬂl Ne' S’u v, Where Su’v denotes the synthesized signal contribution from the ray at azimuth

index u € {1 ., Ny} and elevation index v € {1,..., Ng}. The loss function £ is defined
. . 2

as L = HS — SH if S is real-valued (RF signal power), and as £ = HS — SH if S is complex-
1 2

valued, penalizing both amplitude and phase errors.




Gradient-Based Gaussian Primitive Optimization. GSRF initializes the number of Gaussians and
their primitives based on the scene’s point clouds, which are obtained by partitioning the scene into
equal-sized cubes. After calculating the loss function, the optimization of Gaussian primitives is
performed through gradient-based strategies, as detailed in Appendix B.

Fast Differentiable RF Signal Renderer for Gaussians. In GSRF, we develop two CUDA ker-
nels to enable efficient forward and backward computations for differentiable RF signal synthesis
using Gaussian primitives. Implementation details of the CUDA kernels are provided in Appendix C.
To reduce computational overhead, gradients are explicitly calculated as described in Appendix D.

5 Experiments

Our method is implemented in PyTorch with CUDA. Further implementation details and hyperparam-
eter settings are provided in Appendix E, and additional experiments are presented in Appendix F.

We evaluate GSRF across three RF technologies for various RF data synthesis tasks: ¢ (i) Radio-
Frequency Identification (RFID) for spatial spectrum synthesis, ¢ (ii) Bluetooth Low Energy (BLE)
for real-valued received signal strength indicator (RSSI) synthesis, © (iii) 5G Cellular Network for
complex-valued channel state information (CSI) [38] synthesis.

5.1 RFID Spatial Spectrum Synthesis

TASK. Given a transmitter sending RF signals Location 1 | Location 2 | Location 3 | Location 4 | Location 5
at location (z, ¥, 2x)» the goal is to synthe-
size the spatial spectrum received by the re-
ceiver (equipped with an antenna array). The
spatial spectrum, represented as a 360 x 90 ma-
trix, captures the signal power from all directions
around the receiver, covering azimuth and eleva-
tion angles at a one-degree resolution. The eleva-
tion angle is limited to 90° as only the front hemi-
sphere of the antenna array is considered [12].

Groundtruth

GSRF

NeRF?2

Figure 2: Visualization comparison of synthesized

DATASET. The publicly released RFID dataset . . .
spatial spectrum at different positions.

from NeRF? [12], collected in real-world indoor
environments, is employed. It contains 6,123 transmitter (RFID tag) locations and their corresponding
spatial spectra, received by a receiver equipped with a 4 x 4 antenna array operating at the 915 MHz
frequency band. The dataset is randomly split by default into 70% for training and 30% for testing.

METRICS. We employ the two metrics: * (i) Mean Squared Error (MSE).: This metric calculates the
average of the squared differences in signal power between the synthesized spectrum and the ground
truth for each entry.  (ii) Peak Signal-to-Noise Ratio (PSNR, in dB)?: Treating the spatial spectrum
as an image, PSNR measures structural similarity, with higher values indicating better quality.

BASELINES. We compare GSRF with NeRF? [12] and WRF-GS [34]. Other simulation-based or
physics-unaware DL-based methods, such as MATLAB simulation [26], DCGAN [39], and VAE [30],
perform worse on the same RFID dataset [12] compared to NeRF?.

Overall Performance. To evaluate GSRF’s per-
formance in scenarios with insufficient data, we
randomly select 220 instances from the training
dataset instead of using the full training data. This §
creates a sparse dataset with a measurement den-
sity of 0.8 measurements/ft®>. Figure 2 presents €

the real-collected spatial spectra for four ran- T
domly.selected transmitter positions' (first row), (a) MSE score/ (b) PSNR score (dB)T
alongside those generated by baseline models. ] )

Visually, the spectra synthesized by GSRF more Figure 3: Metric comparison for a sparse measure-
closely match the ground truth compared to those ment density of 0.8 measurements/ft”.

by NeRF?. Figure 3 then shows the Cumulative Distribution Function (CDF) of the two metric
scores on the testing data. GSRF achieves median improvements of 21.2% in PSNR and 56.4%
in MSE over NeRF?, while outperforming WRF-GS by 5.7% and 19.3%, respectively. This supe-
riority stems from two advantages: First, our complex-valued Gaussian representation explicitly
models phase interactions throughout the architecture, which is critical for RF signal propagation,

1.0




whereas WRF-GS relies on real-valued Gaussian primitives. Second, the Fourier-Legendre radiance
basis in GSRF provides directional resolution beyond the spherical harmonics used in WRF-GS,
enabling finer capture of diffraction and scattering effects. These innovations allow GSRF to learn
more physically accurate scene representations even from sparse measurements.

Training & Inference Efficiency. Training time

1.0 7 1.0 —
is measured by running each method on a com- oz / osf [ I/
puter equipped with GeForce RTX 3080Ti GPU. yos6 : ,’ 506/ [ "
Inference time for each model is also recorded. ~ o4 £ Nerr’ M e e
Figure 4 illustrates that our method achieves oz} + = ¢l oa|i S|
convergence in 0.27 hours, which is 18.56x 9955535 L 005150250 30000

Training time (hours)

Inference time (ms)

faster than NeRF? (5.01 hours) and 5.96 x faster
than WRF-GS (1.61 hours). For inference latency, Figure 4: Training times Figure 5: Test times for
as shown in Figure 5, our method synthesizes for spectrum synthesis. spectrum synthesis.
spatial spectra in 4.18 ms, yielding an 84.39x

speedup over NeRF? (352.73 ms) and a 1.81 x speedup over WRF-GS (7.58 ms). This acceleration is
due to: First, our explicit Gaussian representation with FLE eliminates the need for MLP queries,
which are required in both NeRF? and WRF-GS. Although WRF-GS also employs Gaussians, it still
relies on a large MLP to query each Gaussian primitive’s values using the Gaussian mean as input.
Second, the hybrid CUDA-based ray tracer optimizes complex-valued operations through explicit
gradient computation. These optimizations enable our method to support real-time applications, e.g.,

Sub—mllllsecond traCkmg ln SG networks.
L_L_I

0.8-NF  1.6-NF 3.1-NF 4.7-NF 7.8-NF 12.4-NF 15.5-NF 0.8-GF
Measurement density

Measurement Density. Figure 6 compares the
MSE of GSREF (trained on the dataset with a den-
sity of 0.8 measurements/ ft®) to NeRF? (varying
densities ranging from 0.8 to 15.5). The densities
are obtained by random sampling from the orig-
inal 70% training set. GSRF achieves a compara-
ble MSE to NeRF? trained on the dataset witha _ 3
density of 7.8. This indicates that GSRF requires Flgurez6: GSRF (GF) .at 0.8 measu'rqments/ ft” and
9.8x less training data to achieve comparable NeREF” (NF) across different densities.

spectrum synthesis quality to NeRF2. The improvement arises from GSRF’s 3D Gaussian-based
scene representation, which focuses on object features rather than empty space, making it more effi-
cient than NeRF?’s voxel-based fields. More results for WRF-GS [34] are provided in Appendix F.4.

5.2 5G Complex-Valued CSI Synthesis

TASK. This task demonstrates GSRF’s effectiveness in synthesising complex-valued signals. In 5G
Orthogonal Frequency-Division Multiplexing (OFDM) modulation, downlink and uplink operate
on different frequency bands [40]. Given uplink complex-valued CSI, the objective is to predict the
downlink CSI. The rationale for this task lies in the shared physical propagation environment, which
correlates uplink and downlink CSI [41]. Furthermore, uplink CSI can serve as a transmitter position
indicator due to its uniqueness across different positions [12, 42].

0.04
0.03

a

20.02

0.0:

=4

0.0

DATASET. The public Argos dataset [43] is employed. It is collected in outdoor environments, where
a base station with 104 antennas measures CSI from signals sent by clients. Each CSI measurement
includes 52 subcarriers. Following prior works [12, 30, 41], the first 26 subcarriers are treated as the
uplink channel, and the remaining N = 26 as the downlink channel. The dataset contains 100,000
measurements and is randomly split into 70% for training and 30% for testing.

METRICS. We adopt the Signal-to-Noise Ratio (SNR) [30] to quantify synthesized CSI quality:

SNR = ~101ogyq (1S — I3 - 513) . (17)

where S, S e CN are the ground truth and synthesized CSI vectors, respectively.

BASELINES. We compare GSRF with NeRF? [12] and include two additional baselines:

* R2F2 [41]: Extracts the number of propagation paths and each path’s parameters to estimate CSI.
* FIRE [30]: Uses the VAE [44] to predict the downlink CSI by learning the latent distribution.

Overall Performance. To demonstrate GSRF’s efficiency, it is trained on only 30% of the raw
training data portion, while the baselines are trained on the full training set. All methods are evaluated



on the same testing data. Since GSRF requires three-dimensional transmitter locations, we train an
autoencoder [45] using 26 uplink subcarriers as input to reconstruct them. The autoencoder’s hidden
layer is set to three dimensions, representing the transmitter locations. Figure 7 illustrates a prediction
example from GSRF, where the two curves (blue and red) nearly overlap, demonstrating its high
prediction accuracy. Figure 8 quantifies the SNR of the four methods. GSRF achieves a mean SNR
of 20.99 dB, outperforming R2F2 and FIRE. Additionally, GSRF achieves comparable CSI synthesis
quality to NeRF? while using 3 x less training data, highlighting its training efficiency.

It is worth noting that NeRF? also performs phase-
aware modeling through an MLP that regresses
amplitude and phase from voxel and transmitter
coordinates. While this enables high-quality CSI
synthesis, the volumetric ray-based querying of
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cost during both training and inference. In con- Subcarriers R2Fz  FIRE NeRE" GSRF

trast, GSRF integrates phase modeling directly Figure 7: Channel am- Figure 8: Channel CSI
into Gaussian primitives via Fourier-Legendre ba- plitude and phase trace. prediction SNR.

sis expansion, avoiding MLP regressors entirely.

This explicit, complex-valued representation allows efficient gradient updates with lightweight CUDA
operations, leading to faster convergence and inference without sacrificing accuracy. Thus, the
comparable SNR to NeRF? does not diminish the contribution of GSRF, but instead underscores its
ability to achieve phase-aware synthesis with substantially greater efficiency.

5.3 BLE Real-Valued RSSI Synthesis

TASK. This task verifies that GSRF supports single-antenna setups for capturing a single real-
valued RSSI. Given a transmitter (BLE node) sending signals from location (2, Yix, 2 ), the goal is
to synthesize the RSSI (in dBm) received by a receiver (BLE gateway with a single antenna). The
measured RSSI represents the aggregate signal power from all directions [12]. Additionally, we
conduct a fingerprint-based localization application to demonstrate GSRF’s sensing advantages.

DATASET. The public BLE dataset [12], collected in an elderly nursing home, is employed. Twenty-
one receivers operating at 2.4 GHz frequency band to capture RSSI. The dataset contains 6,000
transmitter positions, each paired with a 21-dimensional tuple of RSSI readings from the 21 receivers.

METRICS. RSSI synthesis error is the absolute 1.0 10

difference between predictions and ground truth.  os 0.8 I’

BASELINES. We compare GSRF with NeRF?. ézz "ézz |

Other empirical and DL methods, e.g., MRI [46], 0:2 —_— NeRP O:Z —_— NeRP
are excluded because they perform worse , = =% 00 _
than NeRF? on the same testing dataset [12]. A . S 7 hrorm

Overall Performance. To evaluate the perfor- Figure 9: RSSIerrors on Figure 10: BLE-based
mance of GSRF in scenarios with sufficient data, the BLE dataset. localization error.

both models (GSRF and NeRF?) are trained on

the full training dataset. Figure 9 indicates that GSRF achieves an average RSSI error of 4.09 dBm,
compared to NeRF?’s 6.09 dBm. This represents a 32.79% improvement, highlighting GSRF’s
effectiveness fo single-antenna receivers. The performance gain stems from GSRF’s flexible 3D
Gaussian-based explicit scene representation, which efficiently utilizes training data by focusing on
objects rather than large empty space and aligning with object geometry. Training and inference
times are reported in Appendix F.2, Figures 11 and 12. These results demonstrate that GSRF achieves
a 15.82-fold decrease in training time and a 78.98-fold reduction in inference time for RSSI synthesis.
Additional results for WRF-GS [34] are in Appendix F.2.

BLE-Based Localization. In fingerprinting-based localization, the RSSI value from an unknown
transmitter queries a fingerprint database containing pairs of transmitter positions and correspond-
ing RSSI values. The K Nearest Neighbors (KNN) identifies the K nearest matches and estimates the
unknown transmitter position as the average of these K positions [29]. We generate synthetic datasets
using GSRF and NeRF? to build the fingerprint database for comparison. Figure 10 shows that GSRF
outperforms NeRF? by 31.40% on average. This improvement in localization accuracy demonstrates
that high-fidelity synthesized databases generated by GSRF enhance localization applications, elimi-
nating the need for time-consuming and labor-intensive manually collected fingerprinting databases.



5.4 Ablation Study

We evaluate our design components using the RFID dataset introduced in Section 5.1. All versions
are trained on the full training set, with results presented in Table 1.

F.LE-BaSEdCF?dkilaI:jC.e- We eflnplg}’ FLE EOfo;l- Table 1: Effectiveness of components of GSRF.
cients to model the directional radiance of eac - - ;

Gaussian in GSRF, unlike the SH coefficients Metric  Radiance Phase Fourierloss GSRF
used in 3DGS for visible light rendering [8]. Ex- _PSNRT ~ 20.51 20.89 21.30 2264
perimental comparisons (first vs. last column) show that our FLE coefficients achieve better spectrum
synthesis compared to SH coefficients. This improvement arises from FLE’s ability to capture
intricate RF signal interactions, e.g., phase-dependent interference, while SH is more suitable for
smooth optical functions. Both FLE and SH are implemented with a degree of L = 3, resulting in 16
coefficients each. Thus, GSRF enhances spatial spectrum synthesis by leveraging FLE’s capability to
handle complex-valued radiance fields.

Phase Information. Each Gaussian primitive represents radiance and transmittance as complex-
valued attributes to capture RF signal propagation effects, such as constructive and destructive
interference. Removing the phase channel while retaining only the amplitude results in a 8.37%
reduction in PSNR compared to the full model with phase inclusion (second vs. last column). This
performance drop underscores the importance of phase information in synthesizing RF signal data.

Fourier Loss Lyourier- We evaluate the impact of Fourier loss Lgourier by comparing the model without
this loss term (third column) against the full model (last column). Removing Fourier 1oss Lgourier
results in a 6.28% reduction in PSNR, indicating that frequency-domain alignment enhances the
fidelity of the synthesized spatial spectra. Incorporating Lpqurier €nables our model to better preserve
frequency-domain properties, enhancing overall RF data synthesis quality.

6 Discussion

Despite its advancements, our method has two main limitations. It achieves efficient RF signal
synthesis when training data is available for a specific scene but lacks spatial generality for zero-shot
inference in unseen environments. It is also optimized for static settings: when the scene changes (e.g.,
moving obstacles or structural modifications), retraining or fine-tuning is required, limiting temporal
adaptation. To address these issues, we outline two complementary directions: improving spatial
generality across environments and enabling temporal adaptability to dynamic scenes.

For spatial generality, future work will explore pre-training GSRF on large and diverse multi-scene RF
datasets to learn transferable priors that capture common propagation patterns across environments.
This could involve designing domain-general encoders that disentangle scene-invariant propagation
features (e.g., free-space loss, reflection/diffraction signatures) from scene-specific geometry, and
leveraging domain-adaptation strategies to enable rapid adaptation to new environments with only
a few samples. Another promising direction is hierarchical Gaussian representations, where global
Gaussians encode universal priors while local Gaussians specialize to environment-specific details.

For temporal adaptability, we propose a deformable 3DGS extension that supports dynamic RF
scene rendering: a shared set of complex-valued 3D Gaussians represents the baseline RF field,
while a lightweight deformation module models time-varying changes without full retraining.
A spatiotemporal encoder factors the 4D space-time volume (z,y, z,t) into six compact 2D
planes (xy,yz, vz, xt, yt, zt), reducing parameter complexity from R*xC to 6 R?xC' and preserving
locality for efficient CUDA querying; spatial planes capture multipath effects (reflection/diffraction),
and temporal planes capture motion-induced changes. A small multi-head decoder then predicts
per-Gaussian deformations (position/rotation/scale), while complex-valued attributes (e.g., radi-
ance 1y, transmittance py) are preserved for phase-aware modeling. Together, these directions aim to
make GSRF both broadly generalizable and responsive to real-world dynamics.

7 Conclusion

This paper introduces GSRF, a novel complex-valued 3DGS-based framework for efficient RF signal
data synthesis. We customize 3D Gaussian primitives with complex-valued attributes and integrate
an RF-specific CUDA-enabled ray tracing algorithm for efficient scene representation and received
signal computation. Extensive experiments validate GSRF’s efficiency, demonstrating significant
improvements in training and inference speed while maintaining high-fidelity RF data synthesis.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction reflect the main contributions of GSREF, including
efficient RF signal synthesis and improved inference speed, validated by experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a "Discussion” section that discusses GSRF’s lack of
spatial generality for zero-shot inference and its optimization for static environments.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper provides the full set of assumptions for the theoretical results,
including derivations for complex-valued ray tracing and Gaussian splatting, with complete
proofs detailed in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper includes detailed descriptions of the experimental setup, hyperpa-
rameters, dataset splits, and training configurations, ensuring that the main results can be
faithfully reproduced. Additionally, the paper provides references to the datasets used and
outlines the implementation in PyTorch with CUDA optimization.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides a GitHub repository link for the implementation, along with
detailed instructions for dataset access, preprocessing steps, and running the experiments.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the training and testing setups,
including dataset splits, optimizer settings, learning rates, hyperparameters, and CUDA
configurations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports statistical significance through Cumulative Distribution
Function (CDF) plots, which illustrate the distribution of errors and model performance
across various experiments.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies that experiments were conducted on a system equipped
with an RTX 3080Ti GPU, and provides details on training time, and inference latency.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in the paper strictly adheres to the NeurIPS Code of
Ethics, ensuring transparency, reproducibility, and ethical considerations.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The paper discusses the positive societal impacts of GSRF, including enhanced
wireless coverage and support for smart agriculture.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed GSRF model primarily focuses on RF signal synthesis for
wireless communication and sensing and does not involve high-risk models such as language
models or image generators that require specific misuse safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites the original sources of all datasets and models used in the
experiments, including references to their licenses and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
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o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces the GSRF model and provides comprehensive documen-
tation, including usage instructions, dataset preparation steps.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The paper does not involve research with human subjects; all experiments are
conducted with RF signal data, which do not require IRB approval.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as part
of its methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Complex-Valued Ray Tracing Algorithm

This section derives Equation (14) for the received RF signal S € C in GSRF, integrating wave
propagation physics with Gaussian discretization.

A.1 Continuous Wave Propagation Model

Consider a ray v(t) = r + tv originating from the receiver at position r with direction v. The
received signal is modeled as an integral along the ray path:

= / B(OT(2) dt,

where:

* (t) € C: Emitted signal at position v(t), defined by its amplitude |t/ (¢)| and phase £ (t).
* T(t) € C: Cumulative transmittance from the receiver at y(0) to position y(¢), given by:

T(t) = exp (— /0 ta(s)ds) ,

where o(s) = a(s) + j5(s) is the complex attenuation coefficient, with:

- «afs) > 0: Amplitude attenuation.
— [B(s): Phase propagation.
A.2 Discretization via 3D Gaussians

The scene is approximated using a set of 3D Gaussians {( }, each specified by:
Ce = (ks Xk, Y, 08), Ok = g + Bk,
where:

* 1 € R3: The mean position of the Gaussian.
s Y, € R3*3: The covariance matrix representing the spatial extent.

1, € C: The radiance, encoding amplitude and phase.
e oy € C: The complex attenuation coefficient, where:
— «ag > 0: Governs amplitude attenuation.

— Pk: Determines phase propagation.
Ray-Gaussian Intersection

For each Gaussian k, we determine the intersection points of the ray y(¢) = r+¢v with the Gaussian’s
ellipsoid, as detailed in Section 4.3. We solve:

(V1) = ) TS (v (1) — ) =3,

which defines the ellipsoid boundary at the 3-sigma level. This yields the entry and exit times, ti,
and tou, %, respectively. The path length through the Gaussian is then given by:

Aty = tout, s — tink-

Midpoint Approximation

The contribution of Gaussian k is evaluated at the midpoint of the intersection segment:

tin,k + toul,k
2 )

This approximation introduces an error of order O(At3), which is negligible for small Aty, as is

common in dense Gaussian representations.

tmid,k = Xmid k = Y (tmid k)-

Transmittance Derivation
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Transmittance p,,, for Gaussian m accounts for attenuation and phase shift over the path length At,,,:

tout,m i
pm — eXp _/ Om dt — e_o'rnAtwn — e_(¥771Atm . e_JﬂnlAtm,’
t

in,m ‘Pml eilpm

where:

am Aty

* lpm| =€~ < 1: Amplitude transmission factor, since «;,, > 0.

* Zpm = —BmAt,,: Phase shift of the transmitted signal.

A.3 Discretized Rendering Equation

The Gaussians are sorted by their midpoint times ¢yiq,, (in increasing distance from the receiver) to
ensure correct depth ordering. The discretized received signal is expressed as:

Kinw

k—1
S = Skxmiar) U [] pm>
k=1 m=1
where:

* G(Xmiax): The Gaussian density at the midpoint, given by:

1 1 1
Gk (x) = WQXP <2(X - Mk)TEk (x— Mk)) .

9y = || €74+ The emitted radiance of Gaussian k.

. an:_ll pm: This term represents the cumulative transmittance from the receiver through all
preceding Gaussians up to k — 1.

B Gaussian Primitive Optimization

The following two strategies are employed to update the number of Gaussians and their attributes.

Attribute Updating Each 3D Gaussian stores its own attributes and updates them using SGD [47]:
Wit = ) _ VG (wm) (18)

where w represents any attribute of a Gaussian, each with its own learning rate 7,. The
term V,, £ (wU )) denotes the gradient of the loss function £ with respect to w at iteration j. For
radiance v, the updated parameters are the FLE coefficients.

The covariance matrix X is physically meaningful only when positive semi-definite [48], but the
update equation above does not guarantee this property. To address this, we adopt the solution
proposed in [8], which represents > = RSST R, where R is a rotation matrix and S is a scaling
matrix. Updates are applied independently to R and .S, ensuring that 3 remains positive semi-definite.

Number of Gaussian Updating. The initial number of Gaussians is set by cube-based initialization.
However, this number is suboptimal, as some areas require more Gaussians (e.g., object regions),
while others need fewer (e.g., free space) to model RF signal propagation effectively. We observe
that such cases lead to large gradients for the Gaussian’s mean i, as the existing 3D Gaussians do not
adequately capture the area’s effect on RF signal propagation. The mean p exhibits larger gradients
than other attributes because it represents the position with the highest probability, making it crucial
for modeling RF signal behavior.

To this end, we employ a gradient-threshold-based strategy: First, every N, iterations, we compute
the average gradient of the mean y for all Gaussians and select those with a mean gradient exceeding
a threshold ¢,. Second, we determine the radius of each selected Gaussian, approximated as the
average of the diagonal values of its covariance matrix. A radius threshold e, classifies them as small
or large Gaussians. Third, small Gaussians are cloned by duplicating them and shifting the copies in
the direction of the gradient. Large Gaussians are split into two new Gaussians, reducing their scaling
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Algorithm 1: Forward CUDA Kernel for Ray Tracing Algorithm

Input: w, h: numbers of rays in azimuth and elevation
Input: M, C: means & covariances of all Gaussians
Input: F, A: radiances & transmittances of all Gaussians
Input: L: positions of receiver and transmitter

Output: O: received signals for all rays

Function RayTracing(w, h, M, C, E, A, L):
M', C’" + sphericalGaussian(M, C, L)
Grids < buildGrid(w, h)

Idx, Kys < sphericalSplatting(M’, Grids)
Ranges +— computeGridRange(Idx, Kys)
0O+0
forall grid G in Grids do
forall ray i in G do
ra < getGridRange(Ranges, g)
O[i] « Blend(s, Idx, ra Kys, M’, C’, E, A)
end
end
return O

matrix R by a factor of ¢ and initializing their positions by sampling from the original Gaussian’s PDF.
Additionally, every N, iterations, we remove Gaussians with attenuation p below a threshold €, as
they minimally impact signal propagation, e.g., in free space. A single 3D Gaussian distribution can
represent a large free space.

C CUDA Kernel

We develop two CUDA kernels for the forward and backward computations for RF signal renderer.

Forward Kernel. Algorithm 1 outlines the forward kernel. The inputs include the number of rays
in azimuth and elevation, the means, covariance matrices, radiances, and attenuations of all 3D
Gaussians, as well as the positions of the receiver and transmitter. The output is the received signal
computed for all N,, x N rays.

Specifically, Line 2 projects the 3D Gaussians onto the 2D RF plane. Line 3 partitions all rays
into multiple grids, each containing Vi, rays in the azimuth and elevation directions, to accelerate
processing. Line 4 applies the splatting process to identify which Gaussians influence each grid.
Line 5 records the sorted Gaussians within each grid. Finally, Lines 7-12 compute the received signal
for each ray in parallel using the complex-valued blending algorithm.

Backward Kernel. Since the Forward Kernel is invoked for ray tracing forward computation, PyTorch
cannot automatically compute the corresponding computation graph gradients. After computing
the received signal S and the loss £, PyTorch calculates the gradient ‘g—g, which is then passed to
the Backward Kernel. This kernel reverses the computations of the Forward Kernel to compute the
gradients for each Gaussian attribute. We explicitly derive the gradients for all Gaussian attributes for

gradient-based attribute learning, with detailed computations provided in Appendix D.

D Gradient Computation
After computing the received signal .S and the loss £, PyTorch calculates the gradient %. We apply
the chain rule [49] to compute the derivatives for each Gaussian in the Backward Kernel:

Kimr k—1
E j £ I I

S = DPintr,k * |wk| e’ Vi Pms
k=1 m=1

where:

* Dinw,k = Sk (@rep,k; 1k, Xi): The Gaussian weight.
o 9y = |t €74¥*: The radiance of the k-th Gaussian.

* pm = |pm|e?4Pm: The complex-valued transmittance.
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D.1 Gradient for k-th Gaussian Radiance

2L .
Compute Aol

k—1
oL 0L i
o I el Vi .
8|'(/)k;| 85 pmtr,k H Pm
m=1
AL .
Compute 5~ ot
k—1
0L oL .
— L im. . YEATI.
alwk S Dintr, k |¢k|€ H Pm
m=1
D.2 Gradient for k-th Gaussian Transmittance
The transmittance pj influences all emissions from subsequent Gaussians j = k + 1, ..., Kjy,. The
cumulative transmittance for Gaussian j’s radiance is defined as:
j—1
m=1
oL .
Compute m.

Partial derivative of P; with respect to |pg|:

op, [0 ifi<k

Alprl Do i > k
Differentiating .S’ with respect to |px|:
K.
85 intr i ) P
Bpr] = O P sl e
pel 5y Pk
Using the chain rule:
K.
0L 0L - sw. P
—_ = . Pi 7,.¢,6J¢J.7
a|pk;| 85 j;l ntr, j | J| |Pk‘
oL .
Compute Zort

The partial derivative of P; with respect to Zpy, is expressed as:
op, [0 ifj<k
pe 4P, ifj >k

Differentiating the loss with respect to the phase of py:

6£/ B 87'5 Klﬂ"
9Zpr _ 0S

J Pinie j - |905]€7%7 - P;
j=k+1

D.3 Gradients for k-th Gaussian Mean and Covariance Matrix

For brevity, we omit the subscript k in piy, i, and X, where it implicitly denotes the k-th Gaussian.
Before computing the derivatives for the mean p and covariance matrix X, we first calculate aap—L[:

k-1
0L 0L _
- 99 |¢|€JM ) H1 Pm

8pim;r

To compute the gradients for the mean y and the covariance matrix 3, we first examine the forward
computation of the probability pjp-
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D.3.1 Defining 3-Sigma Ellipsoid
(x—p)' 2 (x—p) =9
where:
* x: A point in 3D space.

* u: The mean (center of the ellipsoid).

e X: The covariance matrix defining the ellipsoid’s shape and orientation.

D.3.2 Ray Parameterization

The parametric equation of a ray, as given in Equation (10), is:

x(d) =lx +dv, d>ry
where:

* l: Receiver position.
* V: Unit direction vector of the ray.
 d: Distance parameter along the ray.

* 7 Radius of the Ray Emitting Spherical Surface (RESS), defining the starting point for
each ray.

Substitute x(d) into the ellipsoid equation:
(x +dv — p) 'S (I + d¥v — p) =
Expanding the dot product:
=) TS (I — ) +2d9 T8 Ml —p) +d*¥ 879 =9

D.3.3 Solving the Quadratic Equation

Rearrange the equation:
Ad* +2Bd+(C—9) =0

where:
A=9v"2"%, B=9v"2"Ylh—p), C=x—p) 2 Yy —pn)

Using the quadratic formula:

—B+/BZ=A(C-09)
: A

The two intersection points along the ray are:

X1 = lrx + dl\A/, Xg = 1rx + dQ‘A’

The valid intersection is the one where d > . If no valid d exists, the ray does not intersect the
ellipsoid:
X1 + Xo dy + da

- lI'X
2 2
The probability of intersection is then computed as:

v

Xintr =

1 1 _
DPintr = W exp <_2(Xintr - M)TE 1(Xintr — M))
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D.3.4 Backward Computation for Mean

OPintr OPintr
Compute 57 and :
intr K | direct

Since pine depends on both x;, and p, we compute the gradients as follows:

apintr o
axintr
apintr
8/1 direct
Compute =5 ax‘"“
axintr _
ou
Compute 5 6d1 and 2%z

ou *

—Pintr * T

= Pintr * T

Lo
2\ 0u

1t)

! (Xintr -

— )

ody ) o
ou

! (Xintr

The partial derlvatlves of d; and dy with respect to the mean  are given by:

- ) )
iy  —IEEF(B2-A(C-9) (235 - A%)
o A
where: 5B 50
— =2, = =-22"1(, -
on Y o (I — 1)
Compute % dp“‘" :

The gradient of Piner With respect to the mean p is computed using the chain rule as follows:

8pimr _

ap intr .

aXintr apintr

O

L
Compute 7>

OXingr

ou ou

direct

The gradient of the loss £ with respect to the Gaussian mean p is computed as:

0L

87’“:

The gradient for the covariance matr1x
we omit it for brevity.

E Implementation

Training. Table 2 presents the hyper-

8'6 . 8pintr
Opine~ Op

Table 2: Hyperparameter settings.

follows similar steps as the mean gradient computation, so

parameter settings, defined in Section 4.
These values are determined through ex-

tensive empirical studies. The attributes
of all 3D Gaussians are updated us-
ing SGD [47]. The learning rates are set
as follows: 7, = 0.01 for attenuation,
1y = 0.0025 for emission, ng = 0.01
for the scaling matrix, and ng = 0.005
for the rotation matrix. The learning rate

Symbol Meaning Value
€u Threshold for mean gradient 0.0002
€ Threshold for radius 10.0
€ Threshold for attenuation 0.004
N, Gradient check frequency 100
N, Attenuation check frequency 100
T'x Radius of the RESS 1.0

10} Scaling matrix reduction factor 1.6

for the mean, 7),,, starts at 0.00016 and de-

creases exponentially to 1.6 x 10~ over 30,000 iterations. For Gaussian count optimization, the
number of Gaussians is optimized only during the first half of the total iterations. After that, only the

attributes of the Gaussians are updated.
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CUDA Kernel. Each grid contains 16 rays in both azimuth and elevation angles, totaling
Npys = 16 x 16 rays per grid. Gaussians intersecting each grid are sorted using the CUDA
built-in cub: :DeviceRadixSort API [50]. Each splatting instance (a Gaussian intersecting a grid)
is assigned a 64-bit key: the lower 32 bits store the distance to the receiver, while the upper 32 bits
encode the grid index. This structure enables efficient parallel sorting of all splats by distance with a
single invocation of the cub: :DeviceRadixSort APL

To integrate PyTorch with CUDA execution, we implement a custom PyTorch extension using C++
and CUDA, enabling efficient GPU-accelerated computations. The forward and backward com-
putations are encapsulated within a subclass of torch.autograd.Function, ensuring seamless
differentiation and gradient propagation within PyTorch’s computational graph. The Python interface,
implemented via PyTorch’s C++ API, facilitates interaction between PyTorch tensors and CUDA
kernels, handling memory layout conversions and efficient CPU-GPU data transfers.

F Experimental Results

F.1 Scenario Overview

This paper considers a scenario where a receiver is fixed at a position (e.g., 5G base station or LoRa
gateway), while a transmitter (e.g., smartphone or LoRa node) can be at any location in 3D space.
Given a dataset of some transmitter locations and their corresponding received signals, the goal is to
predict the received signal from a transmitter at a new position.

Alternatively, the roles can be reversed: the transmitter is fixed (e.g., WiFi router), while the receiver
is placed at different locations (e.g., smartphone). According to reciprocity between the transmitter
and receiver [30], these two scenarios are essentially equivalent. Consequently, this work focuses
solely on the first scenario.

F.2 BLE RSSI Synthesis

Training and Inference Time. Both meth- 1.0 7 1.0

. . . . |
ods are trained for 100,000 iterations. Train- g I 0.8 I
ing time is measured by running each g6 |’ w06 ll
method 10 times on a computer equipped S, i Soa /
with an NVIDIA GeForce RTX 3080 Ti. In-  , — NeRF? | 0.2 —- Nert? [
. . - m—— GSRF - m— GSRF I
ference time for each model is also recorded. 0.0 | 0.0 Y
. : : 1 2 3 0 30 60 90 120 150
Figure 11 shows that GSRF reduces train- Training time (hours) Inference time (ms)

ing time from 2.69 hours with NeRF? to o ) ]
0.17 hours, achieving a 15.82-fold decrease. Figure 11: Tralnl.ng times Figure 12: Inference times
Similarly, Figure 12 illustrates that GSRF for RSSIsynthesis. for RSST synthesis.
reduces inference time from 139.01 ms with NeRF2 to 1.76 ms, a 78.98-fold reduction. These short
inference times enable GSRF to support real-time applications [30].

BLE RSSI Prediction and Localization. We extend the evaluation to include WRF-GS [34],
trained on the full dataset, for both RSSI prediction and localization tasks. GSRF reduces RSSI error
by 3.92% compared to WRF-GS, demonstrating the benefit of its unified RF modeling. Localization
errors remain similar across models, reflecting the inherent resilience of the KNN baseline: by
selecting the k nearest neighbors in the RSSI fingerprints and averaging their positions, KNN
effectively acts as a low-pass filter that mitigates synthesis noise.

Table 3: BLE RSSI prediction error and localization error across models.

NeRF? GSRF WREF-GS
RSSTI error (dBm) 6.091+£5.427 4.094+3.908 4.26143.943
Localization error (m) 0.6994+0.804 0.479+0.692 0.481+0.685

F.3 Parameter Study

We further investigate the effect of several key hyperparameters in GSRF, including the
Fourier-Legendre Expansion (FLE) degree, the angular resolution, and the number of Gaussians.
These studies provide insights into the trade-offs between accuracy, efficiency, and stability, and
guide the recommended default settings.
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Fourier-Legendre Expansion (FLE) Degree. The FLE basis degree L controls the expressiveness
of GSRF ’s complex-valued 3D Gaussians in modeling phase-aware RF propagation effects such as
interference and diffraction. Low degrees (L = 1-2) capture only coarse angular components, which
leads to underfitting. Moderate degrees (L = 3—4) capture essential variations efficiently, while high
degrees (L > 5) risk overfitting and add computation. We find that L = 3 provides the best balance
between accuracy and efficiency. Experimental results are summarized in Table 4.

Table 4: Effect of FLE degree L on PSNR, training time, and inference speed.
Degree L PSNR (dB) Training time (min) Inference time (ms)

1 16.49 13.84 2.96
2 17.73 15.09 3.38
3 18.67 16.21 4.18
4 18.78 19.26 6.27
5 18.21 24.72 8.62

Angular Resolution. The angular resolution in GSRF is not a rigid hyperparameter but is instead
governed by the antenna configuration and the measurement setup. Its role is to balance fidelity,
coverage, and computational efficiency in modeling RF propagation.

For multi-antenna arrays, the effective angular resolution follows the spatial sampling theorem
and scales with the number of array elements. For example, in our RFID dataset, a 4 x 4 uniform
rectangular array supports ~1° resolution using classical algorithms such as MUSIC (Multiple Signal
Classification). We align the resolution with the measurement data: since the RFID dataset was
collected at 1° intervals over azimuth and elevation, we preserve this resolution to avoid interpolation
artifacts. If the measurement data had coarser sampling (e.g., 2° intervals due to a smaller array),
GSREF could operate at that resolution without modification, since both the orthographic splatting
process and the loss functions are resolution-agnostic and work with arbitrary ray grids.

For single-antenna configurations, the received signal is inherently scalar, with no native angular
resolution per antenna theory. In such cases (e.g., RSSI synthesis), we discretize the spherical
rendering at 1° to ensure dense coverage of propagation paths. This choice is flexible: finer bins (e.g.,
0.5°) increase the ray count without proportional fidelity gains at centimeter wavelengths, while
coarser bins (e.g., 5°) reduce runtime but risk missing important multipath effects. Our 1° setting
thus represents a practical trade-off, and it is consistent with conventions in RF Computer-Aided
Design (CAD) simulation tools such as Wireless InSite and the MATLAB Ray Tracing toolbox.

Experimental Validation. Table 5 reports the effect of angular resolution in the single-antenna RSSI
synthesis task (Section 5.3). At 1°, with 360x90 = 32,400 rays, GSRF achieves the lowest RSSI
error due to dense angular sampling. As the resolution coarsens, accuracy degrades: 2° resolution
produces slightly higher error (with 180x45 = 8,100 rays), and 5° resolution degrades further (72x 18
= 1,296 rays). Training and inference times scale proportionally, demonstrating a tunable trade-off:
high-resolution settings suit precision-critical applications, whereas coarser settings may be preferable
when computational efficiency is paramount.

Table 5: Effect of angular resolution on RSSI synthesis.
Resolution RSSI error (dBm) Training time (min) Inference time (ms)

1° 4.094 10.23 1.76
2° 4.493 8.56 0.94
5° 6.518 4.92 0.17

Number of Gaussians. The number of Gaussians is not a manually fixed hyperparameter. As de-
tailed in Appendix B and following the original 3DGS [8], it is dynamically optimized through densifi-
cation and pruning during training. This process automatically adds Gaussians in under-reconstructed
regions and prunes redundant ones, ensuring the model adaptively balances representation capacity
and efficiency without manual tuning.

Cube-Based Initialization. The cube-based initialization in GSRF refers to a uniform strategy
for placing Gaussian primitives at the start of training. This choice is motivated by the need for
comprehensive coverage of the 3D scene volume, which accelerates convergence. By distributing
Gaussians uniformly across the bounding box that encloses the transmitter, receiver, and environment,
the model begins with a balanced representation of potential RF propagation paths. This avoids
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early coverage gaps that could arise from sparse or random initialization, enabling the subsequent
densification and pruning process to refine the representation more effectively. While random
initialization can achieve similar fidelity after sufficient optimization, it typically requires longer
training time (0.59 hours for random initialization vs. 0.27 hours for uniform initialization on the
RFID spatial spectrum synthesis task).

F.4 Measurement Density

We extend the measurement density in Section 5.1 analysis to include WRF-GS [34]. When
trained with 0.8 measurements/ft®, WRF-GS and GSRF achieve MSEs of 0.002659 + 0.003560 and
0.002147 4 0.003343, respectively, both comparable to NeRF?’s 0.002405 + 0.003623 despite the
latter being trained with a substantially higher density of 7.8 measurements/ft>. This advantage arises
from the explicit 3DGS representation adopted by WRF-GS and GSRF, where Gaussian primitives
provide greater representational power and flexibility than NeRF-based volumetric sampling, thereby
improving efficiency under sparse measurement conditions.

F.5 Practical Benefits

RFID. An angular artificial neural network (AANN) identifies the Angle of Arrival (AoA) of line-
of-sight path from received spatial spectra, enabling spectrum-based localization [51]. The AANN
is trained on pairs of spectra and their corresponding AoA labels. Both GSRF and NeRF? can
synthesize spectra for AANN training. Compared to NeRF?, adopting GSRF can significantly reduce
real-world resource consumption. For example, in a conference room (26.2 ft x 16.4ft x 9.8 t) [52]
with a measurement time of one minute per measurement, reducing the measurement density from
7.8 to 0.8 measurements/ ft® saves approximately 200 hours of data collection time. Additionally,
GSREF reduces computing time by 5.71 hours, including 4.74 hours for training and 0.97 hours for
inference, both of which greatly save computational resources.

BLE. Similar to the previous field study, GSRF eliminates the need for site surveys, significantly
reducing data collection time. Its fast training GPU-hours and low inference latency save server
computation resources, accelerating the construction of the fingerprint database.

5G. The current method for obtaining downlink CSI requires client feedback, causing significant
transmission overhead [30]. GSRF eliminates this overhead. Furthermore, GSRF’s low inference
latency makes it suitable for 5G networks. In contrast, NeRF?’s inference latency of over 300 ms
exceeds the coherence time in dynamic scenarios [30], making it impractical for 5G applications.

G Design Discussion

Why Fourier-Legendre Basis Instead of Spherical Harmonics. We adopt Fourier-Legendre
Expansion (FLE) over the more common Spherical Harmonics (SH) to model directional radiance in
GSREF. This choice is motivated by the fundamental differences between RF propagation and visible
light rendering, as well as the mathematical properties of the two bases. RF signals at centimeter-scale
wavelengths exhibit pronounced phase-dependent interference and diffraction, which SH is ill-suited
to capture efficiently.

Limitations of SH in RF. SH provides an orthogonal basis on the sphere and is widely used in 3DGS
for representing smooth, low-frequency view-dependent effects in the visible domain (e.g., shading,
reflections). However, SH suffers from two limitations in RF applications. First, its low-frequency
bias makes it converge slowly for oscillatory patterns: centimeter-wavelength RF fields often exhibit
sharp constructive and destructive interference, leading to high-frequency angular variations that
SH requires high degrees to approximate. Second, standard SH relies on real coefficients and is
therefore phase-insensitive, making it poorly suited for modeling complex-valued RF fields where
phase differences govern interference outcomes.

Advantages of FLE. FLE combines Fourier series (for azimuthal periodicity) with Legendre poly-
nomials (for elevation dependency), and is better aligned with the properties of RF propagation. Its
Fourier component naturally captures periodic phase shifts and oscillatory interference patterns, while
Legendre polynomials provide orthogonal support over elevation. Unlike SH, FLE employs complex
coefficients, allowing direct encoding of both amplitude and phase, which is essential for accurate RF
modeling. Moreover, the polar—azimuthal decomposition of FLE matches the geometry of antenna
measurements over spherical regions, providing better locality and efficiency for multipath effects
compared to the global harmonics of SH.
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Overall, FLE offers a more compact, phase-aware, and physically aligned basis for directional RF
radiance, enabling GSREF to efficiently capture the interference-rich characteristics of RF propagation.

Role of SSIM Loss. While the blob-like primitives in 3DGS representations can produce smoother
outputs, the Structural Similarity Index (SSIM) remains valuable as a complementary loss. Unlike L1,
which emphasizes pixel-wise accuracy, SSIM emphasizes structural and perceptual similarity, making
it particularly suitable for RF synthesis tasks where outputs such as spatial spectra are image-like
data (e.g., directional signal power). This follows standard practice in prior 3DGS methods (e.g.,
3DGS [8] and WRF-GS [34]), which incorporate SSIM to enhance perceptual quality. Our ablation
confirms its effectiveness: removing SSIM and relying solely on L1 and Fourier loss reduces RFID
spatial spectrum synthesis PSNR by 0.73 dB (from 22.64 to 21.91 dB), indicating that SSIM helps
refine structural details in the synthesized spectra.

Equirectangular Projection vs. Cube-Map. We adopt equirectangular projection for representing
RF spatial spectra, despite its known polar stretching, due to its simplicity and compatibility with
azimuth—elevation parameterizations commonly used in antenna array data. This choice enables
uniform angular sampling without additional remapping and aligns directly with the latitude—longitude
grids of collected datasets. The distortion near high elevations has limited practical impact in RF
scenarios, since paths above 60° typically correspond to ceilings, floors, or skyward directions where
signals are heavily attenuated or yield few useful multipath components. Although cube-maps could
mitigate polar distortion, they introduce seam artifacts and gradient discontinuities across faces,
destabilizing backpropagation in a differentiable rendering pipeline. Moreover, cube-maps exhibit
non-uniform sampling density across faces, which conflicts with the uniform angular resolution of
RF spatial spectrum measurements. Thus, equirectangular projection provides a more stable and
dataset-aligned choice for our framework.

Multipath Effects. GSREF is designed to capture multipath effects by representing the RF scene
as a collection of complex-valued 3D Gaussians, where each Gaussian acts as a primitive that
approximates a propagation path or interaction point. Multipath propagation introduces amplitude
attenuation and phase shifts across different paths, which are modeled through complex-valued
radiance and transmittance attributes encoded via the Fourier-Legendre basis. Ray tracing plays a
critical role: rays are emitted from the receiver across a spherical surface, and the contributions of
intersecting Gaussians are aggregated. Transmittance encodes path-length—dependent phase shifts and
attenuation, and the summation of complex contributions enables both constructive and destructive
interference. This effectively discretizes the continuous wave propagation integral, ensuring that
path-specific interactions are preserved. Without ray tracing, aggregation would reduce to simple
amplitude blending, which is insufficient for centimeter-scale RF modeling.

Empirical validation is performed using real-collected datasets, where explicit ground truth for
multipath components is not directly observable due to measurement aggregation. Instead, multipath
fidelity is validated implicitly: if interference effects were not captured, synthesized RF data would
deviate significantly from real signals, leading to degraded quality metrics. The strong alignment of
synthesized and measured signals thus confirms that multipath effects are effectively represented.

Antenna Beam Patterns. Directional antenna effects, including side lobes and attenuation, are in-
corporated in GSRF through data-driven learning rather than explicit physics-based parameterization.
The Fourier-Legendre basis provides the representational capacity: Legendre polynomials capture
polar variations such as main beam gain and off-axis attenuation, while Fourier components represent
azimuthal phase shifts and side lobe structures. During rendering, these directional dependencies are
aggregated via spherical ray tracing, and orthographic splatting ensures that beam-induced modu-
lations are preserved in the synthesized RF field. If training data reflects beam-specific effects, the
optimization naturally adapts Gaussian attributes to encode them.

In our datasets, the antennas used are omnidirectional, so side lobes and beam shaping are not
observed. Nevertheless, ablation studies of the Fourier—Legendre basis confirm its benefit, showing
improved performance even under isotropic conditions. We anticipate that with directional antenna
data (e.g., beamformed phased arrays), GSRF would capture and reproduce beam patterns faithfully,
as the framework is agnostic to antenna type and adapts to observed propagation characteristics.
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