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Aerial scene classification using satellite and drone imagery is vital for applications like environmental moni-
toring and urban planning, but the high computational demands of Convolutional Neural Networks (CNNs) limit
their real-time use on resource-constrained platforms. Additionally, these models often lack global context
awareness, relying mainly on small 3 x 3 kernels that capture fine details but miss broader spatial relationships.
While large models can learn complex patterns, lightweight models struggle without adequate data and pre-
processing. To address these challenges, we propose a lightweight CNN classifier optimized for fast, real-time
aerial scene classification. Inspired by the Inception network, our architecture integrates multi-scale convolu-
tional filters (1 x 1, 3 x 3,5 x 5, and 7 x 7) to capture both local and global context. To reduce computational
overhead, we incorporate Depthwise Separable Convolutions (DSC). To overcome the limitations of a compact
model, we apply 5-fold semantic-preserving data augmentation and Contrast Limited Adaptive Histogram
Equalization (CLAHE) to enhance feature visibility. While most state-of-the-art models require at least a million
parameters, our lightweight CNN achieves an impressive 97.62 % accuracy on the UC (University of California)
Merced Land Use Dataset using only 56,293 parameters. Furthermore, we use Gradient-Weighted Class Acti-
vation Mapping (Grad-CAM) to assess augmentation, CLAHE, and our architecture’s influence on feature
attention. This study demonstrates that effective preprocessing with CLAHE and extensive augmentation can
narrow the gap between lightweight CNNs and complex models. These results support the use of efficient models
for real-time, resource-constrained aerial scene classification, promoting sustainable and accessible Artificial
Intelligence (AI) in remote sensing applications.

1. Introduction classification increasingly significant since it offers valuable insights

into land use and land cover changes. This approach is crucial for ap-

Satellite and aerial imaging technologies have become more preva-
lent, providing large volumes of high-resolution imagery over vast
geographic regions, thanks to the quick advancement of earth obser-
vation and remote sensing technologies. High spatial resolution imag-
ery, offering sub-meter detail (Zhao et al., 2016), and very
high-resolution remote sensing (RS) imagery with centimeter-level
precision (Shawky et al., 2020), are now widely accessible. The global
RS market is projected to grow rapidly, expanding from around $22-28
billion in the mid-2020s to over $150 billion by 2034 (Research). This
surge reflects the increasing demand for aerial image analysis across
environmental monitoring, urban planning, and agriculture applica-
tions. The increasing volume of RS imaging data has made aerial scene
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plications such as urban planning and development (Wellmann et al.,
2020), environmental monitoring (Padro et al., 2019; Yuan et al., 2020),
agricultural management (Weiss et al., 2020; Huang et al., 2018),
disaster management (Kucharczyk et al., 2021; Kemper et al., 2020;
Bello et al., 2014), and land use mapping (Huang et al., 2020; Mohan-
Rajan et al., 2020). Understanding land use and its temporal changes
enables governments and organizations to monitor shifting patterns,
detect deforestation, assess natural disaster impacts, and improve land
resource management for sustainable development. The availability of
advanced high-resolution imaging technologies calls for effective
methods to classify aerial landscapes such as agricultural fields, forests,
water bodies, and urban areas. Unlike natural images, RS images are
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more complex, often containing diverse objects in a single frame (Zhang
etal., 2016; Liu et al., 2021), with some ground features exhibiting high
visual similarity (Tuia et al., 2011). As a result, current research em-
phasizes robust feature extraction techniques. The emergence of deep
learning (DL) has significantly advanced computer vision, with Con-
volutional Neural Networks (CNNs) leading the way by automatically
extracting and learning meaningful features such as edges, textures, and
shapes directly from raw image data. Consequently, most recent studies
rely on CNNs for effective aerial scene classification (Cheng et al., 2017;
Luus et al., 2015; Zhang et al., 2015; Gui-Song et al., 2017; Liu et al.,
2018).

Aerial scene classification has been widely studied using advanced
feature extraction and attention-based techniques, reaching high accu-
racy. However, most models focus on performance rather than suit-
ability for low-end edge devices (Xue et al., 2020; Wang et al., 2020;
Wan et al., 2021; Zhang et al., 2019). This highlights the trade-off be-
tween accuracy and computational expense. Large CNNs may need
hundreds of megabytes to several gigabytes of storage and can slow
down inference on low-power processors (Liu et al., 2024; Tabani et al.,
2021; Castanyer et al., 2021). They also consume significant battery
energy, which is vital for mobile and wearable devices (Liu et al., 2024;
Tabani et al., 2021; Pietrolaj et al., 2024). Furthermore, deployment can
be difficult due to differences in hardware support, such as GPUs or
NPUs. Often, real-time inference depends on offloading the process to
external servers, which raises concerns about privacy, connectivity, and
reliability (Tabani et al., 2021; Castanyer et al., 2021). To address the
limitations of heavy models, some studies have proposed lightweight
architectures for aerial scene classification (Shen et al., 2023; Bai et al.,
2021; Yu et al., 2020). While large models can perform well even with
small datasets, these lightweight models often struggle due to their
shallow depth. Most of these lightweight networks utilize 3 x 3 kernels
to reduce computation, but this limitation restricts their receptive field
and weakens their ability to capture global context. This is a significant
drawback for datasets like UC (Universuty of California) Merced Land
Use Dataset, where several classes, such as golf courses, beaches, and
agricultural fields, require understanding the entire scene rather than
focusing on specific objects. Moreover, these works mainly focus on
model design and pay little attention to data preprocessing. Effective
data preprocessing increases variability in training data, enabling the
model to better understand context and focus more accurately on
important regions of an image.

To overcome these limitations, we propose a lightweight CNN clas-
sifier combined with effective preprocessing, including 5-fold semantic-
preserving augmentation and Contrast Limited Adaptive Histogram
Equalization (CLAHE) image enhancement techniques. Since aerial im-
ages contain subjects of varying sizes and both local and global contexts
can be important in assessment, it is crucial to design CNNs that can
capture and utilize these contexts for classification. To accomplish this,
we have used a custom Inception module inspired by the Inception
network (Szegedy et al., 2015). Ituses 1 x 1,3 x 3,5 x 5,and 7 x 7
kernels to effectively capture both local and global contexts from im-
ages. Also, we have utilized depth-wise separable convolution (Chollet,
2017) operations in general to replace standard convolution filters to
reduce the overall complexity of our network. Furthermore, we have
utilized image augmentation and the CLAHE image processing tech-
nique. Numerous studies have been conducted to improve low-contrast
images utilizing CLAHE in various domains, including medical, aerial,
and underwater images (Malik et al., 2019; Vidhya et al., 2017; Har-
ichandana et al., 2020; Salem et al., 2019; Santos et al., 2020; Garg et al.,
2018). CLAHE improves image contrast, enhancing feature visibility and
aiding model performance. The augmentation we used prevents se-
mantic distortion and represents real-world aerial scenarios, where
images can appear in any orientation. The image augmentation tech-
nique helps the model train on more data samples, while the CLAHE
enhances image features, enabling lightweight models to learn features
properly (Aboshosha et al.,, 2019). Even though CNNs perform
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remarkably well on tasks like object detection and image classification,
they often function as “black boxes,” providing little information about
the decision-making processes behind these models. Selvaraju et al.
(2017) introduced Gradient-Weighted Class Activation Mapping
(Grad-CAM) to address this. It generates visual explanations by high-
lighting the regions of an input image that a model focuses on when
making predictions, enabling researchers to better understand and di-
agnose model behavior. To investigate how image enhancement, data
augmentation, and the proposed network affect the interpretability of
lightweight CNN models, we also used Grad-CAM in this study. This
approach reveals differences in feature extraction and decision-making,
helping us understand the impact of preprocessing and network design
on model attention.
The main contributions of this study are as follows:

1. We introduced a novel lightweight model architecture that utilizes
Depthwise Separable Convolutions (DSC), hence decreasing param-
eters and computations, which results in accelerated inference,
enabling our model to be suitable for deployment on mobile and edge
devices.

2. We investigated the impact of data augmentation on a lightweight
CNN architecture.

3. We explored the effect of the CLAHE image enhancement approach
on a lightweight CNN architecture.

4. We employed Grad-CAM to analyze feature attention across models
trained on datasets with and without CLAHE, demonstrating the
impact of CLAHE on model interpretability, feature extraction, and
performance.

The remainder of this paper is structured as follows: Section 2 re-
views related works and highlights the research gap. Section 3 details
the proposed methodology. Section 4 describes the experimental setup
and presents the performance evaluation. Section 5 discusses the results,
and Section 6 concludes the study with directions for future research.

2. Related works

Researchers are exploring various methods to improve aerial scene
classification accuracy, with a key focus on enhancing feature extrac-
tion, as features play a crucial role in classification performance.

Shen et al. (2023) proposed a modified lightweight architecture
based on GhostNet, designed for real-time scene classification in
embedded and resource-limited environments. On the University of
California Merced Land Use Dataset (UC Merced) dataset and similar
benchmarks, the modified GhostNet greatly reduced computational
complexity from 7.85 million to 2.58 million FLOPS and memory usage
from 16.4 MB to 5.7 MB while achieving a higher classification accuracy
of 96.19 %, outperforming its original version as well as
MobileNetV3-Small. Although their proposed method is lightweight, it
lacks multiscale feature extraction capabilities, which is a notable lim-
itation when working with datasets like UC Merced that require a strong
global contextual understanding. Furthermore, while their data
augmentation strategy includes rotation, which is generally beneficial,
the addition of brightness and contrast adjustments may alter semantic
information, potentially introducing noise and negatively affecting
classification performance.

Xue et al. (2020) proposed a classification technique that utilizes
multi-structure deep feature fusion (MSDFF). First, they used
random-scale cropping for data augmentation. After that, they
employed three distinct CNNs, GoogLeNet, CaffeNet, and VGG-VD16, to
extract deep features from images, and then they used these features to
fuse using a deep feature fusion network for classification. Their pro-
posed method, trained on 80 % of the UC Merced dataset, achieved
99.76 % accuracy. However, their proposed architecture uses around
134 million parameters, which makes the model computationally
expensive.
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Table 1
Comparison of existing methods concerning image enhancement, semantic-preserving augmentation, and edge device deployability.
Study Backbone Preprocessing Edge Device Limitation
A I A Deployable
Incorporation of Image Semantic-preserving Data
Enhancement Augmentation
Sheen et al. (Shen GhostNet No No (Brightness, Contrast) Yes Lacks multiscale feature extraction
et al., 2023)
Xue et al. (Xue GoogLeNet, CaffeNet, No No (Random-scale cropping) No Extremely high parameter count
et al., 2020) VGG-VD16 (MSDFF) (~134M)
Wang et al. (Wang CNN + Saliency Fusion No No Yes No augmentation; saliency fusion only
et al., 2020)
Bai et al. (Bai et al., ~ ESPA-MSDWNet No No Yes Relatively high parameter usage (2.39M)
2021) (MobileNet V2)
Wan et al. (Wan ResNeXt No Yes (Horizontal flip, random No High parameter count (~25M)
et al., 2021) rotation)
Zhang et al. (Zhang SE-Net No No No High parameter count (~19.72)
et al., 2019)
Yuetal (Yuetal., MobileNet V2 + Dilated No Yes (rotation, flip) Yes No CLAHE; could improve with better
2020) Conv image enhancement
Chen et al. (Chen MLCMFNet (Swin No Yes (conditional GAN [53], No High parameter count (~35M)
et al., 2025) Transformer) and self-attention GAN
Shi et al. (Shi et al., ~ RepFACNN (CNN + No Yes (Mixup) Yes Computationally expensive (~6.4M)
2025) Transformer)
Proposed Work Custom Lightweight CNN Yes (CLAHE) Yes Yes Aims to match heavy models’ accuracy

with a lightweight architecture

To get more informative features, Wang et al. (2020) used a saliency
detection model that mimics the human selective visual attention
mechanism to process the images. They used a feature fusion approach,
combining two feature sets: one generated from RGB images and the
other from processed images using saliency detection. They attained an
overall accuracy of 87.15 £+ 0.69 % on RGB images without the fusion
approach, and 98.04 + 0.89 % using the proposed fusion method. They
also highlighted the model’s lightweight nature while embracing the
benefits of feature fusion and multiscale techniques. Yet, the method
doesn’t utilize any augmentation strategies, which would help make the
model more generalized and robust.

In order to achieve high accuracy and inexpensive model parame-
ters, Bai et al. (2021) presented ESPA-MSDWNet, a lightweight multi-
scale depthwise network with effective spatial pyramid attention
(ESPA). It increases receptive fields and uses depthwise convolution to
obtain granular multiscale features using MobileNet V2 as the backbone.
However, their proposed model contains around 2.39 million parame-
ters, which suffer from inefficiency.

Using ResNeXt as the backbone, the authors of the study (Wan et al.,
2021) proposed LmNet, which combines multiscale feature fusion and
lightweight channel attention to help learn important channel features
quickly. Additionally, they proposed a multiscale feature fusion frame-
work that integrates both shallow edge and deep semantic information
to enhance feature representation and contribute to classification ac-
curacy. Nevertheless, their methodology results in a model that uses
around 25 million parameters. Due to this high quantity of parameters,
the model becomes computationally expensive.

Zhang et al. (2019) introduced a lightweight and effective CNN
utilizing MobileNet V2, integrating dilated convolution and channel
attention to enhance feature extraction. To improve efficiency, they
implemented a multidilation pooling module to capture multiscale
characteristics, hence ensuring excellent accuracy. Although they used
image augmentation, the application of the CLAHE method could help
the model to learn the intricate details in the images, making it more
robust.

Yu et al. (2020) employed MobileNetv2 as the backbone model to
extract deep image features, which are subsequently processed by two
separate convolutional layers. The modified features go through a
Hadamard product operation to produce enhanced bilinear features,
which are subsequently pooled, normalized, and utilized for classifica-
tion. This model also suffers from a high number of model parameters,
which is around 7.76 million.

Chen et al. (2025) introduced MLCMFNet, a mutual learning method
that combines multiple types of features. The network consists of three
main components: a Multi-Feature Fusion Module (MFFM), which adds
additional fused features; a Swin Transformer Module (STM), which
captures global features; and a Multi-Attention Fusion Module (MAFM),
which extracts more representative features. Mutual learning helps two
different networks learn from each other, combining their strengths.
This improves how local and global features work together. Their pro-
posed model scored 99.91 + 0.1 % accuracy on the UC Merced dataset.
However, the model contains 35 million parameters; therefore, it may
fail to operate properly in resource-constrained environments.

Shi et al. (2025) presented RepFACNN, a network that combines
CNNs and transformers while reducing computation by using a repar-
ametrized transformer (RepFormer). It extracts multilevel and
multi-scale spatial features, then fuses them for better classification.
This method scored 99.33 + 0.26 % accuracy on the UC Merced dataset.
Nevertheless, this model is computationally quite expensive as it utilizes
almost 6.4 million parameters.

In contrast to prior studies, our approach focuses on designing a
lightweight classification model with significantly fewer parameters and
reduced computational requirements, while incorporating superior
multiscale feature extraction to meet the demands of complex datasets.
Additionally, we introduce a robust preprocessing pipeline that not only
enhances image quality but also increases data diversity, effectively
supporting the lightweight model in narrowing the performance gap
with larger architectures. The research gap compared to existing
methods is summarized in Table 1.

3. Methodology

This section discusses the datasets and techniques used for aerial
scene classification. We split the UC Merced Land Use Dataset into
training and testing sets and then applied data augmentation techniques
to enhance generalization. Next, we employed the CLAHE method to
improve the image’s contrast, and we implemented a custom CNN ar-
chitecture that integrates inception modules, GAP, and DSC to facilitate
efficient feature extraction and classification. Subsequently, we
employed Grad-CAM for model interpretability. Finally, we evaluated
Gray-Level Co-occurrence Matrix (GLCM) features to see how the orig-
inal and CLAHE-processed images’ textures differed. Finally, we
assessed the model’s performance using metrics like overall accuracy
and a confusion matrix to compare the effectiveness of the original and
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Table 2
Detailed information about the UC Merced Land Use Dataset.
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Dataset Number of classes Number of images per class

Total number of images Image size Spatial resolution (m)

UC-Merced 21 100

2100 256 x 256 0.3

(15) (16) “7)

J
e

.
1

I

(19) (20) 7 (1)

Fig. 1. Sample images of each class in UC-Merced dataset: (1) agricultural, (2) airplane, (3) baseball diamond, (4) beach, (5) buildings, (6) chaparral, (7) dense
residential, (8) forest, (9) freeway, (10) golf course, (11) harbor, (12) intersection, (13) medium residential, (14) mobile home park, (15) overpass, (16) parking lot,
(17) river, (18) runway, (19) sparse residential. (20) storage tanks, (21) tennis courts.

processed datasets.
3.1. Datasets

Deep learning relies heavily on datasets since they provide the basis
for model training. Repeated exposure to data during training allows
deep learning algorithms to discover patterns, features, and relation-
ships. A model can only learn well with adequate and pertinent data,
which produces subpar performance and generalization. A well-curated
dataset allows the model to make accurate predictions by offering a

variety of instances that reflect the real-world variables the model is
likely to face. The quality and quantity of data substantially impact the
model’s success. As a result, for this investigation, we employed the UC
Merced Land Use Dataset (Yang and Newsam). Detailed information on
the UC-Merced dataset is given in Table 2. The UC Merced Land Use
Dataset, released by the University of California, Merced, is a widely
used benchmark in remote sensing and land use classification. This
dataset comprises 2100 high-resolution RGB aerial images, each of size
256x256 pixels. The dataset includes 21 land use classes, such as agri-
cultural, airplane, beach, forest, and residential areas. The images,

Fig. 2. Augmented variations of original images using 5-factor offline augmentation. Where (A) is the original image from the dataset. After applying 5-factor
augmentation, we get augmented images. These are: (1) Rotation right by 90°, (2) Rotation left by 90°, (3) Flip horizontal, (4) Flip vertical, and (5) Identity (no
augmentation).
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MAXPOOL

Fig. 3. A custom inception module with the addition of an extra 7 x 7 kernel to the original inception module.

sourced from the USGS National Map Urban Area Imagery, have a
spatial resolution of 0.3 m per pixel and represent various natural and
human-made environments. Sample images from each category in this
dataset are shown in Fig. 1.

3.2. Data augmentation

Augmentation is vital in deep learning because it increases the
training data’s diversity and amount, which helps minimize overfitting
and improves the model’s generalization capacity. Particularly in the
case of small datasets like the UC-Merced land use dataset, with only 100
images per class, augmentation introduces variations such as changes in
orientation and reflections, allowing the model to handle the complex-
ities of real-world data better. By transforming images without changing
their semantic meaning, the model can learn to identify patterns and
features more effectively, even when meeting previously unknown
variances in test data.

In this work, we used offline augmentation, where augmentations

are applied before training, rather than online augmentation, which
applies transformations during training. Offline augmentation ensures
that the augmented data is fixed and predefined, providing a consistent
dataset throughout multiple experiments, which is notably useful for
reproducibility in tasks such as model comparison and ablation studies.
We applied a 5-factor augmentation strategy illustrated in Fig. 2, where
each image x € Dyqin is subjected to the following transformation: (1)
rotated right by 90°, using Rotateg (x) operator that rotates the image by
90° clockwise, (2) rotated left by 90°, using Rotate_qo(x) operator that
rotates the image by 90° counterclockwise, (3) flipped horizontally,
using FliPhorizonta1(X) Operator that flips the image horizontally, (4) flip-
ped vertically using the Flipyenicq(x) operator that flips the image verti-
cally, and (5) Identity (no changes) using Identity(x) operator that leaves
the image unchanged. Thus, each image x; € Dyan generated an
aUgmented set A(xi) = {xidenti(yv Xrotate—right; Xrotate—lefts Xflip—horizontal
xﬂip—vem’ml}~ By using these augmentations, we expanded the training set
fivefold, yielding a more diverse and robust dataset.

Block 3
Block 4

Global Average

Pooling
256
Prediction

Fig. 4. Overview of the proposed architecture for aerial scene classification. The architecture integrates Inception modules and DSC to enhance feature extraction
while maintaining computational efficiency.
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Table 3
A detailed summary of our proposed design, specifying each layer type, the associated output dimensions, and the number of parameters related to each layer.
Layer (type) Convolutional Layer Parameters Output Shape Parameters
kernel size Padding Stride Channel Height Width
Conv2d 3 1 1 32 256 256 896
Conv2d (Inception Module) 1 0 1 8 256 256 264
Conv2d (Inception Module) 1 0 1 8 256 256 264
Conv2d (Inception Module) 3 1 1 8 256 256 584
Conv2d (Inception Module) 1 0 1 4 256 256 132
Conv2d (Inception Module) 5 2 1 4 256 256 404
Conv2d (Inception Module) 1 0 1 4 256 256 132
Conv2d (Inception Module) 7 3 1 4 256 256 768
MaxPool2d (Inception Module) 3 1 1 32 256 256 0
Conv2d (Inception Module) 1 0 1 8 256 256 264
Inception Module N/A N/A N/A 32 256 256 0
ReLU N/A N/A N/A 32 256 256 0
BatchNorm2d N/A N/A N/A 32 256 256 64
MaxPool2d 2 0 2 32 128 128 0
Conv2d (Depthwise) 3 1 1 32 128 128 320
Conv2d (Pointwise) 1 0 1 64 128 128 2112
ReLU N/A N/A N/A 64 128 128 0
BatchNorm2d N/A N/A N/A 64 128 128 128
MaxPool2d 3 1 2 64 64 64 0
Conv2d (Depthwise) 3 1 1 64 64 64 640
Conv2d (Pointwise) 1 0 1 128 64 64 8320
ReLU N/A N/A N/A 128 64 64 0
BatchNorm2d N/A N/A N/A 128 64 64 256
MaxPool2d 2 0 2 128 32 32 0
Conv2d (Depthwise) 3 1 1 128 32 32 1280
Conv2d (Pointwise) 1 0 1 256 32 32 33024
ReLU N/A N/A N/A 256 32 32 0
BatchNorm2d N/A N/A N/A 256 32 32 512
AdaptiveAvgPool2d N/A N/A N/A 256 1 1 0
Dropout N/A N/A N/A 256 N/A N/A 0
BatchNorm1d N/A N/A N/A 256 N/A N/A 512
Softmax N/A N/A N/A 21 N/A N/A 5397

Total Parameters: 56293.
Trainable Parameters: 56293.
Non-Trainable Parameters: 0.

3.3. CLAHE

CLAHE is a cutting-edge image processing technique that improves
image contrast, especially in cases where global contrast adjustments
might result in over-saturation of regions of relatively uniform intensity.
Unlike standard Histogram Equalization (HE), which adjusts contrast
uniformly across the entire image, CLAHE works on small, localized
sections known as tiles. To avoid obvious artifacts, the borders between
the tiles are smoothly blended after localized equalization. One impor-
tant characteristic of CLAHE is its ability to limit contrast amplification
by establishing a clip limit, which keeps noise from being excessively
amplified in areas of the image that are homogeneous. Because of this,
CLAHE works particularly well for bringing out the subtle details in
images with varying contrast, as those seen in remote sensing, medical
imaging, and other applications where retaining subtle details is crucial
while avoiding excessive noise amplification. Hence, we applied CLAHE
with a clip limit of 2 and a tile grid size of 8 x 8 to generate an enhanced
version of the dataset. Given an image I(x,y), the image is divided into
N x M tiles, and for each tile, a histogram is computed. The contrast is
limited by clipping the histogram at a specified threshold T, where any
bin H(i) in the histogram exceeding T is clipped, and the excess is
redistributed across the remaining bins. The clipped histogram is then
used to map the pixel values through a cumulative distribution function
that is expressed as follows:

(CDF),C(i) = XI:H(]) 1)
j=0

Equation (1) is used to transform the pixel intensities. The final output
for each pixel I'(x,y) is obtained by bilinear interpolation between

neighboring tiles to avoid boundary artifacts. Thus, CLAHE enhances
local contrast while suppressing noise amplification.

3.4. Proposed architecture

In this section, we provide an in-depth description of the architecture
we are proposing. As shown in Fig. 4, the initial block of the model in-
corporates a convolutional block, which takes 3 input channels and
outputs a feature map of 32 channels, followed by an Inception module,
a core element of the Inception architecture (Szegedy et al., 2015), with
32 channels. The Inception module enables multiscale feature extraction
by applying multiple convolutional filters (1 x 1, 3 x 3,5 x 5) and a
max-pooling operation in parallel. A1 x 1 convolution is used before
larger filters to reduce dimensionality and computational cost. While 3
x 3 filters capture fine details, 5 x 5 filters extract more global features.
The results of these operations are concatenated along the depth
(channel) dimension, yielding a rich feature map made up of informa-
tion retrieved at multiple scales. This enables the network to capture
features at various sizes without committing to a particular convolution
size, resulting in improved performance while keeping computational
costs under control. By concatenating features from distinct branches,
the network can adapt to various patterns, allowing it to better gener-
alize to diverse datasets, such as remote sensing images with both small
and large structures. Drawing inspiration from the original Inception
module, we added a 7x7 kernel to the original module for our objective
of aerial scene classification.

The architecture of the custom inception module is shown in Fig. 3.
The reason behind incorporating a 7x7 kernel stems from the nature of
the UC-Merced dataset, which includes land image categories such as
golf courses, sparse residential areas, and dense residential areas, as
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illustrated in Fig. 1. In such scenes, patterns or objects are often
dispersed across larger regions. Larger kernels are beneficial in these
cases, as they can capture distant spatial relationships. Specifically, a 7
x 7 kernel, due to its larger receptive field, can extract broader
contextual features and capture more large-scale or global patterns
within an image. For aerial scene classification, this can enhance the
model’s ability to identify entire regions, such as forests, agricultural
fields, or large residential zones.

In the second, third, and fourth blocks, we employed DSC instead of
normal convolution, aiming to significantly reduce the computational
load of the network without sacrificing performance. This approach
reduces computation in CNNs by decomposing a standard convolution
into two operations: depthwise and pointwise convolutions. The
depthwise step applies one filter per input channel, reducing operations
from K x K X Cin X Coue X HX W to Kx Kx Cin x Hx W. Then, the
pointwise (1 x 1) convolution combines these outputs with Ci;x Coyr ¥
H x W operations. This significantly lowers the computational cost,
ideal for real-time and resource-constrained applications.

The model employs batch normalization to stabilize training and
utilizes ReLU activation to introduce nonlinearity. The network con-
cludes with a Global Average Pooling (GAP) (Lin, 2013) layer followed
by a dropout layer to mitigate overfitting. GAP aggregates spatial data
throughout the entire feature map, reducing each channel into one
value. It calculates the average value of each feature map over all spatial
dimensions, effectively reducing each feature map to a single value.
Mathematically, for a given feature map F of size Hx W, the outputy
after applying GAP can be expressed as:

-

Il
-

1 .,
Y=uHxw _F(ld) (2)

w
j=1

L
Where F(i,j) denotes the value at the i-th row and j-th column of the
feature map. The resulting output y is a vector of size C, where C is the
number of feature maps. This approach not only preserves the global
context of the image but also significantly decreases the total number of
trainable parameters to 56,293, as indicated in Table 3. Furthermore,
GAP is particularly good for reducing overfitting in deep networks since
it introduces fewer parameters than fully connected layers, making it a
great choice for transferring information across different input sizes and
improving the model’s performance. The final output layer employs
softmax activation to generate probabilities for each class, making it
ideal for multi-class classification tasks.

Our proposed model architecture balances complexity and perfor-
mance by incorporating Inception modules, DSC, and a GAP layer. The
Inception module utilizes parallel convolutional filters of varying sizes
to capture multi-scale features, enabling the model to generate broad
feature representations while reducing the likelihood of overfitting. DSC
decreases parameter counts and computational complexity, thereby
improving training and inference speed. The GAP layer reduces spatial
dimensions by aggregating feature maps into single vectors, reducing
the risk of overfitting while preserving critical global context. This
combination produces a lightweight and powerful model demonstrating
efficient learning and high accuracy in aerial scene classification tasks.

3.5. Grad-CAM

Grad-CAM is a method for visualizing and explaining the decision-
making process of a CNN by highlighting the regions of an image that
are significant for class prediction. The technique employs the gradients
of the output from the feature maps of the last convolutional layer to
produce a heatmap highlighting the significant regions influencing class
activation. The procedure starts with a forward pass to derive the class
score S(c) for the class ¢, subsequently calculating the gradients of this
score regarding the feature maps A* of the final convolutional layer,

3(9) - After that, GAP is utilized to calculate the weights for

denoted as “;¢-
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each feature map using Equation (3).

1 38(c)
Be= Zzizzj:mk(i, 7 @

Where Z represents the number of pixels in the feature map. The Grad-
CAM heatmap L is produced by integrating the feature maps with their
respective weights, expressed as L = ReLU(ZkakAk), whereas ReLU
guarantees that only positive values are taken into account. This heat-
map is then upsampled to the original image size, which improves CNN
interpretability by enabling the presentation of the crucial areas that
affect the model’s classification. As a powerful tool for model interpre-
tation, Grad-CAM offers valuable insights into CNN decision-making by
graphically representing the regions of the input image that are most
significant for a particular classification.

3.6. Gray-level Co-occurrence matrix (GLCM)

GLCM, introduced by Haralick et al. (1973), is a widespread statis-
tical method in image processing for analyzing image texture. This
technique assesses the spatial correlations among pixel intensities,
providing insights about the image’s structural patterns. The GLCM
counts the frequency of co-occurrence of pixel value pairs with pre-
defined intensities, known as gray levels, within a designated spatial
arrangement in a chosen image region. It measures the frequency of 2
gray levels i and j occurring at a particular spatial distance d and
orientation 6. The GLCM, denoted as, P(i, ) is formed by determining the
occurrences of pixel pairs (i, j), where i signifies the gray level of a
reference pixel and j indicates the gray level of its adjacent pixel, situ-
ated at a specified distance d and angle 6. Mathematically, P(i,j) is
defined as:

P(ijid.0)— i“: i:{l,ifl()gy) =iandI(x +dcy +d,) :j} @

0, otherwise

Where I(x,y) is the intensity at the pixel (x,y), and (dx, dy) is the offset
corresponding to the specified d and 6. The result is a matrix where each
element P(i,j) represents the number of times the pair (i,j) occurs in the
image with the given spatial relationship. From GLCM, several texture
features can be derived, such as contrast, correlation, energy, and ho-
mogeneity. Contrast measures the intensity difference between a pixel
and its neighbor. It is calculated using Equation (5).

Contrast = ZP(iJ)(i -j? ®
ij

Correlation measures how correlated a pixel is to its neighbor, which
is calculated using Equation (6).

(i) (j = ) P(i)

0i0j

Correlation = Z

ij

©

Where p and o are the mean and standard deviation of the gray levels.
Energy represents the uniformity of the texture. Equation (7) is used
to calculate energy.

Energy = ZP(i7 j)2 7)
ij
Homogeneity measures the closeness of the distribution of elements
in the GLCM to the diagonal. It is calculated using Equation (8).
: P(i,j)
Homogeneity = ———— 8
geneity T+]iJ| ®
GLCM is an effective texture analysis tool that reveals spatial pat-
terns of pixel intensities in an image.
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storage tanks

Fig. 5. Sample preview of the original and CLAHE-processed images from three different land use classes in the UC Merced Land Use Dataset. The top row includes
the original images for the following classes: airplane, baseball diamond, and storage tanks. The bottom row shows the CLAHE-processed images for the same classes.

3.7. Metrics

Model complexity and classification performance were the two
evaluation criteria for our proposed method. Classification performance
comprises overall accuracy and the confusion matrix, whereas model
complexity involves FLOPS, inference times, and size.

3.7.1. Overdll accuracy

Overall Accuracy (OA) is the ratio of correct predictions to the total
number of predictions made. It gives an overall measure of how well the
model performs across all classes. Mathematically, OA can be expressed
as:

1 n k
OA:TZZP,; 9

Where P;; represents the count of accurately predicted instances, T de-
notes the total examples in the test set, n signifies the number of in-
stances per class, and k indicates the total number of categories or
classes.

3.7.2. Confusion matrix

A confusion matrix is used to evaluate the effectiveness of a classi-
fication model. This provides a better understanding of the performance
by displaying the number of predictions that were correct and those that
were incorrect for each class. The matrix is useful for determining the
different kinds of errors the model is making, as well as the percentage of
incorrect classifications that occur across the various classes. If a multi-
class instance involves n classes, the confusion matrix will be a square of

size n x n, where each entry P; represents the number of instances where
the true label is class i and the predicted label is class j.

3.7.3. Floating point operations per second (FLOPS)

The amount of computational complexity that a model comes with
can be measured using FLOPS. It indicates the number of floating-point
operations that are carried out by the model during the inference pro-
cess. The model is generally considered to be more efficient when it has
lower FLOPS.

3.7.4. Inference time

Inference Time measures the time it takes for the model to make
predictions on new data. This can be evaluated by running the model
on a set of test images and recording the time taken for the forward
pass.

3.7.5. Size

Model Size refers to the model’s saved weights or parameters. This
can be measured by checking the storage size of the model file. This is
important for deployment in resource-constrained environments.

4. Experiments and results

In this section, we discuss the experimental setup and results ob-
tained from the experiments that were conducted. The experimental
setup outlined the training environment and parameters for the custom
CNN model. We described the training process, dataset splits, and
evaluation strategy in the experimental details. We explored the impact
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Table 4
UC Merced Land Use Dataset distribution with and without augmentation.
Dataset Split Number of Number of Total
Ratio images per class  images per set images in
- i the dataset
Train Test Train Test
set set set set
Without 80:20 80 20 1680 420 2100
augmentation
With 5-fold 80:20 400 20 8400 420 8820
augmentation

of data augmentation and CLAHE enhancement, demonstrating their
influence on classification performance. A comparison with other work
in remote sensing classification was provided, showing the advantages
of our proposed approach. Grad-CAM visualizations were presented to
interpret the model’s decision-making process by highlighting impor-
tant regions in both original and CLAHE-enhanced images.

4.1. Experimental setup

All experiments were conducted using the PyTorch framework
(version 1.13.1) with Python 3.10.6. Training was performed on a sys-
tem equipped with an Intel Core i7-13700K CPU, 32 GB DDR5 RAM, and
an NVIDIA RTX 4090 GPU running Windows 11. The CUDA and cuDNN
versions used were 11.7 and 8.4, respectively. To ensure reproducibility
and deterministic behavior, we set the random seed to 42 across all
relevant libraries: random.seed(42), np.random.seed(42), torch.man-
ual_seed(42), and torch.cuda.manual seed_all(42). Additionally, torch.
backends.cudnn.deterministic was set to True. The models were trained
for 500 epochs using a batch size of 64. The optimizer used was Adam
with an initial learning rate of 0.01, while all other optimizer parameters
were kept at their default values. A cosine annealing learning rate
scheduler (CosineAnnealinglLR) was used, with T_max set to 500 and
eta_min set to 1 x 10’8, while other parameters remained at their
default values. The loss function used was the standard
CrossEntropyLoss.

4.2. Experimental details

This study uses the UC Merced Land Use Dataset, widely used in
remote sensing scene classification. As shown in Table 2, the dataset
consists of 2100 images across 21 land-use classes, with 100 images per
class. These classes represent a diverse range of environments, including
residential areas, airports, beaches, etc. To investigate the impact of
contrast enhancement on model performance, this study applied CLAHE
preprocessing to the dataset. The processed images were then used
alongside the original to evaluate whether CLAHE improves classifica-
tion performance in lightweight CNNs. Fig. 5 compares original and
CLAHE-processed images, highlighting improved local contrast and
more uniform color distribution in the latter. These visual differences
suggest that CLAHE may enhance feature extraction and help the model
better distinguish between land-use categories.

To prepare the data for model training and evaluation, we split it into
two subsets at an 80:20 ratio. Specifically, 80 % of the data was allocated
to the training set, while the remaining 20 % was reserved for the test set
to assess performance. This split was intended to achieve a balance be-
tween sufficient training data for model learning and ample test data for
reliable generalization evaluation. After splitting the data into training
and test sets, we applied data augmentation to both the original and the
CLAHE-processed datasets. However, the augmentation was only con-
ducted on the training set, leaving the test set unchanged to ensure a fair
evaluation. Table 4 shows the image counts for each class, highlighting
the number of images before and after data augmentation. This com-
parison shows the scale of augmentation applied to the training set,
emphasizing the substantial increase in training data through
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Table 5

Comparison of three distinct models based on key performance and efficiency
metrics. The metrics include FLOPS, Inference Time, and Model Size. The
original dataset without any CLAHE processing is used to train Model A, the
augmented dataset without any CLAHE processing is used to train Model B, and
the dataset that has undergone CLAHE processing and augmentation is used to
train Model C.

Model GFLOPS  Inference Time (seconds per image) Size (KB)
CPU (i7-13700K) GPU (RTX 4090)

Model A 0.3519 0.033546 & 0.00003  0.003201 + 0.00002 244

Model B 0.3519 0.033564 + 0.00002  0.003212 + 0.00002 244

Model C  0.3519 0.033867 + 0.00003  0.003492 + 0.00003 244

augmentation, which was used to improve model performance and
robustness across both the original and CLAHE-processed datasets.

To evaluate the impact of data augmentation and CLAHE processing
on the performance of our proposed lightweight CNN, we trained the
same architecture under three different conditions. Each model was
trained for 500 epochs using a cosine annealing learning rate scheduler
to support smooth convergence. By keeping the architecture and
training settings consistent, performance differences could be attributed
solely to the effects of augmentation and CLAHE. A summary of the
proposed architecture is provided in Table 3.

The first model, serving as the baseline, was trained on the original
dataset without any augmentation or CLAHE. The second model incor-
porated 5-fold offline augmentation to improve generalization, as
illustrated in Fig. 2, but excluded CLAHE to isolate the effect of
augmentation. The third model was trained using a dataset processed
with both 5-fold augmentation and CLAHE. All three models share the
same architecture and thus have identical FLOPS and model sizes.
However, inference time may vary slightly due to hardware conditions.
To obtain consistent timing results, we measured inference time over 10
runs on a test platform equipped with an NVIDIA RTX 4090 GPU and a
13th Gen Intel Core i7-13700K CPU. Averaging the results helped
minimize fluctuations and provide a reliable assessment. The mean
inference times are presented in Table 5. We measured the inference
time of the proposed model on the UC Merced dataset using a batch size
of 1 on an NVIDIA RTX 4090 GPU. After 2 warmup runs, inference was
timed over 10 runs. The average inference time was mean_time +
std_time seconds per image.

4.3. Impact of data augmentation and CLAHE enhancement

In order to thoroughly evaluate the quality enhancements brought
about by CLAHE, we employed two primary methods. First, we con-
ducted histogram analysis across the red, green, and blue channels. This
enabled us to see how applying CLAHE caused the pixel intensities to
redistribute. As can be seen in Fig. 6, the histograms of the original
images ((a) and (c)) exhibit narrow and concentrated peaks, particularly
in the blue and green channels, indicating a restricted dynamic range
and limited color variance. This pattern suggests that large homoge-
neous regions dominate the images, such as the concrete surface sur-
rounding the airplane or the grassy field of the baseball diamond.
Consequently, large portions of the images possess nearly uniform in-
tensities, leading to reduced contrast and weak differentiation between
neighboring regions. This, in turn, implies that certain details, such as
shadows, textures, or transitions between objects like grass and the
baseball diamond, are not well-defined. As a result, classification algo-
rithms might struggle to detect features accurately in these regions.
After applying CLAHE, the histograms of images ((b) and (d)) exhibit a
more uniform distribution of pixel intensities across all three channels.
This indicates that the contrast has been enhanced by distributing in-
tensities evenly and making subtle features, such as varied shades of
green in the grass or the outer edges of objects, more apparent. The
equalization in all channels implies that CLAHE has distributed pixel
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Fig. 6. Comparison of original and CLAHE-processed images with corresponding histograms. Row 1 shows image samples, where columns (a) and (c) are original
images, and columns (b) and (d) are their CLAHE-processed counterparts. Row 2 shows the histograms, with (a) and (c) illustrating the pixel intensity distributions
across red, green, and blue channels of the original images, and (b) and (d) showing the enhanced contrast and redistributed pixel intensities after processing with
CLAHE. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 6
Comparison of GLCM Feature Analysis between CLAHE-Processed and original Datasets across 21 Classes of the UC-Merced Land Use Dataset.
Class Contrast Correlation Energy Homogeneity
Original CLAHE Processed Original CLAHE Processed Original CLAHE Processed Original CLAHE Processed
Dataset Dataset Dataset Dataset Dataset Dataset Dataset Dataset

agricultural 368.95 1514.26 0.64 0.63 0.02 0.01 0.11 0.05

airplane 280.13 523.56 0.91 0.88 0.03 0.01 0.22 0.11

baseball 108.74 338.67 0.94 0.90 0.03 0.02 0.24 0.11
diamond

beach 84.62 323.27 0.96 0.91 0.06 0.03 0.38 0.19

buildings 509.03 811.62 0.94 0.90 0.02 0.01 0.19 0.10

chaparral 355.88 1353.88 0.81 0.80 0.02 0.01 0.11 0.06

dense 463.60 921.61 0.90 0.88 0.02 0.01 0.15 0.09
residential

forest 265.80 1232.49 0.78 0.76 0.02 0.01 0.11 0.06

freeway 248.45 677.18 0.92 0.88 0.02 0.01 0.16 0.08

golf course 127.09 512.71 0.91 0.83 0.03 0.01 0.20 0.09

harbor 732.45 981.17 0.90 0.88 0.05 0.02 0.24 0.13

intersection 415.32 869.38 0.89 0.86 0.02 0.01 0.17 0.09

medium 475.41 1059.80 0.90 0.86 0.02 0.01 0.15 0.09
residential

mobile home 844.75 1311.57 0.88 0.86 0.02 0.01 0.16 0.10
park

overpass 436.13 937.05 0.89 0.84 0.02 0.01 0.16 0.09

parking lot 890.21 1360.43 0.83 0.81 0.02 0.01 0.13 0.08

river 289.93 1082.17 0.87 0.79 0.03 0.01 0.16 0.08

runway 254.52 546.70 0.90 0.85 0.04 0.02 0.23 0.12

sparse 287.99 877.43 0.90 0.84 0.02 0.01 0.15 0.08
residential

storage tanks 526.72 898.49 0.89 0.85 0.03 0.02 0.23 0.13

tennis court 315.80 799.76 0.91 0.86 0.02 0.01 0.18 0.09

Table 7
Mean and Standard Deviation of GLCM Features for CLAHE-Processed and original Datasets across 21 Classes of the UC-Merced Land Use Dataset.
Dataset Contrast Correlation Energy Homogeneity
Original CLAHE Processed Original CLAHE Processed Original CLAHE Processed Original CLAHE Processed
Dataset Dataset Dataset Dataset Dataset Dataset Dataset Dataset
Mean 394.36 901.58 0.88 0.84 0.03 0.01 0.18 0.10
Standard 218.76 337.31 0.07 0.06 0.01 0.01 0.06 0.03
Deviation

values more consistently across the image, which improves visibility of

both darker and brighter regions.

Second, we performed a texture analysis using the GLCM to evaluate

key textural features such as contrast, correlation, energy, and homo-

geneity. A comparative study of GLCM features for the original and

10

CLAHE-enhanced datasets across 21 land use classes from the UC-
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Metrics
Fig. 7. A comparison of log-scaled mean GLCM features (contrast, correlation,

energy, and homogeneity) scores across 21 classes between the original dataset
and the CLAHE processed dataset.

Table 8
Classification performance of three CNN models on the UC-Merced Land Use
Dataset.

Model Augmentation CLAHE Processing Accuracy
Model A No No 92.14
Model B Yes No 96.43
Model C Yes Yes 97.62

Merced Land Use Dataset is shown in Table 6. The mean contrast rose
significantly from 394.36 to 901.58, as can be seen in Table 7, indicating
that CLAHE has increased the difference in intensity between neigh-
boring pixels. The increased contrast sharpens edges and improves vis-
ibility of details, which is especially helpful in remote sensing
applications where precise land use classification depends on the ability
to distinguish between subtle features like individual houses, roads, or
vegetation types. The mean correlation reduced marginally from 0.88 to
0.84, indicating a small reduction in linear reliance between pixel in-
tensities. Because correlation represents the consistency of pixel asso-
ciations, this drop implies that CLAHE provided a little degree of

Engineering Applications of Artificial Intelligence 162 (2025) 112654

variability, breaking up some highly uniform regions. This minor in-
crease in pixel diversity can help to avoid excessive smoothing and
preserve subtle texture variances, which are critical for distinguishing
across classes with similar tones or textures. There is also a decline in
textural uniformity, as evidenced by the mean energy dropping from
0.03 to 0.01. Decreased energy implies more intricate textures and
larger intensity variations in the CLAHE-processed images. This change
aligns with CLAHE'’s objective of improving contrast by distributing
intensity levels more evenly, reducing large areas of uniform brightness
or darkness, and enriching the image’s textural diversity. As a result, this
additional detail may increase model performance by providing inputs
with richer information. Last but not least, the mean homogeneity
dropped from 0.18 to 0.10, indicating smoother transitions and less
uniformity throughout the image. Although this decrease may result in
some noise, it is a normal byproduct of the contrast enhancement. The
images now have more sudden intensity variations due to lower ho-
mogeneity, which may make it easier to distinguish intricate textures
within each class. Fig. 7 shows the comparison of log-scaled mean GLCM
features between the original dataset and the CLAHE-processed dataset.
Where it is evident that the contrast of the CLAHE-processed dataset is
higher than that of the original dataset, while correlation, energy, and
homogeneity have somewhat decreased. The results align with the study
(Gadkari, 2004), which demonstrated that contrast and entropy
consistently increased as image quality increased, whereas energy and
homogeneity decreased. All things considered, these changes imply that
CLAHE has improved the UC-Merced dataset’s detail, contrast, and
textural diversity, yielding features that are easier to see and differen-
tiate. By providing high-contrast inputs, this could increase the classi-
fication accuracy of remote sensing models.

The three models’ results suggest that data augmentation and CLAHE
processing improve classification accuracy on the UC-Merced dataset, as
shown in Table 8. Model A, trained on the original dataset with no en-
hancements, obtained an accuracy of 92.14 %. This baseline result in-
dicates that the model performs pretty well on original data, but it lacks
the robustness required for fine-grained classification. Model B achieved
a significant improvement in accuracy to 96.43 % by using data
augmentation. The 4 % improvement over Model A demonstrates that
simply exposing the model to different transformations of the training
images through data augmentation improves the model’s ability for
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Fig. 8. Confusion matrix of Model A illustrating classification performance across 21 land use classes in the UC-Merced Land Use Dataset.
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Fig. 10. Confusion matrix of Model C illustrating classification performance across 21 land use classes in the UC-Merced Land Use Dataset.

generalization. This diversity in training data helps in enhancing the
model’s ability to adapt to changes in real-world scenarios, leading to
improved accuracy. Model C, trained with both data augmentation and
CLAHE processing, achieved the best accuracy of 97.62 %. The addition
of CLAHE alongside augmentation further improved accuracy by 1.19 %
compared to Model B. CLAHE’s role in enhancing contrast and high-
lighting finer details appears to complement data augmentation,
providing a richer set of features for the model to learn from. This
combination allows the model to better distinguish between classes,
resulting in the highest accuracy of the three models.

Figs. 8-10 show the confusion matrices for Models A, B, and C,
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respectively, detailing classification performance across 21 land use
classes in the UC-Merced Land Use Dataset. Each matrix depicts the
distribution of true positive rates along the diagonal, with off-diagonal
cells representing misclassification. Model A, trained on the original
dataset, gives a baseline classification but has higher misclassifications,
particularly in related classes, due to a lack of preprocessing. Model B,
trained on the augmented dataset, shows higher accuracy, as evidenced
by a more prominent diagonal pattern and fewer misclassifications,
implying that data augmentation improves generalization. Model C,
trained on the dataset using both augmentation and CLAHE processing,
obtains the maximum accuracy, with a sharper diagonal and fewer
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Fig. 11. Comparison of Grad-CAM visualizations generated by the same lightweight CNN architecture trained using three different approaches, resulting in three
different models: Model A, Model B, and, Model C on six land use classes from the UC-Merced dataset: (a) airplane, (b) storage tanks, (c) golf course, (d) tennis court,
(e) mobile home park, and (f) sparse residential. Row (W) shows the original images, while rows (X), (Y), and (Z) display Grad-CAM heatmaps overlaid on the images
using three models: (X) Model A trained on the dataset without augmentation and CLAHE processing, (Y) Model B trained with augmentation but without CLAHE,

and (Z) Model C trained with both augmentation and CLAHE processing.

misclassifications, indicating that CLAHE improves features and reduces
class overlap.

4.4. Grad-CAM visualization

The Grad-CAM visualizations reveal a notable enhancement in
feature localization and concentration from Model A to Model C,
particularly when it comes to capturing class-relevant structures. As can
be seen in Fig. 11, in the airplane class, Model A’s activations are
dispersed, omitting significant areas of the aircraft’s body. Model B
shows more concentrated red and yellow activation areas that cover a
larger portion of the airplane body, indicating that data augmentation
aids in the model’s ability to more successfully concentrate on important
structures. Training with both augmentation and CLAHE, Model C
demonstrates the most refined attention, almost entirely covering the
airplane body with red and yellow color, indicating precise feature focus
and improved ability to identify and highlight critical class character-
istics. This trend is also seen in other classes. For example, in the storage
tanks and tennis court classes, Model A exhibits less focused activations,
whereas Model B’s activations become more coherent, matching the key
components within each class. Although Models A and B did not focus on
the course and court, which are the key distinguishing features of these
classes, this suggests that they struggle to identify and prioritize essen-
tial spatial patterns specific to these categories.

Instead, their Grad-CAM heatmaps show attention spread out over
unrelated areas or background features, indicating a lack of precision in
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feature recognition. However, in the Grad-CAM heatmaps, Model C,
which used both augmentation and CLAHE processing, generated red
and yellow activation on the course and court areas in the Grad-CAM
heatmaps. The increased attention given to primary areas indicates
that CLAHE processing has enhanced the model’s capacity for detecting
minor but essential structural components in the images. The occurrence
of red and yellow tones in the court and course sections of Model C’s
heatmaps indicates a high level of confidence in these regions, under-
scoring their significance for class identification. The improved feature
localization is likely because of CLAHE’s impact on contrast enhance-
ment, which sharpens borders and textures, enabling the model to more
effectively distinguish and prioritize important regions, hence leading to
increased classification accuracy. Model C consistently has the highest
intensity and concentrated red and yellow activations around significant
objects, such as golf course boundaries and tennis court lines, yielding
the most accurate feature localization. Model C’s enhanced emphasis
indicates that CLAHE processing increased contrast and texture visibil-
ity, enabling the model to more accurately differentiate distinct areas
relevant to each class while reducing background noise. The improve-
ment of feature localization in the models highlights the combined ad-
vantages of augmentation and CLAHE processing. Although
augmentation alone improves focus and generalization, CLAHE further
sharpens the model’s attention to important details, allowing it to more
confidently and accurately distinguish between similar features within
classes. These results highlight how preprocessing techniques can
improve both visual interpretability and classification performance,



M.M.H. Rakib et al.

Table 9
Comparison of the proposed method with existing approaches for UC-Merced
Land Use classification.
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particularly in complex land-use scenes where precise structure recog-
nition is critical.

4.5. Comparison with other work

A comparative analysis between the proposed method and other
existing approaches used for UC-Merced land use classification is shown
in Table 9. The proposed method achieves an accuracy of 97.62 % using
only 56K parameters, 0.35 GFLOPs, and occupying just 0.234 MB of
storage. While several competing models (e.g., MSDFF, MLCMFNet, and
LmNet) report higher accuracies ranging from 99.33 % to 99.91 %, they
come at a significantly higher cost in terms of model complexity, with
parameter counts from 6 million to 134 million, FLOPs from 3.27 to over
15 GFLOPs, and model sizes from 24 MB up to 512 MB. In contrast, the
proposed method strikes a balance between accuracy and efficiency
trade-off, making it ideal for resource-constrained environments such as
drones, satellites, or embedded systems. Despite being ultra-lightweight,
it performs competitively with state-of-the-art models, demonstrating
the effectiveness of the model’s design and its suitability for real-time
aerial scene classification.

Fig. 12 illustrates the efficiency and effectiveness of our proposed
model, which achieves the highest accuracy of 97.62 % while using
significantly fewer parameters, lower FLOPs, and minimal storage. This
makes it especially well-suited for real-time and edge-based applica-
tions. Among the compared models, ShuffleNetV2 performs second best
with the lowest FLOPs, while ResNet-50 ranks the lowest, exhibiting the
poorest trade-offs, with the lowest accuracy and the highest computa-
tional and storage demands. The radar chart demonstrates that our
proposed model offers the most balanced and efficient network

Model Performance Comparison

Method Accuracy (%) Parameters GFLOPS Size
(Million) (MB)

GhostNet (Shen 96.19 ~1.73 0.00258 5.7
et al., 2023)

MSDFF (Xue et al., 99.76 ~134.44 ~15.60 ~512.87
2020)

Deep Feature 98.04 + 0.89 ~10.07 ~1.51 ~38.41
Fusion (Wang
et al., 2020)

ESPA-MSDWNet ( 98.76 + 0.08 2.4 0.338 ~9.16
Bai et al., 2021) (50 % training

set)

LmNet (Wan et al., 99.52 + 0.24 ~25 ~4.2 ~95.37
2021)

SE-MDPMNet ( 98.95 + 0.12 5.17 3.27 ~19.72
Zhang et al.,
2019)

BiMobileNet (Yu 99.03 + 0.28 7.76 0.45 29.59
et al., 2020)

MLCMFNet (Chen 99.91 + 0.1 35 Not ~133.35
et al., 2025) Mentioned

RepFACNN (Shi 99.33 + 0.26 6.4 0.87 ~24.41
et al., 2025)

Proposed Method 97.62 0.05629 0.3519 0.234

FLOPs (G)
Size (MB) «

Accuracy (%)

ResNet-50

MobileNetV2

ShuffleNetV2
—e— Ours

100
80

» Parameters (M)

Fig. 12. Radar plot comparing ResNet-50, MobileNetV2, ShuffleNetV2, and the proposed model across four metrics: number of parameters (in millions), FLOPs (in
gigaflops), model size (in megabytes), and classification accuracy (%). Higher accuracy indicates better performance, while lower values for parameters, FLOPs, and

model size reflect greater computational efficiency.
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Fig. 13. Grad-CAM-based quantitative comparison of our proposed architecture with ResNet-50, MobileNetV2, and ShuffleNetV2. All models were trained under
identical conditions for a fair, apple-to-apple evaluation using five metrics: Entropy, Top-K Coverage, Discriminativeness, Sparsity, and Consistency.

performance across all key metrics.
5. Discussion

Designing lightweight deep learning models for classifying many
classes is challenging due to the trade-off between accuracy and
parameter count. To address this for aerial scene classification, we
introduced a custom Inception module that captures both local and
global context, helping the network focus efficiently on key features.
Additionally, we used DSC to minimize parameters and computational
complexity.

As shown in Fig. 13, our proposed model achieves the lowest entropy
score, 9.49, compared to ResNet-50, 10.61, indicating less dispersed
attention and better focus on key scene regions, contributing to
improved accuracy. In Top-K Coverage, where lower scores indicate
more focused attention, our model again scores the lowest, while
ResNet-50 scores the highest. This suggests our model attends to fewer
but more relevant regions.

For Discriminativeness, which measures how attention varies across
classes, our model achieves the lowest score of 0.32, while ResNet-50
scores the highest of 1.99. The lower value in our model implies its
attention maps are more uniform across classes, likely due to shared
global textures (e.g., grass in golf courses and baseball fields). Rather
than relying on class-specific hotspots, our model emphasizes global
scene context. In terms of Sparsity, our model scores the highest 0.734,
indicating highly concentrated attention on a few critical regions, unlike
ResNet-50, 0.433. However, our model exhibits lower localization
consistency, meaning its attention shifts more across samples, adapting
dynamically to scene variation. In contrast, MobileNetV2 and
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ShuffleNetV2 demonstrate broader attention due to high entropy score
and higher class-specific discriminativeness, which, while effective, are
less efficient for scene-level understanding. Overall, our model learns a
context-aware, sparse attention mechanism that prioritizes a few highly
relevant patches, making it well-suited for aerial scene classification and
explaining its superior accuracy.

Although we initially used a simple train-test split, the test set was
also used for validation during training. To mitigate overfitting and
ensure evaluation on completely unseen data, we introduced an addi-
tional test set by applying vertical flipping and 90° rotation to the
original test set. This ensures the new test data remains entirely separate
from training and validation. The updated evaluation more accurately
reflects the model’s generalization ability. We assessed performance
using both Grad-CAM-based quantitative metrics and accuracy, with
results illustrated in Fig. 14. The pattern holds: our model continues to
outperform larger, more complex architectures in both accuracy and
context-aware attention. Despite a 2 % drop in accuracy on this unseen
data, the strong performance suggests minimal risk of overfitting and
confirms the model’s ability to generalize effectively.

Additionally, we evaluated the impact of 7 x 7 kernels on perfor-
mance by modifying our best-performing Model C. We removed the 7 x
7 kernel while keeping all other configurations unchanged. The original
Model C achieved an accuracy of 97.62 %, whereas the version without
the 7 x 7 kernel scored 96.90 %, highlighting the contribution of larger
kernels in capturing broader contextual features.

Our proposed lightweight CNN model offers several managerial ad-
vantages for organizations relying on remote sensing and aerial scene
analysis. Its low computational cost and minimal parameter size (only
56K) make it ideal for real-time deployment on edge devices such as
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Fig. 14. Grad-CAM quantitative analysis on the augmented (unseen) test set to evaluate model generalization.

drones and satellites, significantly reducing infrastructure and energy
expenses. This enables cost-effective and scalable adoption, particularly
in resource-constrained settings like agriculture, urban planning, and
environmental monitoring. Additionally, the integration of contrast
enhancement and data augmentation techniques ensures reliable per-
formance across diverse and low-quality image conditions, enhancing
operational flexibility. The use of Grad-CAM visualizations further
supports transparent decision-making by providing visual explanations
of model predictions, an essential feature for fostering trust, supporting
policy compliance, and facilitating human AI collaboration in critical
field applications.

While the proposed lightweight CNN model demonstrates high ac-
curacy and strong efficiency on the UC Merced dataset, there are several
important limitations that must be acknowledged to contextualize its
applicability and guide future work. Our evaluation is limited to a single,
relatively small-scale dataset composed of 21 scene classes with uniform
image resolution. As such, the model’s generalizability to more diverse
and large-scale remote sensing datasets such as NWPU-RESISC45,
DOTA, or BigEarthNet remains untested. These datasets often include
a wider range of scene complexities, scales, and noise characteristics,
which could pose additional challenges for lightweight models. While
we designed the model to be computationally efficient, requiring only
56K parameters, its real-world scalability has not been verified on actual
edge devices such as UAVs, Raspberry Pi units, or other embedded
platforms. Metrics like battery consumption, frame rate per second,
thermal behavior, and memory footprint in live applications are critical
for confirming true deployability. Furthermore, inference benchmarking
was performed using desktop-class GPUs, which may not reflect real-
time constraints faced in field environments. Although the model per-
forms well in its current scope, future studies should explore
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generalization across datasets, develop integrated enhancement pipe-
lines, validate edge-device deployment, and adopt robust explainability
frameworks to fully realize the model’s practical potential in real-world
remote sensing applications.

6. Conclusion
6.1. Findings

This study demonstrates that the integration of targeted pre-
processing techniques and multi-scale convolutional filters can signifi-
cantly enhance the performance of lightweight CNN models in aerial
scene classification tasks. First, CLAHE was found to be effective in
improving feature visibility, particularly in scenes with low contrast or
complex illumination conditions. By improving the separability of
foreground and background regions, CLAHE ensures that the model
receives more discriminative features, thereby reducing the dependency
on deep, computationally heavy architectures. Second, the imple-
mentation of semantic-preserving data augmentation substantially
improved generalization. The 5-fold augmentation strategy diversified
the training set without distorting the semantic content of aerial scenes,
enabling the lightweight model to learn robust representations despite
its limited parameter capacity. This result indicates that even for small-
scale models, effective augmentation can reduce overfitting and narrow
the performance gap with larger, state-of-the-art architectures. Finally,
the adoption of multi-scale convolutional filters (1 x 1,3 x 3,5 x 5, and
7 x 7) proved crucial in addressing the lack of global context awareness
in lightweight CNNs. While small kernels (e.g., 3 x 3) are effective for
fine-grained feature extraction, larger kernels, particularly the 7 x 7
filters, enabled the network to capture broader spatial dependencies that
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are essential in aerial scene interpretation, such as urban layouts or
agricultural patterns. This multi-scale fusion allowed the model to bal-
ance local and global feature learning while maintaining an overall
lightweight architecture, ultimately achieving a competitive accuracy of
97.62 % with only 56,293 parameters.

6.2. Research limitations

Despite the promising results, this study has several limitations. First,
although the proposed lightweight CNN demonstrates strong perfor-
mance on the UC Merced Land Use Dataset, its generalizability to larger
and more diverse datasets (e.g., high-resolution satellite imagery or
cross-domain aerial datasets) remains to be validated. Second, using
multi-scale filters improves performance, but larger kernels like 7 x 7
increase computation and may not work well on devices with limited
resources like embedded systems or low-power drones. Finally, this
study did not explore the integration of advanced attention mechanisms
or frequency-domain methods, which could further enhance feature
extraction while maintaining low computational cost.

6.3. Recommendations for future research

While 7 x 7 kernels proved effective for modeling global context,
their computational cost constrains the design of lightweight networks.
Future research should focus on efficient alternatives for large receptive
field modeling, such as employing dilated convolutions to expand the
receptive field without increasing kernel size or parameter count,
leveraging frequency-domain approaches to complement spatial-
domain convolutions for capturing global structures, incorporating
attention-based mechanisms to selectively emphasize context-rich re-
gions while reducing redundant computation, and exploring dynamic
kernel selection strategies that adaptively determine kernel sizes based
on scene complexity. Furthermore, optimizing CLAHE and augmenta-
tion pipelines for faster on-device processing could further strengthen
the applicability of lightweight CNNs in real-world remote sensing tasks.
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