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A B S T R A C T

Aerial scene classification using satellite and drone imagery is vital for applications like environmental moni
toring and urban planning, but the high computational demands of Convolutional Neural Networks (CNNs) limit 
their real-time use on resource-constrained platforms. Additionally, these models often lack global context 
awareness, relying mainly on small 3 × 3 kernels that capture fine details but miss broader spatial relationships. 
While large models can learn complex patterns, lightweight models struggle without adequate data and pre
processing. To address these challenges, we propose a lightweight CNN classifier optimized for fast, real-time 
aerial scene classification. Inspired by the Inception network, our architecture integrates multi-scale convolu
tional filters (1 × 1, 3 × 3, 5 × 5, and 7 × 7) to capture both local and global context. To reduce computational 
overhead, we incorporate Depthwise Separable Convolutions (DSC). To overcome the limitations of a compact 
model, we apply 5-fold semantic-preserving data augmentation and Contrast Limited Adaptive Histogram 
Equalization (CLAHE) to enhance feature visibility. While most state-of-the-art models require at least a million 
parameters, our lightweight CNN achieves an impressive 97.62 % accuracy on the UC (University of California) 
Merced Land Use Dataset using only 56,293 parameters. Furthermore, we use Gradient-Weighted Class Acti
vation Mapping (Grad-CAM) to assess augmentation, CLAHE, and our architecture’s influence on feature 
attention. This study demonstrates that effective preprocessing with CLAHE and extensive augmentation can 
narrow the gap between lightweight CNNs and complex models. These results support the use of efficient models 
for real-time, resource-constrained aerial scene classification, promoting sustainable and accessible Artificial 
Intelligence (AI) in remote sensing applications.

1. Introduction

Satellite and aerial imaging technologies have become more preva
lent, providing large volumes of high-resolution imagery over vast 
geographic regions, thanks to the quick advancement of earth obser
vation and remote sensing technologies. High spatial resolution imag
ery, offering sub-meter detail (Zhao et al., 2016), and very 
high-resolution remote sensing (RS) imagery with centimeter-level 
precision (Shawky et al., 2020), are now widely accessible. The global 
RS market is projected to grow rapidly, expanding from around $22–28 
billion in the mid-2020s to over $150 billion by 2034 (Research). This 
surge reflects the increasing demand for aerial image analysis across 
environmental monitoring, urban planning, and agriculture applica
tions. The increasing volume of RS imaging data has made aerial scene 

classification increasingly significant since it offers valuable insights 
into land use and land cover changes. This approach is crucial for ap
plications such as urban planning and development (Wellmann et al., 
2020), environmental monitoring (Padró et al., 2019; Yuan et al., 2020), 
agricultural management (Weiss et al., 2020; Huang et al., 2018), 
disaster management (Kucharczyk et al., 2021; Kemper et al., 2020; 
Bello et al., 2014), and land use mapping (Huang et al., 2020; Mohan
Rajan et al., 2020). Understanding land use and its temporal changes 
enables governments and organizations to monitor shifting patterns, 
detect deforestation, assess natural disaster impacts, and improve land 
resource management for sustainable development. The availability of 
advanced high-resolution imaging technologies calls for effective 
methods to classify aerial landscapes such as agricultural fields, forests, 
water bodies, and urban areas. Unlike natural images, RS images are 
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more complex, often containing diverse objects in a single frame (Zhang 
et al., 2016; Liu et al., 2021), with some ground features exhibiting high 
visual similarity (Tuia et al., 2011). As a result, current research em
phasizes robust feature extraction techniques. The emergence of deep 
learning (DL) has significantly advanced computer vision, with Con
volutional Neural Networks (CNNs) leading the way by automatically 
extracting and learning meaningful features such as edges, textures, and 
shapes directly from raw image data. Consequently, most recent studies 
rely on CNNs for effective aerial scene classification (Cheng et al., 2017; 
Luus et al., 2015; Zhang et al., 2015; Gui-Song et al., 2017; Liu et al., 
2018).

Aerial scene classification has been widely studied using advanced 
feature extraction and attention-based techniques, reaching high accu
racy. However, most models focus on performance rather than suit
ability for low-end edge devices (Xue et al., 2020; Wang et al., 2020; 
Wan et al., 2021; Zhang et al., 2019). This highlights the trade-off be
tween accuracy and computational expense. Large CNNs may need 
hundreds of megabytes to several gigabytes of storage and can slow 
down inference on low-power processors (Liu et al., 2024; Tabani et al., 
2021; Castanyer et al., 2021). They also consume significant battery 
energy, which is vital for mobile and wearable devices (Liu et al., 2024; 
Tabani et al., 2021; Pietrołaj et al., 2024). Furthermore, deployment can 
be difficult due to differences in hardware support, such as GPUs or 
NPUs. Often, real-time inference depends on offloading the process to 
external servers, which raises concerns about privacy, connectivity, and 
reliability (Tabani et al., 2021; Castanyer et al., 2021). To address the 
limitations of heavy models, some studies have proposed lightweight 
architectures for aerial scene classification (Shen et al., 2023; Bai et al., 
2021; Yu et al., 2020). While large models can perform well even with 
small datasets, these lightweight models often struggle due to their 
shallow depth. Most of these lightweight networks utilize 3 × 3 kernels 
to reduce computation, but this limitation restricts their receptive field 
and weakens their ability to capture global context. This is a significant 
drawback for datasets like UC (Universuty of California) Merced Land 
Use Dataset, where several classes, such as golf courses, beaches, and 
agricultural fields, require understanding the entire scene rather than 
focusing on specific objects. Moreover, these works mainly focus on 
model design and pay little attention to data preprocessing. Effective 
data preprocessing increases variability in training data, enabling the 
model to better understand context and focus more accurately on 
important regions of an image.

To overcome these limitations, we propose a lightweight CNN clas
sifier combined with effective preprocessing, including 5-fold semantic- 
preserving augmentation and Contrast Limited Adaptive Histogram 
Equalization (CLAHE) image enhancement techniques. Since aerial im
ages contain subjects of varying sizes and both local and global contexts 
can be important in assessment, it is crucial to design CNNs that can 
capture and utilize these contexts for classification. To accomplish this, 
we have used a custom Inception module inspired by the Inception 
network (Szegedy et al., 2015). It uses 1 × 1, 3 × 3, 5 × 5, and 7 × 7 
kernels to effectively capture both local and global contexts from im
ages. Also, we have utilized depth-wise separable convolution (Chollet, 
2017) operations in general to replace standard convolution filters to 
reduce the overall complexity of our network. Furthermore, we have 
utilized image augmentation and the CLAHE image processing tech
nique. Numerous studies have been conducted to improve low-contrast 
images utilizing CLAHE in various domains, including medical, aerial, 
and underwater images (Malik et al., 2019; Vidhya et al., 2017; Har
ichandana et al., 2020; Salem et al., 2019; Santos et al., 2020; Garg et al., 
2018). CLAHE improves image contrast, enhancing feature visibility and 
aiding model performance. The augmentation we used prevents se
mantic distortion and represents real-world aerial scenarios, where 
images can appear in any orientation. The image augmentation tech
nique helps the model train on more data samples, while the CLAHE 
enhances image features, enabling lightweight models to learn features 
properly (Aboshosha et al., 2019). Even though CNNs perform 

remarkably well on tasks like object detection and image classification, 
they often function as “black boxes,” providing little information about 
the decision-making processes behind these models. Selvaraju et al. 
(2017) introduced Gradient-Weighted Class Activation Mapping 
(Grad-CAM) to address this. It generates visual explanations by high
lighting the regions of an input image that a model focuses on when 
making predictions, enabling researchers to better understand and di
agnose model behavior. To investigate how image enhancement, data 
augmentation, and the proposed network affect the interpretability of 
lightweight CNN models, we also used Grad-CAM in this study. This 
approach reveals differences in feature extraction and decision-making, 
helping us understand the impact of preprocessing and network design 
on model attention.

The main contributions of this study are as follows: 

1. We introduced a novel lightweight model architecture that utilizes 
Depthwise Separable Convolutions (DSC), hence decreasing param
eters and computations, which results in accelerated inference, 
enabling our model to be suitable for deployment on mobile and edge 
devices.

2. We investigated the impact of data augmentation on a lightweight 
CNN architecture.

3. We explored the effect of the CLAHE image enhancement approach 
on a lightweight CNN architecture.

4. We employed Grad-CAM to analyze feature attention across models 
trained on datasets with and without CLAHE, demonstrating the 
impact of CLAHE on model interpretability, feature extraction, and 
performance.

The remainder of this paper is structured as follows: Section 2 re
views related works and highlights the research gap. Section 3 details 
the proposed methodology. Section 4 describes the experimental setup 
and presents the performance evaluation. Section 5 discusses the results, 
and Section 6 concludes the study with directions for future research.

2. Related works

Researchers are exploring various methods to improve aerial scene 
classification accuracy, with a key focus on enhancing feature extrac
tion, as features play a crucial role in classification performance.

Shen et al. (2023) proposed a modified lightweight architecture 
based on GhostNet, designed for real-time scene classification in 
embedded and resource-limited environments. On the University of 
California Merced Land Use Dataset (UC Merced) dataset and similar 
benchmarks, the modified GhostNet greatly reduced computational 
complexity from 7.85 million to 2.58 million FLOPS and memory usage 
from 16.4 MB to 5.7 MB while achieving a higher classification accuracy 
of 96.19 %, outperforming its original version as well as 
MobileNetV3-Small. Although their proposed method is lightweight, it 
lacks multiscale feature extraction capabilities, which is a notable lim
itation when working with datasets like UC Merced that require a strong 
global contextual understanding. Furthermore, while their data 
augmentation strategy includes rotation, which is generally beneficial, 
the addition of brightness and contrast adjustments may alter semantic 
information, potentially introducing noise and negatively affecting 
classification performance.

Xue et al. (2020) proposed a classification technique that utilizes 
multi-structure deep feature fusion (MSDFF). First, they used 
random-scale cropping for data augmentation. After that, they 
employed three distinct CNNs, GoogLeNet, CaffeNet, and VGG-VD16, to 
extract deep features from images, and then they used these features to 
fuse using a deep feature fusion network for classification. Their pro
posed method, trained on 80 % of the UC Merced dataset, achieved 
99.76 % accuracy. However, their proposed architecture uses around 
134 million parameters, which makes the model computationally 
expensive.
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To get more informative features, Wang et al. (2020) used a saliency 
detection model that mimics the human selective visual attention 
mechanism to process the images. They used a feature fusion approach, 
combining two feature sets: one generated from RGB images and the 
other from processed images using saliency detection. They attained an 
overall accuracy of 87.15 ± 0.69 % on RGB images without the fusion 
approach, and 98.04 ± 0.89 % using the proposed fusion method. They 
also highlighted the model’s lightweight nature while embracing the 
benefits of feature fusion and multiscale techniques. Yet, the method 
doesn’t utilize any augmentation strategies, which would help make the 
model more generalized and robust.

In order to achieve high accuracy and inexpensive model parame
ters, Bai et al. (2021) presented ESPA-MSDWNet, a lightweight multi
scale depthwise network with effective spatial pyramid attention 
(ESPA). It increases receptive fields and uses depthwise convolution to 
obtain granular multiscale features using MobileNet V2 as the backbone. 
However, their proposed model contains around 2.39 million parame
ters, which suffer from inefficiency.

Using ResNeXt as the backbone, the authors of the study (Wan et al., 
2021) proposed LmNet, which combines multiscale feature fusion and 
lightweight channel attention to help learn important channel features 
quickly. Additionally, they proposed a multiscale feature fusion frame
work that integrates both shallow edge and deep semantic information 
to enhance feature representation and contribute to classification ac
curacy. Nevertheless, their methodology results in a model that uses 
around 25 million parameters. Due to this high quantity of parameters, 
the model becomes computationally expensive.

Zhang et al. (2019) introduced a lightweight and effective CNN 
utilizing MobileNet V2, integrating dilated convolution and channel 
attention to enhance feature extraction. To improve efficiency, they 
implemented a multidilation pooling module to capture multiscale 
characteristics, hence ensuring excellent accuracy. Although they used 
image augmentation, the application of the CLAHE method could help 
the model to learn the intricate details in the images, making it more 
robust.

Yu et al. (2020) employed MobileNetv2 as the backbone model to 
extract deep image features, which are subsequently processed by two 
separate convolutional layers. The modified features go through a 
Hadamard product operation to produce enhanced bilinear features, 
which are subsequently pooled, normalized, and utilized for classifica
tion. This model also suffers from a high number of model parameters, 
which is around 7.76 million.

Chen et al. (2025) introduced MLCMFNet, a mutual learning method 
that combines multiple types of features. The network consists of three 
main components: a Multi-Feature Fusion Module (MFFM), which adds 
additional fused features; a Swin Transformer Module (STM), which 
captures global features; and a Multi-Attention Fusion Module (MAFM), 
which extracts more representative features. Mutual learning helps two 
different networks learn from each other, combining their strengths. 
This improves how local and global features work together. Their pro
posed model scored 99.91 ± 0.1 % accuracy on the UC Merced dataset. 
However, the model contains 35 million parameters; therefore, it may 
fail to operate properly in resource-constrained environments.

Shi et al. (2025) presented RepFACNN, a network that combines 
CNNs and transformers while reducing computation by using a repar
ametrized transformer (RepFormer). It extracts multilevel and 
multi-scale spatial features, then fuses them for better classification. 
This method scored 99.33 ± 0.26 % accuracy on the UC Merced dataset. 
Nevertheless, this model is computationally quite expensive as it utilizes 
almost 6.4 million parameters.

In contrast to prior studies, our approach focuses on designing a 
lightweight classification model with significantly fewer parameters and 
reduced computational requirements, while incorporating superior 
multiscale feature extraction to meet the demands of complex datasets. 
Additionally, we introduce a robust preprocessing pipeline that not only 
enhances image quality but also increases data diversity, effectively 
supporting the lightweight model in narrowing the performance gap 
with larger architectures. The research gap compared to existing 
methods is summarized in Table 1.

3. Methodology

This section discusses the datasets and techniques used for aerial 
scene classification. We split the UC Merced Land Use Dataset into 
training and testing sets and then applied data augmentation techniques 
to enhance generalization. Next, we employed the CLAHE method to 
improve the image’s contrast, and we implemented a custom CNN ar
chitecture that integrates inception modules, GAP, and DSC to facilitate 
efficient feature extraction and classification. Subsequently, we 
employed Grad-CAM for model interpretability. Finally, we evaluated 
Gray-Level Co-occurrence Matrix (GLCM) features to see how the orig
inal and CLAHE-processed images’ textures differed. Finally, we 
assessed the model’s performance using metrics like overall accuracy 
and a confusion matrix to compare the effectiveness of the original and 

Table 1 
Comparison of existing methods concerning image enhancement, semantic-preserving augmentation, and edge device deployability.

Study Backbone Preprocessing Edge Device 
Deployable

Limitation

Incorporation of Image 
Enhancement

Semantic-preserving Data 
Augmentation

Sheen et al. (Shen 
et al., 2023)

GhostNet No No (Brightness, Contrast) Yes Lacks multiscale feature extraction

Xue et al. (Xue 
et al., 2020)

GoogLeNet, CaffeNet, 
VGG-VD16 (MSDFF)

No No (Random-scale cropping) No Extremely high parameter count 
(~134M)

Wang et al. (Wang 
et al., 2020)

CNN + Saliency Fusion No No Yes No augmentation; saliency fusion only

Bai et al. (Bai et al., 
2021)

ESPA-MSDWNet 
(MobileNet V2)

No No Yes Relatively high parameter usage (2.39M)

Wan et al. (Wan 
et al., 2021)

ResNeXt No Yes (Horizontal flip, random 
rotation)

No High parameter count (~25M)

Zhang et al. (Zhang 
et al., 2019)

SE-Net No No No High parameter count (~19.72)

Yu et al. (Yu et al., 
2020)

MobileNet V2 + Dilated 
Conv

No Yes (rotation, flip) Yes No CLAHE; could improve with better 
image enhancement

Chen et al. (Chen 
et al., 2025)

MLCMFNet (Swin 
Transformer)

No Yes (conditional GAN [53], 
and self-attention GAN

No High parameter count (~35M)

Shi et al. (Shi et al., 
2025)

RepFACNN (CNN +
Transformer)

No Yes (Mixup) Yes Computationally expensive (~6.4M)

Proposed Work Custom Lightweight CNN Yes (CLAHE) Yes Yes Aims to match heavy models’ accuracy 
with a lightweight architecture
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processed datasets.

3.1. Datasets

Deep learning relies heavily on datasets since they provide the basis 
for model training. Repeated exposure to data during training allows 
deep learning algorithms to discover patterns, features, and relation
ships. A model can only learn well with adequate and pertinent data, 
which produces subpar performance and generalization. A well-curated 
dataset allows the model to make accurate predictions by offering a 

variety of instances that reflect the real-world variables the model is 
likely to face. The quality and quantity of data substantially impact the 
model’s success. As a result, for this investigation, we employed the UC 
Merced Land Use Dataset (Yang and Newsam). Detailed information on 
the UC-Merced dataset is given in Table 2. The UC Merced Land Use 
Dataset, released by the University of California, Merced, is a widely 
used benchmark in remote sensing and land use classification. This 
dataset comprises 2100 high-resolution RGB aerial images, each of size 
256x256 pixels. The dataset includes 21 land use classes, such as agri
cultural, airplane, beach, forest, and residential areas. The images, 

Table 2 
Detailed information about the UC Merced Land Use Dataset.

Dataset Number of classes Number of images per class Total number of images Image size Spatial resolution (m)

UC-Merced 21 100 2100 256× 256 0.3

Fig. 1. Sample images of each class in UC-Merced dataset: (1) agricultural, (2) airplane, (3) baseball diamond, (4) beach, (5) buildings, (6) chaparral, (7) dense 
residential, (8) forest, (9) freeway, (10) golf course, (11) harbor, (12) intersection, (13) medium residential, (14) mobile home park, (15) overpass, (16) parking lot, 
(17) river, (18) runway, (19) sparse residential. (20) storage tanks, (21) tennis courts.

Fig. 2. Augmented variations of original images using 5-factor offline augmentation. Where (A) is the original image from the dataset. After applying 5-factor 
augmentation, we get augmented images. These are: (1) Rotation right by 90◦, (2) Rotation left by 90◦, (3) Flip horizontal, (4) Flip vertical, and (5) Identity (no 
augmentation).
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sourced from the USGS National Map Urban Area Imagery, have a 
spatial resolution of 0.3 m per pixel and represent various natural and 
human-made environments. Sample images from each category in this 
dataset are shown in Fig. 1.

3.2. Data augmentation

Augmentation is vital in deep learning because it increases the 
training data’s diversity and amount, which helps minimize overfitting 
and improves the model’s generalization capacity. Particularly in the 
case of small datasets like the UC-Merced land use dataset, with only 100 
images per class, augmentation introduces variations such as changes in 
orientation and reflections, allowing the model to handle the complex
ities of real-world data better. By transforming images without changing 
their semantic meaning, the model can learn to identify patterns and 
features more effectively, even when meeting previously unknown 
variances in test data.

In this work, we used offline augmentation, where augmentations 

are applied before training, rather than online augmentation, which 
applies transformations during training. Offline augmentation ensures 
that the augmented data is fixed and predefined, providing a consistent 
dataset throughout multiple experiments, which is notably useful for 
reproducibility in tasks such as model comparison and ablation studies. 
We applied a 5-factor augmentation strategy illustrated in Fig. 2, where 
each image x ∈ Dtrain is subjected to the following transformation: (1) 
rotated right by 90◦, using Rotate90(x) operator that rotates the image by 
90◦ clockwise, (2) rotated left by 90◦, using Rotate− 90(x) operator that 
rotates the image by 90◦ counterclockwise, (3) flipped horizontally, 
using Fliphorizontal(x) operator that flips the image horizontally, (4) flip
ped vertically using the Flipvertical(x) operator that flips the image verti
cally, and (5) Identity (no changes) using Identity(x) operator that leaves 
the image unchanged. Thus, each image xi ∈ Dtrain generated an 
augmented set A(xi) =

{
xidentity, xrotate− right , xrotate− left, xflip− horizontal,

xflip− vertical
}
. By using these augmentations, we expanded the training set 

fivefold, yielding a more diverse and robust dataset.

Fig. 3. A custom inception module with the addition of an extra 7 × 7 kernel to the original inception module.

Fig. 4. Overview of the proposed architecture for aerial scene classification. The architecture integrates Inception modules and DSC to enhance feature extraction 
while maintaining computational efficiency.
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3.3. CLAHE

CLAHE is a cutting-edge image processing technique that improves 
image contrast, especially in cases where global contrast adjustments 
might result in over-saturation of regions of relatively uniform intensity. 
Unlike standard Histogram Equalization (HE), which adjusts contrast 
uniformly across the entire image, CLAHE works on small, localized 
sections known as tiles. To avoid obvious artifacts, the borders between 
the tiles are smoothly blended after localized equalization. One impor
tant characteristic of CLAHE is its ability to limit contrast amplification 
by establishing a clip limit, which keeps noise from being excessively 
amplified in areas of the image that are homogeneous. Because of this, 
CLAHE works particularly well for bringing out the subtle details in 
images with varying contrast, as those seen in remote sensing, medical 
imaging, and other applications where retaining subtle details is crucial 
while avoiding excessive noise amplification. Hence, we applied CLAHE 
with a clip limit of 2 and a tile grid size of 8 × 8 to generate an enhanced 
version of the dataset. Given an image I(x,y), the image is divided into 
N × M tiles, and for each tile, a histogram is computed. The contrast is 
limited by clipping the histogram at a specified threshold T, where any 
bin H(i) in the histogram exceeding T is clipped, and the excess is 
redistributed across the remaining bins. The clipped histogram is then 
used to map the pixel values through a cumulative distribution function 
that is expressed as follows: 

(CDF),C(i)=
∑i

j=0
H(j) (1) 

Equation (1) is used to transform the pixel intensities. The final output 
for each pixel Í (x, y) is obtained by bilinear interpolation between 

neighboring tiles to avoid boundary artifacts. Thus, CLAHE enhances 
local contrast while suppressing noise amplification.

3.4. Proposed architecture

In this section, we provide an in-depth description of the architecture 
we are proposing. As shown in Fig. 4, the initial block of the model in
corporates a convolutional block, which takes 3 input channels and 
outputs a feature map of 32 channels, followed by an Inception module, 
a core element of the Inception architecture (Szegedy et al., 2015), with 
32 channels. The Inception module enables multiscale feature extraction 
by applying multiple convolutional filters (1 × 1, 3 × 3, 5 × 5) and a 
max-pooling operation in parallel. A 1 × 1 convolution is used before 
larger filters to reduce dimensionality and computational cost. While 3 
× 3 filters capture fine details, 5 × 5 filters extract more global features. 
The results of these operations are concatenated along the depth 
(channel) dimension, yielding a rich feature map made up of informa
tion retrieved at multiple scales. This enables the network to capture 
features at various sizes without committing to a particular convolution 
size, resulting in improved performance while keeping computational 
costs under control. By concatenating features from distinct branches, 
the network can adapt to various patterns, allowing it to better gener
alize to diverse datasets, such as remote sensing images with both small 
and large structures. Drawing inspiration from the original Inception 
module, we added a 7x7 kernel to the original module for our objective 
of aerial scene classification.

The architecture of the custom inception module is shown in Fig. 3. 
The reason behind incorporating a 7x7 kernel stems from the nature of 
the UC-Merced dataset, which includes land image categories such as 
golf courses, sparse residential areas, and dense residential areas, as 

Table 3 
A detailed summary of our proposed design, specifying each layer type, the associated output dimensions, and the number of parameters related to each layer.

Layer (type) Convolutional Layer Parameters Output Shape Parameters

kernel_size Padding Stride Channel Height Width

Conv2d 3 1 1 32 256 256 896
Conv2d (Inception Module) 1 0 1 8 256 256 264
Conv2d (Inception Module) 1 0 1 8 256 256 264
Conv2d (Inception Module) 3 1 1 8 256 256 584
Conv2d (Inception Module) 1 0 1 4 256 256 132
Conv2d (Inception Module) 5 2 1 4 256 256 404
Conv2d (Inception Module) 1 0 1 4 256 256 132
Conv2d (Inception Module) 7 3 1 4 256 256 768
MaxPool2d (Inception Module) 3 1 1 32 256 256 0
Conv2d (Inception Module) 1 0 1 8 256 256 264
Inception Module N/A N/A N/A 32 256 256 0
ReLU N/A N/A N/A 32 256 256 0
BatchNorm2d N/A N/A N/A 32 256 256 64
MaxPool2d 2 0 2 32 128 128 0
Conv2d (Depthwise) 3 1 1 32 128 128 320
Conv2d (Pointwise) 1 0 1 64 128 128 2112
ReLU N/A N/A N/A 64 128 128 0
BatchNorm2d N/A N/A N/A 64 128 128 128
MaxPool2d 3 1 2 64 64 64 0
Conv2d (Depthwise) 3 1 1 64 64 64 640
Conv2d (Pointwise) 1 0 1 128 64 64 8320
ReLU N/A N/A N/A 128 64 64 0
BatchNorm2d N/A N/A N/A 128 64 64 256
MaxPool2d 2 0 2 128 32 32 0
Conv2d (Depthwise) 3 1 1 128 32 32 1280
Conv2d (Pointwise) 1 0 1 256 32 32 33024
ReLU N/A N/A N/A 256 32 32 0
BatchNorm2d N/A N/A N/A 256 32 32 512
AdaptiveAvgPool2d N/A N/A N/A 256 1 1 0
Dropout N/A N/A N/A 256 N/A N/A 0
BatchNorm1d N/A N/A N/A 256 N/A N/A 512
Softmax N/A N/A N/A 21 N/A N/A 5397

Total Parameters: 56293.
Trainable Parameters: 56293.
Non-Trainable Parameters: 0.
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illustrated in Fig. 1. In such scenes, patterns or objects are often 
dispersed across larger regions. Larger kernels are beneficial in these 
cases, as they can capture distant spatial relationships. Specifically, a 7 
× 7 kernel, due to its larger receptive field, can extract broader 
contextual features and capture more large-scale or global patterns 
within an image. For aerial scene classification, this can enhance the 
model’s ability to identify entire regions, such as forests, agricultural 
fields, or large residential zones.

In the second, third, and fourth blocks, we employed DSC instead of 
normal convolution, aiming to significantly reduce the computational 
load of the network without sacrificing performance. This approach 
reduces computation in CNNs by decomposing a standard convolution 
into two operations: depthwise and pointwise convolutions. The 
depthwise step applies one filter per input channel, reducing operations 
from K × K × Cin × Cout × H × W to K× K× Cin × H× W. Then, the 
pointwise (1 × 1) convolution combines these outputs with Cin× Cout×

H × W operations. This significantly lowers the computational cost, 
ideal for real-time and resource-constrained applications.

The model employs batch normalization to stabilize training and 
utilizes ReLU activation to introduce nonlinearity. The network con
cludes with a Global Average Pooling (GAP) (Lin, 2013) layer followed 
by a dropout layer to mitigate overfitting. GAP aggregates spatial data 
throughout the entire feature map, reducing each channel into one 
value. It calculates the average value of each feature map over all spatial 
dimensions, effectively reducing each feature map to a single value. 
Mathematically, for a given feature map F of size H× W, the output y 
after applying GAP can be expressed as: 

y=
1

H × W
∑H

i=1

∑W

j=1
F(i, j) (2) 

Where F(i, j) denotes the value at the i-th row and j-th column of the 
feature map. The resulting output y is a vector of size C, where C is the 
number of feature maps. This approach not only preserves the global 
context of the image but also significantly decreases the total number of 
trainable parameters to 56,293, as indicated in Table 3. Furthermore, 
GAP is particularly good for reducing overfitting in deep networks since 
it introduces fewer parameters than fully connected layers, making it a 
great choice for transferring information across different input sizes and 
improving the model’s performance. The final output layer employs 
softmax activation to generate probabilities for each class, making it 
ideal for multi-class classification tasks.

Our proposed model architecture balances complexity and perfor
mance by incorporating Inception modules, DSC, and a GAP layer. The 
Inception module utilizes parallel convolutional filters of varying sizes 
to capture multi-scale features, enabling the model to generate broad 
feature representations while reducing the likelihood of overfitting. DSC 
decreases parameter counts and computational complexity, thereby 
improving training and inference speed. The GAP layer reduces spatial 
dimensions by aggregating feature maps into single vectors, reducing 
the risk of overfitting while preserving critical global context. This 
combination produces a lightweight and powerful model demonstrating 
efficient learning and high accuracy in aerial scene classification tasks.

3.5. Grad-CAM

Grad-CAM is a method for visualizing and explaining the decision- 
making process of a CNN by highlighting the regions of an image that 
are significant for class prediction. The technique employs the gradients 
of the output from the feature maps of the last convolutional layer to 
produce a heatmap highlighting the significant regions influencing class 
activation. The procedure starts with a forward pass to derive the class 
score S(c) for the class c, subsequently calculating the gradients of this 
score regarding the feature maps Ak of the final convolutional layer, 
denoted as δS(c)

δAk . After that, GAP is utilized to calculate the weights for 

each feature map using Equation (3). 

ak =
1
Z
∑

i

∑

j

δS(c)
δAk(i, j)

(3) 

Where Z represents the number of pixels in the feature map. The Grad- 
CAM heatmap L is produced by integrating the feature maps with their 
respective weights, expressed as L = ReLU

( ∑
kakAk), whereas ReLU 

guarantees that only positive values are taken into account. This heat
map is then upsampled to the original image size, which improves CNN 
interpretability by enabling the presentation of the crucial areas that 
affect the model’s classification. As a powerful tool for model interpre
tation, Grad-CAM offers valuable insights into CNN decision-making by 
graphically representing the regions of the input image that are most 
significant for a particular classification.

3.6. Gray-level Co-occurrence matrix (GLCM)

GLCM, introduced by Haralick et al. (1973), is a widespread statis
tical method in image processing for analyzing image texture. This 
technique assesses the spatial correlations among pixel intensities, 
providing insights about the image’s structural patterns. The GLCM 
counts the frequency of co-occurrence of pixel value pairs with pre
defined intensities, known as gray levels, within a designated spatial 
arrangement in a chosen image region. It measures the frequency of 2 
gray levels i and j occurring at a particular spatial distance d and 
orientation θ. The GLCM, denoted as, P(i, j) is formed by determining the 
occurrences of pixel pairs (i, j), where i signifies the gray level of a 
reference pixel and j indicates the gray level of its adjacent pixel, situ
ated at a specified distance d and angle θ. Mathematically, P(i, j) is 
defined as: 

P(i, j|d, θ)=
∑M

x=1

∑N

y=1

{
1, if I(x, y) = i and I

(
x + dx,y + dy

)
= j

0, otherwise

}

(4) 

Where I(x, y) is the intensity at the pixel (x,y), and 
(
dx, dy

)
is the offset 

corresponding to the specified d and θ. The result is a matrix where each 
element P(i, j) represents the number of times the pair (i, j) occurs in the 
image with the given spatial relationship. From GLCM, several texture 
features can be derived, such as contrast, correlation, energy, and ho
mogeneity. Contrast measures the intensity difference between a pixel 
and its neighbor. It is calculated using Equation (5). 

Contrast=
∑

i,j
P(i, j)(i − j)2 (5) 

Correlation measures how correlated a pixel is to its neighbor, which 
is calculated using Equation (6). 

Correlation=
∑

i,j

(i − μi)
(

j − μj

)
P(i, j)

σiσj
(6) 

Where μ and σ are the mean and standard deviation of the gray levels.
Energy represents the uniformity of the texture. Equation (7) is used 

to calculate energy. 

Energy=
∑

i,j
P(i, j)2 (7) 

Homogeneity measures the closeness of the distribution of elements 
in the GLCM to the diagonal. It is calculated using Equation (8). 

Homogeneity=
P(i, j)

1 + |i − j|
(8) 

GLCM is an effective texture analysis tool that reveals spatial pat
terns of pixel intensities in an image.
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3.7. Metrics

Model complexity and classification performance were the two 
evaluation criteria for our proposed method. Classification performance 
comprises overall accuracy and the confusion matrix, whereas model 
complexity involves FLOPS, inference times, and size.

3.7.1. Overall accuracy
Overall Accuracy (OA) is the ratio of correct predictions to the total 

number of predictions made. It gives an overall measure of how well the 
model performs across all classes. Mathematically, OA can be expressed 
as: 

OA=
1
T
∑n

i=1

∑k

j=1
Pij (9) 

Where Pij represents the count of accurately predicted instances, T de
notes the total examples in the test set, n signifies the number of in
stances per class, and k indicates the total number of categories or 
classes.

3.7.2. Confusion matrix
A confusion matrix is used to evaluate the effectiveness of a classi

fication model. This provides a better understanding of the performance 
by displaying the number of predictions that were correct and those that 
were incorrect for each class. The matrix is useful for determining the 
different kinds of errors the model is making, as well as the percentage of 
incorrect classifications that occur across the various classes. If a multi- 
class instance involves n classes, the confusion matrix will be a square of 

size n× n, where each entry Pij represents the number of instances where 
the true label is class i and the predicted label is class j.

3.7.3. Floating point operations per second (FLOPS)
The amount of computational complexity that a model comes with 

can be measured using FLOPS. It indicates the number of floating-point 
operations that are carried out by the model during the inference pro
cess. The model is generally considered to be more efficient when it has 
lower FLOPS.

3.7.4. Inference time

Inference Time measures the time it takes for the model to make 
predictions on new data. This can be evaluated by running the model 
on a set of test images and recording the time taken for the forward 
pass.

3.7.5. Size
Model Size refers to the model’s saved weights or parameters. This 

can be measured by checking the storage size of the model file. This is 
important for deployment in resource-constrained environments.

4. Experiments and results

In this section, we discuss the experimental setup and results ob
tained from the experiments that were conducted. The experimental 
setup outlined the training environment and parameters for the custom 
CNN model. We described the training process, dataset splits, and 
evaluation strategy in the experimental details. We explored the impact 

Fig. 5. Sample preview of the original and CLAHE-processed images from three different land use classes in the UC Merced Land Use Dataset. The top row includes 
the original images for the following classes: airplane, baseball diamond, and storage tanks. The bottom row shows the CLAHE-processed images for the same classes.
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of data augmentation and CLAHE enhancement, demonstrating their 
influence on classification performance. A comparison with other work 
in remote sensing classification was provided, showing the advantages 
of our proposed approach. Grad-CAM visualizations were presented to 
interpret the model’s decision-making process by highlighting impor
tant regions in both original and CLAHE-enhanced images.

4.1. Experimental setup

All experiments were conducted using the PyTorch framework 
(version 1.13.1) with Python 3.10.6. Training was performed on a sys
tem equipped with an Intel Core i7-13700K CPU, 32 GB DDR5 RAM, and 
an NVIDIA RTX 4090 GPU running Windows 11. The CUDA and cuDNN 
versions used were 11.7 and 8.4, respectively. To ensure reproducibility 
and deterministic behavior, we set the random seed to 42 across all 
relevant libraries: random.seed(42), np.random.seed(42), torch.man
ual_seed(42), and torch.cuda.manual_seed_all(42). Additionally, torch. 
backends.cudnn.deterministic was set to True. The models were trained 
for 500 epochs using a batch size of 64. The optimizer used was Adam 
with an initial learning rate of 0.01, while all other optimizer parameters 
were kept at their default values. A cosine annealing learning rate 
scheduler (CosineAnnealingLR) was used, with T_max set to 500 and 
eta_min set to 1 × 10− 8, while other parameters remained at their 
default values. The loss function used was the standard 
CrossEntropyLoss.

4.2. Experimental details

This study uses the UC Merced Land Use Dataset, widely used in 
remote sensing scene classification. As shown in Table 2, the dataset 
consists of 2100 images across 21 land-use classes, with 100 images per 
class. These classes represent a diverse range of environments, including 
residential areas, airports, beaches, etc. To investigate the impact of 
contrast enhancement on model performance, this study applied CLAHE 
preprocessing to the dataset. The processed images were then used 
alongside the original to evaluate whether CLAHE improves classifica
tion performance in lightweight CNNs. Fig. 5 compares original and 
CLAHE-processed images, highlighting improved local contrast and 
more uniform color distribution in the latter. These visual differences 
suggest that CLAHE may enhance feature extraction and help the model 
better distinguish between land-use categories.

To prepare the data for model training and evaluation, we split it into 
two subsets at an 80:20 ratio. Specifically, 80 % of the data was allocated 
to the training set, while the remaining 20 % was reserved for the test set 
to assess performance. This split was intended to achieve a balance be
tween sufficient training data for model learning and ample test data for 
reliable generalization evaluation. After splitting the data into training 
and test sets, we applied data augmentation to both the original and the 
CLAHE-processed datasets. However, the augmentation was only con
ducted on the training set, leaving the test set unchanged to ensure a fair 
evaluation. Table 4 shows the image counts for each class, highlighting 
the number of images before and after data augmentation. This com
parison shows the scale of augmentation applied to the training set, 
emphasizing the substantial increase in training data through 

augmentation, which was used to improve model performance and 
robustness across both the original and CLAHE-processed datasets.

To evaluate the impact of data augmentation and CLAHE processing 
on the performance of our proposed lightweight CNN, we trained the 
same architecture under three different conditions. Each model was 
trained for 500 epochs using a cosine annealing learning rate scheduler 
to support smooth convergence. By keeping the architecture and 
training settings consistent, performance differences could be attributed 
solely to the effects of augmentation and CLAHE. A summary of the 
proposed architecture is provided in Table 3.

The first model, serving as the baseline, was trained on the original 
dataset without any augmentation or CLAHE. The second model incor
porated 5-fold offline augmentation to improve generalization, as 
illustrated in Fig. 2, but excluded CLAHE to isolate the effect of 
augmentation. The third model was trained using a dataset processed 
with both 5-fold augmentation and CLAHE. All three models share the 
same architecture and thus have identical FLOPS and model sizes. 
However, inference time may vary slightly due to hardware conditions. 
To obtain consistent timing results, we measured inference time over 10 
runs on a test platform equipped with an NVIDIA RTX 4090 GPU and a 
13th Gen Intel Core i7-13700K CPU. Averaging the results helped 
minimize fluctuations and provide a reliable assessment. The mean 
inference times are presented in Table 5. We measured the inference 
time of the proposed model on the UC Merced dataset using a batch size 
of 1 on an NVIDIA RTX 4090 GPU. After 2 warmup runs, inference was 
timed over 10 runs. The average inference time was mean_time ±
std_time seconds per image.

4.3. Impact of data augmentation and CLAHE enhancement

In order to thoroughly evaluate the quality enhancements brought 
about by CLAHE, we employed two primary methods. First, we con
ducted histogram analysis across the red, green, and blue channels. This 
enabled us to see how applying CLAHE caused the pixel intensities to 
redistribute. As can be seen in Fig. 6, the histograms of the original 
images ((a) and (c)) exhibit narrow and concentrated peaks, particularly 
in the blue and green channels, indicating a restricted dynamic range 
and limited color variance. This pattern suggests that large homoge
neous regions dominate the images, such as the concrete surface sur
rounding the airplane or the grassy field of the baseball diamond. 
Consequently, large portions of the images possess nearly uniform in
tensities, leading to reduced contrast and weak differentiation between 
neighboring regions. This, in turn, implies that certain details, such as 
shadows, textures, or transitions between objects like grass and the 
baseball diamond, are not well-defined. As a result, classification algo
rithms might struggle to detect features accurately in these regions. 
After applying CLAHE, the histograms of images ((b) and (d)) exhibit a 
more uniform distribution of pixel intensities across all three channels. 
This indicates that the contrast has been enhanced by distributing in
tensities evenly and making subtle features, such as varied shades of 
green in the grass or the outer edges of objects, more apparent. The 
equalization in all channels implies that CLAHE has distributed pixel 

Table 4 
UC Merced Land Use Dataset distribution with and without augmentation.

Dataset Split 
Ratio

Number of 
images per class

Number of 
images per set

Total 
images in 
the dataset

Train 
set

Test 
set

Train 
set

Test 
set

Without 
augmentation

80:20 80 20 1680 420 2100

With 5-fold 
augmentation

80:20 400 20 8400 420 8820

Table 5 
Comparison of three distinct models based on key performance and efficiency 
metrics. The metrics include FLOPS, Inference Time, and Model Size. The 
original dataset without any CLAHE processing is used to train Model A, the 
augmented dataset without any CLAHE processing is used to train Model B, and 
the dataset that has undergone CLAHE processing and augmentation is used to 
train Model C.

Model GFLOPS Inference Time (seconds per image) Size (KB)

CPU (i7-13700K) GPU (RTX 4090)

Model A 0.3519 0.033546 ± 0.00003 0.003201 ± 0.00002 244
Model B 0.3519 0.033564 ± 0.00002 0.003212 ± 0.00002 244
Model C 0.3519 0.033867 ± 0.00003 0.003492 ± 0.00003 244
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values more consistently across the image, which improves visibility of 
both darker and brighter regions.

Second, we performed a texture analysis using the GLCM to evaluate 

key textural features such as contrast, correlation, energy, and homo
geneity. A comparative study of GLCM features for the original and 
CLAHE-enhanced datasets across 21 land use classes from the UC- 

Fig. 6. Comparison of original and CLAHE-processed images with corresponding histograms. Row 1 shows image samples, where columns (a) and (c) are original 
images, and columns (b) and (d) are their CLAHE-processed counterparts. Row 2 shows the histograms, with (a) and (c) illustrating the pixel intensity distributions 
across red, green, and blue channels of the original images, and (b) and (d) showing the enhanced contrast and redistributed pixel intensities after processing with 
CLAHE. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 6 
Comparison of GLCM Feature Analysis between CLAHE-Processed and original Datasets across 21 Classes of the UC-Merced Land Use Dataset.

Class Contrast Correlation Energy Homogeneity

Original 
Dataset

CLAHE Processed 
Dataset

Original 
Dataset

CLAHE Processed 
Dataset

Original 
Dataset

CLAHE Processed 
Dataset

Original 
Dataset

CLAHE Processed 
Dataset

agricultural 368.95 1514.26 0.64 0.63 0.02 0.01 0.11 0.05
airplane 280.13 523.56 0.91 0.88 0.03 0.01 0.22 0.11
baseball 

diamond
108.74 338.67 0.94 0.90 0.03 0.02 0.24 0.11

beach 84.62 323.27 0.96 0.91 0.06 0.03 0.38 0.19
buildings 509.03 811.62 0.94 0.90 0.02 0.01 0.19 0.10
chaparral 355.88 1353.88 0.81 0.80 0.02 0.01 0.11 0.06
dense 

residential
463.60 921.61 0.90 0.88 0.02 0.01 0.15 0.09

forest 265.80 1232.49 0.78 0.76 0.02 0.01 0.11 0.06
freeway 248.45 677.18 0.92 0.88 0.02 0.01 0.16 0.08
golf course 127.09 512.71 0.91 0.83 0.03 0.01 0.20 0.09
harbor 732.45 981.17 0.90 0.88 0.05 0.02 0.24 0.13
intersection 415.32 869.38 0.89 0.86 0.02 0.01 0.17 0.09
medium 

residential
475.41 1059.80 0.90 0.86 0.02 0.01 0.15 0.09

mobile home 
park

844.75 1311.57 0.88 0.86 0.02 0.01 0.16 0.10

overpass 436.13 937.05 0.89 0.84 0.02 0.01 0.16 0.09
parking lot 890.21 1360.43 0.83 0.81 0.02 0.01 0.13 0.08
river 289.93 1082.17 0.87 0.79 0.03 0.01 0.16 0.08
runway 254.52 546.70 0.90 0.85 0.04 0.02 0.23 0.12
sparse 

residential
287.99 877.43 0.90 0.84 0.02 0.01 0.15 0.08

storage tanks 526.72 898.49 0.89 0.85 0.03 0.02 0.23 0.13
tennis court 315.80 799.76 0.91 0.86 0.02 0.01 0.18 0.09

Table 7 
Mean and Standard Deviation of GLCM Features for CLAHE-Processed and original Datasets across 21 Classes of the UC-Merced Land Use Dataset.

Dataset Contrast Correlation Energy Homogeneity

Original 
Dataset

CLAHE Processed 
Dataset

Original 
Dataset

CLAHE Processed 
Dataset

Original 
Dataset

CLAHE Processed 
Dataset

Original 
Dataset

CLAHE Processed 
Dataset

Mean 394.36 901.58 0.88 0.84 0.03 0.01 0.18 0.10
Standard 

Deviation
218.76 337.31 0.07 0.06 0.01 0.01 0.06 0.03
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Merced Land Use Dataset is shown in Table 6. The mean contrast rose 
significantly from 394.36 to 901.58, as can be seen in Table 7, indicating 
that CLAHE has increased the difference in intensity between neigh
boring pixels. The increased contrast sharpens edges and improves vis
ibility of details, which is especially helpful in remote sensing 
applications where precise land use classification depends on the ability 
to distinguish between subtle features like individual houses, roads, or 
vegetation types. The mean correlation reduced marginally from 0.88 to 
0.84, indicating a small reduction in linear reliance between pixel in
tensities. Because correlation represents the consistency of pixel asso
ciations, this drop implies that CLAHE provided a little degree of 

variability, breaking up some highly uniform regions. This minor in
crease in pixel diversity can help to avoid excessive smoothing and 
preserve subtle texture variances, which are critical for distinguishing 
across classes with similar tones or textures. There is also a decline in 
textural uniformity, as evidenced by the mean energy dropping from 
0.03 to 0.01. Decreased energy implies more intricate textures and 
larger intensity variations in the CLAHE-processed images. This change 
aligns with CLAHE’s objective of improving contrast by distributing 
intensity levels more evenly, reducing large areas of uniform brightness 
or darkness, and enriching the image’s textural diversity. As a result, this 
additional detail may increase model performance by providing inputs 
with richer information. Last but not least, the mean homogeneity 
dropped from 0.18 to 0.10, indicating smoother transitions and less 
uniformity throughout the image. Although this decrease may result in 
some noise, it is a normal byproduct of the contrast enhancement. The 
images now have more sudden intensity variations due to lower ho
mogeneity, which may make it easier to distinguish intricate textures 
within each class. Fig. 7 shows the comparison of log-scaled mean GLCM 
features between the original dataset and the CLAHE-processed dataset. 
Where it is evident that the contrast of the CLAHE-processed dataset is 
higher than that of the original dataset, while correlation, energy, and 
homogeneity have somewhat decreased. The results align with the study 
(Gadkari, 2004), which demonstrated that contrast and entropy 
consistently increased as image quality increased, whereas energy and 
homogeneity decreased. All things considered, these changes imply that 
CLAHE has improved the UC-Merced dataset’s detail, contrast, and 
textural diversity, yielding features that are easier to see and differen
tiate. By providing high-contrast inputs, this could increase the classi
fication accuracy of remote sensing models.

The three models’ results suggest that data augmentation and CLAHE 
processing improve classification accuracy on the UC-Merced dataset, as 
shown in Table 8. Model A, trained on the original dataset with no en
hancements, obtained an accuracy of 92.14 %. This baseline result in
dicates that the model performs pretty well on original data, but it lacks 
the robustness required for fine-grained classification. Model B achieved 
a significant improvement in accuracy to 96.43 % by using data 
augmentation. The 4 % improvement over Model A demonstrates that 
simply exposing the model to different transformations of the training 
images through data augmentation improves the model’s ability for 

Fig. 7. A comparison of log-scaled mean GLCM features (contrast, correlation, 
energy, and homogeneity) scores across 21 classes between the original dataset 
and the CLAHE processed dataset.

Table 8 
Classification performance of three CNN models on the UC-Merced Land Use 
Dataset.

Model Augmentation CLAHE Processing Accuracy

Model A No No 92.14
Model B Yes No 96.43
Model C Yes Yes 97.62

Fig. 8. Confusion matrix of Model A illustrating classification performance across 21 land use classes in the UC-Merced Land Use Dataset.
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generalization. This diversity in training data helps in enhancing the 
model’s ability to adapt to changes in real-world scenarios, leading to 
improved accuracy. Model C, trained with both data augmentation and 
CLAHE processing, achieved the best accuracy of 97.62 %. The addition 
of CLAHE alongside augmentation further improved accuracy by 1.19 % 
compared to Model B. CLAHE’s role in enhancing contrast and high
lighting finer details appears to complement data augmentation, 
providing a richer set of features for the model to learn from. This 
combination allows the model to better distinguish between classes, 
resulting in the highest accuracy of the three models.

Figs. 8–10 show the confusion matrices for Models A, B, and C, 

respectively, detailing classification performance across 21 land use 
classes in the UC-Merced Land Use Dataset. Each matrix depicts the 
distribution of true positive rates along the diagonal, with off-diagonal 
cells representing misclassification. Model A, trained on the original 
dataset, gives a baseline classification but has higher misclassifications, 
particularly in related classes, due to a lack of preprocessing. Model B, 
trained on the augmented dataset, shows higher accuracy, as evidenced 
by a more prominent diagonal pattern and fewer misclassifications, 
implying that data augmentation improves generalization. Model C, 
trained on the dataset using both augmentation and CLAHE processing, 
obtains the maximum accuracy, with a sharper diagonal and fewer 

Fig. 9. Confusion matrix of Model B illustrating classification performance across 21 land use classes in the UC-Merced Land Use Dataset.

Fig. 10. Confusion matrix of Model C illustrating classification performance across 21 land use classes in the UC-Merced Land Use Dataset.
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misclassifications, indicating that CLAHE improves features and reduces 
class overlap.

4.4. Grad-CAM visualization

The Grad-CAM visualizations reveal a notable enhancement in 
feature localization and concentration from Model A to Model C, 
particularly when it comes to capturing class-relevant structures. As can 
be seen in Fig. 11, in the airplane class, Model A’s activations are 
dispersed, omitting significant areas of the aircraft’s body. Model B 
shows more concentrated red and yellow activation areas that cover a 
larger portion of the airplane body, indicating that data augmentation 
aids in the model’s ability to more successfully concentrate on important 
structures. Training with both augmentation and CLAHE, Model C 
demonstrates the most refined attention, almost entirely covering the 
airplane body with red and yellow color, indicating precise feature focus 
and improved ability to identify and highlight critical class character
istics. This trend is also seen in other classes. For example, in the storage 
tanks and tennis court classes, Model A exhibits less focused activations, 
whereas Model B’s activations become more coherent, matching the key 
components within each class. Although Models A and B did not focus on 
the course and court, which are the key distinguishing features of these 
classes, this suggests that they struggle to identify and prioritize essen
tial spatial patterns specific to these categories.

Instead, their Grad-CAM heatmaps show attention spread out over 
unrelated areas or background features, indicating a lack of precision in 

feature recognition. However, in the Grad-CAM heatmaps, Model C, 
which used both augmentation and CLAHE processing, generated red 
and yellow activation on the course and court areas in the Grad-CAM 
heatmaps. The increased attention given to primary areas indicates 
that CLAHE processing has enhanced the model’s capacity for detecting 
minor but essential structural components in the images. The occurrence 
of red and yellow tones in the court and course sections of Model C’s 
heatmaps indicates a high level of confidence in these regions, under
scoring their significance for class identification. The improved feature 
localization is likely because of CLAHE’s impact on contrast enhance
ment, which sharpens borders and textures, enabling the model to more 
effectively distinguish and prioritize important regions, hence leading to 
increased classification accuracy. Model C consistently has the highest 
intensity and concentrated red and yellow activations around significant 
objects, such as golf course boundaries and tennis court lines, yielding 
the most accurate feature localization. Model C’s enhanced emphasis 
indicates that CLAHE processing increased contrast and texture visibil
ity, enabling the model to more accurately differentiate distinct areas 
relevant to each class while reducing background noise. The improve
ment of feature localization in the models highlights the combined ad
vantages of augmentation and CLAHE processing. Although 
augmentation alone improves focus and generalization, CLAHE further 
sharpens the model’s attention to important details, allowing it to more 
confidently and accurately distinguish between similar features within 
classes. These results highlight how preprocessing techniques can 
improve both visual interpretability and classification performance, 

Fig. 11. Comparison of Grad-CAM visualizations generated by the same lightweight CNN architecture trained using three different approaches, resulting in three 
different models: Model A, Model B, and, Model C on six land use classes from the UC-Merced dataset: (a) airplane, (b) storage tanks, (c) golf course, (d) tennis court, 
(e) mobile home park, and (f) sparse residential. Row (W) shows the original images, while rows (X), (Y), and (Z) display Grad-CAM heatmaps overlaid on the images 
using three models: (X) Model A trained on the dataset without augmentation and CLAHE processing, (Y) Model B trained with augmentation but without CLAHE, 
and (Z) Model C trained with both augmentation and CLAHE processing.
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particularly in complex land-use scenes where precise structure recog
nition is critical.

4.5. Comparison with other work

A comparative analysis between the proposed method and other 
existing approaches used for UC-Merced land use classification is shown 
in Table 9. The proposed method achieves an accuracy of 97.62 % using 
only 56K parameters, 0.35 GFLOPs, and occupying just 0.234 MB of 
storage. While several competing models (e.g., MSDFF, MLCMFNet, and 
LmNet) report higher accuracies ranging from 99.33 % to 99.91 %, they 
come at a significantly higher cost in terms of model complexity, with 
parameter counts from 6 million to 134 million, FLOPs from 3.27 to over 
15 GFLOPs, and model sizes from 24 MB up to 512 MB. In contrast, the 
proposed method strikes a balance between accuracy and efficiency 
trade-off, making it ideal for resource-constrained environments such as 
drones, satellites, or embedded systems. Despite being ultra-lightweight, 
it performs competitively with state-of-the-art models, demonstrating 
the effectiveness of the model’s design and its suitability for real-time 
aerial scene classification.

Fig. 12 illustrates the efficiency and effectiveness of our proposed 
model, which achieves the highest accuracy of 97.62 % while using 
significantly fewer parameters, lower FLOPs, and minimal storage. This 
makes it especially well-suited for real-time and edge-based applica
tions. Among the compared models, ShuffleNetV2 performs second best 
with the lowest FLOPs, while ResNet-50 ranks the lowest, exhibiting the 
poorest trade-offs, with the lowest accuracy and the highest computa
tional and storage demands. The radar chart demonstrates that our 
proposed model offers the most balanced and efficient network 

Table 9 
Comparison of the proposed method with existing approaches for UC-Merced 
Land Use classification.

Method Accuracy (%) Parameters 
(Million)

GFLOPS Size 
(MB)

GhostNet (Shen 
et al., 2023)

96.19 ~1.73 0.00258 5.7

MSDFF (Xue et al., 
2020)

99.76 ~134.44 ~15.60 ~512.87

Deep Feature 
Fusion (Wang 
et al., 2020)

98.04 ± 0.89 ~10.07 ~1.51 ~38.41

ESPA-MSDWNet (
Bai et al., 2021)

98.76 ± 0.08 
(50 % training 
set)

2.4 0.338 ~9.16

LmNet (Wan et al., 
2021)

99.52 ± 0.24 ~25 ~4.2 ~95.37

SE-MDPMNet (
Zhang et al., 
2019)

98.95 ± 0.12 5.17 3.27 ~19.72

BiMobileNet (Yu 
et al., 2020)

99.03 ± 0.28 7.76 0.45 29.59

MLCMFNet (Chen 
et al., 2025)

99.91 ± 0.1 35 Not 
Mentioned

~133.35

RepFACNN (Shi 
et al., 2025)

99.33 ± 0.26 6.4 0.87 ~24.41

Proposed Method 97.62 0.05629 0.3519 0.234

Fig. 12. Radar plot comparing ResNet-50, MobileNetV2, ShuffleNetV2, and the proposed model across four metrics: number of parameters (in millions), FLOPs (in 
gigaflops), model size (in megabytes), and classification accuracy (%). Higher accuracy indicates better performance, while lower values for parameters, FLOPs, and 
model size reflect greater computational efficiency.
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performance across all key metrics.

5. Discussion

Designing lightweight deep learning models for classifying many 
classes is challenging due to the trade-off between accuracy and 
parameter count. To address this for aerial scene classification, we 
introduced a custom Inception module that captures both local and 
global context, helping the network focus efficiently on key features. 
Additionally, we used DSC to minimize parameters and computational 
complexity.

As shown in Fig. 13, our proposed model achieves the lowest entropy 
score, 9.49, compared to ResNet-50, 10.61, indicating less dispersed 
attention and better focus on key scene regions, contributing to 
improved accuracy. In Top-K Coverage, where lower scores indicate 
more focused attention, our model again scores the lowest, while 
ResNet-50 scores the highest. This suggests our model attends to fewer 
but more relevant regions.

For Discriminativeness, which measures how attention varies across 
classes, our model achieves the lowest score of 0.32, while ResNet-50 
scores the highest of 1.99. The lower value in our model implies its 
attention maps are more uniform across classes, likely due to shared 
global textures (e.g., grass in golf courses and baseball fields). Rather 
than relying on class-specific hotspots, our model emphasizes global 
scene context. In terms of Sparsity, our model scores the highest 0.734, 
indicating highly concentrated attention on a few critical regions, unlike 
ResNet-50, 0.433. However, our model exhibits lower localization 
consistency, meaning its attention shifts more across samples, adapting 
dynamically to scene variation. In contrast, MobileNetV2 and 

ShuffleNetV2 demonstrate broader attention due to high entropy score 
and higher class-specific discriminativeness, which, while effective, are 
less efficient for scene-level understanding. Overall, our model learns a 
context-aware, sparse attention mechanism that prioritizes a few highly 
relevant patches, making it well-suited for aerial scene classification and 
explaining its superior accuracy.

Although we initially used a simple train–test split, the test set was 
also used for validation during training. To mitigate overfitting and 
ensure evaluation on completely unseen data, we introduced an addi
tional test set by applying vertical flipping and 90◦ rotation to the 
original test set. This ensures the new test data remains entirely separate 
from training and validation. The updated evaluation more accurately 
reflects the model’s generalization ability. We assessed performance 
using both Grad-CAM-based quantitative metrics and accuracy, with 
results illustrated in Fig. 14. The pattern holds: our model continues to 
outperform larger, more complex architectures in both accuracy and 
context-aware attention. Despite a 2 % drop in accuracy on this unseen 
data, the strong performance suggests minimal risk of overfitting and 
confirms the model’s ability to generalize effectively.

Additionally, we evaluated the impact of 7 × 7 kernels on perfor
mance by modifying our best-performing Model C. We removed the 7 ×
7 kernel while keeping all other configurations unchanged. The original 
Model C achieved an accuracy of 97.62 %, whereas the version without 
the 7 × 7 kernel scored 96.90 %, highlighting the contribution of larger 
kernels in capturing broader contextual features.

Our proposed lightweight CNN model offers several managerial ad
vantages for organizations relying on remote sensing and aerial scene 
analysis. Its low computational cost and minimal parameter size (only 
56K) make it ideal for real-time deployment on edge devices such as 

Fig. 13. Grad-CAM-based quantitative comparison of our proposed architecture with ResNet-50, MobileNetV2, and ShuffleNetV2. All models were trained under 
identical conditions for a fair, apple-to-apple evaluation using five metrics: Entropy, Top-K Coverage, Discriminativeness, Sparsity, and Consistency.
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drones and satellites, significantly reducing infrastructure and energy 
expenses. This enables cost-effective and scalable adoption, particularly 
in resource-constrained settings like agriculture, urban planning, and 
environmental monitoring. Additionally, the integration of contrast 
enhancement and data augmentation techniques ensures reliable per
formance across diverse and low-quality image conditions, enhancing 
operational flexibility. The use of Grad-CAM visualizations further 
supports transparent decision-making by providing visual explanations 
of model predictions, an essential feature for fostering trust, supporting 
policy compliance, and facilitating human AI collaboration in critical 
field applications.

While the proposed lightweight CNN model demonstrates high ac
curacy and strong efficiency on the UC Merced dataset, there are several 
important limitations that must be acknowledged to contextualize its 
applicability and guide future work. Our evaluation is limited to a single, 
relatively small-scale dataset composed of 21 scene classes with uniform 
image resolution. As such, the model’s generalizability to more diverse 
and large-scale remote sensing datasets such as NWPU-RESISC45, 
DOTA, or BigEarthNet remains untested. These datasets often include 
a wider range of scene complexities, scales, and noise characteristics, 
which could pose additional challenges for lightweight models. While 
we designed the model to be computationally efficient, requiring only 
56K parameters, its real-world scalability has not been verified on actual 
edge devices such as UAVs, Raspberry Pi units, or other embedded 
platforms. Metrics like battery consumption, frame rate per second, 
thermal behavior, and memory footprint in live applications are critical 
for confirming true deployability. Furthermore, inference benchmarking 
was performed using desktop-class GPUs, which may not reflect real- 
time constraints faced in field environments. Although the model per
forms well in its current scope, future studies should explore 

generalization across datasets, develop integrated enhancement pipe
lines, validate edge-device deployment, and adopt robust explainability 
frameworks to fully realize the model’s practical potential in real-world 
remote sensing applications.

6. Conclusion

6.1. Findings

This study demonstrates that the integration of targeted pre
processing techniques and multi-scale convolutional filters can signifi
cantly enhance the performance of lightweight CNN models in aerial 
scene classification tasks. First, CLAHE was found to be effective in 
improving feature visibility, particularly in scenes with low contrast or 
complex illumination conditions. By improving the separability of 
foreground and background regions, CLAHE ensures that the model 
receives more discriminative features, thereby reducing the dependency 
on deep, computationally heavy architectures. Second, the imple
mentation of semantic-preserving data augmentation substantially 
improved generalization. The 5-fold augmentation strategy diversified 
the training set without distorting the semantic content of aerial scenes, 
enabling the lightweight model to learn robust representations despite 
its limited parameter capacity. This result indicates that even for small- 
scale models, effective augmentation can reduce overfitting and narrow 
the performance gap with larger, state-of-the-art architectures. Finally, 
the adoption of multi-scale convolutional filters (1 × 1, 3 × 3, 5 × 5, and 
7 × 7) proved crucial in addressing the lack of global context awareness 
in lightweight CNNs. While small kernels (e.g., 3 × 3) are effective for 
fine-grained feature extraction, larger kernels, particularly the 7 × 7 
filters, enabled the network to capture broader spatial dependencies that 

Fig. 14. Grad-CAM quantitative analysis on the augmented (unseen) test set to evaluate model generalization.
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are essential in aerial scene interpretation, such as urban layouts or 
agricultural patterns. This multi-scale fusion allowed the model to bal
ance local and global feature learning while maintaining an overall 
lightweight architecture, ultimately achieving a competitive accuracy of 
97.62 % with only 56,293 parameters.

6.2. Research limitations

Despite the promising results, this study has several limitations. First, 
although the proposed lightweight CNN demonstrates strong perfor
mance on the UC Merced Land Use Dataset, its generalizability to larger 
and more diverse datasets (e.g., high-resolution satellite imagery or 
cross-domain aerial datasets) remains to be validated. Second, using 
multi-scale filters improves performance, but larger kernels like 7 × 7 
increase computation and may not work well on devices with limited 
resources like embedded systems or low-power drones. Finally, this 
study did not explore the integration of advanced attention mechanisms 
or frequency-domain methods, which could further enhance feature 
extraction while maintaining low computational cost.

6.3. Recommendations for future research

While 7 × 7 kernels proved effective for modeling global context, 
their computational cost constrains the design of lightweight networks. 
Future research should focus on efficient alternatives for large receptive 
field modeling, such as employing dilated convolutions to expand the 
receptive field without increasing kernel size or parameter count, 
leveraging frequency-domain approaches to complement spatial- 
domain convolutions for capturing global structures, incorporating 
attention-based mechanisms to selectively emphasize context-rich re
gions while reducing redundant computation, and exploring dynamic 
kernel selection strategies that adaptively determine kernel sizes based 
on scene complexity. Furthermore, optimizing CLAHE and augmenta
tion pipelines for faster on-device processing could further strengthen 
the applicability of lightweight CNNs in real-world remote sensing tasks.
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