
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CC-VFED: CLIENT CONTRIBUTION DETECTS BYZAN-
TINE ATTACKS IN VERTICAL FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Vertical federated learning (VFL) is a type of federated learning where the col-
lection of different features is shared among multiple clients, and it is attracting
attention as a training method that takes into account the privacy and security of
training data. On the other hand, in federated learning, there is a threat of Byzan-
tine attacks, where some malicious clients disrupt the training of the model and
output an trained model that does not exhibit the behavior that should be obtained.
Thus far, numerous defense methods against Byzantine attacks on horizontal fed-
erated learning have been proposed, most of which focus on the similarity of the
models generated across clients having the similar features and mitigate the at-
tacks by excluding outliers. However, in VFL, the feature sets assigned by each
client are inherently different, making similar methods inapplicable, and there is
little existing research in this area. In light of the above, this paper organizes
and classifies feasible Byzantine attacks and proposes a new defense method CC-
VFed against these attack methods. Firstly, this paper organizes and classifies
attack methods that contaminate training data, demonstrating that sign-flipping
attacks pose a threat to VFL. Subsequently, in order to capture the differences in
client features, this paper proposes a method for detecting and neutralizing mali-
cious clients based on their contribution to output labels, demonstrating that it is
indeed possible to defend Byzantine attacks in VFL.

1 INTRODUCTION

1.1 BACKGROUND

In recent years, artificial intelligence (AI) has been applied to solve various social issues. To enhance
the performance, it is necessary to train models using large amounts of data. However, when training
models using vast amounts of data, data collection and the lengthy training time pose challenges
in terms of computational cost. As the scale of models is expected to expand further, the issue
of computational cost is an unavoidable problem. Furthermore, privacy and security issues exist,
especially when handling personal information in vast amounts of data.

Federated learning (McMahan et al., 2017) is a method that reduces the computational cost for each
participant (hereafter referred to as a client) by distributing model training among multiple clients
while considering the privacy and security of the training data. In federated learning, each client
trains a model using its dataset, and these models are integrated on a central server, resulting in a
large-scale model. Each participant can ensure privacy and security by training their models while
keeping their datasets confidential from the other participants. The primary federated learning meth-
ods are horizontal federated learning (HFL) (McMahan et al., 2017) and vertical federated learning
(VFL) (Vepakomma et al., 2018). These training methods are classified based on the structure of
each participant’s dataset. While HFL has been the main focus of traditional research, advancements
in VFL have been reported recently.

HFL involves training models using datasets comprising the same features and is used for tasks such
as diagnosing diseases from X-ray images (Feki et al., 2021). Here, the datasets vary for clients.
Each client maintains a model with the same structure, and the models are integrated. HFL requires
datasets with the same features.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, each client has its strengths and weaknesses in data collection, and there may be cases
in which the collection of features is divided. In such cases, HFL, which requires each client to
hold all the features, cannot be applied. VFL involves training models under the condition that each
client holds a partition of the features and is used for tasks such as determining creditworthiness
from transaction histories (He et al., 2023a; Luo et al., 2023). In VFL, a single model is divided
among each client and the central server. This method is also referred to as split-federated learn-
ing. Only the central server knows the labels assigned to each data point. VFL involves exchanging
information between each client and the central server, updating their respective models based on
this information, and creating high-performance models. In the aforementioned example of credit-
worthiness determination, the clients are banks and stores, and the central server is the institution
determining creditworthiness. This study addresses VFL.

As threats to VFL, attacks targeting both the training phase (Chen et al., 2024; Fu et al., 2022;
He et al., 2023b; Xu et al., 2024; Yuan et al., 2022) and the inference phase (Duanyi et al., 2023;
Pang et al., 2022) have been proposed. If the inference phase is attacked, the generated model
itself remains legitimate. In contrast, if the training phase is attacked, the generated model becomes
contaminated, necessitating the retraining of the model. The threat posed by attacks on the training
phase is more significant, and this study focuses on discussing threats to the training phase.

The threats to VFL include attacks by malicious clients, label-inference attacks (Fu et al., 2022) and
poisoning attacks (Chen et al., 2024; He et al., 2023b) including Byzantine attacks (Xu et al., 2024;
Yuan et al., 2022). Label-inference attacks extract the labels of the training data held by the central
server. Poisson attacks degrade models by transmitting malicious data during training. This study
focuses on poisoning attacks including Byzantine attacks.

Poisoning attacks are being studied actively both in terms of attack and defense methods. Poisoning
attacks are assaults in which the data provider to the client or the client itself can contaminate
a portion of the training data, causing the model to mispredict specific inputs without significantly
reducing its accuracy. Given the vast number of data points included in a dataset, prevention through
dataset verification is challenging, and various attacks (Cao & Gong, 2022; Chen et al., 2024; He
et al., 2023b; Tolpegin et al., 2020) and defense methods (Cho et al., 2024; Lai et al., 2023; Lu
et al., 2022; Rieger et al., 2022; Sagar et al., 2023; Xia et al., 2023) have been proposed. Notably,
several existing defense methods are proposed for HFL (Lu et al., 2022; Rieger et al., 2022). In
HFL, the models generated by benign clients are similar because they use the same features for
training. Existing defense methods identify malicious clients by focusing on the similarity of benign
cases and identifying outliers among the models sent to the central server. Furthermore, because
the contaminated data are part of the training data, defense methods in VFL have been proposed
that involve relocating outliers from the values sent from the client to the central server (Chen et al.,
2024; Lai et al., 2023). This method combines the transmitted values from all clients and searches
for outliers within the combined values, leveraging the existence of several legitimate combined
values to discriminate a small number of adversarial combined values.

In VFL, the more potent Byzantine attack (Xu et al., 2024; Yuan et al., 2022) poses a realistic threat.
Unlike poisoning attacks, Byzantine attacks significantly degrade the accuracy of the model by con-
taminating training data or tampering with the values sent to the central server. When the accuracy
of the model is significantly reduced by a Byzantine attack, services utilizing that model may be-
come dysfunctional, or substantial computational costs may be incurred for retraining the model. In
HFL, the model sent from a malicious client to the central server is expected to differ significantly
from those sent from other clients, making Byzantine attacks difficult to execute because of defense
methods that detect outliers (Li et al., 2019; Murata et al., 2024). However, in VFL, outliers in the
values transmitted from each client are meaningless because the features held by each client are
inherently different. Notably, even in the absence of malicious clients, legitimate clients may be
excluded. Furthermore, even if a malicious client contaminates all training data, it is challenging
to detect malicious clients through outlier detection. Therefore, security evaluation of Byzantine
attacks in VFL is of paramount importance.

Security assessments of Byzantine attacks on VFL have been conducted with (Xu et al., 2024) and
without communication (Yuan et al., 2022) between clients, respectively. This study focuses on the
latter. In the security assessment by Yuan et al., attack experiments that tampered with the values
sent to the central server were conducted, and defense methods against these attacks were proposed.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Specifically, this study assumed a case in which l2-regularized finite-sum minimization was solved
under multiple clients, and defense was conducted using the dual space.

However, Yuan et al. presented challenges in terms of both attacks and defenses. First, regarding the
attack aspect, an attack that tampers with the values sent to the central server can be detected by at-
taching a message authentication code (MAC) to the transmitted values. Specifically, if this process
is executed in a trusted execution environment (TEE) within the client, there is no intervention by
the attacker at the time of MAC attachment, making it virtually impossible to tamper with the values
sent to the central server. Therefore, to appropriately assess the threat of Byzantine attacks on VFL,
it is crucial to meticulously verify the attack methods under tamper detection conditions. Regarding
the defense aspect, there are concerns about whether similar defenses are possible with more com-
plex datasets and models, as the datasets and models considered are simple. The datasets they used
were simplistic, consisting of linear operations with added noise, making it unclear whether their
methods would be effective on real-world datasets. Moreover, Yuan et al. replaces l2-regularized
finite-sum minimization with a dual problem; however, when using more complex models, the dual
problem may become complicated, increasing computational costs, or it may be difficult to compute
the dual problem. Therefore, it is extremely important to consider simpler defense methods that do
not rely on dual problems.

In this study, we improved the above two issues and conducted a more precise security assessment.

1.2 CONTRIBUTIONS

In this study, we investigate the feasibility of Byzantine attacks and propose new defense methods
CC-VFed against these attack methods. First, in Section 3, we clarify the threat model of the attacker
and classify and organize attack methods that can be executed only by polluting the training data.
In particular, we qualitatively demonstrated that among the conceivable attacks, the sign-flipping
attack is powerful, and we verified its threat experimentally. In Section 4, we propose a new defense
method CC-VFed against Byzantine attacks using the contribution of each client to the output label.
CC-VFed leverages the fact that the output labels become illegitimate in the presence of malicious
clients. By removing clients that contribute significantly to the incorrectly outputted labels, it facil-
itates more legitimate training. In particular, unlike the prior research by Yuan et al., CC-VFed is
a simpler and more practical defense method against Byzantine attacks during the training phase,
which is applicable to diverse models and datasets. This study evaluates the effectiveness of CC-
VFed using real-world datasets such as BCW and CIFAR10. CC-VFed serves as a defense methods
against sign-flipping attacks without significantly reducing the accuracy of the original model.

2 PRELIMINARIES

We first introduce VFL (Vepakomma et al., 2018) in Section 2.1. In Section 2.2,, we introduce
existing Byzantine attack methods (Yuan et al., 2022) against VFL.

2.1 VERTICAL FEDERATED LEARNING (VEPAKOMMA ET AL., 2018)

In this subsection, we discuss VFL. VFL distributes a single model among various clients and a
central server. Each client and central server train their own model, thereby efficiently realizing a
large-scale model.

First, we discuss the data collected by each client. In VFL, each client holds a proportion of the data
with the same ID. Furthermore, only the central server holds a label corresponding to the ID. Note
that each client and the central server keep the information they hold confidential from the other
participants. Under these conditions, they cooperate to train a large-scale model.

Here, we explain VFL using m pairs of training data and labels (X, Y ). Note that X =
[x1,x2, . . . ,xm] and Y = [y1, y2, . . . , ym]. This dataset is trained by n clients and a central
server. Client j (1 ≤ j ≤ n) holds the model Fθj and a proportion of the divided training data
Xj = [x1,j ,x2,j , . . . ,xm,j ]. Here, θj is the model parameter. Additionally, by combining and
appropriately rearranging the vectors xi,j (1 ≤ j ≤ n), we obtain the original data xi. The cen-
tral server holds the model Fθ0 and the label set Y . In training and inference, communication is
performed between the output layer of the client and the input layer of the central server, thereby

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

realizing a large-scale model as a whole. To satisfy these requirements, the total number of nodes
in the output layers of all the clients and the number of nodes in the input layer of the central server
are the same.

Next, we discuss the specific training method. In VFL, the model parameters θ0,θ1, . . . ,θn are up-
dated for each data point i = 1, 2, . . . ,m. Although this model parameter update can be performed
in batches, for simplicity, we focus on a single data i and explain the model parameter update. The
model parameter update is performed in the order of transmitting the output value on the client side,
updating the model on the central server side, and updating the model on the client side, as follows:

1. Output from clients: To update the model, all clients j (1 ≤ j ≤ n) send zi,j :=
Fθj (xi,j) to the central server. Note that zi,j is shared only between client j and the
central server and is kept confidential from the other clients.

2. Renew the server model: The central server inputs the vector zi, which is a combination
of zi,j from all clients, into the central server’s model Fθ0 , and obtains the inference result
Fθ0 (zi). Then, it calculates the loss function Li using the square error or cross-entropy
error, and updates the model parameter θ0 using the error backpropagation method. Fur-
thermore, it sends ∂Li

∂zi,j
to client j (1 ≤ j ≤ n).

3. Renew client models: Client j (1 ≤ j ≤ n) updates the model parameter θj using the
error backpropagation method based on the derivative of the composite function ∂Li

∂θj
=

∂Li

∂zi.j

∂zi,j
∂θj

.

Thus, VFL updates the models of each client and the central server. Note that the inference is
obtained by aggregating the vectors zi,j output by the client’s model Fθj at the central server and
then calculating Fθ0 (zi), similar to the output of the inference result during training.

2.2 PREVIOUS BYZANTINE ATTACKS ON VFL (YUAN ET AL., 2022)

In this subsection, we discuss the existing Byzantine attacks on VFL conducted by Yuan et al. (Yuan
et al., 2022). Yuan et al. conducted three types of attacks: Gaussian, same-value, and sign-flipping
attacks based on the output vectors zi,j of the other benign clients. However, in practice, information
from other clients is not accessible. Therefore, in this study, instead of employing the attack methods
proposed by Yuan et al., we construct a Byzantine attack by referencing the methods proposed by
Ma et al. (Ma et al., 2022). Ma et al.’s attack target HFL and manipulate the local model before
sending it to the central server. By drawing on these methods, a Gaussian attack, a same-value
attack, and a sign-flipping attack are as follows. A Gaussian attack is an attack method in which a
malicious client j sends a value to the central server that adds Gaussian noise to the average of the
output values of the other clients. A same-value attack is an attack method in which a malicious
client sends zi,j , all of which have the same value, to the central server. A sign-flipping attack is
an attack method in which a malicious client j multiplies its output value zi,j by −c (c > 1) and
sends it to the central server. However, even if such an attack is carried out, the above attacks falsify
the output value zi,j , and become infeasible because of tampering detection. Specifically, to bypass
tampering detection, it is necessary to falsify the input data xi,j and not the output value zi,j .

3 FEASIBLE BYZANTINE ATTACKS THAT TAMPER WITH TRAINING DATA

In this section, we discuss the feasibility of Byzantine attacks that tamper with training data. In
Section 3.1, we discuss the attack capabilities of malicious clients. In Section 3.2 we identify the
Byzantine attacks that a malicious client can execute. In particular, by comparing these attack
methods, we demonstrate that the sign-flipping attack is strong in the training data. Finally, in
Section 3.3, we demonstrate that the sign-flipping attack is indeed a powerful attack method.

3.1 THE ATTACK CAPABILITIES OF MALICIOUS CLIENTS IN THIS PAPER

In this subsection, we discuss the attack capabilities of malicious clients, which are the premise of
this study. Before discussing the attack capabilities, we first describe the naive defense measures
that the central server can use to prevent malicious behavior by each client. These defense measures

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

mainly comprise encryption, tampering detection, and input/output verification and are assumed to
be implemented by devices provided by the central server. In this study, we do not assume direct
attacks on the central server, and the central server is assumed to operate as usual. The naive defense
measures implemented by the central server are as follows:

• For each client, the model is placed within the TEE area or encrypted to prevent access to
its plaintext.

• The output values of the model sent from each client to the central server are encrypted
until they are received by the central server, where they are checked for tampering.

• The values sent from the central server to the client are encrypted.
• When values are input into the model, it is checked whether they fall within a specified

range.

Given the above, we assume that the malicious clients considered in this study cannot perform the
following:

• Obtaining training data label information (owing to vector and model encryption, label
inference attacks (Fu et al., 2022) are also not possible)

• Manipulation of the model and values sent from the client to the central server
• Inputting data with out-of-range values

Based on the above, the malicious clients addressed in this paper can manipulate only the input to
the model, specifically, the training data, and all element values must fall within the specified range.
We considered strong Byzantine attacks by malicious clients with these attack capabilities.

3.2 CONSIDERATION OF STRONG BYZANTINE ATTACKS

In this subsection, we first classify and organize feasible Byzantine attacks, as described in Sec-
tion 3.1. During this process of organization, we demonstrate the high attack capability of the
sign-flipping attack. The feasible attacks can be divided into two types: attacks that set the input
data xi,j randomly and attacks that transform it by an algorithm.

First, we consider methods that set the input data xi,j randomly. Because the training data comprises
the data and labels, methods that manipulate either can be considered. An attack that randomly
generates input data to meet the input/output conditions can be considered as a method to manipulate
the data. To manipulate the labels, an attack that disrupts the correspondence between the data and
labels by changing the order of the data to be input can be considered. In this type of attack, the
attacker does not know the labels corresponding to the training data; therefore, it is not possible to
bias the images of a specific label towards a specific class.

Next, we consider attack methods that transform input data xi,j using an algorithm. We consider
the possibility of reproducing the attack method of Yuan et al. (Yuan et al., 2022). The consideration
of more effective attack methods, particularly the optimal attack, will be a topic for future work.

First, we consider a Gaussian attack and a same-value attack. These attack methods necessitate
manipulating the values sent from the client to the server; however, under the encryption of the
model, it is extremely difficult to reverse calculate the model to obtain the desired output. Therefore,
the Gaussian attack and the same-value attack are not feasible.

Next, we consider a sign-flipping attack. The naive sign-flipping attack manipulating the output
value is not possible because of tamper detection. Here, the sign-flipping attack can be consid-
ered an input data tampering attack against the model of the central server alone. Therefore, if we
consider the target of the attack to be not only the central server but also all models, including the
clients, the sign-flipping attack can be established by the malicious client j multiplying the input data
xi,j (1 ≤ i ≤ m) by −c (c > 0). However, if the value of c is extremely small or large, there is a
risk that the distribution of values may become unnatural and be detected as anomalies. Therefore,
the value of c needs to be set approximately close to one.

In the above discussion, we identified three types of feasible Byzantine attacks: an attack method that
randomly generates training data (called “random attack”), an attack method that changes the order

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of training data (called “permutation attack”), and the sign-flipping attack. Below, we qualitatively
show that among these three types of attack methods, the sign-flipping attack has the highest attack
effect. In particular, the sign-flipping attack shows that the loss function is significantly different
from the usual function and that the gradient vector changes.

First, the sign-flipping attack changes the loss function significantly. The model comprises linear
transformations and activation functions. If the sign of xi,j is reversed, the effect of the activation
function is reversed, resulting in a significantly different value for the loss function. Note that the
reversal of the effect of the activation function is more pronounced in parts that are far from the
threshold, that is, parts that have significant features that make up the input.

Next, the sign-flipping attack changes the gradient vector significantly. We consider the following
loss function L (Xi,θ), where the input Xi = [xi,1,xi,2, . . . ,xi,n] and all parameters θ of the
model are variables. Here, we consider the calculation of each element of ∂L

∂θ , specifically, ∂L
∂θt

for a single parameter θt. At this time, the loss function L is expressed by the parameter θt to
be differentiated and other model parameters in the same output layer, but these parameters are
replaced by the model parameters θ∗ in the output layer before the layer where the parameter to be
differentiated is located andXi. Therefore, the loss functionL becomes a function of θt, θ∗, andXi,
and can be expressed as a multivariate polynomial of these variables using the Maclaurin expansion.
Here, we focus on the terms up to the second degree of this multivariate polynomial and ignore the
remaining terms as infinitesimal. When the sign of the assigned portion xi,j of client j is reversed,
the sign of the part assigned to xi,j in the derivative of θt is reversed. Furthermore, the same
holds for other parameters to be differentiated. In the gradient vector, (Non-derived from xi,j) +
(Derived from xi,j), the sign of the second term is reversed due to the sign-flipping attack, becoming
(Non-derived from xi,j) − (Derived from xi,j). Therefore, in the sign-flipping attack, the gradient
vector changes, significantly disrupting the model.

Here, we apply the same discussion as that for the sign-flipping attack to the random and permutation
attacks. First, not all variables’ activation functions were necessarily reversed. Furthermore, the
gradient vector and the overall change in the value cancel out, resulting in smaller changes compared
to those in the sign-flipping attack. Therefore, it is expected that the sign-flipping attack will have the
highest effect when compared with the case of randomly generating input data. Based on the above
discussion, in the next subsection, we compare the random, the permutation, and the sign-flipping
attack for verifying the above hypothesis.

3.3 COMPARATIVE EXPERIMENT OF BYZANTINE ATTACKS

This study initially conducted experiments in a scenario with two clients (referred to as Clients A and
B), one of which is malicious, to validate the hypothesis posited in Section 3.2 and to ascertain the
feasibility of the Byzantine attack discussed in Section 3.2. We use Ubuntu 20.04, 32GB memory,
two GPUs (NVIDIA RTX A5000), using Cuda 11.6 and PyTorch 1.13.1 for Cuda 11.6. We used
the numerical dataset Breast Cancer Wisconsin (BCW) (UCI Machine Learning) from UCI Machine
Learning and the image dataset CIFAR10 (The Linux Foundation, a). We used the dataset included
in the Python library torchvision for CIFAR10 (The Linux Foundation, b). The experiments in
this study were conducted based on the implementation of Fu et al. (Fu et al., 2022). However, in
this paper, to enhance the effectiveness of the defensive method proposed in Section 4, we conduct
experiments using the eLU function instead of the ReLU function as the activation function for the
central server. The detailed network for each dataset is shown in Appendix D, and the experimental
results when using the ReLU function are presented in Appendix E. Below, we present the details
of the experimental conditions for each dataset and experimental results. In this study, as in the
existing research by Fu et al., we used the top-1 accuracy as the evaluation metric. Top-1 accuracy
indicates the proportion of instances in the entire image dataset where the highest confidence score
corresponds to the correct label. In particular, the top-1 accuracy was calculated for all test data
inputs without any processing, which is different from that in the training phase.

3.3.1 BCW

First, we describe the experimental conditions for BCW. In BCW, binary classification was per-
formed based on 28 numerical data points selected under the same experimental conditions as those
in Fu et al. (Fu et al., 2022). Each of the 28 data points was normalized to a normal distribution

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Top-1 accuracy when conducting Byzantine attacks with two client on the BCW dataset.

Attack type Malicious client
Client A Client B

None 93.71%
Random 97.20% 93.71%

Permutation 97.90% 95.10%
Sign-flipping (c = 1) 90.91% 52.45%

Sign-flipping (c = 0.1) 60.84% 13.29%

with a mean of 0 and variance of 1 by StandardScaler, and then, while maintaining the order after
selection, the first 14 data points were held by Client A and the last 14 data points were held by
Client B. On that basis, training was conducted with 426 training data points and 143 test data.
During training, the batch size was 16, number of epochs was 30, learning rate was 0.01, and error
was calculated using cross-entropy. Furthermore, assuming the distribution of a slightly pre-trained
model, we set the scenario such that no attack was conducted in the first epoch and attacks were
conducted from the second epoch onwards.

The details of each attack method are discussed below. First, in the random attack, each element of
the input was generated randomly according to a normal distribution with a mean of 0 and a variance
of 1. Subsequently, during the permutation attack, the order of the input data within each batch was
swapped randomly. Finally, in the sign-flipping attack, we considered two cases with c = 1 and c =
0.1. The experimental results are listed in Table 1. As shown in Table 1, although the random and
permutation attacks were approximately ineffective, the sign-flipping attack significantly reduced
the top-1 accuracy, corroborating the hypothesis in Section 3.2. As such, while the derivation of
the optimal value of c and the consideration of more powerful attack methods are future tasks, as
hypothesized in Section 3.2, the sign-flipping attack possesses high attack capability.

3.3.2 CIFAR10

First, we describe the experimental conditions for the CIFAR10 dataset, which is an image dataset
comprising 32×32 pixels. Client A held the left half of the image, and Client B held the right half.
Based on this, the model structure on the client side was set to ResNet20 with ten output nodes,
and training was conducted. In CIFAR10, training was conducted using 50,000 training data and
10,000 test data. During training, the batch size was 32, number of epochs was 100, learning rate
was 0.1, and the error was calculated using cross-entropy. Furthermore, assuming the distribution of
a slightly pre-trained model, we set the scenario such that no attack was conducted in the first five
epochs, and attacks were conducted from the sixth epoch onwards.

The details of each attack method are discussed below. In the random attack, each input element was
generated randomly according to a uniform distribution in the range [0, 1). Subsequently, during the
permutation attack, the order of the input data within each batch was swapped randomly. Finally, in
the sign-flipping attack, to satisfy the input range of values, the input data were set to

x′i,j = [1, 1, . . . , 1]
T − cxi,j (1 ≤ i ≤ m) , (1)

for with c = 1 and c = 0.1. The experimental results are listed in Table 2. As shown in Table 2,
while the random and permutation attacks were approximately ineffective, the top-1 accuracy sig-
nificantly decreases when client B conducts the sign-flipping attack with c = 0.1. As with BCW,
the consideration of more potent attacks remains a task for future research.

4 DEFENSE METHODS AGAINST BYZANTINE ATTACKS

In the previous discussions, it was demonstrated that VFL can be vulnerable to Byzantine attacks. In
this section, to improve upon this situation, we propose defense methods CC-VFed against Byzan-
tine attacks at the central server. In Section 4.1, we propose the algorithm used in this study. In
Section 4.2, we present the experimental results.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Top-1 accuracy when conducting Byzantine attacks with two client on the CIFAR10 dataset.

Attack type Malicious client
Client A Client B

None 80.47%
Random 75.53% 75.22%

Permutation 73.64% 74.83%
Sign-flipping (c = 1) 74.76% 74.97%

Sign-flipping (c = 0.1) 74.06% 58.82%

4.1 DEFENSE ALGORITHM

First, we describe the proposed defense algorithm CC-VFed against Byzantine attacks. CC-VFed
leverages the fact that the output labels become illegitimate in the presence of malicious clients, and
images are shown in Appendix A. To identify such malicious clients as described above, methods
similar to Grad-CAM (Selvaraju et al., 2017) is utilized. The determination of malicious clients for
one epoch was performed in the following three steps performed at the central server:

1. Classification of raw inputs: For one batch, the central server accepts zi,js from clients
and outputs the label y∗i s with the highest score. Furthermore, we calculate ∂Li

∂zi,j
, the

gradient of the values each client sent to the central server, in order to send them to the
clients determined to be malicious in Step 3.

2. Detection of malicious clients: For each input, if the label output y∗i in Step 1 matches
the label yi of the training data, the client with a low contribution to the output label is
determined to be a malicious client. Conversely, if the label output y∗i in Step 1 does not
match the label yi of the training data, the client with a high contribution to the output label
is determined to be a malicious client. Based on the results of the above steps performed
on the input for one batch, malicious clients are identified. The method for calculating
each client’s contributions will be discussed in detail in Section 4.1.1, and the approach for
identifying malicious clients will be elaborated in Section 4.1.2.

3. Updating each model: The values that malicious clients send to the central server are
replaced with random values, and the central server’s training is conducted while calcu-
lating the gradient for the input from each client. Then, the gradient calculated in Step 1
is then sent to the malicious clients, and the gradient calculated here is sent to the legit-
imate clients, updating each client’s model. The method for replacing the values sent by
malicious clients will be discussed in detail in Section 4.1.3.

4.1.1 CALCULATING EACH CLIENT’S CONTRIBUTION FOR A SINGLE INPUT

In this study, we use Grad-Cam (Selvaraju et al., 2017) to calculate the contribution of the values
zi,j sent from each client to the output label y∗i . Specifically, we set the contribution of each client j

as zi,j ·
∂Fθ0

(zi)y∗
i

∂zi,j
. Here,

∂Fθ0
(zi)y∗

i

∂zi,j
is a vector consisting of the values obtained by differentiating

Fθ0 (zi)y∗i
with respect to each element of the vector zi,j , and · represents the dot product of vectors.

However, this value differs from the conventional Grad-CAM in two aspects. First, we output neg-
ative values without applying the ReLU function to the Grad-Cam values at each node to consider
not only large contributions but also small contributions. Second, because the purpose of this study
was to compare clients, we calculate the contribution of a client by summing up all the Grad-Cam
values the client held, rather than a single node. Specifically, we calculated the contribution of each
client for a single input by calculating the dot product of the vector zi,j , which represents all the

values transmitted from the client to the central server, and the vector of gradients
∂Fθ0

(zi)y∗
i

∂zi,j
.

4.1.2 IDENTIFYING MALICIOUS CLIENTS

Malicious clients are first detected for each input and then identified by aggregating these results
across the batch. In this paper, we propose two methods for determining malicious clients for each
input and two methods for determining malicious clients in each batch, and we propose four defense

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

methods by integrating them, that is., 2 × 2 = 4 methods. Note that the experiments conducted in
this study assume a scenario in which the total number of clients is two or three and the number of
malicious clients is one, as a first step to verify the effect of contributions. At most one malicious
client was identified for each input and batch. However, if the model is further subdivided and the
total number of clients and number of malicious clients increase, the number of identified malicious
clients for each input and each batch can be set to half of the total number of clients, making the
proportion of malicious clients approximately equivalent. Therefore, it is believed that the defense
performance itself will also be approximately equivalent to that before subdivision. Below, we
describe the method for identifying malicious clients for each input and batch.

To determine the malicious clients at each input, we made a judgment based on the comparison
of the magnitude of each client’s contribution, as discussed earlier. For this, the first method of
judgment was a method that naively sorts the contributions of each client in ascending or descending
order and identifies a specified number of malicious clients. If the number of selected malicious
clients exceeded the specified number, the last added client was considered non-malicious because
the contributions have the same value. However, when the output label matched the label of the
training data, clients with low contributions to the output label were determined to be malicious;
however, when both contributions were high, there may not be any malicious clients. Therefore, the
second method of judgment is a method that sets a threshold for the contribution of clients so that
it can output that there are no malicious clients. Specifically, in addition to the judgment conditions
described earlier, after setting a threshold t, if the output label matched the label of the training
data, clients with contributions of t or more were considered to be non-malicious. In addition, if the
output label did not match the label of the training data, clients with contributions of t or less were
considered to be non-malicious. In particular, we set t = 0 and used these two methods of judgment.

Based on the above discussion, we explain the method for determining malicious clients in each
batch. The first method of judgment sorts the number of times each client has been judged to be
malicious in descending order and determines a specified number of clients as malicious clients in
that batch. If the number of selections exceeded the specified number for reasons such as equal
numbers of malicious judgments, the last added client is considered non-malicious. As the second
method of judgment, we determined the malicious clients in each batch based on the total number of
times they were judged to be malicious across all batches. However, when there were no malicious
clients in the relevant batch, we adhered to that judgment.

4.1.3 REPLACING THE VALUES SENT BY MALICIOUS CLIENTS

From the experimental results in Section 3.3, it can be seen that the detection rate barely decreased
in the random attack. Therefore, we neutralized the effects of Byzantine attacks by replacing the
transmission values of clients judged as malicious with random values. The random values had
the same distributions as those used for each input dataset. Specifically, in BCW, each element is
randomly generated according to a normal distribution with a mean of 0 and variance of 1; and in
CIFAR10, each element is randomly generated according to a uniform distribution in the range [0, 1).
Note that in the algorithm proposed in this paper, there may be cases where a client is mistakenly
detected as malicious. Even in this case, it is believed that there will be no further attacks because
the situation would be approximately the same as a normal random attack if the defense method
proposed in this study is used.

4.2 DEFENSE EXPERIMENTS AGAINST BYZANTINE ATTACKS

In this section, we describe defenses under the same experimental conditions as in Section 3.3 for
BCW and CIFAR10 and evaluate the extent to which Byzantine attacks can be prevented. In this
experiment, as stated in Section 3.3, to enhance the effectiveness of the defensive method, we con-
duct experiments using the eLU function instead of the ReLU function as the activation function for
the central server. In Byzantine attacks, it is anticipated that the outputs of each activation function
will significantly differ due to substantial alterations in information. Specifically, when using the
ReLU function, nodes whose active state flips and output becomes zero will no longer be trained,
thereby greatly impacting training efficiency. Therefore, in this study, we use the eLU function in-
stead of the ReLU function to prevent the output of the activation function from becoming zero. The
experimental results using the ReLU function are presented in Section Appendix E.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. The left side of the→ indicates the top-1 accuracy before defense, while the right
side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 93.71%→94.41%
Random 97.20%→95.10% 93.71%→93.01%

Permutation 97.90%→95.80% 95.10%→94.41%
Sign-flipping (c = 1) 90.91%→96.50% 52.45%→93.71%

Sign-flipping (c = 0.1) 60.84%→91.61% 13.29%→79.02%

Table 4: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. The left side of the→ indicates the top-1 accuracy before defense, while the
right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 80.47%→74.63%
Random 75.53%→75.77% 75.22%→74.91%

Permutation 73.64%→75.21% 74.83%→75.27%
Sign-flipping (c = 1) 74.76%→74.72% 74.97%→75.42%

Sign-flipping (c = 0.1) 74.06%→75.07% 58.82%→75.52%

We tested all four defense methods shown in Section 3.3 and present the best experimental results
here. The experimental results for all defense methods are shown in Appendix B. The experimental
results for BCW are listed in Table 3, and those for CIFAR10 are listed in Table 4. From Tables 3
and 4, in addition to a significant improvement in the top-1 accuracy affected by Byzantine attacks,
a high top-1 accuracy was maintained in cases unaffected by Byzantine attacks and cases without
attacks. Therefore, the proposed algorithm has a significant effect as a defense method against
Byzantine attacks. Furthermore, the results of experiments with three clients, as shown in Table 5,
demonstrate that at least for BCW, CC-VFed against Byzantine attacks is effective. Appendix C
discusses the results in detail.

5 CONCLUSION

In this study, we investigated the feasibility of Byzantine attacks on VFL and evaluated their safety.
In Section 3, we demonstrated that the random, permutation, and sign-flipping attacks are possible
attack methods that can be executed solely by pooling the training data. Among these, we quali-
tatively demonstrated that the sign-flipping attack is powerful and experimentally verified that the
sign-flipping attack significantly reduces the performance of the model. Furthermore, in Section 4,
we presented a defense method CC-VFed against Byzantine attacks using the contribution of each
client to the output label, demonstrating that it serves as a defense method against sign-flipping
attacks without significantly reducing the accuracy of the original model.

Table 5: Top-1 accuracy when defending against Byzantine attacks with a model of three clients on
the BCW dataset. The left side of the→ indicates the top-1 accuracy before defense, while the right
side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B Client C

None 97.20%→95.10%
Random 95.80%→93.71% 96.50%→96.50% 96.50%→95.80%

Permutation 96.50%→97.20% 96.50%→95.80% 97.20%→93.71%
Sign-flipping (c = 1) 97.90%→97.90% 89.51%→96.50% 50.35%→96.50%

Sign-flipping (c = 0.1) 54.55%→90.91% 41.96%→94.41% 41.96%→96.50%

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Xiaoyu Cao and Neil Zhenqiang Gong. Mpaf: Model poisoning attacks to federated learning based
on fake clients. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3396–3404, 2022.

Xiaolin Chen, Daoguang Zan, Wei Li, Bei Guan, and Yongji Wang. A gan-based data poi-
soning framework against anomaly detection in vertical federated learning. arXiv preprint
arXiv:2401.08984, 2024.

Yungi Cho, Woorim Han, Miseon Yu, Younghan Lee, Ho Bae, and Yunheung Paek. Vflip: A
backdoor defense for vertical federated learning via identification and purification. In European
Symposium on Research in Computer Security, pp. 291–312. Springer, 2024.

YAO Duanyi, Songze Li, XUE Ye, and Jin Liu. Constructing adversarial examples for vertical feder-
ated learning: Optimal client corruption through multi-armed bandit. In The Twelfth International
Conference on Learning Representations, 2023.

Ines Feki, Sourour Ammar, Yousri Kessentini, and Khan Muhammad. Federated learning for covid-
19 screening from chest x-ray images. Applied Soft Computing, 106:107330, 2021.

Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou,
Alex X Liu, and Ting Wang. Label inference attacks against vertical federated learning. In 31st
USENIX security symposium (USENIX Security 22), pp. 1397–1414, 2022.

Haoran He, Zhao Wang, Hemant Jain, Cuiqing Jiang, and Shanlin Yang. A privacy-preserving
decentralized credit scoring method based on multi-party information. Decision Support Systems,
166:113910, 2023a.

Ying He, Zhili Shen, Jingyu Hua, Qixuan Dong, Jiacheng Niu, Wei Tong, Xu Huang, Chen Li, and
Sheng Zhong. Backdoor attack against split neural network-based vertical federated learning.
IEEE Transactions on Information Forensics and Security, 2023b.

Jinrong Lai, Tong Wang, Chuan Chen, Yihao Li, and Zibin Zheng. Vfedad: A defense method based
on the information mechanism behind the vertical federated data poisoning attack. In Proceedings
of the 32nd ACM International Conference on Information and Knowledge Management, pp.
1148–1157, 2023.

Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. Rsa: Byzantine-robust
stochastic aggregation methods for distributed learning from heterogeneous datasets. In Proceed-
ings of the AAAI conference on artificial intelligence, volume 33, pp. 1544–1551, 2019.

Shiwei Lu, Ruihu Li, Wenbin Liu, and Xuan Chen. Defense against backdoor attack in federated
learning. Computers & Security, 121:102819, 2022.

Yong Luo, Zhi Lu, Xiaofei Yin, Songfeng Lu, and Yiting Weng. Application research of
vertical federated learning technology in banking risk control model strategy. In 2023
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pp. 545–552. IEEE, 2023.

Xu Ma, Yuqing Zhou, Laihua Wang, and Meixia Miao. Privacy-preserving byzantine-robust feder-
ated learning. Computer Standards & Interfaces, 80:103561, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Tomoya Murata, Kenta Niwa, Takumi Fukami, and Iifan Tyou. Simple minimax optimal byzantine
robust algorithm for nonconvex objectives with uniform gradient heterogeneity. In The Twelfth
International Conference on Learning Representations, 2024.

Qi Pang, Yuanyuan Yuan, Shuai Wang, and Wenting Zheng. Adi: Adversarial dominating inputs in
vertical federated learning systems. arXiv preprint arXiv:2201.02775, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi. Deepsight: Miti-
gating backdoor attacks in federated learning through deep model inspection. 2022.

Subhash Sagar, Chang-Sun Li, Seng W Loke, and Jinho Choi. Poisoning attacks and defenses in
federated learning: A survey. arXiv preprint arXiv:2301.05795, 2023.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

The Linux Foundation. CIFAR10. https://pytorch.org/vision/master/
generated/torchvision.datasets.CIFAR10.html, a. [Online; accessed 17-Sep-
2024].

The Linux Foundation. Torchvision. https://pytorch.org/vision/stable/index.
html, b. [Online; accessed 17-Sep-2024].

Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning attacks against
federated learning systems. In Computer security–ESORICs 2020: 25th European symposium on
research in computer security, ESORICs 2020, guildford, UK, September 14–18, 2020, proceed-
ings, part i 25, pp. 480–501. Springer, 2020.

UCI Machine Learning. Breast cancer wisconsin (diagnostic) data set. https://www.kaggle.
com/datasets/uciml/breast-cancer-wisconsin-data. [Online; accessed 17-
Sep-2024].

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Geming Xia, Jian Chen, Chaodong Yu, and Jun Ma. Poisoning attacks in federated learning: A
survey. IEEE Access, 11:10708–10722, 2023.

Jiuyun Xu, Yinyue Jiang, Hanfei Fan, and Qiqi Wang. Svfldetector: a decentralized client detection
method for byzantine problem in vertical federated learning. Computing, pp. 1–21, 2024.

Kun Yuan, Zhaoxian Wu, and Qing Ling. A byzantine-resilient dual subgradient method for vertical
federated learning. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4273–4277. IEEE, 2022.

A ILLUSTRATIVE DIAGRAM OF THE PROPOSED METHOD

In this section, we present an overview of the defense method proposed in this paper. The conceptual
illustration of the defense method is depicted in Figures 1 and 2. Figure 1 illustrates the scenario
where the label output by the central server matches the label of the training data. In this case, a
malicious client would send information that differs from the label that should be output, resulting in
a smaller contribution to the output label. Conversely, Figure 2 depicts the scenario where the label
output by the central server does not match the label of the training data. In this case, the malicious
client would be a contributing factor to the incorrect label, leading to a larger contribution to the
output label.

B DETAILED EXPERIMENTAL DATA FOR THE CASE OF TWO CLIENTS

In this section, we present the experimental results of the four defense methods proposed in Sec-
tion 4.1.2, conducted in a scenario where one of the two clients is malicious. Firstly, in Section B.1,
we present the experimental results for BCW. Subsequently, in Section B.2, we display the experi-
mental results for CIFAR10.

Before delving into each experimental result, let’s first organize the defense methods. The algorithm
proposed in this paper makes two types of judgments for each input and each batch. Firstly, for each

12

https://pytorch.org/vision/master/generated/torchvision.datasets.CIFAR10.html
https://pytorch.org/vision/master/generated/torchvision.datasets.CIFAR10.html
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

௜,௝
௜

௜,௝

Malicious 
inputs

Correct 
label

Same

Lower
Contributions

Figure 1: Illustrative diagram of the scenario when the output label is correct

௜,௝
௜

௜,௝

Malicious 
inputs

Correct 
label

Different

Higher
Contributions

Figure 2: Illustrative diagram of the scenario when the output label is incorrect

input, we proposed two types of judgment methods based on the presence or absence of a threshold.
Secondly, for each batch, we proposed two types of judgment methods based on whether or not
past history is used. Below, we present the experimental results for each of these four integrated
methods. To clarify each experimental condition, we will explicitly state the presence or absence of
a threshold and the use or non-use of past history.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. Threshold is used and past history is used. The left side of the → indicates the
top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 93.71%→94.41%
Random 97.20%→95.10% 93.71%→93.01%

Permutation 97.90%→95.80% 95.10%→94.41%
Sign-flipping (c = 1) 90.91%→96.50% 52.45%→93.71%

Sign-flipping (c = 0.1) 60.84%→91.61% 13.29%→79.02%

Table 7: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. Threshold is not used and past history is used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 93.71%→94.41%
Random 97.20%→63.64% 93.71%→63.64%

Permutation 97.90%→74.13% 95.10%→63.64%
Sign-flipping (c = 1) 90.91%→11.19% 52.45%→20.28%

Sign-flipping (c = 0.1) 60.84%→13.99% 13.29%→9.79%

B.1 BCW

For BCW, the experimental results are shown in Tables 6–9. Here, taking the average of the top-1
accuracy after defense for the nine experimental conditions, we get 92.62% for Table 6, 46.08% for
Table 7, 73.81% for Table 8, and 56.80% for Table 9. Therefore, for BCW, the defense is successful
when both the threshold and past history are utilized.

Below, we discuss the reasons why the defense is successful for BCW when both the threshold and
past history are utilized. The model of BCW is small and simple, and it is believed that the speed at
which the model is taken over when subjected to a Byzantine attack is fast. Here, when a threshold
is not used, the detection rate of malicious clients increases regardless of whether they are malicious
or not, and the risk of legitimate clients being judged as malicious also increases. Furthermore, if
past history is not used, there is a risk that legitimate clients may temporarily be judged as malicious.
In the above scenario, if a legitimate client is judged as malicious, there will be no legitimate clients
left in the training process. Consequently, in the case of BCW, where the speed at which the model
is taken over is fast, the training process progresses with only the malicious client. This leads to
a situation where the model trains to judge legitimate clients as malicious, further exacerbating the
problem.

Table 8: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. Threshold is used and past history is not used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 93.71%→93.01%
Random 97.20%→95.10% 93.71%→95.10%

Permutation 97.90%→63.64% 95.10%→95.10%
Sign-flipping (c = 1) 90.91%→21.68% 52.45%→95.80%

Sign-flipping (c = 0.1) 60.84%→11.89% 13.29%→93.01%

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 9: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. Threshold is not used and past history is not used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 93.71%→95.80%
Random 97.20%→93.71% 93.71%→69.23%

Permutation 97.90%→95.10% 95.10%→93.71%
Sign-flipping (c = 1) 90.91%→11.19% 52.45%→18.88%

Sign-flipping (c = 0.1) 60.84%→14.69% 13.29%→18.88%

Table 10: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. Threshold is used and past history is used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 80.47%→74.73%
Random 75.53%→10.00% 75.22%→10.00%

Permutation 73.64%→10.00% 74.83%→10.00%
Sign-flipping (c = 1) 74.76%→35.61% 74.97%→74.37%

Sign-flipping (c = 0.1) 74.06%→74.06% 58.82%→73.76%

B.2 CIFAR10

For CIFAR10, the experimental results are shown in Tables 10–13. Here, taking the average of
the top-1 accuracy after defense for the nine experimental conditions, we get 41.39% for Table 10,
74.72% for Table 11, 19.14% for Table 12, and 75.17% for Table 13. Therefore, for CIFAR10, the
defense is successful when threshold is not used. Below, we discuss the reasons why the defense is
successful for CIFAR10 when a threshold is not utilized.

Firstly, let’s focus on Table 10 and consider the reasons for the failure of the defense. In Table 10,
while the defense against the sign-flipping attack is successful, the defense against the random and
permutation attacks fails. CIFAR10, unlike BCW, takes time to train, and even for clean data without
data contamination, the top-1 accuracy at the start of the 6th epoch is 57.08%. Therefore, compared
to BCW, the probability of being judged as having an error in the output label is high. At this time, it
is believed that the random and permutation attacks have a clearly smaller contribution to the output
label, and legitimate clients are considered malicious. In this case, there will be no legitimate clients
left in the training process, and training will proceed with only the malicious client. Conversely, in
the case of random and permutation attacks, the contribution value becomes random with respect to
the output label, and even if the output label is judged as legitimate when a threshold is set, there are
cases where the client performing these attacks is considered non-malicious. From the above, it is
believed that the risk of only legitimate clients being considered malicious is high, and the situation
has become such that a model that judges legitimate clients as malicious is trained due to training
only by the malicious client. It should be noted that the aforementioned phenomenon may also be
attributed to the fixed threshold of zero for contributions. Therefore, setting an appropriate threshold
according to the depth of training remains a task for future research.

It should be noted that the cause of failure in defending against sign-flipping attacks in Table 12 is
believed to be almost the same. Sign-flipping attacks are considered to have a higher contribution
to the output label compared to random or permutation attacks, as they maintain a connection with
the original input. In Table 10, it is believed that the attack failed because a sufficient number of
successful attacks could not be achieved, and legitimate clients could not be misjudged as malicious,
resulting in the generation of a high-precision model. However, in Table 12, it is believed that even
after training has progressed, legitimate clients can be misjudged as malicious without using past
history, and in such cases, training progresses only with malicious clients, leading to a situation
where a model that judges legitimate clients as malicious is trained.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 11: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. Threshold is not used and past history is used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 80.47%→74.59%
Random 75.53%→74.93% 75.22%→75.05%

Permutation 73.64%→74.42% 74.83%→75.06%
Sign-flipping (c = 1) 74.76%→73.57% 74.97%→74.86%

Sign-flipping (c = 0.1) 74.06%→74.98% 58.82%→75.04%

Table 12: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. Threshold is used and past history is not used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 80.47%→55.07%
Random 75.53%→10.00% 75.22%→10.00%

Permutation 73.64%→10.00% 74.83%→10.00%
Sign-flipping (c = 1) 74.76%→25.77% 74.97%→25.43%

Sign-flipping (c = 0.1) 74.06%→10.00% 58.82%→15.98%

Table 13: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. Threshold is not used and past history is not used. The left side of the →
indicates the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after
defense.

Attack type Malicious client
Client A Client B

None 80.47%→74.63%
Random 75.53%→75.77% 75.22%→74.91%

Permutation 73.64%→75.21% 74.83%→75.27%
Sign-flipping (c = 1) 74.76%→74.72% 74.97%→75.42%

Sign-flipping (c = 0.1) 74.06%→75.07% 58.82%→75.52%

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL RESULTS OF THREE CLIENTS

The main experiments in this paper were conducted with two clients. In this section, we conduct
experiments to see to what extent Byzantine attacks and the proposed defense method have an effect
when there are three clients. Firstly, in Appendix C.1, we discuss the experimental conditions.
Furthermore, in Apprndix C.2, we conduct the experiments and demonstrate that the attack and
defense capabilities of Byzantine attacks heavily depend on the assigned feature quantity.

C.1 EXPERIMENTAL CONDITIONS

In this subsection, we conduct experiments in the case where there are three clients (referred to as
Client A, Client B, and Client C, respectively). The dataset handled in this experiment is the same as
in the previous section. Particularly, compared to Section 3 and 4, the data partitioning method and
the structure of the model have changed in the experiments in this section, while all other conditions
are equivalent.

Firstly, we will discuss the data partitioning method. In this experiment, for all datasets, the data is
divided into three parts, held by Client A, B, and C, respectively. Firstly, in BCW, the 28 numerical
data registered in the dataset are held in order, with Client A holding 9, Client B holding 9, and
Client C holding 10. In CIFAR10, for the 32×32 pixel images, Client A holds the first 10 columns
from the left, Client C holds the last 11 columns from the right, and Client B holds the remaining
11 columns in the middle. Based on this data partitioning method, the structure of the model was
determined according to each dataset. The model is as shown in Tables 17 and 18 of Appendix D. It
should be noted that the client model for CIFAR10 remains as ResNet20.

The above are the experimental conditions for the experiments conducted in this subsection. Here,
when conducting experiments with the above partitioning method, it is expected that the contribu-
tions to training will vary greatly, and if a client who is supposed to have a high contribution is
malicious, the accuracy of the model is expected to decrease significantly. For example, in image
data, Clients A, B, and C are assigned the left, center, and right of the image, respectively. Since the
object is likely to be in the center of the image, if Client B, who holds the center of the image, is
malicious, the accuracy of the model is expected to decrease significantly, and even if other clients
act maliciously, it is not expected to have much impact. Similarly, in the case of table data, it is ex-
pected that the attack results will vary depending on the data used. Also, if a client who is supposed
to have a high contribution is malicious, it is expected that the defense will be less effective.

In this paper, to verify the above discussion, we trained model and calculated the top-1 accuracy
for all patterns where the malicious client is Client A, Client B, or Client C. Furthermore, in this
section, we utilize the defense methods CC-VFed that were shown to be highly effective for each
dataset in Appendix B. Specifically, for BCW, we employ the defense method CC-VFed that uses
both thresholds and historical data, while for CIFAR10, we conduct experiments under the defense
method that does not use either thresholds or historical data.

C.2 EXPERIMENTAL RESULTS

The experimental results for BCW are as shown in Table 5, and those for CIFAR10 are as shown in
Table 14. As can be seen from Tables 5 and 14, the attack and defend results vary depending on the
part of the data used.

Firstly, we will discuss BCW. For BCW, there was not much difference in the contribution of each
client, and CC-VFed was able to defend against Byzantine attacks.

Next, we will discuss CIFAR10. In CIFAR10, as hypothesized, Client B, who holds the informa-
tion in the center of the image, has a high attack capability. Particularly in CIFAR10, since clients
other than Client B are almost unable to attack, the information held by Client B is extremely im-
portant. Furthermore, in CIFAR10, the information occupied by Client B is large, and if Client B is
malicious, the defense fails. The proposal of a defense method under this situation is a future task.

From the above, it can be concluded that in VFL, the attack and defense capabilities of Byzantine
attacks greatly depend on the assigned features. As stated above, there are cases where Byzantine
attacks cannot be prevented if a client with a large amount of information is malicious in the first

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 14: Top-1 accuracy when defending against Byzantine attacks with a model of three clients
on the CIFAR10 dataset. Threshold is not used and past history is not used. The left side of the→
indicates the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after
defense.

Attack type Malicious client
Client A Client B Client C

None 79.42%→75.53%
Random 77.75%→74.14% 70.66%→37.31% 76.59%→73.84%

Permutation 77.42%→73.22% 71.97%→26.98% 76.56%→73.93%
Sign-flipping (c = 1) 77.78%→71.68% 57.55%→59.91% 77.12%→75.13%

Sign-flipping (c = 0.1) 78.47%→73.87% 70.56%→45.01% 76.55%→74.12%

Table 15: Network for the BCW dataset (two clients)
Layer #(Node) Activation Function

Client

Fully connected layer 14→ 20 –
Batch normalization layer 20→ 20 ReLU

Fully connected layer 20→ 20 –
Batch normalization layer 20→ 20 ReLU

Fully connected layer 20→ 2 –

Server

Batch normalization layer 4→ 4 eLU
Fully connected layer 4→ 4 –

Batch normalization layer 4→ 4 eLU
Fully connected layer 4→ 2 –

place. Therefore, considering the trade-off between the efficiency of training and the amount of
information assigned to each client in advance is extremely important for preventing Byzantine
attacks. In particular, consideration of how to allocate data to ensure successful defense by the
proposed method is a task for future research.

D DETAILED NETWORK IN EXPERIMENTS

In this section, we provide the detailed architecture of the model network used in this study. The
detailed network configurations are as shown in Tables 15–18. It should be noted that in Tables 15–
18, the activation function of the central server is the eLU function, whereas in the experiments
presented in Appendix E, this part is replaced with the ReLU function.

E EXPERIMENTAL RESULTS USING RELU

In this section, we discuss the experimental results when using the ReLU function as the activation
function for the central server. Firstly, in Appendix E.1, we present the experimental results for
BCW. Subsequently, in Appendix E.2, we display the experimental results for CIFAR10.

Table 16: Server network for the CIFAR10 dataset (two clients)
Layer #(Node) Activation Function

Server

Batch normalization layer 20→ 20 eLU
Fully connected layer 20→ 20 –

Batch normalization layer 20→ 20 eLU
Fully connected layer 20→ 10 –

Batch normalization layer 10→ 10 eLU
Fully connected layer 10→ 10 –

Batch normalization layer 10→ 10 eLU
Fully connected layer 10→ 10 LogSoftmax

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 17: Network for the BCW dataset (three clients)
Layer #(Node) Activation Function

Client

Fully connected layer (Input)→ 14 –
Batch normalization layer 14→ 14 ReLU

Fully connected layer 14→ 14 –
Batch normalization layer 14→ 14 ReLU

Fully connected layer 14→ 2 –

Server

Batch normalization layer 6→ 6 eLU
Fully connected layer 6→ 6 –

Batch normalization layer 6→ 6 eLU
Fully connected layer 6→ 2 –

Table 18: Server network for the CIFAR10 dataset (three clients)
Layer #(Node) Activation Function

Server

Batch normalization layer 30→ 30 eLU
Fully connected layer 30→ 30 –

Batch normalization layer 30→ 30 eLU
Fully connected layer 30→ 10 –

Batch normalization layer 10→ 10 eLU
Fully connected layer 10→ 10 –

Batch normalization layer 10→ 10 eLU
Fully connected layer 10→ 10 LogSoftmax

E.1 BCW

In BCW, the experimental results for the case of two clients are as shown in Tables 19–22, and
for the case of three clients are as shown in Table 23. Below, we compare the eLU and ReLU
functions for the defensive method that was successful in the eLU function, that is, when both
the threshold and history are used. First, for the case of two clients, comparing Tables 6 and 19
reveals that the accuracy decreases when Client A performs a random attack or permutation attack.
Furthermore, for the case of three clients, comparing Tables 5 and 23 shows that the defensive
performance deteriorates when Client B performs a sign-flipping attack (c = 0.1). Therefore, using
the eLU function instead of the ReLU function enhances the defensive performance of the proposed
method.

E.2 CIFAR10

In CIFAR10, the experimental results for the case of two clients are as shown in Tables 24–27,
and for the case of three clients are as shown in Table 28. Below, we compare the eLU and ReLU
functions for the defensive method that was successful in the eLU function, that is, when both the
threshold and history are used. First, for the case of two clients, comparing Tables 13 and 27 shows
that there is almost no difference, and both successfully defended against the attacks. However, for
the case of three clients, comparing Table 14 and Table 28 reveals that the accuracy significantly

Table 19: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. Threshold is used and past history is used. The left side of the → indicates the
top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 95.10%→95.80%
Random 96.50%→83.92% 95.80%→93.71%

Permutation 97.90%→85.31% 95.10%→95.80%
Sign-flipping (c = 1) 88.81%→97.20% 46.85%→93.01%

Sign-flipping (c = 0.1) 49.65%→92.31% 11.19%→70.63%

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 20: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. Threshold is not used and past history is used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 95.10%→98.60%
Random 96.50%→63.64% 95.80%→83.92%

Permutation 97.90%→63.64% 95.10%→63.64%
Sign-flipping (c = 1) 88.81%→13.29% 46.85%→13.99%

Sign-flipping (c = 0.1) 49.65%→11.89% 11.19%→11.19%

Table 21: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. Threshold is used and past history is not used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 95.10%→94.41%
Random 96.50%→83.92% 95.80%→63.64%

Permutation 97.90%→95.10% 95.10%→93.71%
Sign-flipping (c = 1) 88.81%→18.18% 46.85%→17.48%

Sign-flipping (c = 0.1) 49.65%→11.89% 11.19%→69.23%

Table 22: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the BCW dataset. Threshold is not used and past history is not used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 95.10%→96.50%
Random 96.50%→63.64% 95.80%→95.80%

Permutation 97.90%→63.64% 95.10%→65.03%
Sign-flipping (c = 1) 88.81%→9.79% 46.85%→13.29%

Sign-flipping (c = 0.1) 49.65%→10.49% 11.19%→6.99%

Table 23: Top-1 accuracy when defending against Byzantine attacks with a model of three clients
on the BCW dataset. Threshold is used and past history is used. The left side of the→ indicates the
top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B Client C

None 96.50%→95.80%
Random 97.20%→97.20% 96.50%→96.50% 97.20%→95.80%

Permutation 97.90%→96.50% 97.20%→97.90% 95.10%→95.10%
Sign-flipping (c = 1) 97.20%→96.50% 96.50%→93.01% 79.72%→96.50%

Sign-flipping (c = 0.1) 49.65%→93.71% 47.55%→62.94% 47.55%→92.31%

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 24: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. Threshold is used and past history is used. The left side of the→ indicates
the Top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 81.01%→72.43%
Random 75.19%→10.00% 74.95%→10.00%

Permutation 74.49%→10.00% 74.13%→10.00%
Sign-flipping (c = 1) 74.52%→10.41% 63.22%→72.34%

Sign-flipping (c = 0.1) 73.95%→14.19% 41.13%→12.62%

Table 25: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. Threshold is not used and past history is used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 81.01%→73.10%
Random 75.19%→74.41% 74.95%→75.08%

Permutation 74.49%→74.05% 74.13%→75.07%
Sign-flipping (c = 1) 74.52%→74.99% 63.22%→74.68%

Sign-flipping (c = 0.1) 73.95%→74.43% 41.13%→74.18%

decreases when Client A or C performs a random attack or permutation attack. Therefore, using
the eLU function instead of the ReLU function enhances the defensive performance of the proposed
method.

Table 26: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. Threshold is used and past history is not used. The left side of the→ indicates
the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after defense.

Attack type Malicious client
Client A Client B

None 81.01%→30.30%
Random 75.19%→10.00% 74.95%→10.00%

Permutation 74.49%→10.00% 74.13%→10.00%
Sign-flipping (c = 1) 74.52%→26.79% 63.22%→34.18%

Sign-flipping (c = 0.1) 73.95%→10.00% 41.13%→71.68%

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 27: Top-1 accuracy when defending against Byzantine attacks with a model of two clients on
the CIFAR10 dataset. Threshold is not used and past history is not used. The left side of the →
indicates the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after
defense.

Attack type Malicious client
Client A Client B

None 81.01%→75.11%
Random 75.19%→74.58% 74.95%→75.01%

Permutation 74.49%→74.42% 74.13%→75.49%
Sign-flipping (c = 1) 74.52%→74.68% 63.22%→75.34%

Sign-flipping (c = 0.1) 73.95%→74.52% 41.13%→75.27%

Table 28: Top-1 accuracy when defending against Byzantine attacks with a model of three clients
on the CIFAR10 dataset. Threshold is not used and past history is not used. The left side of the→
indicates the top-1 accuracy before defense, while the right side indicates the top-1 accuracy after
defense.

Attack type Malicious client
Client A Client B Client C

None 78.14%→75.69%
Random 77.08%→10.00% 71.08%→47.41% 76.34%→52.04%

Permutation 76.73%→10.00% 69.11%→45.68% 77.43%→10.00%
Sign-flipping (c = 1) 77.16%→75.64% 52.25%→58.56% 76.71%→75.50%

Sign-flipping (c = 0.1) 77.19%→72.03% 70.39%→23.77% 76.04%→73.53%

22


	Introduction
	Background
	Contributions

	Preliminaries
	Vertical Federated Learning VGS2018
	Previous Byzantine attacks on VFL YWL2022

	Feasible Byzantine Attacks that Tamper with Training Data
	The Attack Capabilities of Malicious Clients in this Paper
	Consideration of Strong Byzantine Attacks
	Comparative Experiment of Byzantine Attacks
	BCW
	CIFAR10


	Defense Methods against Byzantine Attacks
	Defense Algorithm
	Calculating each client's contribution for a single input
	Identifying malicious clients
	Replacing the values sent by malicious clients

	Defense Experiments Against Byzantine Attacks

	Conclusion
	Illustrative Diagram of the Proposed Method
	Detailed Experimental Data for the Case of Two Clients
	BCW
	CIFAR10

	Experimental Results of Three Clients
	Experimental Conditions
	Experimental Results

	Detailed Network in Experiments
	Experimental Results using ReLU
	BCW
	CIFAR10


