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Advancing Event Causality Identification via Heuristic Semantic

Abstract

Event Causality Identification (ECI) focuses
on extracting causal relations between events
in texts. Existing methods primarily utilize
causal features and external knowledge to iden-
tify causality. However, such approaches fall
short in two dimensions: (1) the causal fea-
tures between events in a text often lack ex-
plicit clues, and (2) external knowledge may
introduce bias, while specific problems re-
quire specific analyses. In light of these is-
sues, we introduce a novel Semantic Consis-
tency Inquiry (SemClI) to the ECI task and
propose the Heuristic Semantic Consistency
Discriminator (HSemCD), a model that is both
straightforward and effective. HSemCD uti-
lizes a Cloze Analyzer to facilitate a gap-filling
game, aiming to help uncover the semantic de-
pendency in the context. Subsequently, it as-
sesses the semantic consistency between the
fill-in token and the given sentence to detect the
existence of causality. Through this assessment,
HSemCD reveals the causal relations between
events indirectly. Comprehensive experiments
validate the effectiveness of HSemCD, which
surpasses previous state-of-the-art methods on
three widely used benchmarks.

1 Introduction

The challenging task of Event Causality Iden-
tification (ECI) of natural language understand-
ing (NLU) aims to catch causal relations between
event pairs in a text. For instance, "Strong winds
knocked down power lines, causing a blackout.",
an ECI model should identify the presence of a
causal relation between event pair (winds, black-
out). This task is important in language under-
standing and exhibits a wide range of application
values (Oh et al., 2013, 2017; Berant et al., 2014;
Mostafazadeh et al., 2016).

The conventional approach for ECI is a binary
classification model that takes a triplet (sentence,
event-1, event-2) as input and judges the exis-
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Figure 1: Introduction of the ECI task, along with our
motivation.

tence or not of a causal relation between the two
events, as illustrated at the top of Figure 1. To
enhance the performance on the ECI task, various
improvements have been implemented. Aside from
the early feature-based methods (Hashimoto et al.,
2014; Ning et al., 2018; Gao et al., 2019), several
recently proposed representation-based methods
have shown better ECI capabilities, including exter-
nal knowledge enhanced methods (Liu et al., 2021;
Cao et al., 2021), Pre-trained Language Models
(PLMs) based methods (Shen et al., 2022), and data
augmentation boosted methods (Zuo et al., 2021b).
Recently, leveraging external prior knowledge to
augment the model represents commonly. How-
ever, it also introduces potential bias. See the in-
stance mentioned above, event pairs (winds, black-
out) seem to be no direct causal relation, while it
is reasonable to infer a causality considering the

given context. Upon analysis, we can observe a

. . knocked down
semantic dependency: winds ————— power

lines "% blackout. This finding means that the



causal relations between events within a given sen-
tence also manifest as a form of context-dependent
semantic reliance. Thus, we claim that the ECI
task can be reformulated as a semantic consistency
classification task between two events following
their respective mappings within the same context.

To this end, we present Semantic Consistency
Inquiry (SemCl) as an alternative solution for the
ECI task. The goal of SemClI is to explore im-
plicit causal relationships guided by contextual se-
mantic consistency analysis. To meet the SemClI,
we propose a model, namely Heuristic Semantic
Consistency Discriminator (HSemCD). HSemCD
comprises three primary modules: a Cloze An-
alyzer, a Semantic Consistency Encoder, and a
Causality Discriminator. Specifically, HSemCD
first utilizes the Cloze analyzer to generate a fill-in
token within the context. Meanwhile, the semantic
consistency encoder captures semantic dependen-
cies by encoding the source sentence. Finally, the
causality discriminator assesses whether there is a
causal dependency between the given event pairs
by evaluating whether the introduction of the fill-
in token maintains semantic consistency with the
original sentence. The main contributions of this
work are summarized as follows:

* We propose the Semantic Consistency Inquiry
(SemCl) as a potential alternative solution to
the ECI task, highlighting the significance of
context-dependent semantic dependency anal-
ysis in detecting causal relations.

* We introduce a Heuristic Semantic Consis-
tency Discriminator (HSemCD) to implement
the SemCI. HSemCD offers simplicity, effec-
tiveness, and represents the first attempt to
extend the semantic consistency inquiry to the
ECI task.

* The experimental results on three widely used
datasets demonstrate that HSemCD achieves
2.1%, 10.8%, and 4.6% improvements in
terms of the F1 score compared to the previous
SOTA methods, confirming its effectiveness.

2 Related Work

Identifying causal relations between events at the
document level and sentence level is challenging
and has attracted massive attention in the past few
years. In this paper, we focus on the sentence-level
ECI. Early methods mainly utilize explicit causal
patterns (Hashimoto et al., 2014; Riaz and Girju,

2014a), lexical and syntactic features (Riaz and
Girju, 2013, 2014b), and causal indicators or sig-
nals (Do et al., 2011; Hidey and McKeown, 2016)
to identify causal relations.

Recently, several representation-based methods
utilizing Pre-trained Language Models (PLMs)
have improved the performance of the ECI task. To
address the lack of training data for ECI, (Zuo et al.,
2020, 2021b) proposed data augmentation meth-
ods, which can generate additional training data to
alleviate the problem of overfitting. With the intu-
ition that commonsense causal relations are helpful
for ECI, (Liu et al., 2021; Cao et al., 2021) incor-
porated external knowledge from the knowledge
graph ConceptNet (Speer et al., 2017) to enrich the
representations derived from PLMs. However, the
performance of external knowledge-based methods
is closely related to the consistency between the tar-
get task domain and the knowledge bases utilized,
which can introduce potential bias and result in
vulnerabilities in such approaches. Different from
previous methods, (Man et al., 2022) introduced
a dependency path generation approach for ECI,
explicitly enhancing the causal reasoning process.
(Hu et al., 2023) exploited two types of seman-
tic structures, namely event-centered structure and
event-associated structure, to capture associations
between event pairs.

3 Preliminaries

3.1 Problem Statement

Let S = [Sy,---,5,] € R¥XISI refer to a sen-
tence with | S| tokens, where each token S; is a
word/symbol, including special identifiers to in-
dicate event pair (Se,, Se,) in causality. Tra-
ditional ECI models determine if there exists a
causal relation between two events by focusing
on event correlations, which can be written as
F(S,Se;,Se,) = {0,1}. Actually, correlation
does not necessarily imply causation, but it can
often be suggestive. Therefore, this study investi-
gates the Semantic Consistency Inquiry (SemCI) as
a potential alternative solution to the ECI task. For
clarity, we introduce two fundamental problems:
Cloze Test. We denote a mask indicator as
m = [my, - ,mg} € {0,1}1%I51, where m; =
0 if S; is event token, otherwise m; = 1,5 €
[1,---,|S]],7 # i. We use § instead of S to
explicitly represent the incomplete sentence, i.e,
S = mS. The Cloze test in this study is to develop
a contextual semantic-based network €2(+) to fill



in the masked word, i.e., Q(S’) — S, where S,
denotes the generated fill-in token.

Heuristic Consistency Discrimination. Given
the input tuple (S, S,,,), a discriminator D(-) aims
to examine the presence of semantic consistency in
sentence S with regard to S, i.e., D(S, Sm,) €
{0,1}. Since S,, is the generated fill-in token
of ©(8), the alignment of S, with the source
sentence S in logical and semantic context can
serve as an indication of a causal relationship, i.e.,

~

D(S,Q(S)) & F(S, Se,, Se,)-

3.2 Basic Technique

The multi-head attention mechanism is the core
part of Transformer (Vaswani et al., 2017) and
has been widely adopted for sequential knowledge
modeling. It measures the similarity scores be-
tween a given query and a key, whereafter formu-
lating the attentive weight for a value. The canon-
ical formulation can be conducted by the scaled
dot-product as follows:

MHA (A, B) = Concat(H", - - -

WV, (€3]

where H' = softmax(

Vdn
and Q = AWq,{K,V} = B{Wk,Wv},

herein, Wyq vy € R are head mapping pa-
rameters. Typically, the multi-head attention mech-
anism can be categorized into two types: (1) when
A = B, the attention mechanism focuses on the
relationship between different elements within the
same input; (2) when A # B, the attention mech-
anism captures the relationship between elements
from different inputs.

4 Methodology

4.1 Overview

In this section, we present our proposed HSemCD
model, which reformulates the ECI task as a seman-
tic consistency classification problem. Figure 2
provides an overview of the HSemCD, which com-
prises three primary components: a Cloze Analyzer,
a Semantic Consistency Encoder, and a Causality
Discriminator. The main distinguishing feature of
our approach from other methods lies in the fact
that we leverage reading comprehension to its full
extent within the generative model, eliminating the
need for additional prior knowledge and prioritiz-
ing simplicity and efficiency.

4.2 Cloze Analyzer

It is reasonable to believe that a well-trained deep
generative model is powerful in context aware-
ness (Goswami et al., 2020). In light of this,
we adopt a straightforward approach of randomly
masking one event from the event pair, and then
predicting this event. This approach is inspired by
the literary puzzle known as Cloze, which plays
a crucial role in our framework. The Cloze facili-
tates the prediction of the most appropriate fill-in
token for the masked word, revealing the probable
semantic relationships within the given context.

Input Embedding Layer aims to encode sen-
tences into a latent space. Given a sentence
S =1[S1,--+,8, S, -, 5] wecorrelate
aS=SoM mask, Where © denotes the element-
wise product and M 45k = {min} € {0,1}"
indicates the randomly masked word. If m; = 0, it
means the S; word is masked, which can be either
Se, or Se,. In order to adhere to the Cloze puzzle
setting, we utilize two pairs of specification sym-
bols <e1>, </e1> and <eg>, </e> to mark S, and
Se, in source sentence S. Importantly, the masked
wprd does not have the marker, thus resulting in
|S| =S| — 2. A

The input embedding layer encodes the S, S as-
sociated with its position. The word embeddings
are trained along with the model and initialized
from pre-trained BERT word vectors with a di-
mensionality of d = 1024. The specification sym-
bol <e,> and [mask] are mapped to the appointed
tokens, and their embeddings are trainable with
random initialization. The position embedding is
computed by the sine and cosine functions pro-
posed by Transformer. Finally, the outputs of a
given sentence from this layer are the sum of the
word embedding and position embedding, namely
X and X for simplicity, respectively. The latter
corresponds to a sentence with the masked word.
Notably, X € R(tt4)xd X ¢ R(nt+2)xd,

Semantic Completion Block receives X asin-
put, aiming to fill in the blank that is marked
by [mask] (i.e., Z,,). Inspired by the Trans-
former, it is a stack of the basic building block
[MHA + norm + feed-forward layer + norm], as
illustrated in the upper part of Figure 2. The main
idea of this block is to take advantage of the z,,, as
a query, then fill the man-made gap. The process
can be formulated as:

¢ = MHA(Z,, X), 2)
¢ = (ReLU(LN(&) 4+ &m)We, + be; )Wey +bey,  (3)
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Figure 2: Overview of the proposed HSemCD.

where {W,,b.} are learnable parameters, ¢ €
R4 is the output of this block, i.e., the gener-
ated filled-in word.

4.3 Semantic Consistency Encoder

The Semantic Consistency Encoder enables the
model to leverage the entire input field that facili-
tates comprehensive information reception and fos-
ters an understanding of the logical relationships
between words. It receives X as input to establish
the semantic dependencies present in the entire sen-
tence. It is also a stack of the basic building block:
[MHA +norm-feed-forward layer+norm|, which
is formalized as:

H = MHA(X, X), o)

H = (ReLU(LN(H) + X)W, +bi, )W, + b, (5)
where { H, H} € R("+9*4 are sentence represen-

tations that assimilate intricate semantic connec-
tions among words.

4.4 Causality Discriminator

According to our motivation, we conduct a causal-
ity inquiry between the fill-in token and the seman-
tic dependency matrix by utilizing cross attentive
network, namely:

z = MHA(e, H). ©6)

After that, we obtain the z € R'*? ag the result

of the inquiry. A two-layer feed-forward network

transforms it to the causality classifier as:
Yy, = (ReLU(szn + bin)Wout + bout)7 (7)

where {W,, b, } are learnable parameters.

4.5 Training Criterion

We adopt the cross-entropy loss function to train
the HSemCD:

>

(Sel 7382)65

J(©) Y(se, 509) log (softma:c(yzWerby)),

e2

(®)
where © denotes the model parameters, S refers
to the full sentence in the training set, (Se,, Se,)
are the events pairs and the Y(se, 50y is a one-
hot vector that indicates the gold relationship be-
tween s., and s.,. That is, we utilize the Ysi,
to guide whether the generated fill-in token is
causally related to the source sentence S, ie.,
vs,, — Y. = D(S,Q(8)).

It is essential to highlight that we do not establish
a loss to directly guide the fill-in token. This is be-
cause we do not necessitate alignment between the
fill-in tokens and the original words. Instead, our
objective is to generate tokens through the Cloze
analyzer based on semantic coherence within the
context and then use it to inquire about the presence
of a causal relationship. This aligns with our main
argument: the existence of a causal relationship
between two events is context-dependent.

5 Experiments

5.1 Datasets and Evaluation Metrics

We evaluate the HSemCD on widely-used ECI
benchmark datasets, including two from EventSto-
ryLine v0.9 (ESC) (Caselli and Vossen, 2017) and
one from Causal-TimeBank (CTB) (Mirza et al.,
2014), namely ESC, ESC”, and CTB.

ESC' contains 22 topics, 258 documents, and
5334 event mentions. The same as (Gao et al.,
2019), we exclude aspectual, causative, perception,

"https://github.com/tommasoc80/EventStoryLine
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and reporting event mentions, since most of which
were not annotated with any causal relation. After
the data processing, there are 7805 intra-sentence
event mention pairs in the corpus, 1770 (22.67%)
of which are annotated with a causal relation. Iden-
tical to the data split in previous methods (Hu et al.,
2023; Zuo et al., 2021b), we select the last two top-
ics in ESC as development set and use the remain-
ing 20 topics for a 5-fold cross-validation. Note
that the documents are sorted according to their
topic IDs under this data partition setting, which
means that the training and test sets are cross-topic.
Due to the distribution gap between the training
and test sets, the generalization ability of the model
can be better evaluated.

ESC” is another data partition setting for the
ESC dataset, which is adopted in (Man et al., 2022;
Hu et al., 2023). Instead of sorting the documents
according to their topic IDs, documents are ran-
domly shuffled under this setting. Thus, the distri-
butions of the training and test sets are more con-
sistent, because both two sets contain data on all
topics. The experimental results under this setting
can better demonstrate the model’s ability to iden-
tify causal relations in topic-centered documents,
which are common in real-world scenarios.

CTB ? contains 183 documents and 6811 event
mentions. Out of 9721 intra-sentence event pairs,
298 (3.1%) pairs are annotated with causal rela-
tions. The same as previous methods (Man et al.,
2022; Hu et al., 2023), we perform a 10-fold cross-
validation on CTB. Given the sparsity of causality
in the CTB dataset, we follow existing works to
conduct a negative sampling technique for training
with the sampling rate of 0.7.

Evaluation Metrics. We utilize the commonly
used Precision, Recall, and F1-score as evaluation
metrics.

5.2 Experimental Setup

Implementation Details. Our model is based on
the uncased BERT model released by HuggingFace
Transformer library ® and is fine-tuned during the
training process. All experiments are accelerated
by one piece of Nvidia GeForce RTX 3090. The
dimension of hidden units is set to 1024, the batch
size is set to 20, and the dropout rate is set to 0.95.
The Cloze Analyzer and semantic consistency en-
coder are stacked 24 blocks, with each block having

2https://github.com/paramitamirza/
Causal-TimeBank
Shttps://huggingface.co/bert-large-uncased

16 heads in MHA. The gradient strategy used for
optimization is AdamW (Loshchilov and Hutter,
2017) with an initial learning rate of 1le — 5, and a
total of 100 epochs are utilized to train the model.
For reproducibility, the source codes are anony-
mously available at https://anonymous. 4open.
science/r/ECI-2658.

Baslines. We compare our proposed HSemCD
model with existing state-of-the-art (SOTA) ECI
methods, including feature-based methods and
methods based on Pre-trained Language Models
(PLMs). For the ESC dataset, we adopted the
following baselines: LSTM (Cheng and Miyao,
2017), a dependency path boosted sequential
model; Seq (Choubey and Huang, 2017), a se-
quence model explores manually designed features
for ECI. LR+ and ILP (Gao et al., 2019), mod-
els considering document-level structure. For the
CTB dataset, we select RB (Mirza and Tonelli,
2014), a rule-based ECI system; DD (Mirza and
Tonelli, 2016), a data-driven machine learning-
based method; VR-C (Mirza, 2014), a verb rule-
based model boosted by filtered data and causal
signals.

Furthermore, we also contrast HSemCD with
the following PLMs-based methods: MM (Liu
et al., 2021), a commonsense knowledge en-
hanced method with mention masking generaliza-
tion; KnowDis (Zuo et al., 2020), a knowledge-
enhanced distant data augmentation approach;
LearnDA (Zuo et al., 2021b), a learnable aug-
mentation framework alleviating lack of training
data. LSIN (Cao et al., 2021), an approach which
constructs a descriptive graph to exploit external
knowledge; CauSeRL (Zuo et al., 2021a), a self-
supervised method utilizing external causal state-
ments. GenECI and TS5 Classify (Man et al., 2022),
methods that formulates ECI as a generation prob-
lem. SemSIn (Hu et al., 2023) is the previous
SOTA method that leverages event-centric structure
and event-associated structure for causal reasoning.
Similar to our approach, it also does not utilize ex-
ternal knowledge. KEPT (Liu et al., 2023), a study
that leverages BERT to integrate external knowl-
edge bases for ECI, sharing the same fundamental
structure as ours.

5.3 Main Results

Table 1 and Table 2 report the performance of dif-
ferent approaches on three datasets, respectively.
The best scores are highlighted in bold, and the
second-best scores are underlined. Specifically, we
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Method | P | R | FI
LSTM (Cheng and Miyao, 2017) | 34.0 | 41.5 | 37.4
Seq (Choubey and Huang, 2017) | 32.7 | 44.9 | 37.8
LR+ (Gao et al., 2019) 37.0 | 452 | 40.7
ILP (Gao et al., 2019) 374 | 558 | 44.7
KnowDis (Zuo et al., 2020) 39.7 | 66.5 | 49.7
MM (Liu et al., 2021) 419 | 62.5 | 50.1
CauSeRL (Zuo et al., 2021a) 41.9 | 69.0 | 52.1
LSIN (Cao et al., 2021) 49.7 | 58.1 | 52.5
LearnDA (Zuo et al., 2021b) 422 ] 69.8 | 52.6
SemSIn (Hu et al., 2023) 50.5 | 63.0 | 56.1
KEPT (Liu et al., 2023) 50.0 | 68.8 | 57.9
HSemCD | 52.2 | 685 | 59.1
T5 Classify” (Man et al., 2022) | 39.1 | 69.5 | 47.7
GenECI" (Man et al., 2022) 59.5 | 57.1 | 58.8
SemSIn" (Hu et al., 2023) 64.2 | 65.7 | 64.9
HSemCD* | 709 | 73.0 | 71.9

Table 1: Experimental results on ESC and ESC". *
denotes experimental results on ESC”.

Method | P | R | FI

RB (Mirza and Tonelli, 2014) | 36.8 | 12.3 | 18.4
DD (Mirza and Tonelli, 2016) | 67.3 | 22.6 | 33.9
VR-C(Mirza, 2014) 69.0 | 31.5 | 43.2
MM (Liu et al., 2021) 36.6 | 55.6 | 44.1
KnowDis (Zuo et al., 2020) 423 | 60.5 | 49.8
LearnDA (Zuo et al., 2021b) 419 | 68.0 | 51.9
LSIN (Cao et al., 2021) 51.5 ] 56.2 | 52.9
CauSeRL (Zuo et al., 2021a) | 43.6 | 68.1 | 53.2
KEPT (Liu et al., 2023) 48.2 | 60.0 | 53.5
GenECI (Man et al., 2022) 60.1 | 53.3 | 56.5
SemSIn (Hu et al., 2023) 52.3 | 65.8 | 58.3

HSemCD

59.1 | 66.4 | 61.0

Table 2: Experimental results on CTB.

have the following observations.

Overall, HSemCD demonstrates superior perfor-
mance compared to all baselines in terms of the
Fl1-score, including feature-based and PLMs-based
methods, confirming its effectiveness. More specif-
ically, HSemCD surpasses the previous state-of-
the-art (SOTA) by significant margins of 1.2, 7.0,
and 2.7 in terms of F1-score on ESC, ESC", and
CTB, respectively. It is important to point out that
HSemCD achieves this new SOTA performance
without relying on any prior knowledge or extra in-
formation. This further supports our claim that the
ECI task should prioritize attention to the seman-
tic consistency problem within the given sentence.
It is demonstrated by the improvements in model
precision, as evidenced by HSemCD achieving the
highest precision score on ESC, ESC", and a con-

siderably high precision score on CTB.

Compared to the method LearnDA, which
achieves the highest Recall score in the ESC dataset
(in the top of Table 1), HSemCD shows a signifi-
cant improvement of 23.7% in Precision. This sug-
gests that HSemCD has better reliability in making
decisions. It is understandable that the LearnDA
performs better recall, as it can generate additional
training event pairs out of the training set. We ob-
serve similar phenomenon in CTB compared to
model CauSeRL. Given that the HSemCD achieves
the highest Precision and F1 score, we claim that
the HSemCD has the ability to strike a better bal-
ance between precision and recall.

Sharing the same fundamental structure of
KEPT, HSemCD surpasses it by a large margin
on both two datasets. The superior performance of
HSemCD could be attributed to the concentration
on semantic understanding rather than the inclusion
of prior knowledge from external knowledge bases.

We note that on the ESC” dataset, HSemCD
has achieved improvements of 10.4% in precision,
5.0% in recall, and 10.8% in Fl-score. These re-
sults demonstrate the powerful ability of HSemCD
to detect causal relations in topic-centered docu-
ments, which is beneficial for real-world applica-
tions. Additionally, the results of HSemCD on
ESC” are significantly higher than on ESC. This
discrepancy arises due to the cross-topic nature of
the ESC training and test data, which presents a
greater challenge for the model to generalize to
unseen topics. Conversely, the ESC”* data partition
exhibits more consistent distributions between the
training and test data, leading to improved perfor-
mance.

5.4 Sensitivity Analysis

We now discuss the impacts of key hyper-
parameters that affect the model performance.
Impact of hidden size. We analyze the impact
of model size on two classic dimensions, 768 and
1024, as depicted in Figure 3(a), where the shaded
portion corresponds to 1024. It can be observed
that the overall performance of HSemCD improves
notably when the model size increases, especially
for the CTB dataset. This phenomenon can be at-
tributed to the enhanced representation capability
brought by higher model dimensions, facilitating
a better reading comprehension ability, which is
the core part of HSemCD. We can also observe
that HSemCD is sensitive to hidden size under low-
resource scenarios (CTB) while maintaining good



performance with sufficient annotated data for train-
ing (ESC and ESC").
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Figure 3: Sensitivity Analysis.

Impact of mask scheme. HSemCD effectively
learns semantic dependency by the guidance of
context-dependent Cloze test. Meanwhile, the
Cloze test allows for generating multiple varia-
tions of a sentence by masking one of any events.
To further figure out the impact of different mask
schemes, we evaluate three versions: (1) "100%
mask e1" (0 in x-axis); (2) "100% mask e3" (100 in
x-axis); (3) randomly mask e; or e3 with a 50/50
chance (50 in x-axis). As shown in Figure 3(b),
HSemCD manifests stable performance across all
schemes in terms of F1-score. Furthermore, an in-
teresting phenomenon can be seen: scheme (1) ex-
hibits higher Recall and lower Precision compared
to scheme (2). In other words, the model under
scheme (1) seems to be over-confident, tending to
give positive answers, while showing conservative
in scheme (2). We hypothesize that this discrep-
ancy originates from the presence of word order
in the ESC dataset where the effect is presented
before the cause (i.e., effect-before-cause). Specifi-
cally, the ratio of cause-before-effect sentences to
effect-before-cause sentences in ESC is 1 : 1.3.
Thus, when HSemCD utilizes scheme (1), there is
a better chance that the masked event is "effect",
inferencing causality with only the "cause" is inher-
ently more challenging. Considering this sample,
"Police said 12 people were injured in the riots"
with event pairs (injured, riots), we can observe the

effect-before-cause: riots RN injured. When
"injured" (the effect &e;) is masked, the model
only sees the precondition "riots". In this scenario,
the consequence of the riots leading to "injured" is
merely one of many potentials. For instance, "res-
cued" for "Police said 12 people were rescued in
the riots" also represents a plausible. Conversely,
when "riots" (the cause &e3) is masked, inferring
causality with "injured" (the effect &ey) is rela-

Method P R F1 \V4

HSemCD 52.2 68.5 59.1 -
w/o. CA 53.4 64.0 58.0 —-1.1
w/o. SemCE 49.5 499 494 —-9.7

Table 3: Ablation results on ESC.

tively easy, resulting in higher precision.

5.5 Ablation Study

We have designed two variants of HSemCD in ESC
to investigate the contribution of each component,
including: HSemCD w/o CA, removes Cloze an-
alyzer and utilizes the original event embedding
for causality inquiry; HSemCD w/o SemCE, re-
moves semantic consistency encoder and directly
feeds the generated fill-in token to the classifier.
Table 3 illustrates the results. It can be observed
first that both CA and SemCE contribute positively
to performance improvement. Furthermore, when
CA is removed, the performance of HSemCD de-
creases by 4.5 in terms of Recall but increases by
1.2 in Precison. This phenomenon is similar to the
presenting mask scheme (2) discussed in Sec. 5.4,
when using original words as causal query terms
makes the model more conservative. We argue that
this approach, which directly adopts original words,
overlooks the dedicated semantic dependency anal-
ysis of the words in the contextual setting, thereby
limiting the judgment of causal dependencies to
the computation of semantic similarity. Addition-
ally, we found that after removing the SemCE,
the performance of HSemCD drops by 9.7 in F1-
score. This result emphasizes the significant role of
SemCE and also supports our claim that the analy-
sis of semantic consistency aids in the discovery of
causal dependencies.

5.6 Interpretability Analysis

We now investigate the interpretability of interac-
tive semantics obtained by HSemCD. To this end,
we randomly select two examples from the ESC
dataset to visualize the attention heatmap on the
causality inquiry process, which is depicted in Fig-
ure 4. We first observed that the words generated
by the CA exhibit homogeneity with the original
terms in the two samples, such as the term pairs
(hail, winds) in case 1 are natural disasters, (explo-
sion, riots) in case 2 are events that cause harm.
This further suggests that upon replacing the corre-
sponding words with fill-in tokens, the semantics
of the two sentences remain remarkably context-



Sentence

Masked Fillin | Golden | HSemCD

A goth was being questioned on suspicion of murder yesterday
after his mother and sister were found dead at home.

questioned | investigated v v

A Kraft Foods plant worker who had been suspended for feuding
with colleagues, then escorted from the building, returned minutes
later with a handgun, found her foes in a break room and executed
two of them with a single bullet each and critically wounded a
third, police said Friday.

retired X v

escorted

Table 4: Case studies of HSemCD.

similar. This phenomenon indicates that HSemCD
possesses the capability to distill semantics cen-
tered around event pairs, and that these semantics
are congruent with the contextual environment. In
addition, we can observe that HSemCD is enabled
to focus on the two primary events within a sen-
tence, which suggests that the semantic completion
and causality inquiry designed in the HSemCD is
able to refine the interactions between model-made
event pairs (fill-in token, another event) and their
associated semantic regions.
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Figure 4: Visualization of the attention heatmap on the

causality inquiry process. The token "é," denotes the

fill-in token associated with its event position.

5.7 Case Study

We present case studies to further explore the per-
formance of HSemCD in Table 4. We randomly
selected two examples from the experiment results.
Overall, the Cloze Analyzer is designed to predict
fill-in tokens that are consistent with the context
of a given sentence, i.e., the predicted words "in-
vestigated" and "retired", which is aligned with our
findings in 5.6. As seen in case 1, a clear semantic
dependency can be observed: goth PN mur-

der =218, questioned. Since the fill-in tokens are

highly related to the source sentence, HSemCD
provides a positive final decision. Case 2 servers as
an example of a faulty decision. The fill-in token
"retired" sharply contrasts with the original word
"escorted". This directly leads to the model mak-
ing erroneous decisions when conducting causal
inquiry between the fill-in token and semantic de-
pendency matrix.

6 Conclusions

In this paper, we investigate the Semantic Consis-
tency Inquiry (SemCl) as a potential alternative so-
lution for ECI and propose the Heuristic Semantic
Consistency Discriminator (HSemCD). Our ap-
proach leverages a Cloze Analyzer to generate a
fill-in token that is aware of context correlations,
which is then employed as a query term to facili-
tate heuristic guidance for the model in executing
causal inference, grounded in an understanding of
semantic dependencies. Experimental evaluations
conducted on three widely recognized datasets ex-
hibit the superior performance of HSemCD, while
also highlighting the contribution of SemClI in en-
hancing the ECI task.

Limitations

The limitations of this work can be concluded as
follows:

1. HSemCD exhibits sensitivity to the quantity
of annotated event pairs available for training.
Consequently, it demonstrates reduced accu-
racy in capturing causal relations within the
CTB, as illustrated in Table. 2. As a result, it
still needs further improvement when facing
low-resource scenarios.

2. While acknowledging the potential for bias in-
troduced by external knowledge, we argue that
incorporating commonsense is crucial for ECI,
particularly in scenarios with different mask
schemes between word order cause-before-
effect and effect-before-cause (see Sec. 5.4).
HSemCD concentrates on investigating the ef-
fectiveness of semantic consistency for ECI,
missing the opportunity to take advantage of
commonsense reasoning. Investigating how
to integrate commonsense reasoning within
the semantic-guided framework presents a
promising avenue for future research.
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