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Abstract

Event Causality Identification (ECI) focuses001
on extracting causal relations between events002
in texts. Existing methods primarily utilize003
causal features and external knowledge to iden-004
tify causality. However, such approaches fall005
short in two dimensions: (1) the causal fea-006
tures between events in a text often lack ex-007
plicit clues, and (2) external knowledge may008
introduce bias, while specific problems re-009
quire specific analyses. In light of these is-010
sues, we introduce a novel Semantic Consis-011
tency Inquiry (SemCI) to the ECI task and012
propose the Heuristic Semantic Consistency013
Discriminator (HSemCD), a model that is both014
straightforward and effective. HSemCD uti-015
lizes a Cloze Analyzer to facilitate a gap-filling016
game, aiming to help uncover the semantic de-017
pendency in the context. Subsequently, it as-018
sesses the semantic consistency between the019
fill-in token and the given sentence to detect the020
existence of causality. Through this assessment,021
HSemCD reveals the causal relations between022
events indirectly. Comprehensive experiments023
validate the effectiveness of HSemCD, which024
surpasses previous state-of-the-art methods on025
three widely used benchmarks.026

1 Introduction027

The challenging task of Event Causality Iden-028

tification (ECI) of natural language understand-029

ing (NLU) aims to catch causal relations between030

event pairs in a text. For instance, "Strong winds031

knocked down power lines, causing a blackout.",032

an ECI model should identify the presence of a033

causal relation between event pair (winds, black-034

out). This task is important in language under-035

standing and exhibits a wide range of application036

values (Oh et al., 2013, 2017; Berant et al., 2014;037

Mostafazadeh et al., 2016).038

The conventional approach for ECI is a binary039

classification model that takes a triplet (sentence,040

event-1, event-2) as input and judges the exis-041
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Figure 1: Introduction of the ECI task, along with our
motivation.

tence or not of a causal relation between the two 042

events, as illustrated at the top of Figure 1. To 043

enhance the performance on the ECI task, various 044

improvements have been implemented. Aside from 045

the early feature-based methods (Hashimoto et al., 046

2014; Ning et al., 2018; Gao et al., 2019), several 047

recently proposed representation-based methods 048

have shown better ECI capabilities, including exter- 049

nal knowledge enhanced methods (Liu et al., 2021; 050

Cao et al., 2021), Pre-trained Language Models 051

(PLMs) based methods (Shen et al., 2022), and data 052

augmentation boosted methods (Zuo et al., 2021b). 053

Recently, leveraging external prior knowledge to 054

augment the model represents commonly. How- 055

ever, it also introduces potential bias. See the in- 056

stance mentioned above, event pairs (winds, black- 057

out) seem to be no direct causal relation, while it 058

is reasonable to infer a causality considering the 059

given context. Upon analysis, we can observe a 060

semantic dependency: winds knocked down−−−−−−−→ power 061

lines causing−−−−→ blackout. This finding means that the 062
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causal relations between events within a given sen-063

tence also manifest as a form of context-dependent064

semantic reliance. Thus, we claim that the ECI065

task can be reformulated as a semantic consistency066

classification task between two events following067

their respective mappings within the same context.068

To this end, we present Semantic Consistency069

Inquiry (SemCI) as an alternative solution for the070

ECI task. The goal of SemCI is to explore im-071

plicit causal relationships guided by contextual se-072

mantic consistency analysis. To meet the SemCI,073

we propose a model, namely Heuristic Semantic074

Consistency Discriminator (HSemCD). HSemCD075

comprises three primary modules: a Cloze An-076

alyzer, a Semantic Consistency Encoder, and a077

Causality Discriminator. Specifically, HSemCD078

first utilizes the Cloze analyzer to generate a fill-in079

token within the context. Meanwhile, the semantic080

consistency encoder captures semantic dependen-081

cies by encoding the source sentence. Finally, the082

causality discriminator assesses whether there is a083

causal dependency between the given event pairs084

by evaluating whether the introduction of the fill-085

in token maintains semantic consistency with the086

original sentence. The main contributions of this087

work are summarized as follows:088

• We propose the Semantic Consistency Inquiry089

(SemCI) as a potential alternative solution to090

the ECI task, highlighting the significance of091

context-dependent semantic dependency anal-092

ysis in detecting causal relations.093

• We introduce a Heuristic Semantic Consis-094

tency Discriminator (HSemCD) to implement095

the SemCI. HSemCD offers simplicity, effec-096

tiveness, and represents the first attempt to097

extend the semantic consistency inquiry to the098

ECI task.099

• The experimental results on three widely used100

datasets demonstrate that HSemCD achieves101

2.1%, 10.8%, and 4.6% improvements in102

terms of the F1 score compared to the previous103

SOTA methods, confirming its effectiveness.104

2 Related Work105

Identifying causal relations between events at the106

document level and sentence level is challenging107

and has attracted massive attention in the past few108

years. In this paper, we focus on the sentence-level109

ECI. Early methods mainly utilize explicit causal110

patterns (Hashimoto et al., 2014; Riaz and Girju,111

2014a), lexical and syntactic features (Riaz and 112

Girju, 2013, 2014b), and causal indicators or sig- 113

nals (Do et al., 2011; Hidey and McKeown, 2016) 114

to identify causal relations. 115

Recently, several representation-based methods 116

utilizing Pre-trained Language Models (PLMs) 117

have improved the performance of the ECI task. To 118

address the lack of training data for ECI, (Zuo et al., 119

2020, 2021b) proposed data augmentation meth- 120

ods, which can generate additional training data to 121

alleviate the problem of overfitting. With the intu- 122

ition that commonsense causal relations are helpful 123

for ECI, (Liu et al., 2021; Cao et al., 2021) incor- 124

porated external knowledge from the knowledge 125

graph ConceptNet (Speer et al., 2017) to enrich the 126

representations derived from PLMs. However, the 127

performance of external knowledge-based methods 128

is closely related to the consistency between the tar- 129

get task domain and the knowledge bases utilized, 130

which can introduce potential bias and result in 131

vulnerabilities in such approaches. Different from 132

previous methods, (Man et al., 2022) introduced 133

a dependency path generation approach for ECI, 134

explicitly enhancing the causal reasoning process. 135

(Hu et al., 2023) exploited two types of seman- 136

tic structures, namely event-centered structure and 137

event-associated structure, to capture associations 138

between event pairs. 139

3 Preliminaries 140

3.1 Problem Statement 141

Let S = [S1, · · · , Sn] ∈ R1×|S| refer to a sen- 142

tence with |S| tokens, where each token Si is a 143

word/symbol, including special identifiers to in- 144

dicate event pair (Se1 , Se2) in causality. Tra- 145

ditional ECI models determine if there exists a 146

causal relation between two events by focusing 147

on event correlations, which can be written as 148

F(S, Se1 , Se2) = {0, 1}. Actually, correlation 149

does not necessarily imply causation, but it can 150

often be suggestive. Therefore, this study investi- 151

gates the Semantic Consistency Inquiry (SemCI) as 152

a potential alternative solution to the ECI task. For 153

clarity, we introduce two fundamental problems: 154

Cloze Test. We denote a mask indicator as 155

m = [m1, · · · ,m|S|} ∈ {0, 1}1×|S|, where mi = 156

0 if Si is event token, otherwise mj = 1, j ∈ 157

[1, · · · , |S|], j ̸= i. We use Ŝ instead of S to 158

explicitly represent the incomplete sentence, i.e, 159

Ŝ = mS. The Cloze test in this study is to develop 160

a contextual semantic-based network Ω(·) to fill 161

2



in the masked word, i.e., Ω(Ŝ) 7→ Sm, where Sm162

denotes the generated fill-in token.163

Heuristic Consistency Discrimination. Given164

the input tuple (S, Sm), a discriminator D(·) aims165

to examine the presence of semantic consistency in166

sentence S with regard to Sm, i.e., D(S, Sm) ∈167

{0, 1}. Since Sm is the generated fill-in token168

of Ω(Ŝ), the alignment of Sm with the source169

sentence S in logical and semantic context can170

serve as an indication of a causal relationship, i.e.,171

D(S,Ω(Ŝ)) ⇔ F(S, Se1 , Se2).172

3.2 Basic Technique173

The multi-head attention mechanism is the core174

part of Transformer (Vaswani et al., 2017) and175

has been widely adopted for sequential knowledge176

modeling. It measures the similarity scores be-177

tween a given query and a key, whereafter formu-178

lating the attentive weight for a value. The canon-179

ical formulation can be conducted by the scaled180

dot-product as follows:181

MHA(A,B) = Concat(H1, · · · , Hh),

where Hi = softmax(
QKT

√
dh

)V,

and Q = AWQ, {K,V } = B{WK ,WV },

(1)182

herein, W{Q,K,V } ∈ Rd×dh are head mapping pa-183

rameters. Typically, the multi-head attention mech-184

anism can be categorized into two types: (1) when185

A = B, the attention mechanism focuses on the186

relationship between different elements within the187

same input; (2) when A ̸= B, the attention mech-188

anism captures the relationship between elements189

from different inputs.190

4 Methodology191

4.1 Overview192

In this section, we present our proposed HSemCD193

model, which reformulates the ECI task as a seman-194

tic consistency classification problem. Figure 2195

provides an overview of the HSemCD, which com-196

prises three primary components: a Cloze Analyzer,197

a Semantic Consistency Encoder, and a Causality198

Discriminator. The main distinguishing feature of199

our approach from other methods lies in the fact200

that we leverage reading comprehension to its full201

extent within the generative model, eliminating the202

need for additional prior knowledge and prioritiz-203

ing simplicity and efficiency.204

4.2 Cloze Analyzer 205

It is reasonable to believe that a well-trained deep 206

generative model is powerful in context aware- 207

ness (Goswami et al., 2020). In light of this, 208

we adopt a straightforward approach of randomly 209

masking one event from the event pair, and then 210

predicting this event. This approach is inspired by 211

the literary puzzle known as Cloze, which plays 212

a crucial role in our framework. The Cloze facili- 213

tates the prediction of the most appropriate fill-in 214

token for the masked word, revealing the probable 215

semantic relationships within the given context. 216

Input Embedding Layer aims to encode sen- 217

tences into a latent space. Given a sentence 218

S = [S1, · · · , Se1 , · · · , Se2 , · · · , Sn], we correlate 219

a Ŝ = S ⊙Mmask, where ⊙ denotes the element- 220

wise product and Mmask = {m1:n} ∈ {0, 1}n 221

indicates the randomly masked word. If mi = 0, it 222

means the Si word is masked, which can be either 223

Se1 or Se2 . In order to adhere to the Cloze puzzle 224

setting, we utilize two pairs of specification sym- 225

bols <e1>, </e1> and <e2>, </e2> to mark Se1 and 226

Se2 in source sentence S. Importantly, the masked 227

word does not have the marker, thus resulting in 228

|Ŝ| = |S| − 2. 229

The input embedding layer encodes the S, Ŝ as- 230

sociated with its position. The word embeddings 231

are trained along with the model and initialized 232

from pre-trained BERT word vectors with a di- 233

mensionality of d = 1024. The specification sym- 234

bol <e∗> and [mask] are mapped to the appointed 235

tokens, and their embeddings are trainable with 236

random initialization. The position embedding is 237

computed by the sine and cosine functions pro- 238

posed by Transformer. Finally, the outputs of a 239

given sentence from this layer are the sum of the 240

word embedding and position embedding, namely 241

X and X̂ for simplicity, respectively. The latter 242

corresponds to a sentence with the masked word. 243

Notably, X ∈ R(n+4)×d, X̂ ∈ R(n+2)×d. 244

Semantic Completion Block receives X̂ as in- 245

put, aiming to fill in the blank that is marked 246

by [mask] (i.e., x̂m). Inspired by the Trans- 247

former, it is a stack of the basic building block 248

[MHA + norm + feed-forward layer + norm], as 249

illustrated in the upper part of Figure 2. The main 250

idea of this block is to take advantage of the x̂m as 251

a query, then fill the man-made gap. The process 252

can be formulated as: 253

c̃ = MHA(x̂m, X̂), (2) 254
255

c = (ReLU(LN(c̃) + x̂m)Wc1 + bc1)Wc2 + bc2 , (3) 256
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Figure 2: Overview of the proposed HSemCD.

where {W∗, b∗} are learnable parameters, c ∈257

R1×d is the output of this block, i.e., the gener-258

ated filled-in word.259

4.3 Semantic Consistency Encoder260

The Semantic Consistency Encoder enables the261

model to leverage the entire input field that facili-262

tates comprehensive information reception and fos-263

ters an understanding of the logical relationships264

between words. It receives X as input to establish265

the semantic dependencies present in the entire sen-266

tence. It is also a stack of the basic building block:267

[MHA+norm+feed-forward layer+norm], which268

is formalized as:269

H̃ = MHA(X,X), (4)270

271
H = (ReLU(LN(H̃) +X)WH1 + bH1)WH2 + bH2 (5)272

where {H, H̃} ∈ R(n+4)×d are sentence represen-273

tations that assimilate intricate semantic connec-274

tions among words.275

4.4 Causality Discriminator276

According to our motivation, we conduct a causal-277

ity inquiry between the fill-in token and the seman-278

tic dependency matrix by utilizing cross attentive279

network, namely:280

z = MHA(c,H). (6)281

After that, we obtain the z ∈ R1×d as the result282

of the inquiry. A two-layer feed-forward network283

transforms it to the causality classifier as:284

yz = (ReLU(zWin + bin)Wout + bout), (7)285

where {W∗, b∗} are learnable parameters.286

4.5 Training Criterion 287

We adopt the cross-entropy loss function to train 288

the HSemCD: 289

J(Θ) = −
∑

(se1 ,se2 )∈S

y(se1 ,se2 ) log
(
softmax(yzWy+by)

)
,

(8) 290

where Θ denotes the model parameters, S refers 291

to the full sentence in the training set, (se1 , se2) 292

are the events pairs and the y(se1 ,se2 )
is a one- 293

hot vector that indicates the gold relationship be- 294

tween se1 and se2 . That is, we utilize the ys(∗)
295

to guide whether the generated fill-in token is 296

causally related to the source sentence S, i.e., 297

yS(∗)
→ yz → D(S,Ω(Ŝ)). 298

It is essential to highlight that we do not establish 299

a loss to directly guide the fill-in token. This is be- 300

cause we do not necessitate alignment between the 301

fill-in tokens and the original words. Instead, our 302

objective is to generate tokens through the Cloze 303

analyzer based on semantic coherence within the 304

context and then use it to inquire about the presence 305

of a causal relationship. This aligns with our main 306

argument: the existence of a causal relationship 307

between two events is context-dependent. 308

5 Experiments 309

5.1 Datasets and Evaluation Metrics 310

We evaluate the HSemCD on widely-used ECI 311

benchmark datasets, including two from EventSto- 312

ryLine v0.9 (ESC) (Caselli and Vossen, 2017) and 313

one from Causal-TimeBank (CTB) (Mirza et al., 314

2014), namely ESC, ESC*, and CTB. 315

ESC1 contains 22 topics, 258 documents, and 316

5334 event mentions. The same as (Gao et al., 317

2019), we exclude aspectual, causative, perception, 318

1https://github.com/tommasoc80/EventStoryLine
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and reporting event mentions, since most of which319

were not annotated with any causal relation. After320

the data processing, there are 7805 intra-sentence321

event mention pairs in the corpus, 1770 (22.67%)322

of which are annotated with a causal relation. Iden-323

tical to the data split in previous methods (Hu et al.,324

2023; Zuo et al., 2021b), we select the last two top-325

ics in ESC as development set and use the remain-326

ing 20 topics for a 5-fold cross-validation. Note327

that the documents are sorted according to their328

topic IDs under this data partition setting, which329

means that the training and test sets are cross-topic.330

Due to the distribution gap between the training331

and test sets, the generalization ability of the model332

can be better evaluated.333

ESC* is another data partition setting for the334

ESC dataset, which is adopted in (Man et al., 2022;335

Hu et al., 2023). Instead of sorting the documents336

according to their topic IDs, documents are ran-337

domly shuffled under this setting. Thus, the distri-338

butions of the training and test sets are more con-339

sistent, because both two sets contain data on all340

topics. The experimental results under this setting341

can better demonstrate the model’s ability to iden-342

tify causal relations in topic-centered documents,343

which are common in real-world scenarios.344

CTB 2 contains 183 documents and 6811 event345

mentions. Out of 9721 intra-sentence event pairs,346

298 (3.1%) pairs are annotated with causal rela-347

tions. The same as previous methods (Man et al.,348

2022; Hu et al., 2023), we perform a 10-fold cross-349

validation on CTB. Given the sparsity of causality350

in the CTB dataset, we follow existing works to351

conduct a negative sampling technique for training352

with the sampling rate of 0.7.353

Evaluation Metrics. We utilize the commonly354

used Precision, Recall, and F1-score as evaluation355

metrics.356

5.2 Experimental Setup357

Implementation Details. Our model is based on358

the uncased BERT model released by HuggingFace359

Transformer library 3 and is fine-tuned during the360

training process. All experiments are accelerated361

by one piece of Nvidia GeForce RTX 3090. The362

dimension of hidden units is set to 1024, the batch363

size is set to 20, and the dropout rate is set to 0.5.364

The Cloze Analyzer and semantic consistency en-365

coder are stacked 24 blocks, with each block having366

2https://github.com/paramitamirza/
Causal-TimeBank

3https://huggingface.co/bert-large-uncased

16 heads in MHA. The gradient strategy used for 367

optimization is AdamW (Loshchilov and Hutter, 368

2017) with an initial learning rate of 1e− 5, and a 369

total of 100 epochs are utilized to train the model. 370

For reproducibility, the source codes are anony- 371

mously available at https://anonymous.4open. 372

science/r/ECI-2658. 373

Baslines. We compare our proposed HSemCD 374

model with existing state-of-the-art (SOTA) ECI 375

methods, including feature-based methods and 376

methods based on Pre-trained Language Models 377

(PLMs). For the ESC dataset, we adopted the 378

following baselines: LSTM (Cheng and Miyao, 379

2017), a dependency path boosted sequential 380

model; Seq (Choubey and Huang, 2017), a se- 381

quence model explores manually designed features 382

for ECI. LR+ and ILP (Gao et al., 2019), mod- 383

els considering document-level structure. For the 384

CTB dataset, we select RB (Mirza and Tonelli, 385

2014), a rule-based ECI system; DD (Mirza and 386

Tonelli, 2016), a data-driven machine learning- 387

based method; VR-C (Mirza, 2014), a verb rule- 388

based model boosted by filtered data and causal 389

signals. 390

Furthermore, we also contrast HSemCD with 391

the following PLMs-based methods: MM (Liu 392

et al., 2021), a commonsense knowledge en- 393

hanced method with mention masking generaliza- 394

tion; KnowDis (Zuo et al., 2020), a knowledge- 395

enhanced distant data augmentation approach; 396

LearnDA (Zuo et al., 2021b), a learnable aug- 397

mentation framework alleviating lack of training 398

data. LSIN (Cao et al., 2021), an approach which 399

constructs a descriptive graph to exploit external 400

knowledge; CauSeRL (Zuo et al., 2021a), a self- 401

supervised method utilizing external causal state- 402

ments. GenECI and T5 Classify (Man et al., 2022), 403

methods that formulates ECI as a generation prob- 404

lem. SemSIn (Hu et al., 2023) is the previous 405

SOTA method that leverages event-centric structure 406

and event-associated structure for causal reasoning. 407

Similar to our approach, it also does not utilize ex- 408

ternal knowledge. KEPT (Liu et al., 2023), a study 409

that leverages BERT to integrate external knowl- 410

edge bases for ECI, sharing the same fundamental 411

structure as ours. 412

5.3 Main Results 413

Table 1 and Table 2 report the performance of dif- 414

ferent approaches on three datasets, respectively. 415

The best scores are highlighted in bold, and the 416

second-best scores are underlined. Specifically, we 417
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Method P R F1

LSTM (Cheng and Miyao, 2017) 34.0 41.5 37.4
Seq (Choubey and Huang, 2017) 32.7 44.9 37.8
LR+ (Gao et al., 2019) 37.0 45.2 40.7
ILP (Gao et al., 2019) 37.4 55.8 44.7
KnowDis (Zuo et al., 2020) 39.7 66.5 49.7
MM (Liu et al., 2021) 41.9 62.5 50.1
CauSeRL (Zuo et al., 2021a) 41.9 69.0 52.1
LSIN (Cao et al., 2021) 49.7 58.1 52.5
LearnDA (Zuo et al., 2021b) 42.2 69.8 52.6
SemSIn (Hu et al., 2023) 50.5 63.0 56.1
KEPT (Liu et al., 2023) 50.0 68.8 57.9

HSemCD 52.2 68.5 59.1

T5 Classify* (Man et al., 2022) 39.1 69.5 47.7
GenECI* (Man et al., 2022) 59.5 57.1 58.8
SemSIn* (Hu et al., 2023) 64.2 65.7 64.9

HSemCD∗ 70.9 73.0 71.9

Table 1: Experimental results on ESC and ESC*. *
denotes experimental results on ESC*.

Method P R F1

RB (Mirza and Tonelli, 2014) 36.8 12.3 18.4
DD (Mirza and Tonelli, 2016) 67.3 22.6 33.9
VR-C(Mirza, 2014) 69.0 31.5 43.2
MM (Liu et al., 2021) 36.6 55.6 44.1
KnowDis (Zuo et al., 2020) 42.3 60.5 49.8
LearnDA (Zuo et al., 2021b) 41.9 68.0 51.9
LSIN (Cao et al., 2021) 51.5 56.2 52.9
CauSeRL (Zuo et al., 2021a) 43.6 68.1 53.2
KEPT (Liu et al., 2023) 48.2 60.0 53.5
GenECI (Man et al., 2022) 60.1 53.3 56.5
SemSIn (Hu et al., 2023) 52.3 65.8 58.3

HSemCD 59.1 66.4 61.0

Table 2: Experimental results on CTB.

have the following observations.418

Overall, HSemCD demonstrates superior perfor-419

mance compared to all baselines in terms of the420

F1-score, including feature-based and PLMs-based421

methods, confirming its effectiveness. More specif-422

ically, HSemCD surpasses the previous state-of-423

the-art (SOTA) by significant margins of 1.2, 7.0,424

and 2.7 in terms of F1-score on ESC, ESC*, and425

CTB, respectively. It is important to point out that426

HSemCD achieves this new SOTA performance427

without relying on any prior knowledge or extra in-428

formation. This further supports our claim that the429

ECI task should prioritize attention to the seman-430

tic consistency problem within the given sentence.431

It is demonstrated by the improvements in model432

precision, as evidenced by HSemCD achieving the433

highest precision score on ESC, ESC*, and a con-434

siderably high precision score on CTB. 435

Compared to the method LearnDA, which 436

achieves the highest Recall score in the ESC dataset 437

(in the top of Table 1), HSemCD shows a signifi- 438

cant improvement of 23.7% in Precision. This sug- 439

gests that HSemCD has better reliability in making 440

decisions. It is understandable that the LearnDA 441

performs better recall, as it can generate additional 442

training event pairs out of the training set. We ob- 443

serve similar phenomenon in CTB compared to 444

model CauSeRL. Given that the HSemCD achieves 445

the highest Precision and F1 score, we claim that 446

the HSemCD has the ability to strike a better bal- 447

ance between precision and recall. 448

Sharing the same fundamental structure of 449

KEPT, HSemCD surpasses it by a large margin 450

on both two datasets. The superior performance of 451

HSemCD could be attributed to the concentration 452

on semantic understanding rather than the inclusion 453

of prior knowledge from external knowledge bases. 454

We note that on the ESC* dataset, HSemCD 455

has achieved improvements of 10.4% in precision, 456

5.0% in recall, and 10.8% in F1-score. These re- 457

sults demonstrate the powerful ability of HSemCD 458

to detect causal relations in topic-centered docu- 459

ments, which is beneficial for real-world applica- 460

tions. Additionally, the results of HSemCD on 461

ESC* are significantly higher than on ESC. This 462

discrepancy arises due to the cross-topic nature of 463

the ESC training and test data, which presents a 464

greater challenge for the model to generalize to 465

unseen topics. Conversely, the ESC* data partition 466

exhibits more consistent distributions between the 467

training and test data, leading to improved perfor- 468

mance. 469

5.4 Sensitivity Analysis 470

We now discuss the impacts of key hyper- 471

parameters that affect the model performance. 472

Impact of hidden size. We analyze the impact 473

of model size on two classic dimensions, 768 and 474

1024, as depicted in Figure 3(a), where the shaded 475

portion corresponds to 1024. It can be observed 476

that the overall performance of HSemCD improves 477

notably when the model size increases, especially 478

for the CTB dataset. This phenomenon can be at- 479

tributed to the enhanced representation capability 480

brought by higher model dimensions, facilitating 481

a better reading comprehension ability, which is 482

the core part of HSemCD. We can also observe 483

that HSemCD is sensitive to hidden size under low- 484

resource scenarios (CTB) while maintaining good 485
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performance with sufficient annotated data for train-486

ing (ESC and ESC*).
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Figure 3: Sensitivity Analysis.
487

Impact of mask scheme. HSemCD effectively488

learns semantic dependency by the guidance of489

context-dependent Cloze test. Meanwhile, the490

Cloze test allows for generating multiple varia-491

tions of a sentence by masking one of any events.492

To further figure out the impact of different mask493

schemes, we evaluate three versions: (1) "100%494

mask e1" (0 in x-axis); (2) "100% mask e2" (100 in495

x-axis); (3) randomly mask e1 or e2 with a 50/50496

chance (50 in x-axis). As shown in Figure 3(b),497

HSemCD manifests stable performance across all498

schemes in terms of F1-score. Furthermore, an in-499

teresting phenomenon can be seen: scheme (1) ex-500

hibits higher Recall and lower Precision compared501

to scheme (2). In other words, the model under502

scheme (1) seems to be over-confident, tending to503

give positive answers, while showing conservative504

in scheme (2). We hypothesize that this discrep-505

ancy originates from the presence of word order506

in the ESC dataset where the effect is presented507

before the cause (i.e., effect-before-cause). Specifi-508

cally, the ratio of cause-before-effect sentences to509

effect-before-cause sentences in ESC is 1 : 1.3.510

Thus, when HSemCD utilizes scheme (1), there is511

a better chance that the masked event is "effect",512

inferencing causality with only the "cause" is inher-513

ently more challenging. Considering this sample,514

"Police said 12 people were injured in the riots"515

with event pairs (injured, riots), we can observe the516

effect-before-cause: riots
causing−−−−−→ injured. When517

"injured" (the effect &e1) is masked, the model518

only sees the precondition "riots". In this scenario,519

the consequence of the riots leading to "injured" is520

merely one of many potentials. For instance, "res-521

cued" for "Police said 12 people were rescued in522

the riots" also represents a plausible. Conversely,523

when "riots" (the cause &e2) is masked, inferring524

causality with "injured" (the effect &e1) is rela-525

Method P R F1 ∇

HSemCD 52.2 68.5 59.1 -
w/o. CA 53.4 64.0 58.0 −1.1
w/o. SemCE 49.5 49.9 49.4 −9.7

Table 3: Ablation results on ESC.

tively easy, resulting in higher precision. 526

5.5 Ablation Study 527

We have designed two variants of HSemCD in ESC 528

to investigate the contribution of each component, 529

including: HSemCD w/o CA, removes Cloze an- 530

alyzer and utilizes the original event embedding 531

for causality inquiry; HSemCD w/o SemCE, re- 532

moves semantic consistency encoder and directly 533

feeds the generated fill-in token to the classifier. 534

Table 3 illustrates the results. It can be observed 535

first that both CA and SemCE contribute positively 536

to performance improvement. Furthermore, when 537

CA is removed, the performance of HSemCD de- 538

creases by 4.5 in terms of Recall but increases by 539

1.2 in Precison. This phenomenon is similar to the 540

presenting mask scheme (2) discussed in Sec. 5.4, 541

when using original words as causal query terms 542

makes the model more conservative. We argue that 543

this approach, which directly adopts original words, 544

overlooks the dedicated semantic dependency anal- 545

ysis of the words in the contextual setting, thereby 546

limiting the judgment of causal dependencies to 547

the computation of semantic similarity. Addition- 548

ally, we found that after removing the SemCE, 549

the performance of HSemCD drops by 9.7 in F1- 550

score. This result emphasizes the significant role of 551

SemCE and also supports our claim that the analy- 552

sis of semantic consistency aids in the discovery of 553

causal dependencies. 554

5.6 Interpretability Analysis 555

We now investigate the interpretability of interac- 556

tive semantics obtained by HSemCD. To this end, 557

we randomly select two examples from the ESC 558

dataset to visualize the attention heatmap on the 559

causality inquiry process, which is depicted in Fig- 560

ure 4. We first observed that the words generated 561

by the CA exhibit homogeneity with the original 562

terms in the two samples, such as the term pairs 563

(hail, winds) in case 1 are natural disasters, (explo- 564

sion, riots) in case 2 are events that cause harm. 565

This further suggests that upon replacing the corre- 566

sponding words with fill-in tokens, the semantics 567

of the two sentences remain remarkably context- 568
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Sentence Masked Fill-in Golden HSemCD

A goth was being questioned on suspicion of murder yesterday
after his mother and sister were found dead at home.

questioned investigated ! !

A Kraft Foods plant worker who had been suspended for feuding
with colleagues, then escorted from the building, returned minutes
later with a handgun, found her foes in a break room and executed
two of them with a single bullet each and critically wounded a
third, police said Friday.

escorted retired % !

Table 4: Case studies of HSemCD.

similar. This phenomenon indicates that HSemCD569

possesses the capability to distill semantics cen-570

tered around event pairs, and that these semantics571

are congruent with the contextual environment. In572

addition, we can observe that HSemCD is enabled573

to focus on the two primary events within a sen-574

tence, which suggests that the semantic completion575

and causality inquiry designed in the HSemCD is576

able to refine the interactions between model-made577

event pairs (fill-in token, another event) and their578

associated semantic regions.579

Figure 4: Visualization of the attention heatmap on the
causality inquiry process. The token "ê∗" denotes the
fill-in token associated with its event position.

5.7 Case Study580

We present case studies to further explore the per-581

formance of HSemCD in Table 4. We randomly582

selected two examples from the experiment results.583

Overall, the Cloze Analyzer is designed to predict584

fill-in tokens that are consistent with the context585

of a given sentence, i.e., the predicted words "in-586

vestigated" and "retired", which is aligned with our587

findings in 5.6. As seen in case 1, a clear semantic588

dependency can be observed: goth suspicion−−−−−→ mur-589

der causing−−−−→ questioned. Since the fill-in tokens are590

highly related to the source sentence, HSemCD591

provides a positive final decision. Case 2 servers as592

an example of a faulty decision. The fill-in token593

"retired" sharply contrasts with the original word594

"escorted". This directly leads to the model mak-595

ing erroneous decisions when conducting causal596

inquiry between the fill-in token and semantic de-597

pendency matrix.598

6 Conclusions 599

In this paper, we investigate the Semantic Consis- 600

tency Inquiry (SemCI) as a potential alternative so- 601

lution for ECI and propose the Heuristic Semantic 602

Consistency Discriminator (HSemCD). Our ap- 603

proach leverages a Cloze Analyzer to generate a 604

fill-in token that is aware of context correlations, 605

which is then employed as a query term to facili- 606

tate heuristic guidance for the model in executing 607

causal inference, grounded in an understanding of 608

semantic dependencies. Experimental evaluations 609

conducted on three widely recognized datasets ex- 610

hibit the superior performance of HSemCD, while 611

also highlighting the contribution of SemCI in en- 612

hancing the ECI task. 613

Limitations 614

The limitations of this work can be concluded as 615

follows: 616

1. HSemCD exhibits sensitivity to the quantity 617

of annotated event pairs available for training. 618

Consequently, it demonstrates reduced accu- 619

racy in capturing causal relations within the 620

CTB, as illustrated in Table. 2. As a result, it 621

still needs further improvement when facing 622

low-resource scenarios. 623

2. While acknowledging the potential for bias in- 624

troduced by external knowledge, we argue that 625

incorporating commonsense is crucial for ECI, 626

particularly in scenarios with different mask 627

schemes between word order cause-before- 628

effect and effect-before-cause (see Sec. 5.4). 629

HSemCD concentrates on investigating the ef- 630

fectiveness of semantic consistency for ECI, 631

missing the opportunity to take advantage of 632

commonsense reasoning. Investigating how 633

to integrate commonsense reasoning within 634

the semantic-guided framework presents a 635

promising avenue for future research. 636
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