
Exploring Efficient ML-based Scheduler for
Microservices in Heterogeneous Clusters

Rohan Mahapatra Byung Hoon Ahn Shu-Ting Wang Hanyang Xu Hadi Esmaeilzadeh
Alternative Computing Technologies (ACT) Lab

University of California, San Diego
{rohan, bhahn, shw328, hax032, hadi}@ucsd.edu

Abstract—In the recent years, cloud computing is going though
a major transformation throughout its system stack, from its
application to hardware. Its services are increasingly shifting
from large monolithic applications to complex graphs with many
single-purpose microservices, which offer many advantages in
terms of deployment and development. On the other hand, cloud
datacenters are becoming increasingly heterogeneous as they
host more GPUs, FPGAs, and ASICs. While this heterogenous
hardware can not only accelerate but also expand the capability
of microservices, they further complicate the complex action
space in microservices scheduling. Importantly, the convergence
of the changes in both applications and hardware brings up
unique challenges in datacenter scheduling for microservices.
Recent innovations has shown that data-driven Machine Learning
(ML) approaches leveraging neural networks can improve both
end-to-end latency of the applications and probability of QoS
violations. However, these works have focused on a rather homo-
geneous clusters which may become prohibitive as the scheduling
problem gets more complex and the datacenters become more
heterogeneous. This paper first analyzes the potential limitations
of the previous approaches and explores a new dimension of
efficiency in the development of schedulers for microservices
by incorporating a light-weight ML-based model. To this end,
the paper develops a prototype light-weight ML-based scheduler
dubbed Octopus that harbors a decision tree to efficiently sched-
ule microservices on heterogeneous clusters. Comparisons against
conventional scheduling techniques including First-Fit, Random,
and Kubernetes-like schedulers show that Octopus provides 6.35×
faster end-to-end latency.

I. INTRODUCTION

Cloud services are increasingly shifting from large mono-
lithic applications to complex graphs with many single-
purpose microservices [18, 47]. In fact, cloud providers such as
Amazon, Twitter, Netflix, and Apple have adopted this model
of development [1, 3]. This model of development allows
the cloud providers to benefit from accelerating development,
lifting language of framework restrictions, and simplifying
correctness and performance debugging [18]. However, mi-
croservices complicate resource management as dependencies
between them introduce backpressure effects and cascading
Quality-of-Service (QoS) violations [47]. On the other hand,
the cloud datacenters are becoming increasingly heteroge-
neous [11] with GPUs [2], FPGAs [9, 38], and ASICs [27].
While the central motivation behind traditional datacenters
with general-purpose servers were its compatibility to any
application, heterogeneous computing fabrics in the cloud
has the potential to not only accelerate but also expand the
capability of microservices. Despite the significant benefits,
the heterogeneity in the datacenters further complicate the

scheduling as the cluster schedulers need to be aware of the
different profiles of heterogeneous machines when allocating
resources to applications.

Recent innovations such as [34, 47] has shown that data-
driven Machine Learning (ML) approaches such as neural
networks can improve both end-to-end latency of the applica-
tions and probability of QoS violations. However, these works
focus on a rather homogeneous clusters with general-purpose
servers and may not be sufficient to cope with the heteroge-
neous clusters. For instance, actions spaces in the schedulers
increase significantly as the datacenters become heterogeneous
and relatively compute-intensive schedulers based on neural
networks may become prohibitive. In fact, it may not only
increase the scheduling time but also the end-to-end latency
of the services, leading to QoS violations for interactive and
latency-critical services with strict performance constraints. To
this end, this paper first analyzes the potential limitations of
the previous approaches by developing an infrastructure that
simulates heterogeneous clusters. We first develop a random
microservice workload generator based on Nightcore [26] and
Tailbench [31], and a simulator to simulate a heterogeneous,
multi-node cluster with servers, each with CPU and addi-
tional accelerator such as GPU or ASICs. Then, we add a
scheduler to make decisions on the placement of the incoming
microservices tasks. On top of this simulation infrastructure,
we develop multiple scheduling techniques: First-Fit, Random,
Kubernetes-like, and light-weight ML-based scheduler dubbed
Octopus. Evaluations show that using even a light-weight ML-
based schedulers, instead of neural network-based schedulers,
can provide up to 6.35× end-to-end latency improvement
compared to conventional schedulers, while also keeping the
scheduling overhead low. Considering the significant benefits
from the light-weight ML-based scheduler and the increasing
complexity of scheduling microservices onto heterogeneous
clusters that may make neural network-based schedulers pro-
hibitive, the results suggest exploring the new dimension of
efficiency in the schedulers.

II. EXPLORING EFFICIENT ML-BASED SCHEDULER FOR
MICROSERVICES IN HETEROGENEOUS CLUSTERS

We consider a scheduling scenario where there are multiple
servers in the cloud datacenter and the tasks arrive at arbitrary
time tn. Figure 1 illustrates the microservice scheduling on
the aforementioned heterogeneous cluster where each server
in the cluster has different capability: some servers only with

1

mailto:rohan@ucsd.edu
mailto:bhahn@ucsd.edu
mailto:shw328@ucsd.edu
mailto:hax032@ucsd.edu
mailto:hadi@ucsd.edu


…

Scheduler
(First-Fit, Random, 
Kubernetes-like, 

Octopus)

Microservices
arriving at different time

t1

t2

tn

CPU CPU+GPU CPU+GPU CPU+ASIC

…

Fig. 1: System overview of microservices scheduling.

CPUs and some equipped with GPUs or ASICs in addition
to the CPUs. As the microservice tasks arrive, the Scheduler
make an online decision regarding which machine to assign the
task to. To analyze the implications of different microservice
scheduling techniques for heterogeneous cluster, we develop a
simulation infrastructure that lets us experiment with various
scheduling techniques: both conventional (Section II-A) and
light-weight ML-based (Section II-B) algorithms.

A. Conventional Scheduling Techniques

First-Fit scheduler iterates through each server and checks if
the server meets the task’s requirement. If the requirement is
met, the job is scheduled. Otherwise, the algorithm goes on
to check the next server. This is sequential and scales linearly
with the number of servers in the cluster.
Random scheduler randomly selects a server to check if the
server meets the task’s requirement. If the requirement is met,
the task is scheduled on it. Otherwise, the algorithm continues
to randomly select another server until it finds one that meets
the task’s requirement.
Kubernetes-like scheduler simulates the default Kube sched-
uler [4]. First, the scheduler selects a subset of feasible servers
that meet the tasks’ requirement such as the hard constraint on
which device (e.g., GPU) the task can be executed on. Then,
in the scoring step, the scheduler ranks all feasible servers
by assigning a score based on an empirical scoring rule to
determine the suitable server to schedule the job. This ranking
is sequential (because ranking needs to sort the list of feasible
servers based on the score) and a potential bottleneck as its
running time scales linearly with the number of servers in the
cluster.

B. Octopus: Light-weight ML-based Scheduler

Contrary to the above-mentioned conventional scheduling
techniques, recent innovations [34, 47] take advantage of
neural networks to cope with the complex search space of
task scheduling. We note, however, that the heterogeneity in
our setup may further complicate the scheduling problem that
would require more complex neural architectures, hence too
long an inference time to cope with the strict QoS requirements
imposed on the cloud services. To cope with this micro-second
scale, strict requirements, we explore light-weight ML-based
microservice scheduling algorithm for heterogeneous clusters.

Datacenter
Frontend

Upload 
Media 
(320us)

Upload 
UserId 
(300us)

Upload 
UniqueId 
(330us)

Upload 
Text 

(3640us)

Compose
Post 

(140us)

User 
Timeline 
(650us)

Post 
Storage 
(260us)

Write 
Home 
(640us)

Url 
Shortner 
(590us)

Social 
Graph 
(230us)

Image Recognition 
(cpu: 3042us, 

gpu:1826, asic: 
851 )

Object Detection 
Recognition (cpu: 
5184us, gpu:2110, 

asic:960)

User Mention 
(69
0us)

User 
Request

Fig. 2: Microservice architecture of Social Network from DeathStarBench [18].

Model architecture. The main driving factors in designing the
scheduler was the scheduling performance and efficiency. We
consider decision trees to predict the latency of the microser-
vices as it meets both requirements. In fact, the decision trees
are known for its logarithmic complexity which leads to orders
of magnitude faster speed compared to other ML approaches
such as neural networks. Also, it not only requires little data
to train to a good accuracy but also requires little time to train.
Therefore, it also suggests potential for further offline training
to continually improve the performance of the scheduler.
Training. We train our decision tree-based scheduler offline
using workload traces. These traces are generated by a random
sampling algorithm which takes in inputs the microservices
and latency critical applications from [26, 31]. We provide
more details about the trace generation in the Section III-A.
In addition to the above microservice-architecture applications,
we consider an additional application that includes DNNs. We
consider a SocialNetwork application shown in Figure 2 with
image recognition and object detection [23, 44]. We measure
the inference latency of these DNNs on CPU, GPU, and DNN
accelerator. We train our model by feeding it microservices
with its meta-data: {CPU requirement, memory requirement, disk
requirement, dependent microservice, accelerator type} as the
input feature and use the measured latency as the target. The
model achieves above 90% accuracy on a randomly generated
test set. We note that the test set contains randomly generate
traces which are not part of the training set.
Scheduling. Octopus first performs inference on all currently
available devices then chooses the best device which meets
the SLA requirement of the user. Octopus regards ASICs,
GPUs and CPUs as fungible resources, i.e. a task can be com-
puted by different resources. The fungible view of resources
relaxes the constraints of the tasks and makes scheduling
more flexible. This allows Octopus to take full advantage of
all the acceleration opportunities. However, naively selecting
the fastest device while ignoring the hard constraints may
lead to a serious contention problem, where a task α (can
be executed anywhere) arrived in tα placed on device A
(e.g., GPU) may preclude task β (can be executed only on
device A) that arrived in tα < tβ from being placed on
device A. In this case, if task β is on the critical path of
some application, this scheduling may lead to backpressure
effects and cascading QoS violations. To prevent such is-

2



sue, we include an optional constraint to the Octopus called
FractionOfHeldOutDevices where some fraction p of
a device are always held out for the tasks that can only be
executed on that device. Importantly, the scheduling overhead
of this approach can be minimal as we can perform the
inference in parallel using multiple threads. On the other hand,
the above-mentioned First-Fit and Random schedulers are not
amenable to such parallelization.

III. EVALUATION

A. Methodology

Microservices workload. To analyze the performance of
different scheduling techniques, we use randomly sampled
subgraph from the microservices dependency graph of the
Social Network application form DeathStarBench [18]. Each
sample comes with a launch time, the microservices’ hardware
requirements. The number of microservices per sample ranges
from one to four. In addition to the above sampled microser-
vices, we inject some batch processing applications with long
execution time to increase the fidelity of our simulation in a
datacenter setup. We randomly generate 10,000 samples of the
application for the job scaling and node scaling analysis.
Simulation infrastructure for heterogeneous cluster.
We develop a custom simulation infrastructure similar to
DeepJS [33] and couple it with a random workload generator
to analyze the implications of different microservice schedul-
ing onto heterogeneous clusters. We assume the infrastructure
for the microservices is managed by the cloud provider such
as in case of Function-as-a-service (FaaS). A FaaS model of
deployment enables the infrastructure provider to utilize the
best underlying hardware for a job as long as it meets the SLA
requirement of the user. The simulator estimates the end-to-
end latencies using the latency and server utilization statistics
taken from Nightcore [26] and Tailbench [31]. For DNNs, the
simulator uses ONNX Runtime [13] to get the DNN model
latency on GPUs and a cycle-accurate simulator for ASIC
DNN accelerator.

B. Experimental Results

Job Scaling Analysis. We perform a job scaling analysis to
see how the end-to-end latency changes as we increase the
number of jobs (each job might have multiple microservices)
on a fixed sized cluster. Figure 3 summarizes the job scaling
on a cluster with one with 20 CPU, 5 GPU, and 5 ASIC,
while varying the number of jobs from 100 through 2000.
We observe a near linear increase in the speed-up of our ML
based scheduler as compared to the conventional schedulers.
This can be attributed to two factors: decision trees have quick
inference time and Octopus scheduler takes full advantage of
the acceleration capabilities provided by the GPUs and ASICs.

Figure 4 summarizes the job scaling on a cluster with 40
CPU, 10 GPU and 10 ASIC, while varying the number of
jobs from 100 to 7000 to see the effect when the cluster
is oversubscribed. We observe the same increase in speed-
up until the cluster is fully subscribed. After the cluster
is fully subscribed, end-to-end latencies gradually converge

0

2

4

6

100 200 400 600 800 1000 1200 1400 1600 1800 2000

Sp
ee

du
p 

/ F
irs

t F
it

Number of Jobs

First-Fit Scheduler
Random Scheduler
Kubernetes-like Scheduler
Octopus

Fig. 3: Speedup when the number of jobs (each job may have multiple
microservices) are scaled on a 20 CPU, 5 GPU, 5 ASIC cluster.

0

2.5

5

7.5

1000 2000 3000 4000 5000 6000 7000

Sp
ee

du
p 

/ F
irs

t F
it

Num of Jobs

FirstFit Scheduler
Random Scheduler
Kubernetes-like Scheduler
Octopus

Fig. 4: Speedup when the number of jobs (each job may have multiple
microservices) are scaled on a 40 CPU, 10 GPU, 10 ASIC cluster.

towards other conventional schedulers. Since all servers are
busy, the scheduler is not able to find servers with acceleration
capabilities.
Node Scaling Analysis. Figure 5 and Figure 6 demonstrates
the case when we increase the number of nodes while the
jobs are fixed. In this case, we observe a constant end-to-
end latency for each scheduler because for a fixed set of jobs
we keep increasing the number of available nodes and hence
there is lesser contention of physical resources. The reason
we observe a slight dip in speedup for Octopus is because
when the number of nodes increase, the inference time also
increases.

IV. RELATED WORKS

Microservices gained traction with friendliness to fast de-
ployment cycles and better scalability. They typically are run
on CPUs within the datacenter of cloud service providers.
However, with new heterogeneous hardware and emerging
accelerators [7, 8, 15, 16, 19–21, 28, 29, 37, 40] being
available on the cloud (e.g. GPU, FPGA, Google’s TPU, and
AWS’s Inferentia and Gaudi for machine learning inference
and training), the existing schedulers might not be a good
option since they do not consider the rich and growing
portfolio of heterogeneous hardware when making schedul-
ing decisions. There has been limited previous efforts on
the scheduling of microservices on heterogeneous clusters
including accelerators. Our work investigates a simple yet
effective machine learning based scheduling mechanism for
microservice workloads. We discuss the related works:
Microservices DeathStarBench [18] presents a set of com-
prehensive benchmarks for microservice. DeathStarBench dis-
cusses the implications of microservices on architectural,
system and networking, and cluster management. In the as-
pect of cluster management, microservices complicate cluster

3



0

2

4

6

20cpu, 5gpu,
5asic

40cpu, 10gpu,
10asic

60cpu, 15gpu,
15asic

80cpu, 20gpu,
20asic

100cpu, 25gpu,
25asic

Sp
ee

du
p 

/ F
irs

t F
it

Nodes (CPU, GPU, ASIC)

First-Fit Scheduler Random Scheduler
Kubernetes-like Scheduler Octopus

Fig. 5: Speedup when the number of nodes are scaled for 1000 jobs (each job
may have multiple microservices)

0

2.5

5

7.5

20cpu, 5gpu,
5asic

40cpu, 10gpu,
10asic

60cpu, 15gpu,
15asic

80cpu, 20gpu,
20asic

100cpu, 25gpu,
25asic

Sp
ee

du
p 

/ F
irs

t F
it

Nodes (CPU, GPU, ASIC)

First-Fit Scheduler Random Scheduler
Kubernetes-like Scheduler Octopus

Fig. 6: Speedup when the number of nodes are scaled for 2000 jobs (each job
may have multiple microservices)

management as its complex dependencies might trick cluster
manager into making inefficient scaling and scheduling de-
cisions. Wisp [43] applies rate limiting and back-pressuring
to microservices such that the microservices are able to meet
their SLA. GrandSLAm [30] estimates the completion time of
individual requests to batch or reorder microservices; thereby
making the microservices meet their SLA requirement with
higher throughput. SoftSKU [42] and Accelerometer [41] char-
acterize representative Facebook/Meta’s production microser-
vices on system and architectural level. SoftSKU is focused
on deriving the hardware and system configurations across a
limited set of server CPU models for optimized microserivces
performance. Accelerometer profiles system overhead, such
as I/O processing, compression, serialization and encryp-
tion/decryption. Accelerometer derives an analytic model to
predict potential speedup of these system overhead if they are
built into accelerators. Sage [17] uses unsupervised machine
learning models to capture the root cause of performance
unpredictability and further act upon it. Nightcore [26] is
a serverless runtime optimized for interactive microservices
especially with sub-millisecond latency requirements.
Cluster management and scheduling: Conventional cluster
managers, e.g. Borg [46], Mesos [25], YARN [45], do not
reason about neither the accelerator performance model nor
inter-changeable between general purpose CPU and acceler-
ators. Omega [39] and Hydra [10] are able to reason about
limited heterogeneity that comes from different CPU models
and memory capacities, but they don’t take accelerators into
account while making the scheduling decision. Paragon [12]
uses analytical methods together with collaborative filtering to

classify and schedule latency critical workloads considering
co-location interference and server heterogeneity. Gavel [36]
is a scheduler designed specifically for deep learning training
workload on a GPU/CPU cluster. Gavel considers the hardware
heterogeneity but is limited to interchangeable computation on
training workload between CPU and GPU only but no other
accelerator. ML-based cluster managers emerge as an attractive
alternative because they are driven by the underlying workload
and are more likely to closely optimize for it. Decima [34]
schedules data processing jobs on Spark clusters by using
neural network based reinforcement learning. Sinan [47] uses
a convolution neural network to handle dependencies and
interactions among microsevices and a boosted trees model
to prevent possible SLO latency violation caused by queued
requests. Both Decima and Sinan operate on a decision interval
around a second. Though ML-based cluster managers make
good decision using well-trained neural networks, this second-
level granularity of decision interval will not work well with
latency-sensitive, interactive microservices.
Machine learning for systems: The research community has
utilized machine learning techniques to optimize systems be-
yond cluster management and scheduling [5, 6, 14, 24, 34, 35].
For instance, researchers have used ML in storage systems
to improve the predictability of storage access latency [22].
Learned index [32] is applied onto database to replace tree-
based index to map a key to its data location. Zhang and
Huang [48] suggest that learning based approaches can even
replace heuristics-based mechanisms in operating systems.

CONCLUSION

Cloud has been going through a transformation over the
past decade: services shifting from monolithic application to
microservices and cloud servers becoming increasingly hetero-
geneous. This paper explores an efficient ML-based scheduling
algorithm to cope with the complex resource management
problem that arises from the convergence of microservices and
heterogeneous clusters. Evaluation with variegated microser-
vices on a simulated heterogeneous cluster shows significant
gains in end-to-end latency.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful
comments. This work was in part supported by generous
gifts from Google, Samsung, Qualcomm, Microsoft, Xilinx
as well as the National Science Foundation (NSF) awards
CCF#2107598, CNS#1822273, National Institute of Health
(NIH) award #R01EB028350, Defense Advanced Research
Project Agency (DARPA) under agreement number #HR0011-
18-C-0020, and Semiconductor Research Corporation (SRC)
award #2021-AH-3039. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
not withstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied

4



of Google, Qualcomm, Microsoft, Xilinx, Samsung, NSF,
SRC, NIH, DARPA or the U.S. Government.

REFERENCES

[1] “Decomposing twitter: Adventures in service-
oriented architecture.” [Online]. Avail-
able: https://www.slideshare.net/InfoQ/decomposing-
twitter-adventures-in-serviceoriented-architecture

[2] “Deep learning on gpu instances.” [Online].
Available: https://aws.amazon.com/machine-learning/
accelerate-machine-learning-P3/

[3] “The evolution of microservices.” [Online].
Available: http://www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference.

[4] “Kubernetes,” https://kubernetes.io.
[5] B. H. Ahn, P. Pilligundla, and H. Esmaeilzadeh,

“Chameleon: Adaptive code optimization for expedited
deep neural network compilation,” in ICLR, 2020.
[Online]. Available: https://openreview.net/forum?id=
rygG4AVFvH

[6] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “Learning to op-
timize tensor programs,” in NeurIPS, 2018, pp. 3389–
3400.

[7] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss:
An energy-efficient reconfigurable accelerator for deep
convolutional neural networks,” JSSC, 2016.

[8] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun et al., “Dadiannao: A machine-
learning supercomputer,” in MICRO, 2014.

[9] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengil, M. Liu, D. Lo, S. Alkalay,
M. Haselman, C. Boehn, O. Firestein, A. Forin, K. S.
Gatlin, M. Ghandi, S. Heil, K. Holohan, T. Juhasz,
R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov,
P. Patel, S. Reinhardt, A. Sapek, R. Seera, B. Sridharan,
L. Woods, P. Yi-Xiao, R. Zhao, and D. Burger, “Accel-
erating persistent neural networks at datacenter scale,” in
HotChips, 2017.

[10] C. Curino, S. Krishnan, K. Karanasos, S. Rao, G. M.
Fumarola, B. Huang, K. Chaliparambil, A. Suresh,
Y. Chen, S. Heddaya, R. Burd, S. Sakalanaga, C. Dou-
glas, B. Ramsey, and R. Ramakrishnan, “Hydra: a fed-
erated resource manager for data-center scale analytics,”
in NSDI, 2019.

[11] C. Delimitrou, “The increasing heterogeneity of cloud
hardware and what it means for systems,” 2020.
[Online]. Available: https://www.sigops.org/2020/the-
increasing-heterogeneity-of-cloud-hardware-and-what-
it-means-for-systems/

[12] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware
scheduling for heterogeneous datacenters,” in ASPLOS,
2013.

[13] O. R. developers, “Onnx runtime,” https://onnxruntime.
ai/, 2021.

[14] A. T. Elthakeb, P. Pilligundla, A. Yazdanbakhsh,
S. Kinzer, and H. Esmaeilzadeh, “Releq: A reinforcement
learning approach for deep quantization of neural
networks,” arXiv, 2018. [Online]. Available: https:
//arxiv.org/pdf/1811.01704.pdf

[15] H. Esmaeilzadeh, S. Ghodrati, J. Gu, S. Guo, A. B.
Kahng, J. K. Kim, S. Kinzer, R. Mahapatra, S. D. Manasi,
E. Mascarenhas et al., “Verigood-ml: An open-source
flow for automated ml hardware synthesis,” in 2021,
2021.

[16] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams,
M. Ghandi et al., “A configurable cloud-scale dnn pro-
cessor for real-time ai,” in ISCA, 2018.

[17] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou,
“Sage: Practical and Scalable ML-Driven Performance
Debugging in Microservices,” in ASPLOS, 2021.

[18] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
K. Hu, M. Pancholi, B. Clancy, C. Colen, F. Wen,
C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, Y. He,
and C. Delimitrou, “An Open-Source Benchmark Suite
for Microservices and Their Hardware-Software Impli-
cations for Cloud and Edge Systems,” in ASPLOS, 2019.

[19] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,
“TETRIS: Scalable and efficient neural network acceler-
ation with 3d memory,” in ASPLOS, 2017.

[20] S. Ghodrati, B. H. Ahn, J. K. Kim, S. Kinzer, B. R.
Yatham, N. Alla, H. Sharma, M. Alian, E. Ebrahimi,
N. S. Kim et al., “Planaria: Dynamic architecture fis-
sion for spatial multi-tenant acceleration of deep neural
networks,” in MICRO, 2020.

[21] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A.
Horowitz, and W. J. Dally, “EIE: efficient inference
engine on compressed deep neural network,” in ISCA,
2016.

[22] M. Hao, L. Toksoz, N. Li, E. E. Halim, H. Hoffmann, and
H. S. Gunawi, “LinnOS: Predictability on unpredictable
flash storage with a light neural network,” in OSDI, 2020.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in CVPR, 2016.

[24] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han,
“AMC: AutoML for model compression and acceleration
on mobile devices,” in ECCV, 2018.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data
center,” in NSDI, 2011.

[26] Z. Jia and E. Witchel, “Nightcore: Efficient and scalable
serverless computing for latency-sensitive, interactive
microservices,” in ASPLOS, 2021.

[27] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers et al., “In-datacenter performance analysis
of a tensor processing unit,” in ISCA, 2017.

[28] N. P. Jouppi, C. Young, N. Patil, D. Patterson,

5

https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://aws.amazon.com/machine-learning/accelerate-machine-learning-P3/
https://aws.amazon.com/machine-learning/accelerate-machine-learning-P3/
http://www.slideshare.net/adriancockcroft/ microservices-workshop-craft-conference.
http://www.slideshare.net/adriancockcroft/ microservices-workshop-craft-conference.
https://kubernetes.io
https://openreview.net/forum?id=rygG4AVFvH
https://openreview.net/forum?id=rygG4AVFvH
https://www.sigops.org/2020/the-increasing-heterogeneity-of-cloud-hardware-and-what-it-means-for-systems/
https://www.sigops.org/2020/the-increasing-heterogeneity-of-cloud-hardware-and-what-it-means-for-systems/
https://www.sigops.org/2020/the-increasing-heterogeneity-of-cloud-hardware-and-what-it-means-for-systems/
https://onnxruntime.ai/
https://onnxruntime.ai/
https://arxiv.org/pdf/1811.01704.pdf
https://arxiv.org/pdf/1811.01704.pdf


G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers et al., “In-datacenter performance analysis
of a tensor processing unit,” in ISCA, 2017.

[29] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network
computing,” in MICRO, 2016.

[30] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars,
and L. Tang, “Grandslam: Guaranteeing slas for jobs in
microservices execution frameworks,” in EuroSys, 2019.

[31] H. Kasture and D. Sanchez, “Tailbench: a benchmark
suite and evaluation methodology for latency-critical
applications,” in IISWC, 2016.

[32] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzo-
tis, “The case for learned index structures,” in SIGMOD,
2018.

[33] F. Li and B. Hu, “Deepjs: Job scheduling based on deep
reinforcement learning in cloud data center,” in ICBDC,
2019.

[34] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan,
Z. Meng, and M. Alizadeh, “Learning scheduling algo-
rithms for data processing clusters,” in SIGCOMM, 2019.

[35] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen,
Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and
J. Dean, “Device placement optimization with reinforce-
ment learning,” in ICML, 2017.

[36] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phan-
ishayee, and M. Zaharia, “{Heterogeneity-Aware} cluster
scheduling policies for deep learning workloads,” in
OSDI, 2020.

[37] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli,
R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler, and
W. J. Dally, “Scnn: An accelerator for compressed-sparse
convolutional neural networks,” in ISCA, 2017.

[38] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
G. Prashanth, J. Gray, M. Haselman, S. Hauck, S. Heil,
A. Hormati, J.-Y. Kim, S. Lanka, J. R. Larus, E. Peterson,
A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A re-
configurable fabric for accelerating large-scale datacenter
services,” in ISCA, 2014.

[39] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: Flexible, scalable schedulers for large
compute clusters,” in EuroSys, 2013.

[40] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra,
and H. Esmaeilzadeh, “Bit Fusion: Bit-level dynamically
composable architecture for accelerating deep neural
networks,” in ISCA, 2018.

[41] A. Sriraman and A. Dhanotia, “Accelerometer: Under-
standing acceleration opportunities for data center over-
heads at hyperscale,” in ASPLOS, 2020.

[42] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku:
Optimizing server architectures for microservice diversity
@scale,” in ISCA, 2019.

[43] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu,
“Distributed resource management across process bound-
aries,” in SoCC, 2017.

[44] M. Tan and Q. Le, “EfficientNet: Rethinking model
scaling for convolutional neural networks,” in ICML,
2019.

[45] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler, “Apache hadoop yarn: Yet another
resource negotiator,” in SoCC, 2013.

[46] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management
at google with borg,” in EuroSys, 2015.

[47] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delim-
itrou, “Sinan: Ml-based and qos-aware resource manage-
ment for cloud microservices,” in ASPLOS, 2021.

[48] Y. Zhang and Y. Huang, “"learned": Operating systems,”
SIGOPS Oper. Syst. Rev., vol. 53, no. 1.

6


	Introduction
	Exploring Efficient ML-based Scheduler for Microservices in Heterogeneous Clusters
	Conventional Scheduling Techniques
	Octopus: Light-weight ML-based Scheduler

	Evaluation
	Methodology
	Experimental Results

	Related Works

