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Abstract

Wildfire spread is an inherently stochastic process.
To capture this stochasticity, we train a generative
diffusion model to predict the wildfire spread. Such
models can predict multiple different outcomes per
input. However, seeing all possible outcomes may
require hundreds of samples, since some of them
have a low generation probability. To make this
more efficient, we examine methods that bias the
sampling process: away from the correct generation
probabilities and towards higher sample diversity.
To train this model, we introduce a simulation-based
wildfire spread dataset called MMFire. Furthermore,
we use a modified version of Cityscapes and the med-
ical dataset LIDC, to ensure that our methodologi-
cal findings transfer across domains. The diversity-
encouraging methods we explore are particle guid-
ance, SPELL, and our own clustering-based ap-
proach. All methods beat naive sampling, with
SPELL proving to be best, increasing the HM IoU*
metric by 7.5% on MMFire and 16.1% on Cityscapes
with little cost to image quality and runtime.

The code and the MMFire dataset will be made
publicly available upon acceptance.

1 Introduction

Recent papers on daily wildfire spread prediction [1—
3] fail to achieve a high predictive performance, even
though we know which variables are relevant for
the physical processes at play. We believe that
this might be related to the high uncertainty that
is inherent to wildfire spreading, especially at the
typically very low spatial and temporal resolution
in these studies. Given this uncertainty, models
should likely consider several outcomes to capture
the range of likely options. We use diffusion models
to generate this range of outcomes directly.
Although various papers explore how to use diffu-
sion models to generate segmentation masks [4-12],
they tend to simply aggregate the generated masks.
This ignores the core advantage of generative mod-
els: their ability to generate distinct outputs. Some
research examines how to train diffusion models to
generate such distinct segmentation masks [10, 11]
with well-calibrated probabilities. Yu et al. [13] even
generate wildfire spread predictions with a diffusion
model, but only compare the averaged predictions
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Wildfire Spread Scenarios: Increasing Sample Diversity of
Segmentation Diffusion Models with Training-Free Methods

Generates arbitrarily many samples
(illustrative only, not real samples)

Naive sampling can lead to many
redundant samples

Diversity-biasing achieves higher
diversity at same nr. of samples
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Figure 1. Diversity-biased sampling: We train a
conditional diffusion model to generate different outputs
for the same input data. If the goal is to find most, or
all, different outputs for the current input, naive sam-
pling can require a large number of samples, due to the
redundancy in samples. To reduce this redundancy, we
employ methods that bias the sampling towards higher
diversity for the same number of samples.
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to averaged simulated outcomes. We instead want
to use the distinct predictions directly, to enable fire
fighters to better plan for these different scenarios.
To efficiently generate different predictions, instead
of redundant ones, we bias the sampling process
towards higher diversity.

Output diversity is relevant in various domains
that have more than one possible target, e.g. differ-
ent opinions of medical experts [11], or in temporal
prediction: How will an active wildfire spread? Will
a child chase a ball that rolls onto the street? In such
applications, generating a diversity-biased set of sce-
narios can be much more useful than generating
scenarios according to properly calibrated probabili-
ties, or working with pixel-wise probabilities.

As our main motivation is wildfire spread, we first
introduce MMFire as a benchmark dataset. For each
starting condition, it contains multiple plausible out-
comes of wildfire spread, based on uncertainty about
the wind direction. In an application setting, it is
unrealistic to not know the wind direction at all.
However, this dataset is not meant to be perfectly
realistic. It is meant to serve as a controlled environ-
ment for evaluating different diversity-encouraging
methods. Trained on enough real-world data, or
additional synthetic data, future models should be
able to generate diverse wildfire spread predictions.
Any knowledge gained from working on MMF'ire can
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then be transferred to these models.

To draw conclusions that transfer across domains,
we also use a binary variant of Cityscapes [14], and
the medical dataset LIDC [15]. These datasets also
contain multiple binary segmentation masks as tar-
gets for each input.

To cost-efficiently increase diversity, we focus on
training-free methods: Particle guidance [16] and
SPELL [17]. Both methods modify the sampling
trajectory by repelling samples from each other, and
thus increasing diversity. We also propose a simple
clustering-based approach that starts with a large
batch of samples and discards redundant ones very
early on, to reduce computational cost.

Our key contributions are the following;:

e We introduce MMFire, a simulated wildfire
spread dataset with multiple valid future out-
comes per input (subsection 4.1).

e We draw a connection between diversity statis-
tics for segmentation masks and SPELL’s criti-
cal parameter that eliminates the need for ex-
tensive hyperparameter search (subsection 5.4).

e We develop a clustering-based pruning ap-
proach. It beats naive sampling by 2.4% HM
IoU* on MMFire (Table 2) and up to 15.5%
on Cityscapes (Table 1), without modifying the
original sampling trajectories.

e We demonstrate that particle guidance and
SPELL both achieve superior quality-diversity
trade-offs compared to naive sampling (Table 2,
Table 3). For single batches, SPELL beats naive
sampling by 7.5% HM IoU* on MMFire and
16.1% on Cityscapes.

2 Related work

Research on generating segmentation masks with
diffusion models either uses the Gaussian diffusion
framework or variants of categorical diffusion. When
generating binary segmentation masks [4, 5, 12, 18],
Gaussian diffusion can be used directly, followed by
thresholding to binarize the real-valued outputs. To
extend this from binary to multi-class segmentation
masks, Analog Bits [7, 8] can be used with little
change to the underlying mechanics.

In contrast to Gaussian diffusion, categorical dif-
fusion [6, 9, 11] uses discrete state spaces, instead
of real-valued ones. Empirically, Gaussian and cate-
gorical approaches perform similarly [9, 11].

In this work, we use Gaussian diffusion. This
allows us to integrate diversity-related methods [16,
17], that have been developed for Gaussian diffusion,
more easily. We focus on binary masks, assuming
that the results can be transferred to the multi-class
setting via Analog Bits.
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Most studies on diffusion segmentation models
focus on achieving a high segmentation performance,
by aggregating multiple samples as a form of im-
plicit ensembling [5], or improving segmentation and
calibration scores of the mean-aggregated samples
[4]. However, these improvements could conceptu-
ally also be achieved with discriminative methods.
We instead want to focus on the unique ability of
generative methods to generate multiple different
predictions for the same input. We are only aware of
two studies [10, 11] that investigate the performance
of their model on a dataset with multiple correct
annotations, also termed ambiguous segmentation.

Various methods have been proposed in the dif-
fusion model literature to increase sample diversity,
though they usually focus on the text-conditioned
generation of natural images. CADS [19] adds a
noise schedule to the conditioning. This is supposed
to prevent samples from focusing on the most prob-
able modes, and instead explore more of the latent
space. In preliminary experiments, we found that
CADS severely degrades the image quality and thus
do not use it. This degradation is likely due to the
need for the model to access conditioning informa-
tion early in sampling, to establish the low-frequency
information that represents the segmentation mask.

Instead of modifying the conditioning to increase
diversity, most methods modify the sampling sched-
ule. Particle guidance [16] computes a guidance term
based on the pairwise distances between noise-free
predictions of the current in-batch samples to repel
them from each other. Motion modes [20] extends
this to include several additional guidance terms,
that encourage properties in the generated data that
particle guidance might otherwise not preserve. We
directly use particle guidance, since our domain does
not lend itself as easily to additional guidance terms.

ProCreate [21] aims to generate samples that differ
from existing samples. For a more accurate distance
computation, the method ’looks ahead’ by denois-
ing for several steps. It then computes a guidance
term similar to particle guidance. We also investi-
gate the case of generating multiple batches of data
with repellence from previously-sampled images. In
contrast to ProCreate, we only use a single-step
denoising for distance computations, since we find
that initial predictions are rather close to the final
samples for binary segmentation masks.

Contrary to guidance-based methods, SPELL [17]
does not indiscriminately repel all close samples
from each other. Instead, if two samples lie within
a pre-defined L2-distance of each other (the shield
radius), SPELL repels them just enough to ensure
that the distance is maintained. We use SPELL as
an alternative to particle guidance.
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3 Method

We use the EDM diffusion framework [22] to gen-
erate segmentation masks, conditioned on an input
image. At inference, we generate multiple masks by
denoising multiple random noise samples with the
trained diffusion model. Particle guidance[16] and
SPELL [17] are used during the denoising process to
increase the diversity among these generated masks.
They work heuristically, by pushing the samples in
a batch away from each other, thus increasing the
diversity within a batch.

3.1 EDM diffusion framework

We follow the EDM framework [22] for our denoising
diffusion models. The EDM model is based on the
following ordinary differential equation (ODE):

dx = -tV log p(x; t)dt, (1)
where x is a noisy mask (also called latent) and ¢
is the ODE time step. We also refer to ¢ as the
noise level, given that we use the default variance
exploding formulation, where o(t) = t. The ODE is
solved via numerical integration with a 2nd order
Heun solver [22]. This numerical integration starts
from a pure noise mask with very high noise level
omax and gradually removes all of the noise until a
noise-free mask is reached.

We train a denoising neural network Dy to remove
noise by minimizing the objective:

Ey~pdet~ptmmEeNN(o,tZI) D(y + €t) — y”%a (2)

where a segmentation mask y is sampled from the
data distribution pgat. ; the current time step t is
sampled from p¢ain; and a noise image € is sampled
from an isotropic Gaussian with standard deviation ¢.
The forward diffusion process then simply consists of
adding the noise € to the ground truth segmentation
mask y. We refer to the noisy segmentation mask
as y,. By optimizing this objective, the denoising
model Dy learns to predict the noise-free y, given
y, and the current time step ¢.

After training Dy, Equation 1 can be solved by
approximating the score function:

score(z,t) = Vg log p(x;t) = (Dg(x;t) —x) /2. (3)

To use the EDM framework for segmentation, the
generated sample needs to be conditioned on an
input image that we want to segment. Therefore,
we sample pairs (y, ¢) from the data distribution
with segmentation mask y and input image, or con-
ditioning, c. We pass ¢ to the denoising network
Dy as an additional input. We implement this by
concatenating ¢ to the current noisy segmentation
mask y, in the channel dimension.
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3.2 Increasing sample diversity

When generating natural images, the reverse diffu-
sion process first determines low-frequency features
at high noise levels (e.g. where in the image we see
a dog), and as the sample z; moves towards lower
noise levels, more high-frequency features are deter-
mined (e.g. the details of the face and then of the
fur). However, in images that are binary segmenta-
tion masks, there are very few such high-frequency
features, since all pixels take values of 0 or 1, with-
out any fine-grained differences in between. This is
highly relevant for any diversity-encouraging meth-
ods that modify the sampling process, since it means
that the changes we care about are only possible
near high noise levels.

Furthermore, in exploratory experiments, we
found that the denoiser model’s prediction
Dy (x¢,tmax) at the initial time step tmax is often
relatively close to the final output already. This
allows us to treat this first prediction as a proxy for
the final sample. While this proxy is not perfect, it
is a cost-efficient approximation that we employ.

3.2.1 Clustering-based sample-pruning

A straight-forward method to find all modes of a
diffusion model’s distribution is to simply generate a
large number of samples. However, this will always
incur a relatively high cost. Ideally, we would like to
achieve this large-batch behavior, while keeping the
cost low. To achieve this, we sample a large initial
batch of pure noise, denoise it in a single step, and
discard all samples that are deemed redundant. To
decide which samples are redundant, we perform
k-medians clustering, with k£ equal to the number
of modes that we expect. We discard all but the
medians determined by the clustering and finish the
reverse diffusion process for the corresponding sam-
ples. The benefit of this approach is that it only
uses unmodified sampling steps, thus avoiding any
negative impacts on image quality that modifica-
tions to the sampling trajectory could have. As a
distance metric for clustering, we use the chamfer
distance instead of L2 distance, since the former
proved slightly better in preliminary experiments.

3.2.2 Particle Guidance

A popular approach to increase the fidelity of gen-
erated natural images are guidance terms, like clas-
sifier guidance [23] or classifier-free guidance [24].
These modify the score function in Equation 1 by
an additive term:

de = =t (Vglogp(x;t) + o Vg g(x;t)) dt,  (4)
where we call g(x;t) the guidance function and « is
a scalar that we call the guidance strength.
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While classifier-free guidance increases fidelity, it
decreases diversity [25]. Particle guidance (PG) [16]
does the opposite, by improving the diversity among
samples (also called particles) in a batch, possibly
at the cost of image quality. The basic mechanic is
to compute a gradient that increases the pixel-wise
L2-distances between images, based on radial basis
function (RBF) kernels. This approach is purely
heuristic: Samples are pushed apart from each other,
but the directions in which they are pushed are not
aligned with any information about the data.

Let {x;|]1 < i < B} be a batch of B noisy
masks. To compute the value of the guidance func-
tion g(x;;t), the denoising model first estimates
the noise-free masks x; in a single step for all ¢:
&; = Dy(x;;t). Next, the pairwise RBF-kernels &
between those noise-free masks are computed via

~ ~ 12
k(ii,ij;t)eXp<W>, )

with hy = m?/log(B), where m; is the median value

of ||&; — :Ejﬂg within the current batch of masks.
The negative kernel sum aggregates all distance

relationships from mask ¢ to all other masks:

B

g(@sit) = =D k(& &t)

j=1

(6)

Finally, the gradient of this scalar sum is com-
puted with regards to the noisy mask «;, backprop-
agating through Dy. This gradient is then used as
guidance in Equation 4.

3.2.3 SPELL: SParse repELLency

In contrast to particle guidance, SPELL [17] only
repels samples that are too close to each other. The
original authors use the metaphor of a shield of
radius r around each sample. If a sample enters this
protected area around another sample, it is pushed
away to an L2 distance of r.

Furthermore, SPELL is not a guidance method.
Instead of adding a term to the score function, it
modifies the score function in Equation 3 by chang-
ing the noise-free prediction with an additive term
A. The modified score function for x; becomes:

SCOremod (X4, 1) = (D(x4;t) + A; — mi)/t2,

(7)

with the additive term A; computed as:

§ Orelu

b,bi

A = 1) (o, — Top)
(3)

This approach has the advantage of avoiding costly
backward passes like in particle guidance. But since
it changes the target of the denoising process at

( r
Z0,i — Zo,blly
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all sampling steps, there is a high risk for generat-
ing lower-quality samples. Therefore, we will limit
SPELL to high-noise areas of the sampling process,
to give the score function the chance to correct po-
tential image quality issues caused by the repellence.

3.2.4 Inter-batch diversity

When generating multiple batches of samples, we
want to encourage diversity across these batches.
For this reason, we keep a memory bank containing
the already-generated samples for the current input.
For both particle guidance and SPELL, we add two
more method variants: one that only repels samples
in the current batch from the samples in the memory
bank, and one that repels both from the memory
bank and from samples in the current batch. This
is also used in the original SPELL paper [17].

4 Multi-modal datasets

We use three different multi-modal datasets (i.e. hav-
ing multiple targets per input). For MMFire and
Cityscapes, we know all targets and explicitly set
their probabilities. These datasets are thus very
useful for evaluating different methods, but the way
their annotations are generated does not represent
a real-life use case. LIDC, on the other hand, offers
a case of real-life ambiguous segmentation, where
different annotations represent differing opinions be-
tween domain experts. The datasets also greatly dif-
fer in their inter-mode variances: MMFire’s modes
always overlap in the initial burned area with a
medium amount of difference between modes. In
Cityscapes, there are large-scale differences between
modes, but also large-scale overlaps between some
modes. In LIDC, there is often a large amount
of overlap between different annotations, with dif-
ferences being rather small. These differences will
become relevant when setting the hyperparameters
for SPELL in subsection 5.4.

4.1 MMPFire

We generated MMFire (MM = multi-modal) with
the help of the Simfire [26] simulator. For a given
geolocation, it downloads from the LANDFIRE pro-
gram [27, 28] real-world data that is relevant for
predicting how wildfires spread, namely: dead fuel
moisture at extinction, fuel bed depth, oven-dry fuel
load, surface to volume ratio, and elevation. Initial
wind speed and wind direction are randomly gen-
erated. An initial fire is set near the center of the
image. The well-known Rothermel model [29] then
deterministically predicts the spread of the fire for
a desired time, based on these initial conditions.
To generate a dataset with multiple different out-
comes for each initial condition, we first randomly
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Input data Multiple future scenarios

Dead fuel moisture
of extinction

Fuel bed depth

Oven-dry Fuel Load 0.8%

Wind: 315°

Wind speed 25.1%

Wind: 270°
12.6%

Start

6.3%

Wind: 225° Wind: 135°

Wind: 180°

Figure 2. MMFire: We use a wildfire spread simu-
lator to generate multiple plausible outcomes based on
the current state of the fire. This is done by setting the
wind direction to one of eight values across the whole
64 x 64 image. We impose a highly skewed probability
distribution on the eight outcomes during training (see
the probabilities above). This represents a difficult situ-
ation where naively sampling from the diffusion model
is a very slow strategy for finding all modes.

pick a geolocation in the western USA, where fuel
is abundant and LANDFIRE provides data. We
simulate a fire at that location for 10 minutes to
have a non-trivial initial state for the fire. From this
initial state, we branch into eight different futures by
setting the wind direction to i x45°,4 € {0,1,...,7},
constant across the simulation area of 64 x 64 pixels.
With these eight wind directions, we then simulate
another respective 10 minutes of fire spread. We use
the eight final states as the targets of the dataset.
Figure 2 shows an example pair of input data and
eight different futures.

The models we train never get access to the wind
direction. Instead, they are supposed to pick a differ-
ent wind direction according to the probabilities that
we set. For this, we set a highly skewed distribution
on the different modes (and their associated wind
direction), weighting mode i with a weight of 2¢, to
create a dataset in which it is challenging to find
all modes of the distribution. With naive sampling,
the expected number of samples to see each mode
at least once is about 307.

4.2 Cityscapes: Multi-modal, binary
version

Cityscapes [14] is a semantic segmentation bench-
mark dataset. Inspired by previous studies [30, 31],
we synthetically make the annotations multi-modal.
Unlike these previous studies, we stay within the
binary regime, to stay closer to the data we are
interested in, namely wildfire progression data.

To make the Cityscapes dataset multi-modal, pre-
vious studies split up one class into two new, syn-
onymous, classes, e.g. road becomes road; and roads.
During training, we randomly choose whether all
road pixels in the current image become road; or
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Creating multiple targets for Cityscapes

{Car, vegetation,
Segmentation map sidewalk, road}
filter

--

classes
Independently flip classes to 0 or 1 with fixed probabilities,
resulting in 2* = 16 binary segmentation masks, or modes:

Car only Vegetation only

{Car, Vegetation,
= Sidewalk, Road}

Figure 3. Multi-modal binary Cityscapes: The
classes road, sidewalk, vegetation, and car are randomly
flipped to the positive or negative class, with fixed prob-
abilities, resulting in 2% = 16 separate modes per image.

all become roads. To stay binary, we instead flip
those classes between the positive and the negative
class. We do this with the classes road, sidewalk,
vegetation and car. All other classes are always set
to negative. We flip the classes to positive with
respective probabilities 5%, 25%, 756%, 95%. Each
class is individually flipped on or off, thus the com-
bination of these flip decisions for all four classes
leads to 2* = 16 modes for each image, assuming
all four classes are present. This creates a skewed
distribution, where naive sampling is a bad strategy
to find all modes. Figure 3 shows all modes for an
example image. While previous studies also used
the class person, we generate segmentation masks
at 64 x 128 pixels for faster experimentation. At
this resolution, correctly annotating people is very
difficult, so we drop this class.

4.3 LIDC

The LIDC dataset [15] contains CT scans of lungs
and corresponding expert annotations of lung nod-
ules. Each scan is annotated with four binary seg-
mentation masks, that oftentimes disagree with each
other. Crucially, if segmentation masks differ from
each other, this represents actual disagreement be-
tween experts, stemming from epistemic uncertainty.
The challenge when working with this dataset is
that neither the full set of modes is not available.

5 Experiments

For more detailed information on implementation
and experimental setup, please refer to the appendix.

5.1 Evaluation criteria

To evaluate the generated samples, we compute the
Hungarian-Matched IoU (HM IoU), which finds the
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Performance of cluster centers vs. full sample set

0.81

0.6

HM loU*

044

—— LIDC: 4 clusters
MMFire: 8 clusters
0.2 — Cityscapes: 16 clusters
@ LIDC: 128 samples
MMFire: 256 samples
® Cityscapes: 256 samples

e B i : : T
Sampling steps

Figure 4. Applying clustering-based sample-
pruning at different sampling steps: Varying after
which sampling step the clustering and pruning is per-
formed influences the final performance. For all datasets,
there is large gap between evaluating only the cluster
centers and evaluating the full set of generated samples.
The x-axis represents the index of the sampling step.
However, the noise levels at each step do not decrease
linearly. See appendix for details on the noise schedule.

best match between generated and ground truth
masks and computes the mean IoU across the
matched masks. We modify this metric, indicated
by HM IoU*, by removing duplicate ground truth
masks, since our goal is to avoid the generation
of duplicates. This is especially relevant for LIDC
where most images have duplicate targets.

For MMFire and Cityscapes, we know the ground
truth set of modes. With this, we additionally com-
pute image quality and the number of distinct gener-
ated modes (see Appendix D). Results are averaged
over five runs with different random seeds.

5.2 Clustering-based sample-pruning

Figure 4 shows the performance of clustering-based
sample-pruning, applied at different sampling steps.
For all datasets, we see a large difference between
evaluating only the cluster centers (illustrated by
lines) and evaluating the whole set of generated sam-
ples (illustrated by dots). This difference persists
across all steps, even when the final denoised sam-
ples are chosen for clustering at the last step. For
Cityscapes, the difference between clustering at the
final step and using the fully denoised batch of sam-
ples at this step is 20.8% HM IoU*. This indicates
that the clustering algorithm used is not able to
reliably detect the modes of the distribution.

We believe that this clustering failure is the result
of two interacting factors: First, the modeling er-
ror. In approximating the conditional distributions
over segmentation masks, the models produce im-
perfect outputs. Some of them are outliers and have
a distorting influence on which clusters are chosen.
Second, the asymmetry in the distributions. The
MMFire and Cityscapes distribution over modes
have been purposefully chosen to be highly asym-
metrical, to represent a challenging benchmark. The
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Table 1. Clustering-based sample pruning: Vary-
ing initial batch size. We investigate the trade-off
between runtime and quality when varying the number
of initial samples on Cityscapes. Naive sampling gener-
ates a number of samples equal to the batch size, while
clustering always generates 16 samples, but starts with
a higher number of samples that are clustered.

Method Batch size B Tmage quality 1 Distinct modes 1 HM IoU* 1 Runtime |

Naive sampling 16 0.956 122 0.416 Ohdlm
32 0.956 133 0.497 1h19m
64 0.956 14.1 0.586 2h39m

Clustering [B—>16] 32 0.953 5.129 0.469 0h46m

64 0.951
128 0.949
256 0.948

5.680
5.993
6.122

0.517
0.552
0.571

0h53m
1h9m
1h47m

rare modes will only show up very seldom. In the
light of outliers created by the imperfect models, it
is then impossible for the clustering algorithm to
decide which outliers are rare modes and which are
just noise to be ignored.

We conclude from these results that clustering
and pruning immediately after the first sampling
step is the best option. Further steps increase the
performance on MMFire and LIDC, but also incur
the high cost of denoising all samples in the large
batch again, while the performance gain is small.

Even with only one denoising step of the full
batch, our method incurs a much higher computa-
tion cost than naive sampling, while generating the
same amount of outputs. We reduce the number of
samples in the initial large batch, to investigate the
trade-off between performance and runtime. Run-
time and performance drop step-wise with reduced
batch size, as shown in Table 1. However our ap-
proach comes within 1.5% HM IoU* of naively sam-
pling 64 samples, with only 16 generated samples.
Depending on the use case, this superior sample-
efficiency can be a very desirable property.

The strength of our clustering approach is not a
low runtime, but a high sample quality. Thus, when
comparing this method with others, we decide to use
256 samples and ignore the high runtime. Table 2
shows that clustering outperforms the probabilistic
UNet and naive sampling by at least 2.4% on MM-
Fire, and 15.5% on Cityscapes. On Cityscapes it
gets within 0.6% of the best performance by SPELL,
even beating particle guidance by 1.8%. However, on
MMFire, it is clearly outperformed by both particle
guidance and SPELL. We assume that this is caused
by the two factors mentioned earlier. However, on
LIDC, our approach reaches the first place with a
performance almost equal to that of the probabilistic
UNet, outperforming the next-best diffusion-based
method by 3.9%. This is likely because the rather
uniform distribution of modes on LIDC makes it
easier to determine correct cluster centers.

To compare with methods that generate multiple
batches, we increase the number of clusters k to the
total number of desired samples, effectively over-
clustering. Table 3 shows that clustering still beats
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Table 2. Single-batch performance: We generate a
batch of N samples per input; N is the number of modes
of the respective dataset. Methods should produce a di-
verse set of samples while retaining a high image quality.
PG: Particle Guidance. LIDC’s ground truth data does
not permit the computation of the image quality and
distinct modes metrics.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 3. Multi-batch performance: We generate
two or four batches of N samples per input; N is the
number of modes of the respective dataset. For cluster-
ing, we only generate one batch, but increase the number
of clusters accordingly. PG: Particle Guidance. LIDC’s
ground truth data does not permit the computation of
the image quality and distinct modes metrics.

Method Image quality 1 Distinct modes +  HM IoU* +  Runtime |

MMFire - 1 batch x 8 samples

Naive sampling 0.999 34 0.638 0h26m
Prob. UNet 0.999 3.1 0.581 Oh6m
Clustering [256—8] 0.999 3.8 0.662 1h50m
PG: batch 0.999 3.9 0.690 0h29m
SPELL: batch 0.999 4.4 0.713 0h25m
Cityscapes - 1 batch x 16 samples
Naive sampling 0.956 12.2 0.416 41m
Prob. UNet 0.960 3.6 0.292 6m
Clustering [256—16] 0.948 6.1 0.571 1h47m
PG: batch 0.825 15.3 0.553 46m
SPELL: batch 0.936 7.3 0.577 40m
LIDC - 1 batch x 4 samples
Naive sampling 0.523 0h50m
Prob. UNet 0.573 Oh5m
Clustering [128—4] n/a n/a 0.574 3h19m
PG: batch 0.528 0h57m
SPELL: batch 0.535 0h50m

naive sampling, but falls behind the other methods.

In summary, while the computational cost of this
method is higher than that of competing methods,
it can be useful if the goal is only to produce a low
number of samples that is as representative as pos-
sible, and the underlying distribution is not heavily
skewed. Furthermore, particle guidance and SPELL
might be more cost-efficient at achieving a high HM
IoU; but this clustering-based approach only fol-
lows the original sampling trajectory, thus avoiding
potential image quality issues stemming from the
interference with the sampling process. Application
cases for this method could be situations where a
low number of high-quality scenarios are presented
to a human operator for analysis or planning, but
runtime is not a big concern.

5.3 Particle guidance

Following our intuition that the determination of
modes for binary segmentation masks happens
mostly in the early sampling steps, we limit par-
ticle guidance to the initial steps. Table D.1 shows
that limiting the guidance to the initial step per-
forms similarly well as computing it at every step,
but saves computation by avoiding the backward
steps necessary for computing the guidance term.
When choosing the strength of particle guidance,
Table D.1 shows a trade-off between image quality
and diversity. The loss in image quality is caused
by the guidance pushing samples apart without any
regard for the specific dataset or the learned score
function. This can easily cause the samples to move
into subspaces on which the denoising model has
not been trained well, leading to faulty predictions.
Analyzing the results in Table 2 and Table 3, we
find that particle guidance always beats naive sam-

Method Image quality 1 Distinct modes +  HM IoU* 1+ Runtime |

MMFire - 2 batches x8 samples

Naive sampling 0.999 4.1 0.705 0Oh44m
ProbUNet 0.999 3.6 0.639 0Oh12m
Clustering [256—16] 0.999 4.4 0.728 2h8m
PG: batch 0.999 4.7 0.746 1h3m
PG: memory bank 0.999 4.5 0.733 1h4m
PG: batch & memory bank 0.999 4.6 0.743 1h4m
SPELL: batch 0.999 5.2 0.781 Oh55m
SPELL: memory bank 0.999 5.0 0.765 0h55m
SPELL: batch & memory bank 0.999 5.3 0.784 0h55m
MMFire - 4 batches x8 samples
Naive sampling 0.999 4.7 0.751 1h28m
ProbUNet 0.999 4.1 0.681 0h27m
Clustering [256—32] 0.999 5.0 0.770 2h55m
PG: batch 0.999 5.3 0.789 2h35m
PG: memory bank 0.999 5.0 0.774 2h35m
PG: batch & memory bank 0.999 5.1 0.781 2h38m
SPELL: batch 0.999 6.0 0.826 2h17m
SPELL: memory bank 0.999 5.5 0.801 2h19m
SPELL: batch & memory bank 0.999 6.0 0.830 2h17m
Cityscapes - 2 batches x 16 samples
Naive sampling 0.956 13.3 0.497 1h19m
ProbUNet 0.959 4.2 0.326 0Oh12m
Clustering [256—32] 0.948 7.3 0.661 2h23m
PG: batch 0.827 10.3 0.654 1h37m
PG: memory bank 0.892 8.9 0.642 1h37m
PG: batch & memory bank 0.867 9.6 0.679 1h36m
SPELL: batch 0.936 87 0.690 1h26m
SPELL: memory bank 0.946 77 0.635 1h26m
SPELL: batch & memory bank 0.936 8.7 0.690 1h26m
Cityscapes - 4 batches x 16 samples
Naive sampling 0.956 14.1 0.586 2h39m
ProbUNet 0.960 4.7 0.354 0h27m
Clustering [256—64] 0.949 8.1 0.699 3h44m
PG: batch 0.827 11.8 0.704 3h41m
PG: memory bank 0.919 9.8 0.705 3h40m
PG: batch & memory bank 0.904 10.3 0.723 3h41m
SPELL: batch 0.936 9.7 0.735 3h19m
SPELL: memory bank 0.951 8.3 0.680 3h19m
SPELL: batch & memory bank 0.936 9.8 0.735 3h19m
LIDC - 2 batches x4 samples
Naive sampling 0.660 1h41m
ProbUNet 0.715 Oh7m
Clustering [128—8] 0.695 4hlm
PG: batch 0.677 1h54m
PG: memory bank n/a n/a 0.675 1h54m
PG: batch & memory bank 0.682 1h54m
SPELL: batch 0.686 1h40m
SPELL: memory bank 0.696 1h41m
SPELL: batch & memory bank 0.697 Th41m
LIDC - 4 batches x4 samples
Naive sampling 0.727 3h32m
ProbUNet 0.785 Oh13m
Clustering [128—16] 0.732 5h23m
PG: batch 0.736 3h58m
PG: memory bank n/a n/a 0.739 3h58m
PG: batch & memory bank 0.743 3h58m
SPELL: batch 0.740 3h30m
SPELL: memory bank 0.751 3h31m
SPELL: batch & memory bank 0.749 3h30m

pling, but tends to perform worse than SPELL. Most
noticeable, on Cityscapes with 16 samples, it only
reaches an image quality of 82.5%, while the next
worst method is SPELL with a much higher 93.6%.
At the same time, particle guidance reaches an aston-
ishing 15.3 out of 16 distinct modes, while SPELL
only reaches 7.3, showcasing the trade-off between
image quality and sample diversity inherent to such
methods that modify the sampling trajectory.

5.4 SPELL

SPELL’s main hyperparameter is the shield radius
r. It defines an L2 distance within which no other
sample is allowed to fall. If a sample violates this
shield, it is pushed outside of the radius. In the
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Table 4. SPELL: Varying shield radius. Based on
diversity statistics on the Cityscapes training set, we
perform a coarse search around ro = 12.7.

Shield radius r Image quality © Distinct modes + HM IoU* 1

6.350 0.944 6.6 0.540
9.525 0.934 7.4 0.564
12.700 0.924 7.8 0.561
15.875 0.914 8.1 0.551

case of binary segmentation masks, this L2 distance
is equivalent to the square root of the number of
pixels that must differ between two samples. This
correspondence provides a very direct way to specify
the desired diversity that does not exist for natural
images (which use the full space in [0,1]) or for latent
diffusion models (where distances in latent space do
not directly correspond to distances in image space).
It becomes easy to set a shield radius, even if only
single annotations are available in the training set.

We use the fact that we know several targets
for each input to determine a starting value ry for
the shield radius. For each input, we compute the
minimum L2 distance among unique targets, and
then compute the mean of these minima:

N
1 .
o= o > min ({ |y — virllz 1955 # vir}) (9)
i=1

For each dataset, we conduct a coarse hyperparam-
eter search around ry to determine the parameter
to use. Table 4 shows this for Cityscapes. These
results confirm that ry as computed above is a a
very good initial value. For MMFire and LIDC, we
found 7 to be the best (Table C.1).

The hard L2-limit enforced by SPELL means that
samples are pushed apart without regard for how
realistic the resulting images are. Especially towards
the end of sampling, this is contrary to particle guid-
ance, which slowly fades out with decreasing noise
level. SPELL’s stronger push seems to be unprob-
lematic in the original SPELL paper [17], which uses
latent diffusion models. These models have a down-
stream decoder model that maps the final latent
representation to an image, which can potentially
counter-act imperfect sampling outcomes. However,
since we are directly applying the repellence in im-
age space, we have to be more careful. To prevent
SPELL from having a negative influence towards
the end of sampling, we limit SPELL’s application
to Smin = 40, where sy, is the highest noise level
at which the guidance is still applied. In our case,
that corresponds to the second sampling step. This
change allows the score function to still guide the
samples that were perturbed by SPELL towards
more likely outcomes, leading to an improvement of
1.3% HM IoU* on Cityscapes (see Table 5).

On Cityscapes, SPELL consistently beats all other
methods. Similar to particle guidance, repelling

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 5. SPELL: Limit application to high noise.
We vary Smin, the highest noise level at which SPELL
is still applied, to reduce the potentially negative influ-
ence during sampling. We begin sampling from pure
Gaussian noise with omax = 80, the default for the EDM
framework. smin = 00 represents never using SPELL.
Smin = 0 represents always using SPELL.

Image quality T Distinct modes T HM IoU* 1 Runtime |

Smin

00 0.956 12.2 0.416 41m
70 0.938 7.0 0.571 41m
40 0.936 7.3 0.577 40m
20 0.935 7.4 0.571 41m
10 0.935 74 0.571 41m
0 0.934 74 0.564 0h40m

from in-batch and previously generated samples per-
forms best, which intuitively makes sense. SPELL
stays within 2.4% of the best image quality despite
modifying the sampling trajectory, which is an ac-
ceptable trade-off for the large HM IoU* gains. On
MMFire, particle guidance matches SPELL.

On LIDC, both particle guidance and SPELL
clearly underperform the probabilistic UNet. Fur-
ther work may be needed to tune our diffusion
model on LIDC, though this performance gap is re-
versed on the other datasets. However, the diversity-
encouraging methods always outperforms naive sam-
pling from the diffusion model. Thus, it always
seems advisable to use SPELL, even on datasets
with fairly symmetric distributions, like LIDC.

6 Future work

While MMFire is very useful for benchmarking, it
lacks realistic diversity. Such diversity can be added
to real-world datasets by simulating alternative fu-
tures at each step. For our clustering-based ap-
proach, density-based clustering algorithms could
make it easier to detect low-probability outliers as
separate clusters. Furthermore, we only investigated
training-free methods. Training-based approaches
might improve upon these. Lastly, consistency mod-
els [32] might provide better one-step approxima-
tions, which all investigated methods rely upon.

7 Conclusion

We introduced MMFire, a simulated multi-modal
wildfire spread dataset. We demonstrated that par-
ticle guidance and SPELL substantially improve
prediction diversity with minimal quality loss, with
SPELL achieving 7.5% HM IoU* gains on MMFire
and 16.1% on Cityscapes. Our clustering-based prun-
ing provides an alternative that is computationally
intense, but preserves image quality better. These
advances enable more sample-efficient multi-modal
modeling of wildfire spread.
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A Datasets
A.1 MMPFire

The dataset consists of 9608 input samples of size 7 x
64 x 64, each associated with eight simulated future
fire spread segmentation masks of size 64 x 64. We
use a split of 5000 training samples, 2500 validation
samples, and 2108 test samples. We do not apply
any augmentations. Any augmentations applied
will need to make sure that the wind direction is
correctly transformed, e.g. in rotations or flips.

A.2 Cityscapes

Our implementation of the Cityscapes dataset is
based on the existing Lightning Bolts [33] Cityscapes
data module. We only use the 5000 images with fine
annotations, resized to 64 x 128 for faster experi-
ments. We keep the split of 2975 training images,
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500 validation images, and 1525 test images. We
use the semantic segmentation labels as a starting
point, before filtering down to the four classes which
we randomly flip between the positive and negative
class. We only use color jittering as augmentations.
We train with batch size 32 and parameterize the
log-normal training noise distribution with a mean
of Htrain = 1.5.

A.3 LIDC

To download and preprocess the LIDC dataset,
we followed the steps indicated by the au-
thors of [31] at https://github.com/gaozhitong/
MoSE-AUSeg/, and use their dataset class to load
the data. The dataset contains 9794 training images,
2314 validation images, and 2988 test images. It
includes random horizontal and vertical flipping and
rotation by up to 10°, all applied to both image and
label simultaneously. The images and labels have a
size of 128 x 128 pixels.

B Implementation details

Our code base is implemented in PyTorch [34] and
PyTorch Lightning [35]. For the diffusion model,
we use the official EDM [22] repository at https:
//github.com/NVlabs/edm.

All experiments were run on NVIDIA A40 GPUs,
provided as part of a scientific computational cluster
that is credited in the acknowledgments.

During sampling, the ODE is solved by starting
from © ~ N at omax = 80 and numerically integrat-
ing to omin = 0.002, using the 2nd order Heun solver
from EDM. Unless specifically noted, we only use
deterministic sampling, i.e. we set Schurn = 0.

We use the NCSN++ architecture [36], as imple-
mented in the EDM code base and EDM precondi-
tioning, modified to take an image as conditional
information by concatenating it to the noisy mask @
that is being generated. Only the base multiplier for
the number of features is modified for the different
datasets: For Cityscapes, we use the default value of
128, since the conditioning image and output distri-
bution are rather complex. For MMFire and LIDC,
we use 64.

C Experimental details

C.1 Training the diffusion models

Unless mentioned otherwise, we train the base
models with AdamW with learning rate le-4, and
51 = 0.9,8, = 0.99. For Cityscapes, we train for
400 epochs, for LIDC, we train for 200 epochs, for
MMFire, we train for 1000 epochs. We compute the
validation loss after each training epoch and keep
the model checkpoint with the lowest validation

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

loss. During training, this validation loss is com-
puted by randomly sampling noise levels according
to the training noise distribution for each condi-
tioning. The training noise distribution is always
a log-normal distribution, with standard deviation
Otrain = 1.2, which is the default value in EDM,
and mean fiyan, Which we vary between different
runs. Note that these parameters refer to the normal
distribution, the samples of which are then exponen-
tiated. The mean, mode, and standard deviation of
samples drawn from the log-normal distribution are
different.

For each dataset, we train several models, varying
the mean (fitrain) of the log-normal distribution used
for sampling the noise levels during training. In pre-
liminary experiments, we observed that performing
model selection simply via lowest validation loss did
not lead to a good calibration of the distribution over
modes. We therefore perform the model selection
with regards to the highest alignment of the sample
distribution over modes with the training distribu-
tion. For this, we sample 64 segmentation masks per
conditioning (e.g. per RGB image in Cityscapes),
and compare the distribution over modes with the
known ground truth distribution via total variation
difference metric (see next paragraph). We also do
not perform model selection with regards to HM
IoU*. Choosing a model with the highest HM ToU*
for a highly skewed distribution would mean that
the skewedness is likely not properly represented
by the model, even though we of course want to
achieve a high HM IoU* in the end. In practice,
the models we choose tend to still be among the
best in terms of HM IoU* computed over the 64
samples. For datasets for which we only know a set
of segmentation masks per image, but not the actual
probabilities per mask, we can take the pixel-wise
mean across generated masks and compare to the
pixel-wise mean across ground truth labels, as a
measure of calibration. This is the case for LIDC,
where we use the Brier score to select a model. We
end up choosing the models trained with the follow-
ing parameters: MMFire: pain = 0.5, Cityscapes:
tirain = 1.5; LIDC: pigpain = 1.0.

To perform model selection, we estimate how
well a large batch of generated segmentation masks
{24|0 <i < B B € N} follows the training distribu-
tion over modes. For Cityscapes, we have flipped
all classes separately, thus we want to estimate how
well the model follows the per-class Bernoulli flip
probabilities. We estimate the flip probabilities from
the B generated masks for each class separately. For
this, we compute the per-class IoU between gener-
ated mask and indicator mask of the respective class,
e.g. a mask that is 1 for the road class, and 0 other-
wise. Then, we threshold the IoU at 0.5 to decide
whether the generated mask represents a choice of
the positive or negative mode for the given class.
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From these per-mask modes for each class, we esti-
mate the per-batch distribution of modes and com-
pare it to the true Bernoulli distributions via mean
total variation distance (TVD). To compute this dis-
tance, we compute the mean distance between the
C paired distributions: TVDpean ({(Pe, ¢c)|1 < ¢ <
Oh =34 Zle |pe — qe|, where pe, . are the true
and estimated Bernoulli probability for flipping class
¢ to the positive class. For MMFire, we do concep-
tually the same, except that we assign a single mode
to each image, and we compare a single empirical
and a single ground truth categorical distribution,
instead of several Bernoulli distributions.

C.2 Sampling from the diffusion mod-
els

For all models, we use the EDM sampling schedule,
parameterized by p = 7 and n = 10 timesteps.
More steps did not lead to better results. This is
likely due to the very conditioning signal that is
much stronger than in the case of natural images,
conditioned on a text prompt, for example. There
are many different images that are consistent with
"dog on the beach wearing sunglasses’, but very few
segmentation masks that are pixel-perfectly aligned
with the input and correctly distinguish between the
positive and negative classes.

C.3 Particle guidance and SPELL

For particle guidance, we use the a guidance strength
a = 10 for all experiments. We ran a coarse grid
search across a € {10,100,1000} for all datasets
separately, but found that o = 10 performed best
for each of them.

For SPELL, we compute rg from the respective
training dataset, according to Equation 9. Start-
ing from this, we run a coarse grid search across
{0.570,0.7570, 70, 1.257¢} and choose the best one
as r for all experiments. Table C.1 shows the cor-
responding values. For both MMFire and LIDC,
using rg proved best among the investigated values.
For Cityscapes, we used 0.75r9. Which exact value
proves best depends on the exact distribution of
distances. An option would be to replace the mean
with the minimum in Equation 9. However, for
many cases, SPELL would then not ensure enough
diversity (see Table 4). Thus, ro can be taken as
a strong starting point, but, depending on the con-
crete distance distribution of the dataset, a better
value might exist near rg.

D Evaluation

Metrics for the main results in Table 2 and Table 3
are computed on the test sets. All other tables
and figures are treated as part of hyperparameter

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table C.1. SPELL: Shield radii used in experi-
ments. 7o is an initial estimate for a good shield radius
determined from dataset diversity statistics in Equa-
tion 9. r is the best value we found in a coarse grid
search around ro9. For MMFire and LIDC, ro was the
best value we found. For Cityscapes, we found in Table 4
that 0.75r¢ performs slightly better.

Dataset 70 r

MMFire 9.525  9.525
Cityscapes 12.700 9.525
LIDC 6.000  6.000

search or optimization, therefore they are computed
on the validation sets. For Cityscapes, the test set
segmentation masks are not public, therefore we can
not compute any of our metrics on the Cityscapes
test set. Therefore, we use the Cityscapes validation
set everywhere, instead. Since we mostly care about
the relative performance of the methods on the same
dataset, this still seems serviceable.

While we mainly focus our evaluations on HM
IoU*, which is a combined measure of image quality
and diversity, we additionally use explicit measures
of these two qualities on MMFire and Cityscapes.
For each generated sample, we compute which
ground truth mode is closest to the sample. Within
a batch of samples, we then count the number of
distinct modes (or unique modes) that were gen-
erated. Since this is a pure argmax computation, a
sample that is closest to one particular mode might
still have very low quality. Thus, this metric can be
very noisy and should always be interpreted with
regards to an image quality metric.

For image quality, we compute a pixel-wise
union of all modes for the current input, to determine
which pixels are allowed to be part of the positive
class, and which ones should always be assigned the
negative class. We want to penalize samples which
set pixels to positive that should never be positive.
Let this union image be yunion- We take the comple-
ment to receive Yynion, Which is 0 in all pixels that
are positive in at least one mode, and 1 otherwise.
Let x; be a sample to evaluate, then we compute
the image quality metric as 1 — IoU(2;, Yunion)-

The runtimes we measure include all of the time it
takes to run the respective job on a shared scientific
computation cluster, including loading the respective
model and computing the metrics. The runtimes can
vary, depending on the load imposed by other jobs
using the shared resources. We assume that they
are still useful as broad indications of how much
longer certain methods take than others.

D.1 Probabilistic UNet

Following previous work [10, 11], we use the prob-
abilistic UNet [30] as a baseline for ambiguous
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Table D.1. Particle guidance: Varying guidance
strength a. We investigate the trade-off between image
quality and diversity on Cityscapes. Applying guidance
on the first step only saves several backward passes, but
performs almost exactly the same.

Guidance steps « Image quality T Distinct modes +  HM IoU* 1

None 0 0.956 12.2 0.416
First 1 0.954 13.3 0.460
First 10 0.939 14.4 0.558
First 100 0.824 15.3 0.553
First 1000 0.691 15.4 0.445
all 1 0.954 13.3 0.460
all 10 0.938 14.4 0.558
all 100 0.818 15.3 0.551
all 1000 0.685 15.4 0.445

segmentation. We use an unofficial PyTorch re-
implementation' to train one model per dataset. In
our experiments, we try to stay as close as possible
to the original hyperparameter choices that were
made for training on LIDC in the original proba-
bilistic UNet paper. Unfortunately, we found that
training was rather unstable in our case. To remedy
this, we removed the custom weight initialization
and instead relied on PyTorch’s default initialization
schemes. Furthermore, for Cityscapes and MMFire,
we switched to the OneCycleLR[37] learning rate
scheduler and increased the learning rate from le-4
to le-3 since convergence was extremely slow other-
wise.

We generally tried to see how well the probabilis-
tic UNet works ’out of the box’. Since the results
for Cityscapes were much worse than the diffusion
model, we also attempted to adjust the hyperparam-
eter that was most likely to be responsible for the
low performance, which is the model capacity, given
that Cityscapes has 16 modes and the differences
between them are relatively large. We therefore dou-
bled the latent dimension from 6 to 12 and doubled
the hidden dimensions throughout the model. How-
ever, this did not improve the results. The main
problem we see in the generated samples is that the
road is never predicted as positive. In training, this
class has a probability of 5% to be observed as the
positive class. Given that it also takes the largest
amount of pixels among the classes, never predicting
it as positive means a large loss in HM IoU* in half
of the modes, explaining the low performance.

lhttps://github.com/stefanknegt/
Probabilistic-Unet-Pytorch
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