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Abstract001

Wildfire spread is an inherently stochastic process.002

To capture this stochasticity, we train a generative003

diffusion model to predict the wildfire spread. Such004

models can predict multiple different outcomes per005

input. However, seeing all possible outcomes may006

require hundreds of samples, since some of them007

have a low generation probability. To make this008

more efficient, we examine methods that bias the009

sampling process: away from the correct generation010

probabilities and towards higher sample diversity.011

To train this model, we introduce a simulation-based012

wildfire spread dataset called MMFire. Furthermore,013

we use a modified version of Cityscapes and the med-014

ical dataset LIDC, to ensure that our methodologi-015

cal findings transfer across domains. The diversity-016

encouraging methods we explore are particle guid-017

ance, SPELL, and our own clustering-based ap-018

proach. All methods beat naive sampling, with019

SPELL proving to be best, increasing the HM IoU*020

metric by 7.5% on MMFire and 16.1% on Cityscapes021

with little cost to image quality and runtime.022

The code and the MMFire dataset will be made023

publicly available upon acceptance.024

1 Introduction025

Recent papers on daily wildfire spread prediction [1–026

3] fail to achieve a high predictive performance, even027

though we know which variables are relevant for028

the physical processes at play. We believe that029

this might be related to the high uncertainty that030

is inherent to wildfire spreading, especially at the031

typically very low spatial and temporal resolution032

in these studies. Given this uncertainty, models033

should likely consider several outcomes to capture034

the range of likely options. We use diffusion models035

to generate this range of outcomes directly.036

Although various papers explore how to use diffu-037

sion models to generate segmentation masks [4–12],038

they tend to simply aggregate the generated masks.039

This ignores the core advantage of generative mod-040

els: their ability to generate distinct outputs. Some041

research examines how to train diffusion models to042

generate such distinct segmentation masks [10, 11]043

with well-calibrated probabilities. Yu et al. [13] even044

generate wildfire spread predictions with a diffusion045

model, but only compare the averaged predictions046

Diffusion
model

Current fire

Auxiliary data

Generates arbitrarily many samples 
(illustrative only, not real samples)

Naive sampling can lead to many 
redundant samples

Diversity-biasing achieves higher 
diversity at same nr. of samples

Diversity-
biasing

Figure 1. Diversity-biased sampling: We train a
conditional diffusion model to generate different outputs
for the same input data. If the goal is to find most, or
all, different outputs for the current input, naive sam-
pling can require a large number of samples, due to the
redundancy in samples. To reduce this redundancy, we
employ methods that bias the sampling towards higher
diversity for the same number of samples.

to averaged simulated outcomes. We instead want 047

to use the distinct predictions directly, to enable fire 048

fighters to better plan for these different scenarios. 049

To efficiently generate different predictions, instead 050

of redundant ones, we bias the sampling process 051

towards higher diversity. 052

Output diversity is relevant in various domains 053

that have more than one possible target, e.g. differ- 054

ent opinions of medical experts [11], or in temporal 055

prediction: How will an active wildfire spread? Will 056

a child chase a ball that rolls onto the street? In such 057

applications, generating a diversity-biased set of sce- 058

narios can be much more useful than generating 059

scenarios according to properly calibrated probabili- 060

ties, or working with pixel-wise probabilities. 061

As our main motivation is wildfire spread, we first 062

introduce MMFire as a benchmark dataset. For each 063

starting condition, it contains multiple plausible out- 064

comes of wildfire spread, based on uncertainty about 065

the wind direction. In an application setting, it is 066

unrealistic to not know the wind direction at all. 067

However, this dataset is not meant to be perfectly 068

realistic. It is meant to serve as a controlled environ- 069

ment for evaluating different diversity-encouraging 070

methods. Trained on enough real-world data, or 071

additional synthetic data, future models should be 072

able to generate diverse wildfire spread predictions. 073

Any knowledge gained from working on MMFire can 074
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then be transferred to these models.075

To draw conclusions that transfer across domains,076

we also use a binary variant of Cityscapes [14], and077

the medical dataset LIDC [15]. These datasets also078

contain multiple binary segmentation masks as tar-079

gets for each input.080

To cost-efficiently increase diversity, we focus on081

training-free methods: Particle guidance [16] and082

SPELL [17]. Both methods modify the sampling083

trajectory by repelling samples from each other, and084

thus increasing diversity. We also propose a simple085

clustering-based approach that starts with a large086

batch of samples and discards redundant ones very087

early on, to reduce computational cost.088

Our key contributions are the following:089

• We introduce MMFire, a simulated wildfire090

spread dataset with multiple valid future out-091

comes per input (subsection 4.1).092

• We draw a connection between diversity statis-093

tics for segmentation masks and SPELL’s criti-094

cal parameter that eliminates the need for ex-095

tensive hyperparameter search (subsection 5.4).096

• We develop a clustering-based pruning ap-097

proach. It beats naive sampling by 2.4% HM098

IoU* on MMFire (Table 2) and up to 15.5%099

on Cityscapes (Table 1), without modifying the100

original sampling trajectories.101

• We demonstrate that particle guidance and102

SPELL both achieve superior quality-diversity103

trade-offs compared to naive sampling (Table 2,104

Table 3). For single batches, SPELL beats naive105

sampling by 7.5% HM IoU* on MMFire and106

16.1% on Cityscapes.107

2 Related work108

Research on generating segmentation masks with109

diffusion models either uses the Gaussian diffusion110

framework or variants of categorical diffusion. When111

generating binary segmentation masks [4, 5, 12, 18],112

Gaussian diffusion can be used directly, followed by113

thresholding to binarize the real-valued outputs. To114

extend this from binary to multi-class segmentation115

masks, Analog Bits [7, 8] can be used with little116

change to the underlying mechanics.117

In contrast to Gaussian diffusion, categorical dif-118

fusion [6, 9, 11] uses discrete state spaces, instead119

of real-valued ones. Empirically, Gaussian and cate-120

gorical approaches perform similarly [9, 11].121

In this work, we use Gaussian diffusion. This122

allows us to integrate diversity-related methods [16,123

17], that have been developed for Gaussian diffusion,124

more easily. We focus on binary masks, assuming125

that the results can be transferred to the multi-class126

setting via Analog Bits.127

Most studies on diffusion segmentation models 128

focus on achieving a high segmentation performance, 129

by aggregating multiple samples as a form of im- 130

plicit ensembling [5], or improving segmentation and 131

calibration scores of the mean-aggregated samples 132

[4]. However, these improvements could conceptu- 133

ally also be achieved with discriminative methods. 134

We instead want to focus on the unique ability of 135

generative methods to generate multiple different 136

predictions for the same input. We are only aware of 137

two studies [10, 11] that investigate the performance 138

of their model on a dataset with multiple correct 139

annotations, also termed ambiguous segmentation. 140

Various methods have been proposed in the dif- 141

fusion model literature to increase sample diversity, 142

though they usually focus on the text-conditioned 143

generation of natural images. CADS [19] adds a 144

noise schedule to the conditioning. This is supposed 145

to prevent samples from focusing on the most prob- 146

able modes, and instead explore more of the latent 147

space. In preliminary experiments, we found that 148

CADS severely degrades the image quality and thus 149

do not use it. This degradation is likely due to the 150

need for the model to access conditioning informa- 151

tion early in sampling, to establish the low-frequency 152

information that represents the segmentation mask. 153

Instead of modifying the conditioning to increase 154

diversity, most methods modify the sampling sched- 155

ule. Particle guidance [16] computes a guidance term 156

based on the pairwise distances between noise-free 157

predictions of the current in-batch samples to repel 158

them from each other. Motion modes [20] extends 159

this to include several additional guidance terms, 160

that encourage properties in the generated data that 161

particle guidance might otherwise not preserve. We 162

directly use particle guidance, since our domain does 163

not lend itself as easily to additional guidance terms. 164

ProCreate [21] aims to generate samples that differ 165

from existing samples. For a more accurate distance 166

computation, the method ’looks ahead’ by denois- 167

ing for several steps. It then computes a guidance 168

term similar to particle guidance. We also investi- 169

gate the case of generating multiple batches of data 170

with repellence from previously-sampled images. In 171

contrast to ProCreate, we only use a single-step 172

denoising for distance computations, since we find 173

that initial predictions are rather close to the final 174

samples for binary segmentation masks. 175

Contrary to guidance-based methods, SPELL [17] 176

does not indiscriminately repel all close samples 177

from each other. Instead, if two samples lie within 178

a pre-defined L2-distance of each other (the shield 179

radius), SPELL repels them just enough to ensure 180

that the distance is maintained. We use SPELL as 181

an alternative to particle guidance. 182
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3 Method183

We use the EDM diffusion framework [22] to gen-184

erate segmentation masks, conditioned on an input185

image. At inference, we generate multiple masks by186

denoising multiple random noise samples with the187

trained diffusion model. Particle guidance[16] and188

SPELL [17] are used during the denoising process to189

increase the diversity among these generated masks.190

They work heuristically, by pushing the samples in191

a batch away from each other, thus increasing the192

diversity within a batch.193

3.1 EDM diffusion framework194

We follow the EDM framework [22] for our denoising195

diffusion models. The EDM model is based on the196

following ordinary differential equation (ODE):197

dx = −t∇x log p(x; t)dt, (1)198

where x is a noisy mask (also called latent) and t199

is the ODE time step. We also refer to t as the200

noise level, given that we use the default variance201

exploding formulation, where σ(t) = t. The ODE is202

solved via numerical integration with a 2nd order203

Heun solver [22]. This numerical integration starts204

from a pure noise mask with very high noise level205

σmax and gradually removes all of the noise until a206

noise-free mask is reached.207

We train a denoising neural network Dθ to remove208

noise by minimizing the objective:209

Ey∼pdata
Et∼ptrain

Eϵ∼N (0,t2I)∥D(y+ ϵ; t)− y∥22, (2)210

where a segmentation mask y is sampled from the211

data distribution pdata ; the current time step t is212

sampled from ptrain; and a noise image ϵ is sampled213

from an isotropic Gaussian with standard deviation t.214

The forward diffusion process then simply consists of215

adding the noise ϵ to the ground truth segmentation216

mask y. We refer to the noisy segmentation mask217

as yt. By optimizing this objective, the denoising218

model Dθ learns to predict the noise-free y, given219

yt and the current time step t.220

After training Dθ, Equation 1 can be solved by221

approximating the score function:222

score(x, t) = ∇x log p(x; t) = (Dθ(x; t)−x)/t2. (3)223

To use the EDM framework for segmentation, the224

generated sample needs to be conditioned on an225

input image that we want to segment. Therefore,226

we sample pairs (y, c) from the data distribution227

with segmentation mask y and input image, or con-228

ditioning, c. We pass c to the denoising network229

Dθ as an additional input. We implement this by230

concatenating c to the current noisy segmentation231

mask yt in the channel dimension.232

3.2 Increasing sample diversity 233

When generating natural images, the reverse diffu- 234

sion process first determines low-frequency features 235

at high noise levels (e.g. where in the image we see 236

a dog), and as the sample xt moves towards lower 237

noise levels, more high-frequency features are deter- 238

mined (e.g. the details of the face and then of the 239

fur). However, in images that are binary segmenta- 240

tion masks, there are very few such high-frequency 241

features, since all pixels take values of 0 or 1, with- 242

out any fine-grained differences in between. This is 243

highly relevant for any diversity-encouraging meth- 244

ods that modify the sampling process, since it means 245

that the changes we care about are only possible 246

near high noise levels. 247

Furthermore, in exploratory experiments, we 248

found that the denoiser model’s prediction 249

Dθ(xt, tmax) at the initial time step tmax is often 250

relatively close to the final output already. This 251

allows us to treat this first prediction as a proxy for 252

the final sample. While this proxy is not perfect, it 253

is a cost-efficient approximation that we employ. 254

3.2.1 Clustering-based sample-pruning 255

A straight-forward method to find all modes of a 256

diffusion model’s distribution is to simply generate a 257

large number of samples. However, this will always 258

incur a relatively high cost. Ideally, we would like to 259

achieve this large-batch behavior, while keeping the 260

cost low. To achieve this, we sample a large initial 261

batch of pure noise, denoise it in a single step, and 262

discard all samples that are deemed redundant. To 263

decide which samples are redundant, we perform 264

k-medians clustering, with k equal to the number 265

of modes that we expect. We discard all but the 266

medians determined by the clustering and finish the 267

reverse diffusion process for the corresponding sam- 268

ples. The benefit of this approach is that it only 269

uses unmodified sampling steps, thus avoiding any 270

negative impacts on image quality that modifica- 271

tions to the sampling trajectory could have. As a 272

distance metric for clustering, we use the chamfer 273

distance instead of L2 distance, since the former 274

proved slightly better in preliminary experiments. 275

3.2.2 Particle Guidance 276

A popular approach to increase the fidelity of gen- 277

erated natural images are guidance terms, like clas- 278

sifier guidance [23] or classifier-free guidance [24]. 279

These modify the score function in Equation 1 by 280

an additive term: 281

dx = −t (∇x log p(x; t) + α ∇x g(x; t)) dt, (4) 282

where we call g(x; t) the guidance function and α is 283

a scalar that we call the guidance strength. 284
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While classifier-free guidance increases fidelity, it285

decreases diversity [25]. Particle guidance (PG) [16]286

does the opposite, by improving the diversity among287

samples (also called particles) in a batch, possibly288

at the cost of image quality. The basic mechanic is289

to compute a gradient that increases the pixel-wise290

L2-distances between images, based on radial basis291

function (RBF) kernels. This approach is purely292

heuristic: Samples are pushed apart from each other,293

but the directions in which they are pushed are not294

aligned with any information about the data.295

Let {xi|1 ≤ i ≤ B} be a batch of B noisy296

masks. To compute the value of the guidance func-297

tion g(xi; t), the denoising model first estimates298

the noise-free masks x̃i in a single step for all i:299

x̃i = Dθ(xi; t). Next, the pairwise RBF-kernels k300

between those noise-free masks are computed via301

k (x̃i, x̃j ; t) = exp

(
−
∥x̃i − x̃j∥22

ht

)
, (5)302

with ht = m2
t/ log(B), where mt is the median value303

of ∥x̃i − x̃j∥22 within the current batch of masks.304

The negative kernel sum aggregates all distance305

relationships from mask i to all other masks:306

g(xi; t) = −
B∑

j=1

k (x̃i, x̃j ; t) (6)307

Finally, the gradient of this scalar sum is com-308

puted with regards to the noisy mask xi, backprop-309

agating through Dθ. This gradient is then used as310

guidance in Equation 4.311

3.2.3 SPELL: SParse repELLency312

In contrast to particle guidance, SPELL [17] only313

repels samples that are too close to each other. The314

original authors use the metaphor of a shield of315

radius r around each sample. If a sample enters this316

protected area around another sample, it is pushed317

away to an L2 distance of r.318

Furthermore, SPELL is not a guidance method.319

Instead of adding a term to the score function, it320

modifies the score function in Equation 3 by chang-321

ing the noise-free prediction with an additive term322

∆. The modified score function for xi becomes:323

scoremod(xi, t) = (D(xi; t) + ∆i − xi)/t
2, (7)324

with the additive term ∆i computed as:325

∆i =
∑
b,b̸=i

σrelu

(
r

∥x̃0,i − x̃0,b∥2
− 1

)
· (x̃0,i − x̃0,b)

(8)326

This approach has the advantage of avoiding costly327

backward passes like in particle guidance. But since328

it changes the target of the denoising process at329

all sampling steps, there is a high risk for generat- 330

ing lower-quality samples. Therefore, we will limit 331

SPELL to high-noise areas of the sampling process, 332

to give the score function the chance to correct po- 333

tential image quality issues caused by the repellence. 334

3.2.4 Inter-batch diversity 335

When generating multiple batches of samples, we 336

want to encourage diversity across these batches. 337

For this reason, we keep a memory bank containing 338

the already-generated samples for the current input. 339

For both particle guidance and SPELL, we add two 340

more method variants: one that only repels samples 341

in the current batch from the samples in the memory 342

bank, and one that repels both from the memory 343

bank and from samples in the current batch. This 344

is also used in the original SPELL paper [17]. 345

4 Multi-modal datasets 346

We use three different multi-modal datasets (i.e. hav- 347

ing multiple targets per input). For MMFire and 348

Cityscapes, we know all targets and explicitly set 349

their probabilities. These datasets are thus very 350

useful for evaluating different methods, but the way 351

their annotations are generated does not represent 352

a real-life use case. LIDC, on the other hand, offers 353

a case of real-life ambiguous segmentation, where 354

different annotations represent differing opinions be- 355

tween domain experts. The datasets also greatly dif- 356

fer in their inter-mode variances: MMFire’s modes 357

always overlap in the initial burned area with a 358

medium amount of difference between modes. In 359

Cityscapes, there are large-scale differences between 360

modes, but also large-scale overlaps between some 361

modes. In LIDC, there is often a large amount 362

of overlap between different annotations, with dif- 363

ferences being rather small. These differences will 364

become relevant when setting the hyperparameters 365

for SPELL in subsection 5.4. 366

4.1 MMFire 367

We generated MMFire (MM = multi-modal) with 368

the help of the Simfire [26] simulator. For a given 369

geolocation, it downloads from the LANDFIRE pro- 370

gram [27, 28] real-world data that is relevant for 371

predicting how wildfires spread, namely: dead fuel 372

moisture at extinction, fuel bed depth, oven-dry fuel 373

load, surface to volume ratio, and elevation. Initial 374

wind speed and wind direction are randomly gen- 375

erated. An initial fire is set near the center of the 376

image. The well-known Rothermel model [29] then 377

deterministically predicts the spread of the fire for 378

a desired time, based on these initial conditions. 379

To generate a dataset with multiple different out- 380

comes for each initial condition, we first randomly 381
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Input data Multiple future scenarios

Figure 2. MMFire: We use a wildfire spread simu-
lator to generate multiple plausible outcomes based on
the current state of the fire. This is done by setting the
wind direction to one of eight values across the whole
64× 64 image. We impose a highly skewed probability
distribution on the eight outcomes during training (see
the probabilities above). This represents a difficult situ-
ation where naively sampling from the diffusion model
is a very slow strategy for finding all modes.

pick a geolocation in the western USA, where fuel382

is abundant and LANDFIRE provides data. We383

simulate a fire at that location for 10 minutes to384

have a non-trivial initial state for the fire. From this385

initial state, we branch into eight different futures by386

setting the wind direction to i×45◦, i ∈ {0, 1, . . . , 7},387

constant across the simulation area of 64× 64 pixels.388

With these eight wind directions, we then simulate389

another respective 10 minutes of fire spread. We use390

the eight final states as the targets of the dataset.391

Figure 2 shows an example pair of input data and392

eight different futures.393

The models we train never get access to the wind394

direction. Instead, they are supposed to pick a differ-395

ent wind direction according to the probabilities that396

we set. For this, we set a highly skewed distribution397

on the different modes (and their associated wind398

direction), weighting mode i with a weight of 2i, to399

create a dataset in which it is challenging to find400

all modes of the distribution. With naive sampling,401

the expected number of samples to see each mode402

at least once is about 307.403

4.2 Cityscapes: Multi-modal, binary404

version405

Cityscapes [14] is a semantic segmentation bench-406

mark dataset. Inspired by previous studies [30, 31],407

we synthetically make the annotations multi-modal.408

Unlike these previous studies, we stay within the409

binary regime, to stay closer to the data we are410

interested in, namely wildfire progression data.411

To make the Cityscapes dataset multi-modal, pre-412

vious studies split up one class into two new, syn-413

onymous, classes, e.g. road becomes road1 and road2.414

During training, we randomly choose whether all415

road pixels in the current image become road1 or416

filter

classes

Segmentation map

{Car, vegetation,
sidewalk, road}

Creating multiple targets for Cityscapes

Independently flip classes to 0 or 1 with fixed probabilities,
resulting in 24 = 16 binary segmentation masks, or modes:

Vegetation onlyCar only

Road only

Sidewalk only

{Car, Vegetation}

{Car, Vegetation,

Sidewalk, Road}

Figure 3. Multi-modal binary Cityscapes: The
classes road, sidewalk, vegetation, and car are randomly
flipped to the positive or negative class, with fixed prob-
abilities, resulting in 24 = 16 separate modes per image.

all become road2. To stay binary, we instead flip 417

those classes between the positive and the negative 418

class. We do this with the classes road, sidewalk, 419

vegetation and car. All other classes are always set 420

to negative. We flip the classes to positive with 421

respective probabilities 5%, 25%, 75%, 95%. Each 422

class is individually flipped on or off, thus the com- 423

bination of these flip decisions for all four classes 424

leads to 24 = 16 modes for each image, assuming 425

all four classes are present. This creates a skewed 426

distribution, where naive sampling is a bad strategy 427

to find all modes. Figure 3 shows all modes for an 428

example image. While previous studies also used 429

the class person, we generate segmentation masks 430

at 64 × 128 pixels for faster experimentation. At 431

this resolution, correctly annotating people is very 432

difficult, so we drop this class. 433

4.3 LIDC 434

The LIDC dataset [15] contains CT scans of lungs 435

and corresponding expert annotations of lung nod- 436

ules. Each scan is annotated with four binary seg- 437

mentation masks, that oftentimes disagree with each 438

other. Crucially, if segmentation masks differ from 439

each other, this represents actual disagreement be- 440

tween experts, stemming from epistemic uncertainty. 441

The challenge when working with this dataset is 442

that neither the full set of modes is not available. 443

5 Experiments 444

For more detailed information on implementation 445

and experimental setup, please refer to the appendix. 446

5.1 Evaluation criteria 447

To evaluate the generated samples, we compute the 448

Hungarian-Matched IoU (HM IoU), which finds the 449
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2 4 6 8 10
Sampling steps

0.0

0.2

0.4

0.6

0.8

1.0
HM

 Io
U*

Performance of cluster centers vs. full sample set

LIDC: 4 clusters
MMFire: 8 clusters
Cityscapes: 16 clusters
LIDC: 128 samples
MMFire: 256 samples
Cityscapes: 256 samples

Figure 4. Applying clustering-based sample-
pruning at different sampling steps: Varying after
which sampling step the clustering and pruning is per-
formed influences the final performance. For all datasets,
there is large gap between evaluating only the cluster
centers and evaluating the full set of generated samples.
The x-axis represents the index of the sampling step.
However, the noise levels at each step do not decrease
linearly. See appendix for details on the noise schedule.

best match between generated and ground truth450

masks and computes the mean IoU across the451

matched masks. We modify this metric, indicated452

by HM IoU*, by removing duplicate ground truth453

masks, since our goal is to avoid the generation454

of duplicates. This is especially relevant for LIDC455

where most images have duplicate targets.456

For MMFire and Cityscapes, we know the ground457

truth set of modes. With this, we additionally com-458

pute image quality and the number of distinct gener-459

ated modes (see Appendix D). Results are averaged460

over five runs with different random seeds.461

5.2 Clustering-based sample-pruning462

Figure 4 shows the performance of clustering-based463

sample-pruning, applied at different sampling steps.464

For all datasets, we see a large difference between465

evaluating only the cluster centers (illustrated by466

lines) and evaluating the whole set of generated sam-467

ples (illustrated by dots). This difference persists468

across all steps, even when the final denoised sam-469

ples are chosen for clustering at the last step. For470

Cityscapes, the difference between clustering at the471

final step and using the fully denoised batch of sam-472

ples at this step is 20.8% HM IoU*. This indicates473

that the clustering algorithm used is not able to474

reliably detect the modes of the distribution.475

We believe that this clustering failure is the result476

of two interacting factors: First, the modeling er-477

ror. In approximating the conditional distributions478

over segmentation masks, the models produce im-479

perfect outputs. Some of them are outliers and have480

a distorting influence on which clusters are chosen.481

Second, the asymmetry in the distributions. The482

MMFire and Cityscapes distribution over modes483

have been purposefully chosen to be highly asym-484

metrical, to represent a challenging benchmark. The485

Table 1. Clustering-based sample pruning: Vary-
ing initial batch size. We investigate the trade-off
between runtime and quality when varying the number
of initial samples on Cityscapes. Naive sampling gener-
ates a number of samples equal to the batch size, while
clustering always generates 16 samples, but starts with
a higher number of samples that are clustered.

Method Batch size B Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓
Naive sampling 16 0.956 12.2 0.416 0h41m

32 0.956 13.3 0.497 1h19m
64 0.956 14.1 0.586 2h39m

Clustering [B→16] 32 0.953 5.129 0.469 0h46m
64 0.951 5.680 0.517 0h53m
128 0.949 5.993 0.552 1h9m
256 0.948 6.122 0.571 1h47m

rare modes will only show up very seldom. In the 486

light of outliers created by the imperfect models, it 487

is then impossible for the clustering algorithm to 488

decide which outliers are rare modes and which are 489

just noise to be ignored. 490

We conclude from these results that clustering 491

and pruning immediately after the first sampling 492

step is the best option. Further steps increase the 493

performance on MMFire and LIDC, but also incur 494

the high cost of denoising all samples in the large 495

batch again, while the performance gain is small. 496

Even with only one denoising step of the full 497

batch, our method incurs a much higher computa- 498

tion cost than naive sampling, while generating the 499

same amount of outputs. We reduce the number of 500

samples in the initial large batch, to investigate the 501

trade-off between performance and runtime. Run- 502

time and performance drop step-wise with reduced 503

batch size, as shown in Table 1. However our ap- 504

proach comes within 1.5% HM IoU* of naively sam- 505

pling 64 samples, with only 16 generated samples. 506

Depending on the use case, this superior sample- 507

efficiency can be a very desirable property. 508

The strength of our clustering approach is not a 509

low runtime, but a high sample quality. Thus, when 510

comparing this method with others, we decide to use 511

256 samples and ignore the high runtime. Table 2 512

shows that clustering outperforms the probabilistic 513

UNet and naive sampling by at least 2.4% on MM- 514

Fire, and 15.5% on Cityscapes. On Cityscapes it 515

gets within 0.6% of the best performance by SPELL, 516

even beating particle guidance by 1.8%. However, on 517

MMFire, it is clearly outperformed by both particle 518

guidance and SPELL. We assume that this is caused 519

by the two factors mentioned earlier. However, on 520

LIDC, our approach reaches the first place with a 521

performance almost equal to that of the probabilistic 522

UNet, outperforming the next-best diffusion-based 523

method by 3.9%. This is likely because the rather 524

uniform distribution of modes on LIDC makes it 525

easier to determine correct cluster centers. 526

To compare with methods that generate multiple 527

batches, we increase the number of clusters k to the 528

total number of desired samples, effectively over- 529

clustering. Table 3 shows that clustering still beats 530

6
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Table 2. Single-batch performance: We generate a
batch of N samples per input; N is the number of modes
of the respective dataset. Methods should produce a di-
verse set of samples while retaining a high image quality.
PG: Particle Guidance. LIDC’s ground truth data does
not permit the computation of the image quality and
distinct modes metrics.

Method Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓

MMFire - 1 batch × 8 samples

Naive sampling 0.999 3.4 0.638 0h26m
Prob. UNet 0.999 3.1 0.581 0h6m
Clustering [256→8] 0.999 3.8 0.662 1h50m
PG: batch 0.999 3.9 0.690 0h29m
SPELL: batch 0.999 4.4 0.713 0h25m

Cityscapes - 1 batch × 16 samples

Naive sampling 0.956 12.2 0.416 41m
Prob. UNet 0.960 3.6 0.292 6m
Clustering [256→16] 0.948 6.1 0.571 1h47m
PG: batch 0.825 15.3 0.553 46m
SPELL: batch 0.936 7.3 0.577 40m

LIDC - 1 batch × 4 samples

Naive sampling 0.523 0h50m
Prob. UNet 0.573 0h5m
Clustering [128→4] n/a n/a 0.574 3h19m
PG: batch 0.528 0h57m
SPELL: batch 0.535 0h50m

naive sampling, but falls behind the other methods.531

In summary, while the computational cost of this532

method is higher than that of competing methods,533

it can be useful if the goal is only to produce a low534

number of samples that is as representative as pos-535

sible, and the underlying distribution is not heavily536

skewed. Furthermore, particle guidance and SPELL537

might be more cost-efficient at achieving a high HM538

IoU; but this clustering-based approach only fol-539

lows the original sampling trajectory, thus avoiding540

potential image quality issues stemming from the541

interference with the sampling process. Application542

cases for this method could be situations where a543

low number of high-quality scenarios are presented544

to a human operator for analysis or planning, but545

runtime is not a big concern.546

5.3 Particle guidance547

Following our intuition that the determination of548

modes for binary segmentation masks happens549

mostly in the early sampling steps, we limit par-550

ticle guidance to the initial steps. Table D.1 shows551

that limiting the guidance to the initial step per-552

forms similarly well as computing it at every step,553

but saves computation by avoiding the backward554

steps necessary for computing the guidance term.555

When choosing the strength of particle guidance,556

Table D.1 shows a trade-off between image quality557

and diversity. The loss in image quality is caused558

by the guidance pushing samples apart without any559

regard for the specific dataset or the learned score560

function. This can easily cause the samples to move561

into subspaces on which the denoising model has562

not been trained well, leading to faulty predictions.563

Analyzing the results in Table 2 and Table 3, we564

find that particle guidance always beats naive sam-565

Table 3. Multi-batch performance: We generate
two or four batches of N samples per input; N is the
number of modes of the respective dataset. For cluster-
ing, we only generate one batch, but increase the number
of clusters accordingly. PG: Particle Guidance. LIDC’s
ground truth data does not permit the computation of
the image quality and distinct modes metrics.

Method Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓

MMFire - 2 batches ×8 samples

Naive sampling 0.999 4.1 0.705 0h44m
ProbUNet 0.999 3.6 0.639 0h12m
Clustering [256→16] 0.999 4.4 0.728 2h8m
PG: batch 0.999 4.7 0.746 1h3m
PG: memory bank 0.999 4.5 0.733 1h4m
PG: batch & memory bank 0.999 4.6 0.743 1h4m
SPELL: batch 0.999 5.2 0.781 0h55m
SPELL: memory bank 0.999 5.0 0.765 0h55m
SPELL: batch & memory bank 0.999 5.3 0.784 0h55m

MMFire - 4 batches ×8 samples

Naive sampling 0.999 4.7 0.751 1h28m
ProbUNet 0.999 4.1 0.681 0h27m
Clustering [256→32] 0.999 5.0 0.770 2h55m
PG: batch 0.999 5.3 0.789 2h35m
PG: memory bank 0.999 5.0 0.774 2h35m
PG: batch & memory bank 0.999 5.1 0.781 2h38m
SPELL: batch 0.999 6.0 0.826 2h17m
SPELL: memory bank 0.999 5.5 0.801 2h19m
SPELL: batch & memory bank 0.999 6.0 0.830 2h17m

Cityscapes - 2 batches ×16 samples

Naive sampling 0.956 13.3 0.497 1h19m
ProbUNet 0.959 4.2 0.326 0h12m
Clustering [256→32] 0.948 7.3 0.661 2h23m
PG: batch 0.827 10.3 0.654 1h37m
PG: memory bank 0.892 8.9 0.642 1h37m
PG: batch & memory bank 0.867 9.6 0.679 1h36m
SPELL: batch 0.936 8.7 0.690 1h26m
SPELL: memory bank 0.946 7.7 0.635 1h26m
SPELL: batch & memory bank 0.936 8.7 0.690 1h26m

Cityscapes - 4 batches ×16 samples

Naive sampling 0.956 14.1 0.586 2h39m
ProbUNet 0.960 4.7 0.354 0h27m
Clustering [256→64] 0.949 8.1 0.699 3h44m
PG: batch 0.827 11.8 0.704 3h41m
PG: memory bank 0.919 9.8 0.705 3h40m
PG: batch & memory bank 0.904 10.3 0.723 3h41m
SPELL: batch 0.936 9.7 0.735 3h19m
SPELL: memory bank 0.951 8.3 0.680 3h19m
SPELL: batch & memory bank 0.936 9.8 0.735 3h19m

LIDC - 2 batches ×4 samples

Naive sampling 0.660 1h41m
ProbUNet 0.715 0h7m
Clustering [128→8] 0.695 4h1m
PG: batch 0.677 1h54m
PG: memory bank n/a n/a 0.675 1h54m
PG: batch & memory bank 0.682 1h54m
SPELL: batch 0.686 1h40m
SPELL: memory bank 0.696 1h41m
SPELL: batch & memory bank 0.697 1h41m

LIDC - 4 batches ×4 samples

Naive sampling 0.727 3h32m
ProbUNet 0.785 0h13m
Clustering [128→16] 0.732 5h23m
PG: batch 0.736 3h58m
PG: memory bank n/a n/a 0.739 3h58m
PG: batch & memory bank 0.743 3h58m
SPELL: batch 0.740 3h30m
SPELL: memory bank 0.751 3h31m
SPELL: batch & memory bank 0.749 3h30m

pling, but tends to perform worse than SPELL. Most 566

noticeable, on Cityscapes with 16 samples, it only 567

reaches an image quality of 82.5%, while the next 568

worst method is SPELL with a much higher 93.6%. 569

At the same time, particle guidance reaches an aston- 570

ishing 15.3 out of 16 distinct modes, while SPELL 571

only reaches 7.3, showcasing the trade-off between 572

image quality and sample diversity inherent to such 573

methods that modify the sampling trajectory. 574

5.4 SPELL 575

SPELL’s main hyperparameter is the shield radius 576

r. It defines an L2 distance within which no other 577

sample is allowed to fall. If a sample violates this 578

shield, it is pushed outside of the radius. In the 579

7
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Table 4. SPELL: Varying shield radius. Based on
diversity statistics on the Cityscapes training set, we
perform a coarse search around r0 = 12.7.

Shield radius r Image quality ↑ Distinct modes ↑ HM IoU* ↑
6.350 0.944 6.6 0.540
9.525 0.934 7.4 0.564
12.700 0.924 7.8 0.561
15.875 0.914 8.1 0.551

case of binary segmentation masks, this L2 distance580

is equivalent to the square root of the number of581

pixels that must differ between two samples. This582

correspondence provides a very direct way to specify583

the desired diversity that does not exist for natural584

images (which use the full space in [0,1]) or for latent585

diffusion models (where distances in latent space do586

not directly correspond to distances in image space).587

It becomes easy to set a shield radius, even if only588

single annotations are available in the training set.589

We use the fact that we know several targets590

for each input to determine a starting value r0 for591

the shield radius. For each input, we compute the592

minimum L2 distance among unique targets, and593

then compute the mean of these minima:594

r0 =
1

N

N∑
i=1

min ({ ||yi,j − yi,k||2 |yi,j ̸= yi,k}) (9)595

For each dataset, we conduct a coarse hyperparam-596

eter search around r0 to determine the parameter597

to use. Table 4 shows this for Cityscapes. These598

results confirm that r0 as computed above is a a599

very good initial value. For MMFire and LIDC, we600

found r0 to be the best (Table C.1).601

The hard L2-limit enforced by SPELL means that602

samples are pushed apart without regard for how603

realistic the resulting images are. Especially towards604

the end of sampling, this is contrary to particle guid-605

ance, which slowly fades out with decreasing noise606

level. SPELL’s stronger push seems to be unprob-607

lematic in the original SPELL paper [17], which uses608

latent diffusion models. These models have a down-609

stream decoder model that maps the final latent610

representation to an image, which can potentially611

counter-act imperfect sampling outcomes. However,612

since we are directly applying the repellence in im-613

age space, we have to be more careful. To prevent614

SPELL from having a negative influence towards615

the end of sampling, we limit SPELL’s application616

to smin = 40, where smin is the highest noise level617

at which the guidance is still applied. In our case,618

that corresponds to the second sampling step. This619

change allows the score function to still guide the620

samples that were perturbed by SPELL towards621

more likely outcomes, leading to an improvement of622

1.3% HM IoU* on Cityscapes (see Table 5).623

On Cityscapes, SPELL consistently beats all other624

methods. Similar to particle guidance, repelling625

Table 5. SPELL: Limit application to high noise.
We vary smin, the highest noise level at which SPELL
is still applied, to reduce the potentially negative influ-
ence during sampling. We begin sampling from pure
Gaussian noise with σmax = 80, the default for the EDM
framework. smin = ∞ represents never using SPELL.
smin = 0 represents always using SPELL.

smin Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓
∞ 0.956 12.2 0.416 41m

70 0.938 7.0 0.571 41m
40 0.936 7.3 0.577 40m
20 0.935 7.4 0.571 41m
10 0.935 7.4 0.571 41m

0 0.934 7.4 0.564 0h40m

from in-batch and previously generated samples per- 626

forms best, which intuitively makes sense. SPELL 627

stays within 2.4% of the best image quality despite 628

modifying the sampling trajectory, which is an ac- 629

ceptable trade-off for the large HM IoU* gains. On 630

MMFire, particle guidance matches SPELL. 631

On LIDC, both particle guidance and SPELL 632

clearly underperform the probabilistic UNet. Fur- 633

ther work may be needed to tune our diffusion 634

model on LIDC, though this performance gap is re- 635

versed on the other datasets. However, the diversity- 636

encouraging methods always outperforms naive sam- 637

pling from the diffusion model. Thus, it always 638

seems advisable to use SPELL, even on datasets 639

with fairly symmetric distributions, like LIDC. 640

6 Future work 641

While MMFire is very useful for benchmarking, it 642

lacks realistic diversity. Such diversity can be added 643

to real-world datasets by simulating alternative fu- 644

tures at each step. For our clustering-based ap- 645

proach, density-based clustering algorithms could 646

make it easier to detect low-probability outliers as 647

separate clusters. Furthermore, we only investigated 648

training-free methods. Training-based approaches 649

might improve upon these. Lastly, consistency mod- 650

els [32] might provide better one-step approxima- 651

tions, which all investigated methods rely upon. 652

7 Conclusion 653

We introduced MMFire, a simulated multi-modal 654

wildfire spread dataset. We demonstrated that par- 655

ticle guidance and SPELL substantially improve 656

prediction diversity with minimal quality loss, with 657

SPELL achieving 7.5% HM IoU* gains on MMFire 658

and 16.1% on Cityscapes. Our clustering-based prun- 659

ing provides an alternative that is computationally 660

intense, but preserves image quality better. These 661

advances enable more sample-efficient multi-modal 662

modeling of wildfire spread. 663
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500 validation images, and 1525 test images. We996

use the semantic segmentation labels as a starting997

point, before filtering down to the four classes which998

we randomly flip between the positive and negative999

class. We only use color jittering as augmentations.1000

We train with batch size 32 and parameterize the1001

log-normal training noise distribution with a mean1002

of µtrain = 1.5.1003

A.3 LIDC1004

To download and preprocess the LIDC dataset,1005

we followed the steps indicated by the au-1006

thors of [31] at https://github.com/gaozhitong/1007

MoSE-AUSeg/, and use their dataset class to load1008

the data. The dataset contains 9794 training images,1009

2314 validation images, and 2988 test images. It1010

includes random horizontal and vertical flipping and1011

rotation by up to 10°, all applied to both image and1012

label simultaneously. The images and labels have a1013

size of 128× 128 pixels.1014

B Implementation details1015

Our code base is implemented in PyTorch [34] and1016

PyTorch Lightning [35]. For the diffusion model,1017

we use the official EDM [22] repository at https:1018

//github.com/NVlabs/edm.1019

All experiments were run on NVIDIA A40 GPUs,1020

provided as part of a scientific computational cluster1021

that is credited in the acknowledgments.1022

During sampling, the ODE is solved by starting1023

from x ∼ N at σmax = 80 and numerically integrat-1024

ing to σmin = 0.002, using the 2nd order Heun solver1025

from EDM. Unless specifically noted, we only use1026

deterministic sampling, i.e. we set Schurn = 0.1027

We use the NCSN++ architecture [36], as imple-1028

mented in the EDM code base and EDM precondi-1029

tioning, modified to take an image as conditional1030

information by concatenating it to the noisy mask x1031

that is being generated. Only the base multiplier for1032

the number of features is modified for the different1033

datasets: For Cityscapes, we use the default value of1034

128, since the conditioning image and output distri-1035

bution are rather complex. For MMFire and LIDC,1036

we use 64.1037

C Experimental details1038

C.1 Training the diffusion models1039

Unless mentioned otherwise, we train the base1040

models with AdamW with learning rate 1e-4, and1041

β1 = 0.9, β2 = 0.99. For Cityscapes, we train for1042

400 epochs, for LIDC, we train for 200 epochs, for1043

MMFire, we train for 1000 epochs. We compute the1044

validation loss after each training epoch and keep1045

the model checkpoint with the lowest validation1046

loss. During training, this validation loss is com- 1047

puted by randomly sampling noise levels according 1048

to the training noise distribution for each condi- 1049

tioning. The training noise distribution is always 1050

a log-normal distribution, with standard deviation 1051

σtrain = 1.2, which is the default value in EDM, 1052

and mean µtrain, which we vary between different 1053

runs. Note that these parameters refer to the normal 1054

distribution, the samples of which are then exponen- 1055

tiated. The mean, mode, and standard deviation of 1056

samples drawn from the log-normal distribution are 1057

different. 1058

For each dataset, we train several models, varying 1059

the mean (µtrain) of the log-normal distribution used 1060

for sampling the noise levels during training. In pre- 1061

liminary experiments, we observed that performing 1062

model selection simply via lowest validation loss did 1063

not lead to a good calibration of the distribution over 1064

modes. We therefore perform the model selection 1065

with regards to the highest alignment of the sample 1066

distribution over modes with the training distribu- 1067

tion. For this, we sample 64 segmentation masks per 1068

conditioning (e.g. per RGB image in Cityscapes), 1069

and compare the distribution over modes with the 1070

known ground truth distribution via total variation 1071

difference metric (see next paragraph). We also do 1072

not perform model selection with regards to HM 1073

IoU*. Choosing a model with the highest HM IoU* 1074

for a highly skewed distribution would mean that 1075

the skewedness is likely not properly represented 1076

by the model, even though we of course want to 1077

achieve a high HM IoU* in the end. In practice, 1078

the models we choose tend to still be among the 1079

best in terms of HM IoU* computed over the 64 1080

samples. For datasets for which we only know a set 1081

of segmentation masks per image, but not the actual 1082

probabilities per mask, we can take the pixel-wise 1083

mean across generated masks and compare to the 1084

pixel-wise mean across ground truth labels, as a 1085

measure of calibration. This is the case for LIDC, 1086

where we use the Brier score to select a model. We 1087

end up choosing the models trained with the follow- 1088

ing parameters: MMFire: µtrain = 0.5, Cityscapes: 1089

µtrain = 1.5; LIDC: µtrain = 1.0. 1090

To perform model selection, we estimate how 1091

well a large batch of generated segmentation masks 1092

{x′
i|0 ≤ i ≤ B B ∈ N} follows the training distribu- 1093

tion over modes. For Cityscapes, we have flipped 1094

all classes separately, thus we want to estimate how 1095

well the model follows the per-class Bernoulli flip 1096

probabilities. We estimate the flip probabilities from 1097

the B generated masks for each class separately. For 1098

this, we compute the per-class IoU between gener- 1099

ated mask and indicator mask of the respective class, 1100

e.g. a mask that is 1 for the road class, and 0 other- 1101

wise. Then, we threshold the IoU at 0.5 to decide 1102

whether the generated mask represents a choice of 1103

the positive or negative mode for the given class. 1104
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From these per-mask modes for each class, we esti-1105

mate the per-batch distribution of modes and com-1106

pare it to the true Bernoulli distributions via mean1107

total variation distance (TVD). To compute this dis-1108

tance, we compute the mean distance between the1109

C paired distributions: TVDmean({(pc, qc)|1 ≤ c ≤1110

C)}) = 1
C

∑C
c=1 |pc − qc|, where pc, qc are the true1111

and estimated Bernoulli probability for flipping class1112

c to the positive class. For MMFire, we do concep-1113

tually the same, except that we assign a single mode1114

to each image, and we compare a single empirical1115

and a single ground truth categorical distribution,1116

instead of several Bernoulli distributions.1117

C.2 Sampling from the diffusion mod-1118

els1119

For all models, we use the EDM sampling schedule,1120

parameterized by ρ = 7 and n = 10 timesteps.1121

More steps did not lead to better results. This is1122

likely due to the very conditioning signal that is1123

much stronger than in the case of natural images,1124

conditioned on a text prompt, for example. There1125

are many different images that are consistent with1126

’dog on the beach wearing sunglasses’, but very few1127

segmentation masks that are pixel-perfectly aligned1128

with the input and correctly distinguish between the1129

positive and negative classes.1130

C.3 Particle guidance and SPELL1131

For particle guidance, we use the a guidance strength1132

α = 10 for all experiments. We ran a coarse grid1133

search across α ∈ {10, 100, 1000} for all datasets1134

separately, but found that α = 10 performed best1135

for each of them.1136

For SPELL, we compute r0 from the respective1137

training dataset, according to Equation 9. Start-1138

ing from this, we run a coarse grid search across1139

{0.5r0, 0.75r0, r0, 1.25r0} and choose the best one1140

as r for all experiments. Table C.1 shows the cor-1141

responding values. For both MMFire and LIDC,1142

using r0 proved best among the investigated values.1143

For Cityscapes, we used 0.75r0. Which exact value1144

proves best depends on the exact distribution of1145

distances. An option would be to replace the mean1146

with the minimum in Equation 9. However, for1147

many cases, SPELL would then not ensure enough1148

diversity (see Table 4). Thus, r0 can be taken as1149

a strong starting point, but, depending on the con-1150

crete distance distribution of the dataset, a better1151

value might exist near r0.1152

D Evaluation1153

Metrics for the main results in Table 2 and Table 31154

are computed on the test sets. All other tables1155

and figures are treated as part of hyperparameter1156

Table C.1. SPELL: Shield radii used in experi-
ments. r0 is an initial estimate for a good shield radius
determined from dataset diversity statistics in Equa-
tion 9. r is the best value we found in a coarse grid
search around r0. For MMFire and LIDC, r0 was the
best value we found. For Cityscapes, we found in Table 4
that 0.75r0 performs slightly better.

Dataset r0 r

MMFire 9.525 9.525
Cityscapes 12.700 9.525
LIDC 6.000 6.000

search or optimization, therefore they are computed 1157

on the validation sets. For Cityscapes, the test set 1158

segmentation masks are not public, therefore we can 1159

not compute any of our metrics on the Cityscapes 1160

test set. Therefore, we use the Cityscapes validation 1161

set everywhere, instead. Since we mostly care about 1162

the relative performance of the methods on the same 1163

dataset, this still seems serviceable. 1164

While we mainly focus our evaluations on HM 1165

IoU*, which is a combined measure of image quality 1166

and diversity, we additionally use explicit measures 1167

of these two qualities on MMFire and Cityscapes. 1168

For each generated sample, we compute which 1169

ground truth mode is closest to the sample. Within 1170

a batch of samples, we then count the number of 1171

distinct modes (or unique modes) that were gen- 1172

erated. Since this is a pure argmax computation, a 1173

sample that is closest to one particular mode might 1174

still have very low quality. Thus, this metric can be 1175

very noisy and should always be interpreted with 1176

regards to an image quality metric. 1177

For image quality, we compute a pixel-wise 1178

union of all modes for the current input, to determine 1179

which pixels are allowed to be part of the positive 1180

class, and which ones should always be assigned the 1181

negative class. We want to penalize samples which 1182

set pixels to positive that should never be positive. 1183

Let this union image be yunion. We take the comple- 1184

ment to receive ȳunion, which is 0 in all pixels that 1185

are positive in at least one mode, and 1 otherwise. 1186

Let xi be a sample to evaluate, then we compute 1187

the image quality metric as 1− IoU(xi, yunion). 1188

The runtimes we measure include all of the time it 1189

takes to run the respective job on a shared scientific 1190

computation cluster, including loading the respective 1191

model and computing the metrics. The runtimes can 1192

vary, depending on the load imposed by other jobs 1193

using the shared resources. We assume that they 1194

are still useful as broad indications of how much 1195

longer certain methods take than others. 1196

D.1 Probabilistic UNet 1197

Following previous work [10, 11], we use the prob- 1198

abilistic UNet [30] as a baseline for ambiguous 1199

13
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Table D.1. Particle guidance: Varying guidance
strength α. We investigate the trade-off between image
quality and diversity on Cityscapes. Applying guidance
on the first step only saves several backward passes, but
performs almost exactly the same.

Guidance steps α Image quality ↑ Distinct modes ↑ HM IoU* ↑
None 0 0.956 12.2 0.416

First 1 0.954 13.3 0.460
First 10 0.939 14.4 0.558
First 100 0.824 15.3 0.553
First 1000 0.691 15.4 0.445

all 1 0.954 13.3 0.460
all 10 0.938 14.4 0.558
all 100 0.818 15.3 0.551
all 1000 0.685 15.4 0.445

segmentation. We use an unofficial PyTorch re-1200

implementation1 to train one model per dataset. In1201

our experiments, we try to stay as close as possible1202

to the original hyperparameter choices that were1203

made for training on LIDC in the original proba-1204

bilistic UNet paper. Unfortunately, we found that1205

training was rather unstable in our case. To remedy1206

this, we removed the custom weight initialization1207

and instead relied on PyTorch’s default initialization1208

schemes. Furthermore, for Cityscapes and MMFire,1209

we switched to the OneCycleLR[37] learning rate1210

scheduler and increased the learning rate from 1e-41211

to 1e-3 since convergence was extremely slow other-1212

wise.1213

We generally tried to see how well the probabilis-1214

tic UNet works ’out of the box’. Since the results1215

for Cityscapes were much worse than the diffusion1216

model, we also attempted to adjust the hyperparam-1217

eter that was most likely to be responsible for the1218

low performance, which is the model capacity, given1219

that Cityscapes has 16 modes and the differences1220

between them are relatively large. We therefore dou-1221

bled the latent dimension from 6 to 12 and doubled1222

the hidden dimensions throughout the model. How-1223

ever, this did not improve the results. The main1224

problem we see in the generated samples is that the1225

road is never predicted as positive. In training, this1226

class has a probability of 5% to be observed as the1227

positive class. Given that it also takes the largest1228

amount of pixels among the classes, never predicting1229

it as positive means a large loss in HM IoU* in half1230

of the modes, explaining the low performance.1231

1https://github.com/stefanknegt/

Probabilistic-Unet-Pytorch
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