
Wildfire Spread Scenarios: Increasing Sample Diversity of
Segmentation Diffusion Models with Training-Free Methods

Sebastian Gerard∗1 and Josephine Sullivan1

1KTH Royal Institute of Technology, Stockholm, Sweden
{sgerard, sullivan}@kth.se

Abstract

Predicting future states in uncertain environments,
such as wildfire spread, medical diagnosis, or au-
tonomous driving, requires models that can consider
multiple plausible outcomes. While diffusion models
can effectively learn such multi-modal distributions,
naively sampling from these models is computation-
ally inefficient, potentially requiring hundreds of
samples to find low-probability modes that may still
be operationally relevant. In this work, we address
the challenge of sample-efficient ambiguous segmen-
tation by evaluating several training-free sampling
methods that encourage diverse predictions. We
adapt two techniques, particle guidance and SPELL,
originally designed for the generation of diverse natu-
ral images, to discrete segmentation tasks, and addi-
tionally propose a simple clustering-based technique.
We validate these approaches on the LIDC medical
dataset, a modified version of the Cityscapes dataset,
and MMFire, a new simulation-based wildfire spread
dataset introduced in this paper. Compared to naive
sampling, these approaches increase the HM IoU*
metric by up to 7.5% on MMFire and 16.4% on
Cityscapes, demonstrating that training-free meth-
ods can be used to efficiently increase the sample
diversity of segmentation diffusion models with little
cost to image quality and runtime.
Code and dataset: https://github.com/

SebastianGer/wildfire-spread-scenarios

1 Introduction

Predicting wildfire spread is inherently uncertain,
controlled by many interacting factors (fuel condi-
tions, weather dynamics, topography), and often
based on temporally sparse observations with lim-
ited spatial resolutions. The current literature [1–4]
focuses on predicting the most likely outcome or an
average of the possible futures. More effective disas-
ter response can be enabled by anticipating multiple
plausible futures instead, including low-probability
scenarios that are still operationally relevant. Gen-
erative diffusion models [5–9] offer a principled way
to learn and sample from such multi-modal out-
come distributions, enabling the exploration of both

∗Corresponding Author.

Diffusion
model

Current fire

Auxiliary data

Generates arbitrarily many samples
(illustrative only, not real samples)

Naive sampling can lead to many
redundant samples

Diversity-biasing achieves higher
diversity at same nr. of samples

Diversity-
biasing

Figure 1. Diversity-biased sampling: We train a
conditional diffusion model to generate different outputs
for the same input data. If the goal is to find most, or
all, different outputs for the current input, naive sam-
pling can require a large number of samples, due to the
redundancy in samples. To reduce this redundancy, we
employ methods that bias the sampling towards higher
diversity for the same number of samples.

common and rare wildfire spread scenarios given
under-specified or uncertain conditions.

Building on this motivation, in this paper we ex-
amine whether diffusion models, trained in a super-
vised setting on segmentation masks that represent
the variety of plausible outcomes, can be efficiently
sampled at inference time to generate multiple dis-
tinct segmentation masks, that are consistent with
the same inputs. This task, often termed ambiguous
segmentation, arises not only in wildfire forecasting
but also in medical imaging, where experts produce
diverse segmentation masks for an input, or in au-
tonomous driving, where multiple possible future
scenarios must be considered. These domains share
the challenge that the segmentation decisions are
ambiguous and also that rare but valid segmentation
masks must be efficiently identified.

Rather than introducing a new diffusion sampling
setup, we focus on adapting and evaluating recent
diversity-encouraging methods, originally developed
for natural image generation, for ambiguous segmen-
tation. We investigate particle guidance [10] and
SPELL [11], two techniques that repel the samples
in a batch to find distinct modes, studying how they
transfer to the discrete segmentation outputs. We
further show that SPELL’s key diversity parameter

Proceedings of the 7th Northern Lights Deep Learning Conference (NLDL), PMLR 307, 2026.
LM 2026 Sebastian Gerard & Josephine Sullivan. This is an open access article distributed under the terms and conditions of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/SebastianGer/wildfire-spread-scenarios
https://github.com/SebastianGer/wildfire-spread-scenarios
http://creativecommons.org/licenses/by/4.0/

can be directly related to dataset statistics, substan-
tially reducing the need for hyperparameter sweeps.
In parallel, we propose a simple clustering-based
pruning strategy that reduces the number of fully
denoised trajectories required, compared to naive
sampling, when fidelity of the output masks out-
weighs the extreme computational efficiency where
particle guidance and SPELL excel.
We evaluate these approaches across three do-

mains with inherent ambiguity: the LIDC medical-
imaging dataset [12], a Cityscapes-based ambiguous
segmentation task [13–15], and MMFire, a wildfire
spread benchmark we introduce that provides mul-
tiple simulated future outcomes per input. Our
experiments assume multiple known outcomes for
each input during training. We view this as a criti-
cal first step to the much harder but more realistic
scenario for wildfire spread prediction, where only a
single observed outcome is available per input.

For the datasets with more extreme variation be-
tween outcomes, the diffusion-based sampling meth-
ods produce significantly more diverse and distinc-
tive outcomes than the de facto prior approach,
the Probabilistic U-Net [14]. Moreover, particle
guidance and SPELL consistently achieve superior
quality-diversity trade-offs compared to naive diffu-
sion sampling, while our clustering-based pruning
yields further fidelity improvements without modify-
ing the underlying sampling trajectories at a compu-
tational cost. Together, these results demonstrate
that efficient diffusion sampling methods transfer
effectively to ambiguous segmentation and offer a
promising foundation for practical decision-support
systems in domains where anticipating a spectrum
of plausible futures is essential.

2 Related work

Research on generating segmentation masks with
diffusion models either uses the Gaussian diffu-
sion framework or variants of categorical diffusion.
When generating binary segmentation masks [16–19],
Gaussian diffusion can be used directly, followed by
thresholding to binarize the real-valued outputs. To
extend this from binary to multi-class segmentation
masks, Analog Bits [20, 21] can be used with little
change to the underlying mechanics.
In contrast to Gaussian diffusion, categorical dif-

fusion [22–27] uses discrete state spaces, instead
of real-valued ones. Empirically, both approaches
perform similarly for segmentation [25, 28].
In this work, we use Gaussian diffusion. This

allows us to integrate diversity-related methods [10,
11], that have been developed for Gaussian diffusion,
more easily. We focus on binary masks, assuming
that the results can be transferred to the multi-class
setting via Analog Bits.
Most studies on diffusion segmentation models

focus on achieving a high segmentation performance,
by aggregating multiple samples as a form of implicit
ensembling [17], or improving segmentation and cal-
ibration scores of the mean-aggregated samples [16].
However, these improvements could conceptually
also be achieved with discriminative methods. We
instead want to focus on the unique ability of gen-
erative methods to generate multiple different pre-
dictions for the same input. We are only aware of
two studies [25, 29] that investigate the performance
of their model on a dataset with multiple correct
annotations, also termed ambiguous segmentation.
Various methods have been proposed in the dif-

fusion model literature to increase sample diversity,
usually focused on the text-conditioned generation
of natural images. CADS [30] adds a noise schedule
to the conditioning. This is supposed to prevent sam-
ples from focusing on the most probable modes, and
instead explore more of the latent space. We found
that CADS severely degrades the image quality and
thus do not use it (see Appendix E for details).

Instead of modifying the conditioning to increase
diversity, most methods modify the sampling sched-
ule. Particle guidance [10] computes a guidance term
based on the pairwise distances between noise-free
predictions of the current in-batch samples to repel
them from each other. Motion modes [31] extends
this to include several additional guidance terms,
that encourage properties in the generated data that
particle guidance might otherwise not preserve. We
directly use particle guidance, since our domain does
not lend itself as easily to additional guidance terms.

ProCreate [32] aims to generate samples that differ
from existing samples. For a more accurate distance
computation, the method ‘looks ahead’ by denois-
ing for several steps. It then computes a guidance
term similar to particle guidance. We also investi-
gate the case of generating multiple batches of data
with repellence from previously-sampled images. In
contrast to ProCreate, we only use a single-step
denoising for distance computations, since we find
that initial predictions are rather close to the final
samples for binary segmentation masks.

Contrary to guidance-based methods, SPELL [11]
does not indiscriminately repel all close samples
from each other. Instead, if two samples lie within
a pre-defined L2-distance of each other (the shield
radius), SPELL repels them just enough to ensure
that the distance is maintained. We use SPELL as
an alternative to particle guidance.

3 Method

We use the EDM diffusion framework [33] to gen-
erate segmentation masks, conditioned on an input
image. During training, we randomly select a sin-
gle target and teach the model to generate it in a
supervised manner. During inference, we generate

2

multiple masks by denoising multiple random noise
samples with the trained diffusion model. Particle
guidance[10] and SPELL [11] are used during the
denoising process to increase the diversity among
these generated masks. They work heuristically, by
pushing the samples in a batch away from each other,
thus increasing the diversity within a batch.

3.1 EDM diffusion framework

We follow the EDM framework [33] for our denoising
diffusion models. The EDM model is based on the
following ordinary differential equation (ODE):

dx = −t∇x log p(x; t)dt, (1)

where x is a noisy mask (also called latent) and t
is the ODE time step. We use the default variance
exploding formulation, where the standard deviation
of the Gaussian noise is σ(t) = t. Thus, we also
refer to t as the noise level. The ODE is solved
via numerical integration with a 2nd order Heun
solver [33]. This integration starts from a Gaussian
noise mask with a high noise level σ = σmax and
gradually denoises until a practically noise-free mask
is reached with standard deviation σmin.
We train a denoising neural network Dθ to remove
noise by minimizing the objective:

Ey∼pdata
Et∼ptrain

Eϵ∼N (0,t2I)∥D(y+ ϵ; t)− y∥22, (2)

where a segmentation mask y is sampled from the
data distribution pdata ; the current time step t is
sampled from ptrain; and a noise image ϵ is sampled
from an isotropic Gaussian with standard deviation t.
The forward diffusion process then simply consists of
adding the noise ϵ to the ground truth segmentation
mask y. We refer to the noisy segmentation mask
as yt. By optimizing this objective, the denoising
model Dθ learns to predict the noise-free y, given
yt and the current time step t.
After training Dθ, Equation 1 can be solved by
approximating the score function:

score(x, t) = ∇x log p(x; t) = (Dθ(x; t)−x)/t2. (3)

To use the EDM framework for segmentation, the
generated sample needs to be conditioned on an
input image that we want to segment. Therefore,
we sample pairs (y, c) from the data distribution
with segmentation mask y and input image, or con-
ditioning, c. We pass c to the denoising network
Dθ as an additional input. We implement this by
concatenating c to the current noisy segmentation
mask yt in the channel dimension.

3.2 Increasing sample diversity

When generating natural images, the reverse diffu-
sion process first determines low-frequency features

at high noise levels (e.g. where in the image we see
a dog). As the sample moves towards lower noise
levels, more high-frequency features are determined
(e.g. the details of the face and then of the fur).
However, in images that are binary segmentation
masks, there are very few such high-frequency fea-
tures, since all pixels take values of 0 or 1. This is
highly relevant for any diversity-encouraging meth-
ods, since it means that the changes we care about
are only possible near high noise levels.
Furthermore, in exploratory experiments, we

found that the denoiser model’s prediction
Dθ(xt, tmax) at the initial time step tmax is often
relatively close to the final output already. This
allows us to treat this first prediction as a proxy for
the final sample. While this proxy is not perfect, it
is a cost-efficient approximation that we employ.

3.2.1 Clustering-based sample-pruning

A straight-forward method to find all modes of a
diffusion model’s distribution is to simply generate a
large number of samples. However, this will always
incur a relatively high cost. Ideally, we would like to
achieve this large-batch behavior, while keeping the
cost low. To achieve this, we sample a large initial
batch of pure noise, denoise it in a single step, and
discard all samples that are deemed redundant. To
decide which samples are redundant, we perform
k-medians clustering, with k equal to the number
of modes that we expect. We discard all but the
medians determined by the clustering and finish the
reverse diffusion process for the corresponding sam-
ples. The benefit of this approach is that it only
uses unmodified sampling steps, thus avoiding any
negative impacts on image quality that modifica-
tions to the sampling trajectory could have. As a
distance metric for clustering, we use the chamfer
distance instead of L2 distance, since the former
proved slightly better (see Table D.2).

3.2.2 Particle Guidance

A popular approach to increase the fidelity of gener-
ated natural images are guidance terms, like classifier
guidance [7] or classifier-free guidance [34]. These
modify the score function in Equation 1 by an addi-
tive term:

dx = −t (∇x log p(x; t) + α ∇x g(x; t)) dt, (4)

where we call g(x; t) the guidance function and α is
a scalar that we call the guidance strength.

While classifier-free guidance increases fidelity, it
decreases diversity [35]. Particle guidance (PG) [10]
does the opposite, by improving the diversity among
samples (also called particles) in a batch, possibly
at the cost of image quality. The basic mechanic is
to compute a gradient that increases the pixel-wise
L2-distances between images, based on radial basis

3

function (RBF) kernels. This approach is purely
heuristic: Samples are pushed apart from each other,
but the directions in which they are pushed are not
aligned with any information about the data.

Let {xi|1 ≤ i ≤ B} be a batch of B noisy
masks. To compute the value of the guidance func-
tion g(xi; t), the denoising model first estimates
the noise-free masks x̃i in a single step for all i:
x̃i = Dθ(xi; t). Next, the pairwise RBF-kernels k
between those noise-free masks are computed via

k (x̃i, x̃j ; t) = exp

(
−
∥x̃i − x̃j∥22

ht

)
, (5)

with ht = m2
t/ log(B), where mt is the median value

of ∥x̃i − x̃j∥22 within the current batch of masks.

The negative kernel sum aggregates all distance
relationships from mask i to all other masks:

g(xi; t) = −
B∑

j=1

k (x̃i, x̃j ; t) (6)

Finally, the gradient of this scalar sum is com-
puted with regards to the noisy mask xi, backprop-
agating through Dθ. This gradient is then used as
guidance in Equation 4.

3.2.3 SPELL: SParse repELLency

In contrast to particle guidance, SPELL [11] only
repels samples that are too close to each other. The
original authors use the metaphor of a shield of
radius r around each sample. If a sample enters this
protected area around another sample, it is pushed
away to an L2 distance of r.

Furthermore, SPELL is not a guidance method.
Instead of adding a term to the score function, it
modifies the score function in Equation 3 by chang-
ing the noise-free prediction with an additive term
∆. The modified score function for xi becomes:

scoremod(xi, t) = (D(xi; t) + ∆i − xi)/t
2, (7)

with the additive term ∆i computed as:

∆i =
∑
b,b̸=i

σrelu

(
r

∥x̃0,i − x̃0,b∥2
− 1

)
· (x̃0,i − x̃0,b)

(8)

This approach has the advantage of avoiding costly
backward passes like in particle guidance. But since
it changes the target of the denoising process at
all sampling steps, there is a high risk for generat-
ing lower-quality samples. Therefore, we will limit
SPELL to high-noise areas of the sampling process,
to give the score function the chance to correct po-
tential image quality issues caused by the repellence.

3.2.4 Inter-batch diversity

When generating multiple batches of samples, we
want to encourage diversity across these batches.
For this reason, we keep a memory bank containing
the already-generated samples for the current input.
For both particle guidance and SPELL, we add two
more method variants: one that only repels samples
in the current batch from the samples in the memory
bank, and one that repels both from the memory
bank and from samples in the current batch. This
is also used in the original SPELL paper [11].

4 Multi-modal datasets

We use three different multi-modal datasets (i.e. hav-
ing multiple targets per input). For MMFire and
Cityscapes, we know all targets and explicitly set
their probabilities. These datasets are thus very
useful for evaluation, but the way their annotations
are generated does not represent a real-life use case.
LIDC offers a case of real-life ambiguous segmenta-
tion, where different annotations represent differing
opinions between domain experts. The datasets also
greatly differ in their inter-mode variances: MM-
Fire’s modes always overlap in the initial burned
area with a medium amount of difference between
modes. In Cityscapes, there are large-scale differ-
ences between modes, but also large-scale overlaps
between some modes. In LIDC, annotations typ-
ically differ very little. These characteristics will
become relevant when setting the hyperparameters
for SPELL in subsection 5.4.

4.1 MMFire

We generated MMFire (MM = multi-modal) with
the help of the Simfire [36] simulator. For a given
geolocation, it downloads from the LANDFIRE pro-
gram [37, 38] real-world data that is relevant for
predicting how wildfires spread, namely: dead fuel
moisture at extinction, fuel bed depth, oven-dry fuel
load, surface to volume ratio, and elevation. Initial
wind speed and wind direction are randomly gen-
erated. An initial fire is set near the center of the
image. The well-known Rothermel equations [39]
then deterministically spread the fire for a desired
time, based on these initial conditions.

To generate a dataset with multiple different out-
comes per initial condition, we first randomly pick a
location in the western USA, where fuel is abundant
and LANDFIRE provides data. We simulate a fire
at that location for 10 minutes to have a non-trivial
initial fire state. From this initial state, we branch
into eight different futures by setting the wind di-
rection to i× 45◦, i ∈ {0, 1, . . . , 7}, constant across
the simulation area of 64× 64 pixels. For each wind
direction, we then simulate another 10 minutes of

4

Input data Multiple future scenarios

Figure 2. MMFire: We use a wildfire spread simu-
lator to generate multiple plausible outcomes based on
the current state of the fire. This is done by setting the
wind direction to one of eight values across the whole
64× 64 image. We impose a highly skewed probability
distribution on the eight outcomes during training (see
the probabilities above). This represents a difficult situ-
ation where naively sampling from the diffusion model
is a very slow strategy for finding all modes.

fire spread. We use the eight final states as the
targets of the dataset. Figure 2 shows an example
pair of input data and eight different futures.

Our models never get access to the wind direction.
Instead, they are supposed to randomly pick a wind
direction for each sample, according to the prob-
abilities that we set. We impose a highly skewed
distribution on the different modes (and their associ-
ated wind direction), weighting mode i with a weight
of 2i, to create a dataset in which it is challenging
to find all modes of the distribution. With naive
sampling, the expected number of samples to see
each mode at least once is about 307.

4.2 Cityscapes: Multi-modal, binary
version

Cityscapes [13] is a semantic segmentation bench-
mark dataset. Inspired by previous studies [14, 15],
we synthetically make the annotations multi-modal.
Unlike these previous studies, we stay within the
binary regime, to stay closer to the data we are
interested in, namely wildfire progression data.

To make the Cityscapes dataset multi-modal, pre-
vious studies split up one class into two new, syn-
onymous, classes, e.g. road becomes road1 and road2.
During training, we randomly choose whether all
road pixels in the current image become road1 or
all become road2. To stay binary, we instead flip
those classes between the positive and the negative
class. We do this with the classes road, sidewalk,
vegetation and car. All other classes are always set
to negative. We flip the classes to positive with
respective probabilities 5%, 25%, 75%, 95%. Each
class is individually flipped on or off, thus the com-
bination of these flip decisions for all four classes
leads to 24 = 16 modes for each image, assuming

filter

classes

Segmentation map

{Car, vegetation,
sidewalk, road}

Creating multiple targets for Cityscapes

Independently flip classes to 0 or 1 with fixed probabilities,
resulting in 24 = 16 binary segmentation masks, or modes:

Vegetation onlyCar only

Road only

Sidewalk only

{Car, Vegetation}

{Car, Vegetation,

Sidewalk, Road}

Figure 3. Multi-modal binary Cityscapes: The
classes road, sidewalk, vegetation, and car are randomly
flipped to the positive or negative class, with fixed prob-
abilities, resulting in 24 = 16 separate modes per image.

all four classes are present. This creates a skewed
distribution, where naive sampling is a bad strategy
to find all modes. Figure 3 shows all modes for an
example image. While previous studies also used
the class person, we generate segmentation masks
at 64 × 128 pixels for faster experimentation. At
this resolution, correctly annotating people is very
difficult, so we drop this class.

4.3 LIDC

The LIDC dataset [12] contains CT scans of lungs
and corresponding expert annotations of lung nod-
ules. Each scan is annotated with four binary seg-
mentation masks, that oftentimes disagree with each
other. Crucially, if segmentation masks differ from
each other, this represents actual disagreement be-
tween experts, stemming from epistemic uncertainty.
The challenge when working with this dataset is
that neither the full set of modes is not available.

5 Experiments

For more detailed information on implementation
and experimental setup, please refer to Appendix B
and Appendix C. For a visual comparison of the
samples generated by the different methods, see
Figure D.1 (MMFire) and Figure D.2 (Cityscapes).

5.1 Evaluation criteria

To evaluate generated samples, we compute the
Hungarian-Matched IoU (HM IoU), finding the best
match between generated and ground truth masks
and computing the mean IoU across the matched
masks. We modify this metric, indicated by HM
IoU*, by de-duplicating the ground truth masks,
since our goal is to avoid the generation of dupli-
cates. For MMFire and Cityscapes, we know the

5

2 4 6 8 10
Sampling steps

0.0

0.2

0.4

0.6

0.8

1.0
HM

 Io
U*

Performance of cluster centers vs. full sample set

LIDC: 4 clusters
MMFire: 8 clusters
Cityscapes: 16 clusters
LIDC: 128 samples
MMFire: 256 samples
Cityscapes: 256 samples

Figure 4. Applying clustering-based sample-
pruning at different sampling steps: Varying after
which sampling step the clustering and pruning is per-
formed influences the final performance. For all datasets,
there is large gap between evaluating only the cluster
centers and evaluating the full set of generated samples.
The x-axis represents the index of the sampling step.
However, the noise levels at each step do not decrease
linearly. See appendix for details on the noise schedule.

ground truth modes and can additionally compute
an image quality metric and the number of distinct
generated modes (see Appendix D). Results are
averaged over five runs with different random seeds.

5.2 Clustering-based sample-pruning

Figure 4 shows the performance of clustering-based
sample-pruning, applied at different sampling steps.
For all datasets, we see a large difference between
evaluating only the cluster centers (lines) and evalu-
ating the whole set of generated samples (dots). This
difference persists across all steps, even when the
fully denoised samples are clustered at the last step.
For Cityscapes, the difference between clustering at
the final step and using the fully denoised batch of
samples is 20.8% HM IoU*. This gap indicates that
the clustering algorithm does not perfectly separate
the available modes into different clusters.

We believe that this clustering failure is the result
of two interacting factors: First, the modeling error:
In approximating the conditional distributions over
segmentation masks, the models produce imperfect
outputs. Some of them are outliers and have a dis-
tort the cluster center choice. Second, the mode
distribution asymmetry: We have purposefully cho-
sen the MMFire and Cityscapes distributions over
modes to be highly asymmetric, to create challeng-
ing benchmarks. Thus, rare modes will only be
generated very seldom. In the context of outliers
created by the imperfect models, it is then impos-
sible for the clustering algorithm to decide which
outliers are rare modes and which should be ignored.

We conclude from these results that clustering
and pruning immediately after the first sampling
step is the best option. Further steps increase the
performance on MMFire and LIDC, but also incur

Table 1. Clustering-based sample pruning: Vary-
ing initial batch size. We investigate the trade-off
between runtime and quality when varying the number
of initial samples on Cityscapes. Naive sampling gener-
ates a number of samples equal to the batch size, while
clustering always generates 16 samples, but starts with
a higher number of samples that are clustered.

Method Batch size B Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓
Naive sampling 16 0.956 12.2 0.416 0h41m

32 0.956 13.3 0.497 1h19m
64 0.956 14.1 0.586 2h39m

Clustering [B→16] 32 0.953 5.129 0.469 0h46m
64 0.951 5.680 0.517 0h53m
128 0.949 5.993 0.552 1h9m
256 0.948 6.122 0.571 1h47m

the high cost of denoising all samples in the large
batch again, while the performance gain is small.
Even with only one denoising step of the full

batch, our method incurs a much higher computa-
tion cost than naive sampling, while generating the
same amount of outputs. We reduce the number of
samples in the initial large batch, to investigate the
trade-off between performance and runtime. Run-
time and performance drop step-wise with reduced
batch size, as shown in Table 1. However our ap-
proach comes within 1.5% HM IoU* of naively sam-
pling 64 samples, with only 16 generated samples.
Depending on the use case, this superior sample-
efficiency can be a very desirable property.
The strength of our clustering approach is not

a low runtime, but a high sample quality. Thus,
when comparing this method with others, we use
256 samples and disregard the high runtime. Table 2
shows that clustering outperforms the probabilistic
UNet and naive sampling by at least 2.4% on MM-
Fire, and 15.5% on Cityscapes. On Cityscapes it
gets within 0.9% of the best performance among
the investigated methods. On MMFire, it is clearly
outperformed by both particle guidance and SPELL.
We assume that this is caused by the two factors
mentioned earlier. However, on LIDC, our approach
matches the performance of the probabilistic UNet,
outperforming the next-best diffusion-based method
by 3.9%. This is likely because the rather uniform
distribution of modes on LIDC makes it easier to
determine correct cluster centers.

To compare with methods that generate multiple
batches, we increase the number of clusters k to the
total number of desired samples, effectively over-
clustering. Table 3 shows that clustering still beats
naive sampling, but falls behind the other methods.

In summary, while the computational cost of this
method is high, it can be useful if the goal is to pro-
duce a low number of representative samples, and
the underlying distribution is not heavily skewed.
Furthermore, it avoids potential image quality issues
stemming from the interference with the sampling
process, since it only follows the original sampling
trajectories. Application cases for this method could
be situations where a low number of high-quality

6

Table 2. Single-batch performance: We generate a
batch of N samples per input; N is the number of modes
of the respective dataset. Methods should produce a di-
verse set of samples while retaining a high image quality.
PG: Particle Guidance. LIDC’s ground truth data does
not permit the computation of the image quality and
distinct modes metrics.

Method Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓

MMFire - 1 batch × 8 samples

Naive sampling 0.999 3.4 0.638 0h26m
Prob. UNet 0.999 3.1 0.570 0h6m
Clustering [256→8] 0.999 3.8 0.662 1h50m
PG: batch 0.999 4.0 0.694 0h29m
SPELL: batch 0.999 4.4 0.713 0h25m

Cityscapes - 1 batch × 16 samples

Naive sampling 0.956 4.4 0.416 0h41m
Prob. UNet 0.916 5.0 0.345 0h6m
Clustering [256→16] 0.948 6.1 0.571 1h47m
PG: batch 0.915 7.0 0.580 0h46m
SPELL: batch 0.936 7.3 0.577 0h40m

LIDC - 1 batch × 4 samples

Naive sampling 0.523 0h50m
Prob. UNet 0.573 0h5m
Clustering [128→4] n/a n/a 0.574 3h19m
PG: batch 0.528 0h57m
SPELL: batch 0.535 0h50m

samples are presented to a human operator for anal-
ysis, but runtime is not a big concern.

5.3 Particle guidance

Following our intuition that the determination of
modes for binary segmentation masks happens
mostly in the early sampling steps, we limit par-
ticle guidance to the initial steps. Table D.1 shows
that limiting the guidance to the initial step per-
forms similarly well as computing it at every step,
but saves computation by avoiding the backward
steps necessary for computing the guidance term.

When choosing the strength of particle guidance,
Table D.1 shows a trade-off between image quality
and diversity. The loss in image quality is caused
by the guidance pushing samples apart without any
regard for the specific dataset or the learned score
function. This can easily cause the samples to move
into subspaces on which the denoising model has
not been trained well, leading to faulty predictions.

5.4 SPELL

SPELL’s main hyperparameter is the shield radius
r. It defines an L2 distance within which no other
sample is allowed to fall. If a sample violates this
shield, it is pushed outside of the radius. In the
case of binary segmentation masks, this L2 distance
is equivalent to the square root of the number of
pixels that must differ between two samples. This
correspondence provides a very direct way to specify
the desired diversity that does not exist for natural
images (which use the full space in [0,1]) or for latent
diffusion models (where distances in latent space do
not directly correspond to distances in image space).

Table 3. Multi-batch performance: We generate
two or four batches of N samples per input; N is the
number of modes of the respective dataset. For cluster-
ing, we only generate one batch, but increase the number
of clusters accordingly. PG: Particle Guidance. LIDC’s
ground truth data does not permit the computation of
the image quality and distinct modes metrics.

Method Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓

MMFire - 2 batches ×8 samples

Naive sampling 0.999 4.1 0.705 0h44m
ProbUNet 0.999 3.8 0.637 0h12m
Clustering [256→16] 0.999 4.4 0.728 2h8m
PG: batch 0.999 4.8 0.751 1h4m
PG: memory bank 0.999 4.6 0.738 1h4m
PG: batch & memory bank 0.999 4.7 0.748 1h4m
SPELL: batch 0.999 5.2 0.781 0h55m
SPELL: memory bank 0.999 5.0 0.765 0h55m
SPELL: batch & memory bank 0.999 5.3 0.784 0h55m

MMFire - 4 batches ×8 samples

Naive sampling 0.999 4.7 0.751 1h28m
ProbUNet 0.999 4.3 0.687 0h27m
Clustering [256→32] 0.999 5.0 0.770 2h55m
PG: batch 0.999 5.5 0.796 2h36m
PG: memory bank 0.999 5.2 0.780 2h37m
PG: batch & memory bank 0.999 5.3 0.786 2h37m
SPELL: batch 0.999 6.0 0.826 2h17m
SPELL: memory bank 0.999 5.5 0.801 2h19m
SPELL: batch & memory bank 0.999 6.0 0.830 2h17m

Cityscapes - 2 batches ×16 samples

Naive sampling 0.956 13.3 0.497 1h19m
ProbUNet 0.915 6.0 0.427 0h12m
Clustering [256→32] 0.948 7.3 0.661 2h23m
PG: batch 0.916 8.5 0.696 1h37m
PG: memory bank 0.936 7.7 0.647 1h36m
PG: batch & memory bank 0.928 8.1 0.686 1h36m
SPELL: batch 0.936 8.7 0.690 1h26m
SPELL: memory bank 0.946 7.7 0.635 1h26m
SPELL: batch & memory bank 0.936 8.7 0.690 1h26m

Cityscapes - 4 batches ×16 samples

Naive sampling 0.956 14.1 0.586 2h39m
ProbUNet 0.916 6.8 0.479 0h27m
Clustering [256→64] 0.949 8.1 0.699 3h44m
PG: batch 0.916 9.7 0.738 3h40m
PG: memory bank 0.944 8.5 0.703 3h41m
PG: batch & memory bank 0.938 8.9 0.723 3h41m
SPELL: batch 0.936 9.7 0.735 3h19m
SPELL: memory bank 0.951 8.3 0.680 3h19m
SPELL: batch & memory bank 0.936 9.8 0.735 3h19m

LIDC - 2 batches ×4 samples

Naive sampling 0.660 1h41m
ProbUNet 0.715 0h7m
Clustering [128→8] 0.695 4h1m
PG: batch 0.677 1h54m
PG: memory bank n/a n/a 0.675 1h54m
PG: batch & memory bank 0.682 1h54m
SPELL: batch 0.686 1h40m
SPELL: memory bank 0.696 1h41m
SPELL: batch & memory bank 0.697 1h41m

LIDC - 4 batches ×4 samples

Naive sampling 0.727 3h32m
ProbUNet 0.785 0h13m
Clustering [128→16] 0.732 5h23m
PG: batch 0.736 3h58m
PG: memory bank n/a n/a 0.739 3h58m
PG: batch & memory bank 0.743 3h58m
SPELL: batch 0.740 3h30m
SPELL: memory bank 0.751 3h31m
SPELL: batch & memory bank 0.749 3h30m

It becomes easy to set a shield radius, even if only
single annotations are available in the training set.

We use the fact that we know several targets
for each input to determine a starting value r0 for
the shield radius. For each input, we compute the
minimum L2 distance among unique targets, and
then compute the mean of these minima:

r0 =
1

N

N∑
i=1

min ({ ||yi,j − yi,k||2 |yi,j ̸= yi,k}) (9)

For each dataset, we conduct a coarse hyperparam-
eter search around r0 to determine the parameter
to use. Table 4 shows this for Cityscapes. These
results confirm that r0 as computed above is a a

7

Table 4. SPELL: Varying shield radius. Based on
diversity statistics on the Cityscapes training set, we
perform a coarse search around r0 = 12.7.

Shield radius r Image quality ↑ Distinct modes ↑ HM IoU* ↑
6.350 0.944 6.6 0.540
9.525 0.934 7.4 0.564
12.700 0.924 7.8 0.561
15.875 0.914 8.1 0.551

Table 5. SPELL: Limit application to high noise.
We vary smin, the highest noise level at which SPELL
is still applied, to reduce the potentially negative influ-
ence during sampling. We begin sampling from pure
Gaussian noise with σmax = 80, the default for the EDM
framework. smin = ∞ represents never using SPELL.
smin = 0 represents always using SPELL.

smin Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓
∞ 0.956 12.2 0.416 41m

70 0.938 7.0 0.571 41m
40 0.936 7.3 0.577 40m
20 0.935 7.4 0.571 41m
10 0.935 7.4 0.571 41m

0 0.934 7.4 0.564 0h40m

very good initial value. For MMFire and LIDC, we
found r0 to be the best (see Table C.1).

The hard L2-limit enforced by SPELL means that
samples are pushed apart without regard for how
realistic the resulting images are. Especially towards
the end of sampling, this is contrary to particle guid-
ance, which slowly fades out with decreasing noise
level. SPELL’s stronger push seems to be unprob-
lematic in the original SPELL paper [11], which uses
latent diffusion models. These models have a down-
stream decoder model that maps the final latent
representation to an image, which can potentially
counter-act imperfect sampling outcomes. However,
since we are directly applying the repellence in im-
age space, we have to be more careful. To prevent
SPELL from having a negative influence towards
the end of sampling, we limit SPELL’s application
to smin = 40, where smin is the highest noise level
at which the guidance is still applied. In our case,
that corresponds to the second sampling step. This
change allows the score function to still guide the
samples that were perturbed by SPELL towards
more likely outcomes, leading to an improvement of
1.3% HM IoU* on Cityscapes (see Table 5).

Cityscapes & MMFire: On Cityscapes, parti-
cle guidance consistently beats all other methods,
with a slim advantage of ≤ 0.6% HM IoU* over
SPELL. However, particle guidance’s image quality
is lower than that of SPELL by roughly 2%, and
4% lower than that of naive sampling, indicating a
trade-off between quality and diversity. On MMFire,
SPELL is clearly the best method, beating particle
guidance by 1.9% HM IoU* on single batches and
up to 3.4% in the multi-batch setting.

Memory bank: While particle guidance does
not benefit from the addition of the memory bank,
compared to simply using within-batch repellence
in additional batches, SPELL achieves up to 0.4%
improvement on MMFire when repelling both from
the memory bank and the current batch items.

LIDC: Both particle guidance and SPELL clearly
underperform the probabilistic UNet. This perfor-
mance gap is reversed on the other datasets, where
we assume that the highly skewed distributions are
harder to model for the probabilistic UNet. However,
the diversity-encouraging methods always outper-
form naive sampling from the diffusion model. Thus,
when using diffusion models, it always appears ad-
visable to use SPELL.

6 Future work

While MMFire is very useful for benchmarking, it
lacks realistic diversity. Such diversity can be added
to real-world datasets, which only have a single
observed future for each input, by simulating alter-
native futures at each step. For our clustering-based
approach, density-based clustering algorithms could
make it easier to detect low-probability outliers as
separate clusters. Furthermore, we only investigated
training-free methods. Training-based approaches
might improve upon these. Lastly, consistency mod-
els [40] might provide better one-step approxima-
tions, which all investigated methods rely upon.

7 Conclusion

In this paper, we investigated how to increase the
sample diversity of diffusion models for ambiguous
segmentation tasks, motivated by the application of
wildfire spread prediction. The methods were eval-
uated across three datasets, including MMFire, an
ambiguous segmentation dataset that we introduced
in this paper. Our results demonstrate that the
diversity-biased sampling consistently outperformed
naive sampling, improving the HM IoU* metric by
up to 16.4%. These findings provide a robust frame-
work for generating distinct plausible outcomes in
uncertain environments, paving the way for future
work that transfers these results to observational
real-world data.

Acknowledgments

This work is funded by Digital Futures in the project
EO-AI4GlobalChange. The computations were en-
abled by resources provided by the National Aca-
demic Infrastructure for Supercomputing in Sweden
(NAISS) at C3SE partially funded by the Swedish
Research Council through grant agreement no. 2022-
06725.

8

References

[1] F. Huot, R. L. Hu, N. Goyal, T. Sankar, M.
Ihme, and Y.-F. Chen. “Next Day Wildfire
Spread: A Machine Learning Dataset to Pre-
dict Wildfire Spreading From Remote-Sensing
Data”. In: IEEE Transactions on Geoscience
and Remote Sensing 60 (2022). Conference
Name: IEEE Transactions on Geoscience and
Remote Sensing, pp. 1–13. issn: 1558-0644.
doi: 10.1109/TGRS.2022.3192974.

[2] S. Gerard, Y. Zhao, and J. Sullivan. “Wildfire-
SpreadTS: A dataset of multi-modal time se-
ries for wildfire spread prediction”. In: Thirty-
seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks
Track. 2023. url: https://openreview.net/
forum?id=RgdGkPRQ03.

[3] M. Rösch, M. Nolde, T. Ullmann, and T.
Riedlinger. “Data-Driven Wildfire Spread
Modeling of European Wildfires Using a
Spatiotemporal Graph Neural Network”. In:
Fire 7.6 (June 2024). Number: 6 Publisher:
Multidisciplinary Digital Publishing Institute,
p. 207. issn: 2571-6255. doi: 10 . 3390 /

fire7060207. url: https://www.mdpi.com/
2571-6255/7/6/207 (visited on 07/16/2025).

[4] W. Yu, A. Ghosh, T. S. Finn, R. Arcucci,
M. Bocquet, and S. Cheng. A Probabilistic
Approach to Wildfire Spread Prediction Us-
ing a Denoising Diffusion Surrogate Model.
July 1, 2025. doi: 10.48550/arXiv.2507.
00761. arXiv: 2507.00761[cs]. url: http:
//arxiv.org/abs/2507.00761 (visited on
09/11/2025).

[5] J. Sohl-Dickstein, E. Weiss, N. Mah-
eswaranathan, and S. Ganguli. “Deep Unsu-
pervised Learning using Nonequilibrium Ther-
modynamics”. In: Proceedings of the 32nd In-
ternational Conference on Machine Learning.
International Conference on Machine Learn-
ing. ISSN: 1938-7228. PMLR, June 1, 2015,
pp. 2256–2265. url: https://proceedings.
mlr.press/v37/sohl- dickstein15.html

(visited on 04/02/2024).

[6] J. Ho, A. Jain, and P. Abbeel. “Denois-
ing Diffusion Probabilistic Models”. In:
Advances in Neural Information Process-
ing Systems 33: Annual Conference on
Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020,
virtual. Ed. by H. Larochelle, M. Ran-
zato, R. Hadsell, M.-F. Balcan, and H.-T.
Lin. 2020. url: https : / / proceedings .

neurips . cc / paper / 2020 / hash /

4c5bcfec8584af0d967f1ab10179ca4b -

Abstract.html.

[7] P. Dhariwal and A. Nichol. “Diffusion models
beat gans on image synthesis”. In: Advances
in neural information processing systems 34
(2021), pp. 8780–8794.

[8] A. Q. Nichol and P. Dhariwal. “Improved De-
noising Diffusion Probabilistic Models”. In:
Proceedings of the 38th International Con-
ference on Machine Learning. International
Conference on Machine Learning. ISSN: 2640-
3498. PMLR, July 1, 2021, pp. 8162–8171. url:
https://proceedings.mlr.press/v139/

nichol21a.html (visited on 11/16/2025).

[9] J. Song, C. Meng, and S. Ermon. “De-
noising Diffusion Implicit Models”. In: In-
ternational Conference on Learning Repre-
sentations. Jan. 12, 2021. url: https : / /

openreview . net / forum ? id = St1giarCHLP

(visited on 11/16/2025).

[10] G. Corso, Y. Xu, V. D. Bortoli, R. Barzilay,
and T. Jaakkola. “Particle Guidance: non-
I.I.D. Diverse Sampling with Diffusion Mod-
els”. In: NeurIPS 2023 Workshop on Deep
Learning and Inverse Problems. Nov. 3, 2023.
url: https://openreview.net/forum?id=
hEyIHsyZ9F (visited on 11/24/2024).

[11] M. Kirchhof, J. Thornton, L. Béthune, P.
Ablin, E. Ndiaye, and M. Cuturi. “Shielded
Diffusion: Generating Novel and Diverse Im-
ages using Sparse Repellency”. In: Forty-
second International Conference on Machine
Learning. June 18, 2025. url: https : / /

openreview . net / forum ? id = XAckVo0iNj

(visited on 08/28/2025).

[12] S. G. Armato III, G. McLennan, L. Bidaut,
M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves,
B. Zhao, D. R. Aberle, C. I. Henschke, E. A.
Hoffman, E. A. Kazerooni, H. MacMahon,
E. J. R. van Beek, D. Yankelevitz, A. M. Bian-
cardi, P. H. Bland, M. S. Brown, R. M. En-
gelmann, G. E. Laderach, D. Max, R. C. Pais,
D. P.-Y. Qing, R. Y. Roberts, A. R. Smith,
A. Starkey, P. Batra, P. Caligiuri, A. Farooqi,
G. W. Gladish, C. M. Jude, R. F. Munden,
I. Petkovska, L. E. Quint, L. H. Schwartz,
B. Sundaram, L. E. Dodd, C. Fenimore, D.
Gur, N. Petrick, J. Freymann, J. Kirby, B.
Hughes, A. Vande Casteele, S. Gupte, M. Sal-
lam, M. D. Heath, M. H. Kuhn, E. Dharaiya, R.
Burns, D. S. Fryd, M. Salganicoff, V. Anand,
U. Shreter, S. Vastagh, B. Y. Croft, and
L. P. Clarke. “The Lung Image Database
Consortium (LIDC) and Image Database Re-
source Initiative (IDRI): A Completed Refer-
ence Database of Lung Nodules on CT Scans”.
In: Medical Physics 38.2 (2011), pp. 915–931.
issn: 2473-4209. doi: 10.1118/1.3528204.
url: https://onlinelibrary.wiley.com/

9

https://doi.org/10.1109/TGRS.2022.3192974
https://openreview.net/forum?id=RgdGkPRQ03
https://openreview.net/forum?id=RgdGkPRQ03
https://doi.org/10.3390/fire7060207
https://doi.org/10.3390/fire7060207
https://www.mdpi.com/2571-6255/7/6/207
https://www.mdpi.com/2571-6255/7/6/207
https://doi.org/10.48550/arXiv.2507.00761
https://doi.org/10.48550/arXiv.2507.00761
https://arxiv.org/abs/2507.00761 [cs]
http://arxiv.org/abs/2507.00761
http://arxiv.org/abs/2507.00761
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v139/nichol21a.html
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=hEyIHsyZ9F
https://openreview.net/forum?id=hEyIHsyZ9F
https://openreview.net/forum?id=XAckVo0iNj
https://openreview.net/forum?id=XAckVo0iNj
https://doi.org/10.1118/1.3528204
https://onlinelibrary.wiley.com/doi/abs/10.1118/1.3528204

doi/abs/10.1118/1.3528204 (visited on
02/26/2025).

[13] M. Cordts, M. Omran, S. Ramos, T. Rehfeld,
M. Enzweiler, R. Benenson, U. Franke, S.
Roth, and B. Schiele. “The Cityscapes Dataset
for Semantic Urban Scene Understanding”.
In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.
2016, pp. 3213–3223. url: https : / / www .

cv-foundation.org/openaccess/content_

cvpr_2016/html/Cordts_The_Cityscapes_

Dataset_CVPR_2016_paper.html (visited on
03/02/2025).

[14] S. Kohl, B. Romera-Paredes, C. Meyer,
J. De Fauw, J. R. Ledsam, K. Maier-Hein,
S. M. A. Eslami, D. Jimenez Rezende, and
O. Ronneberger. “A Probabilistic U-Net
for Segmentation of Ambiguous Images”.
In: Advances in Neural Information Pro-
cessing Systems. Vol. 31. Curran Associates,
Inc., 2018. url: https : / / proceedings .

neurips . cc / paper / 2018 / hash /

473447ac58e1cd7e96172575f48dca3b -

Abstract.html (visited on 11/12/2024).

[15] Z. Gao, Y. Chen, C. Zhang, and X. He. “Mod-
eling multimodal aleatoric uncertainty in seg-
mentation with mixture of stochastic experts”.
In: The eleventh international conference on
learning representations. 2023. url: https:
//openreview.net/forum?id=KE_wJD2RK4.

[16] T. Amit, T. Shaharbany, E. Nachmani, and
L. Wolf. SegDiff: Image Segmentation with
Diffusion Probabilistic Models. Sept. 7, 2022.
doi: 10.48550/arXiv.2112.00390. arXiv:
2112.00390[cs]. url: http://arxiv.org/
abs/2112.00390 (visited on 08/30/2023).

[17] J. Wolleb, R. Sandkühler, F. Bieder, P. Val-
maggia, and P. C. Cattin. “Diffusion Mod-
els for Implicit Image Segmentation Ensem-
bles”. In: Proceedings of The 5th International
Conference on Medical Imaging with Deep
Learning. Ed. by E. Konukoglu, B. Menze, A.
Venkataraman, C. Baumgartner, Q. Dou, and
S. Albarqouni. Vol. 172. Proceedings of Ma-
chine Learning Research. PMLR, July 6, 2022,
pp. 1336–1348. url: https://proceedings.
mlr.press/v172/wolleb22a.html.

[18] J. Wu, R. Fu, H. Fang, Y. Zhang, Y. Yang,
H. Xiong, H. Liu, and Y. Xu. “Medsegdiff:
Medical image segmentation with diffusion
probabilistic model”. In: Medical imaging with
deep learning. PMLR, 2024, pp. 1623–1639.

[19] J. Wu, W. Ji, H. Fu, M. Xu, Y. Jin, and Y.
Xu. “MedSegDiff-V2: Diffusion-Based Medical
Image Segmentation with Transformer”. In:
Proceedings of the AAAI Conference on Arti-

ficial Intelligence 38.6 (Mar. 24, 2024). Num-
ber: 6, pp. 6030–6038. issn: 2374-3468. doi:
10.1609/aaai.v38i6.28418. url: https://
ojs.aaai.org/index.php/AAAI/article/

view/28418 (visited on 07/18/2024).

[20] T. Chen, L. Li, S. Saxena, G. Hinton, and D. J.
Fleed. “A Generalist Framework for Panop-
tic Segmentation of Images and Videos”. In:
2023 IEEE/CVF International Conference on
Computer Vision (ICCV). 2023 IEEE/CVF
International Conference on Computer Vi-
sion (ICCV). Paris, France: IEEE, Oct. 1,
2023, pp. 909–919. isbn: 979-8-3503-0718-4.
doi: 10.1109/ICCV51070.2023.00090. url:
https://ieeexplore.ieee.org/document/

10377333/ (visited on 09/01/2025).

[21] T. Chen, R. ZHANG, and G. Hinton. “Ana-
log bits: Generating discrete data using diffu-
sion models with self-conditioning”. In: The
eleventh international conference on learn-
ing representations. 2023. url: https : / /

openreview.net/forum?id=3itjR9QxFw.

[22] J. Austin, D. D. Johnson, J. Ho, D. Tarlow,
and R. Van Den Berg. “Structured denoising
diffusion models in discrete state-spaces”. In:
Advances in Neural Information Processing
Systems 34 (2021), pp. 17981–17993.

[23] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forré,
and M. Welling. “Argmax flows and multi-
nomial diffusion: learning categorical distri-
butions”. In: Proceedings of the 35th Inter-
national Conference on Neural Information
Processing Systems. NIPS ’21. Red Hook,
NY, USA: Curran Associates Inc., Dec. 2021,
pp. 12454–12465. isbn: 978-1-71384-539-3.
(Visited on 07/17/2024).

[24] T. Chen, C. Wang, and H. Shan. “Berdiff:
Conditional bernoulli diffusion model for
medical image segmentation”. In: Interna-
tional Conference on Medical Image Com-
puting and Computer-Assisted Intervention.
Springer, 2023, pp. 491–501.

[25] L. Zbinden, L. Doorenbos, T. Pissas, A. T.
Huber, R. Sznitman, and P. Márquez-Neila.
“Stochastic Segmentation with Conditional
Categorical Diffusion Models”. In: 2023
IEEE/CVF International Conference on Com-
puter Vision (ICCV). 2023 IEEE/CVF In-
ternational Conference on Computer Vision
(ICCV). Paris, France: IEEE, Oct. 1, 2023,
pp. 1119–1129. isbn: 979-8-3503-0718-4. doi:
10 . 1109 / ICCV51070 . 2023 . 00109. url:
https://ieeexplore.ieee.org/document/

10376866/ (visited on 01/27/2025).

10

https://onlinelibrary.wiley.com/doi/abs/10.1118/1.3528204
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Cordts_The_Cityscapes_Dataset_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Cordts_The_Cityscapes_Dataset_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Cordts_The_Cityscapes_Dataset_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Cordts_The_Cityscapes_Dataset_CVPR_2016_paper.html
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/473447ac58e1cd7e96172575f48dca3b-Abstract.html
https://openreview.net/forum?id=KE_wJD2RK4
https://openreview.net/forum?id=KE_wJD2RK4
https://doi.org/10.48550/arXiv.2112.00390
https://arxiv.org/abs/2112.00390 [cs]
http://arxiv.org/abs/2112.00390
http://arxiv.org/abs/2112.00390
https://proceedings.mlr.press/v172/wolleb22a.html
https://proceedings.mlr.press/v172/wolleb22a.html
https://doi.org/10.1609/aaai.v38i6.28418
https://ojs.aaai.org/index.php/AAAI/article/view/28418
https://ojs.aaai.org/index.php/AAAI/article/view/28418
https://ojs.aaai.org/index.php/AAAI/article/view/28418
https://doi.org/10.1109/ICCV51070.2023.00090
https://ieeexplore.ieee.org/document/10377333/
https://ieeexplore.ieee.org/document/10377333/
https://openreview.net/forum?id=3itjR9QxFw
https://openreview.net/forum?id=3itjR9QxFw
https://doi.org/10.1109/ICCV51070.2023.00109
https://ieeexplore.ieee.org/document/10376866/
https://ieeexplore.ieee.org/document/10376866/

[26] A. Lou, C. Meng, and S. Ermon. “Discrete
Diffusion Modeling by Estimating the Ra-
tios of the Data Distribution”. In: Proceedings
of the 41st International Conference on Ma-
chine Learning. International Conference on
Machine Learning. ISSN: 2640-3498. PMLR,
July 8, 2024, pp. 32819–32848. url: https:
//proceedings.mlr.press/v235/lou24a.

html (visited on 11/16/2025).

[27] J. Shi, K. Han, Z. Wang, A. Doucet, and M. K.
Titsias. “Simplified and generalized masked
diffusion for discrete data”. In: Proceedings of
the 38th International Conference on Neural
Information Processing Systems. Vol. 37. NIPS
’24. Red Hook, NY, USA: Curran Associates
Inc., Dec. 10, 2024, pp. 103131–103167. isbn:
979-8-3313-1438-5. (Visited on 11/16/2025).

[28] Z. Lai, Y. Duan, J. Dai, Z. Li, Y. Fu, H. Li,
Y. Qiao, and W. Wang. Denoising Diffusion
Semantic Segmentation with Mask Prior Mod-
eling. June 22, 2023. arXiv: 2306.01721[cs].
url: http://arxiv.org/abs/2306.01721
(visited on 10/20/2023).

[29] A. Rahman, J. M. J. Valanarasu, I. Haci-
haliloglu, and V. M. Patel. “Ambiguous Medi-
cal Image Segmentation Using Diffusion Mod-
els”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recog-
nition (CVPR). June 2023, pp. 11536–11546.

[30] S. Sadat, J. Buhmann, D. Bradley, O. Hilliges,
and R. M. Weber. “CADS: Unleashing the Di-
versity of Diffusion Models through Condition-
Annealed Sampling”. In: The Twelfth In-
ternational Conference on Learning Repre-
sentations. Oct. 13, 2023. url: https : / /

openreview . net / forum ? id = zMoNrajk2X

(visited on 02/19/2024).

[31] K. Pandey, Y. Hold-Geoffroy, M. Gadelha,
N. J. Mitra, K. Singh, and P. Guerrero. “Mo-
tion modes: What could happen next?” In:
Proceedings of the computer vision and pat-
tern recognition conference. 2025, pp. 2030–
2039.

[32] J. Lu, R. Teehan, and M. Ren. “Procreate,
don’t reproduce! propulsive energy diffusion
for creative generation”. In: European con-
ference on computer vision. Springer, 2024,
pp. 397–414.

[33] T. Karras, M. Aittala, T. Aila, and S. Laine.
“Elucidating the Design Space of Diffusion-
Based Generative Models”. In: Advances
in Neural Information Processing Systems.
Ed. by S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh. Vol. 35.
Curran Associates, Inc., 2022, pp. 26565–
26577. url: https://proceedings.neurips.

cc / paper _ files / paper / 2022 / file /

a98846e9d9cc01cfb87eb694d946ce6b -

Paper-Conference.pdf.

[34] J. Ho and T. Salimans. “Classifier-Free Diffu-
sion Guidance”. In: NeurIPS 2021 Workshop
on Deep Generative Models and Downstream
Applications. 2021.

[35] T. Karras, M. Aittala, T. Kynkäänniemi, J.
Lehtinen, T. Aila, and S. Laine. “Guiding
a Diffusion Model with a Bad Version of
Itself”. In: The Thirty-eighth Annual Con-
ference on Neural Information Processing
Systems. Nov. 6, 2024. url: https : / /

openreview.net/forum?id=bg6fVPVs3s&

referrer = %5Bthe % 20profile % 20of %

20Tero % 20Karras % 5D(%2Fprofile % 3Fid %

3D~Tero_Karras1) (visited on 11/18/2024).

[36] M. Doyle, M. Threet, M. Dotter, C. Kem-
pis, A. Tapley, and T. Welsh. SimFire. Ver-
sion 2.0.1. July 2024. url: https://github.
com/mitrefireline/simfire.

[37] LANDFIRE. Anderson Fire Behavior Fuel
Model (FBFM13) Layer. LANDFIRE 2.0.0.
U.S. Department of the Interior, Geological
Survey, and U.S. Department of Agriculture,
2016. url: https://landfire.gov/ (visited
on 09/04/2025).

[38] LANDFIRE. Elevation Layer. LANDFIRE
2.2.0. U.S. Department of the Interior, Ge-
ological Survey, and U.S. Department of Agri-
culture, 2020. url: https://landfire.gov/
(visited on 09/04/2025).

[39] R. C. Rothermel. “A mathematical model for
predicting fire spread in wildland fuels”. In:
Res. Pap. INT-115. Ogden, UT: U.S. Depart-
ment of Agriculture, Intermountain Forest and
Range Experiment Station. 40 p. 115 (1972).
url: https://www.fs.usda.gov/research/
treesearch/32533 (visited on 11/14/2022).

[40] Y. Song, P. Dhariwal, M. Chen, and I.
Sutskever. “Consistency models”. In: Pro-
ceedings of the 40th international conference
on machine learning. Ed. by A. Krause, E.
Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett. Vol. 202. Proceedings of
machine learning research. PMLR, July 23,
2023, pp. 32211–32252. url: https : / /

proceedings . mlr . press / v202 / song23a .

html.

[41] J. Borovec, W. Falcon, A. Nitta, A. H. Jha,
otaj, A. Brundyn, D. Byrne, N. Raw, S. Mat-
sumoto, T. Koker, B. Ko, A. Oke, S. Sun-
drani, Baruch, C. Clement, C. POIRET, R.
Gupta, H. Aekula, A. Wälchli, A. Phatak, I.
Kessler, J. Wang, J. Lee, S. Mehta, Z. Yang, G.

11

https://proceedings.mlr.press/v235/lou24a.html
https://proceedings.mlr.press/v235/lou24a.html
https://proceedings.mlr.press/v235/lou24a.html
https://arxiv.org/abs/2306.01721 [cs]
http://arxiv.org/abs/2306.01721
https://openreview.net/forum?id=zMoNrajk2X
https://openreview.net/forum?id=zMoNrajk2X
https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf
https://openreview.net/forum?id=bg6fVPVs3s&referrer=%5Bthe%20profile%20of%20Tero%20Karras%5D(%2Fprofile%3Fid%3D~Tero_Karras1)
https://openreview.net/forum?id=bg6fVPVs3s&referrer=%5Bthe%20profile%20of%20Tero%20Karras%5D(%2Fprofile%3Fid%3D~Tero_Karras1)
https://openreview.net/forum?id=bg6fVPVs3s&referrer=%5Bthe%20profile%20of%20Tero%20Karras%5D(%2Fprofile%3Fid%3D~Tero_Karras1)
https://openreview.net/forum?id=bg6fVPVs3s&referrer=%5Bthe%20profile%20of%20Tero%20Karras%5D(%2Fprofile%3Fid%3D~Tero_Karras1)
https://openreview.net/forum?id=bg6fVPVs3s&referrer=%5Bthe%20profile%20of%20Tero%20Karras%5D(%2Fprofile%3Fid%3D~Tero_Karras1)
https://github.com/mitrefireline/simfire
https://github.com/mitrefireline/simfire
https://landfire.gov/
https://landfire.gov/
https://www.fs.usda.gov/research/treesearch/32533
https://www.fs.usda.gov/research/treesearch/32533
https://proceedings.mlr.press/v202/song23a.html
https://proceedings.mlr.press/v202/song23a.html
https://proceedings.mlr.press/v202/song23a.html

O’Donnell, and zlapp. Lightning-AI/lightning-
bolts: Minor patch release. Version 0.6.0.post1.
Dec. 2022. doi: 10.5281/zenodo.7447212.
url: https://doi.org/10.5281/zenodo.
7447212.

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J.
Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala. “PyTorch: An Imperative
Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information
Processing Systems 32. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d. Alché-
Buc, E. Fox, and R. Garnett. Curran Asso-
ciates, Inc., 2019, pp. 8024–8035. url: http://
papers.neurips.cc/paper/9015-pytorch-

an-imperative-style-high-performance-

deep-learning-library.pdf.

[43] W. Falcon and The PyTorch Light-
ning team. PyTorch Lightning. Ver-
sion 1.4. doi: 10.5281/zenodo.3828935,
https://www.pytorchlightning.ai, Last
visited 2021-09-17. Mar. 30, 2019. url:
https : / / www . pytorchlightning . ai

(visited on 09/17/2021).

[44] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A.
Kumar, S. Ermon, and B. Poole. “Score-based
generative modeling through stochastic differ-
ential equations”. In: International conference
on learning representations. 2021. url: https:
//openreview.net/forum?id=PxTIG12RRHS.

[45] L. N. Smith and N. Topin. “Super-convergence:
very fast training of neural networks using
large learning rates”. In: Artificial Intelligence
and Machine Learning for Multi-Domain Oper-
ations Applications. Artificial Intelligence and
Machine Learning for Multi-Domain Opera-
tions Applications. Vol. 11006. SPIE, May 10,
2019, pp. 369–386. doi: 10.1117/12.2520589.
url: https : / / www . spiedigitallibrary .

org/conference- proceedings- of- spie/

11006 / 1100612 / Super - convergence --

very - fast - training - of - neural -

networks - using / 10 . 1117 / 12 . 2520589 .

full (visited on 08/30/2025).

A Datasets

A.1 MMFire

The dataset consists of 9608 input samples of size 7×
64× 64, each associated with eight simulated future
fire spread segmentation masks of size 64× 64. We
use a split of 5000 training samples, 2500 validation
samples, and 2108 test samples. We do not apply

any augmentations. Any augmentations applied
will need to make sure that the wind direction is
correctly transformed, e.g. in rotations or flips.

A.2 Cityscapes

Our implementation of the Cityscapes dataset is
based on the existing Lightning Bolts [41] Cityscapes
data module. We only use the 5000 images with fine
annotations, resized to 64 × 128 for faster experi-
ments. We keep the split of 2975 training images,
500 validation images, and 1525 test images. We
use the semantic segmentation labels as a starting
point, before filtering down to the four classes which
we randomly flip between the positive and negative
class. We only use color jittering as augmentations.
We train with batch size 32 and parameterize the
log-normal training noise distribution with a mean
of µtrain = 1.5.

A.3 LIDC

To download and preprocess the LIDC dataset,
we followed the steps indicated by the au-
thors of [15] at https://github.com/gaozhitong/
MoSE-AUSeg/, and use their dataset class to load
the data. The dataset contains 9794 training images,
2314 validation images, and 2988 test images. It
includes random horizontal and vertical flipping and
rotation by up to 10°, all applied to both image and
label simultaneously. The images and labels have a
size of 128× 128 pixels.

B Implementation details

Our code base is implemented in PyTorch [42] and
PyTorch Lightning [43]. For the diffusion model,
we use the official EDM [33] repository at https:

//github.com/NVlabs/edm.

All experiments were run on NVIDIA A40 GPUs,
provided as part of a scientific computational cluster
that is credited in the acknowledgments.

During sampling, the ODE is solved by starting
from x ∼ N at σmax = 80 and numerically integrat-
ing to σmin = 0.002, using the 2nd order Heun solver
from EDM. Unless specifically noted, we only use
deterministic sampling, i.e. we set Schurn = 0.

We use the NCSN++ architecture [44], as imple-
mented in the EDM code base and EDM precondi-
tioning, modified to take an image as conditional
information by concatenating it to the noisy mask x
that is being generated. Only the base multiplier for
the number of features is modified for the different
datasets: For Cityscapes, we use the default value of
128, since the conditioning image and output distri-
bution are rather complex. For MMFire and LIDC,
we use 64.

12

https://doi.org/10.5281/zenodo.7447212
https://doi.org/10.5281/zenodo.7447212
https://doi.org/10.5281/zenodo.7447212
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.pytorchlightning.ai
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://doi.org/10.1117/12.2520589
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11006/1100612/Super-convergence--very-fast-training-of-neural-networks-using/10.1117/12.2520589.full
https://github.com/gaozhitong/MoSE-AUSeg/
https://github.com/gaozhitong/MoSE-AUSeg/
https://github.com/NVlabs/edm
https://github.com/NVlabs/edm

C Experimental details

C.1 Training the diffusion models

Unless mentioned otherwise, we train the base
models with AdamW with learning rate 1e-4, and
β1 = 0.9, β2 = 0.99. For Cityscapes, we train for
400 epochs, for LIDC, we train for 200 epochs, for
MMFire, we train for 1000 epochs. We compute the
validation loss after each training epoch and keep
the model checkpoint with the lowest validation
loss. During training, this validation loss is com-
puted by randomly sampling noise levels according
to the training noise distribution for each condi-
tioning. The training noise distribution is always
a log-normal distribution, with standard deviation
σtrain = 1.2, which is the default value in EDM,
and mean µtrain, which we vary between different
runs. Note that these parameters refer to the normal
distribution, the samples of which are then exponen-
tiated. The mean, mode, and standard deviation of
samples drawn from the log-normal distribution are
different.

For each dataset, we train several models, varying
the mean (µtrain) of the log-normal distribution used
for sampling the noise levels during training. In pre-
liminary experiments, we observed that performing
model selection simply via lowest validation loss did
not lead to a good calibration of the distribution over
modes. We therefore perform the model selection
with regards to the highest alignment of the sample
distribution over modes with the training distribu-
tion. For this, we sample 64 segmentation masks per
conditioning (e.g. per RGB image in Cityscapes),
and compare the distribution over modes with the
known ground truth distribution via total variation
difference metric (see next paragraph). We also do
not perform model selection with regards to HM
IoU*. Choosing a model with the highest HM IoU*
for a highly skewed distribution would mean that
the skewedness is likely not properly represented
by the model, even though we of course want to
achieve a high HM IoU* in the end. In practice,
the models we choose tend to still be among the
best in terms of HM IoU* computed over the 64
samples. For datasets for which we only know a set
of segmentation masks per image, but not the actual
probabilities per mask, we can take the pixel-wise
mean across generated masks and compare to the
pixel-wise mean across ground truth labels, as a
measure of calibration. This is the case for LIDC,
where we use the Brier score to select a model. We
end up choosing the models trained with the follow-
ing parameters: MMFire: µtrain = 0.5, Cityscapes:
µtrain = 1.5; LIDC: µtrain = 1.0.
To perform model selection, we estimate how

well a large batch of generated segmentation masks
{x′

i|0 ≤ i ≤ B B ∈ N} follows the training distribu-
tion over modes. For Cityscapes, we have flipped

all classes separately, thus we want to estimate how
well the model follows the per-class Bernoulli flip
probabilities. We estimate the flip probabilities from
the B generated masks for each class separately. For
this, we compute the per-class IoU between gener-
ated mask and indicator mask of the respective class,
e.g. a mask that is 1 for the road class, and 0 other-
wise. Then, we threshold the IoU at 0.5 to decide
whether the generated mask represents a choice of
the positive or negative mode for the given class.
From these per-mask modes for each class, we esti-
mate the per-batch distribution of modes and com-
pare it to the true Bernoulli distributions via mean
total variation distance (TVD). To compute this dis-
tance, we compute the mean distance between the
C paired distributions: TVDmean({(pc, qc)|1 ≤ c ≤
C)}) = 1

C

∑C
c=1 |pc − qc|, where pc, qc are the true

and estimated Bernoulli probability for flipping class
c to the positive class. For MMFire, we do concep-
tually the same, except that we assign a single mode
to each image, and we compare a single empirical
and a single ground truth categorical distribution,
instead of several Bernoulli distributions.

C.2 Sampling from the diffusion mod-
els

For all models, we use the EDM sampling schedule,
parameterized by ρ = 7 and n = 10 time steps.
More steps did not lead to better results. This is
likely due to the very conditioning signal that is
much stronger than in the case of natural images,
conditioned on a text prompt, for example. There
are many different images that are consistent with
’dog on the beach wearing sunglasses’, but very few
segmentation masks that are pixel-perfectly aligned
with the input and correctly distinguish between the
positive and negative classes.

C.3 Particle guidance and SPELL

For particle guidance, we use the a guidance strength
α = 10 for LIDC and α = 25 for the other
datasets, following separate grid searches over α ∈
{2.5, 5, 10, 25, 50, 100, 1000}.
For SPELL, we compute r0 from the respective

training dataset, according to Equation 9. Start-
ing from this, we run a coarse grid search across
{0.5r0, 0.75r0, r0, 1.25r0} and choose the best one
as r for all experiments. Table C.1 shows the cor-
responding values. For both MMFire and LIDC,
using r0 proved best among the investigated values.
For Cityscapes, we used 0.75r0. Which exact value
proves best depends on the exact distribution of
distances. An option would be to replace the mean
with the minimum in Equation 9. However, for
many cases, SPELL would then not ensure enough
diversity (see Table 4). Thus, r0 can be taken as

13

Table C.1. SPELL: Shield radii used in experi-
ments. r0 is an initial estimate for a good shield radius
determined from dataset diversity statistics in Equa-
tion 9. r is the best value we found in a coarse grid
search around r0. For MMFire and LIDC, r0 was the
best value we found. For Cityscapes, we found in Table 4
that 0.75r0 performs slightly better.

Dataset r0 r

MMFire 9.525 9.525
Cityscapes 12.700 9.525
LIDC 6.000 6.000

a strong starting point, but, depending on the con-
crete distance distribution of the dataset, a better
value might exist near r0.

C.4 Probabilistic UNet

Following previous work [25, 29], we use the prob-
abilistic UNet [14] as a baseline for ambiguous seg-
mentation. To stay within the PyTorch framework,
we use an unofficial PyTorch re-implementation1 to
train one model per dataset. In our experiments,
we try to stay as close as possible to the original
hyperparameter choices that were made for training
on LIDC in the original probabilistic UNet paper.

For Cityscapes and MMFire, training proved very
unstable at first. We identified a logarithm oper-
ation in the log probability computation for the
prior and posterior net, which could be stabilized
by adding ϵ = 10−6 to the standard deviation of the
respective normal distribution. The LIDC learning
rate scheduler was set to reduce the learning rate
at fixed numbers of epochs, for which it is unclear
how this should be transferred to other datasets. In-
stead of manually setting such fixed points, we use
the OneCycleLR[45] learning rate scheduler, which
smoothly increases and decreases the learning rate,
dependent on the total number of steps. We also in-
creased the learning rate from 1e-4 to 1e-3 since con-
vergence was infeasibly slow otherwise. We trained
for 106 steps and kept the model state with the best
validation loss.

D Evaluation

Metrics for the main results in Table 2 and Table 3
are computed on the test sets. All other tables
and figures are treated as part of hyperparameter
search or optimization, therefore they are computed
on the validation sets. For Cityscapes, the test set
segmentation masks are not public, therefore we can
not compute any of our metrics on the Cityscapes
test set. Therefore, we use the Cityscapes validation

1https://github.com/stefanknegt/

Probabilistic-Unet-Pytorch

Table D.1. Particle guidance: Varying guidance
strength α. We investigate the trade-off between image
quality and diversity on Cityscapes. Applying guidance
on the first step only saves several backward passes, but
reaches almost exactly the same performance.

Guidance steps α Image quality ↑ Distinct modes ↑ HM IoU* ↑
None 0 0.956 12.2 0.416

First 1 0.953 5.2 0.477
First 2.5 0.950 5.8 0.518
First 5 0.946 6.1 0.550
First 10 0.938 6.5 0.575
First 25 0.915 7.0 0.596
First 50 0.881 7.6 0.595
First 100 0.827 8.3 0.568
First 1000 0.695 8.4 0.455

all 1 0.953 5.3 0.476
all 2.5 0.950 5.8 0.521
all 5 0.946 6.1 0.551
all 10 0.877 7.6 0.593
all 25 0.914 7.0 0.595
all 50 0.877 7.6 0.593
all 100 0.821 8.3 0.566
all 1000 0.689 8.5 0.455

set everywhere, instead. Since we mostly care about
the relative performance of the methods on the same
dataset, this still seems serviceable.

While we mainly focus our evaluations on HM
IoU*, which is a combined measure of image quality
and diversity, we additionally use explicit measures
of these two qualities on MMFire and Cityscapes.
For each generated sample, we compute which
ground truth mode is closest to the sample. Within
a batch of samples, we then count the number of
distinct modes (or unique modes) that were gen-
erated. Since this is a pure argmax computation, a
sample that is closest to one particular mode might
still have very low quality. Thus, this metric can be
very noisy and should always be interpreted with
regards to an image quality metric.

For image quality, we compute a pixel-wise
union of all modes for the current input, to determine
which pixels are allowed to be part of the positive
class, and which ones should always be assigned the
negative class. We want to penalize samples which
set pixels to positive that should never be positive.
Let this union image be yunion. We take the comple-
ment to receive ȳunion, which is 0 in all pixels that
are positive in at least one mode, and 1 otherwise.
Let xi be a sample to evaluate, then we compute
the image quality metric as 1− IoU(xi, yunion).

The runtimes we measure include all of the time it
takes to run the respective job on a shared scientific
computation cluster, including loading the respective
model and computing the metrics. The runtimes can
vary, depending on the load imposed by other jobs
using the shared resources. We assume that they
are still useful as broad indications of how much
longer certain methods take than others.

14

https://github.com/stefanknegt/Probabilistic-Unet-Pytorch
https://github.com/stefanknegt/Probabilistic-Unet-Pytorch

Figure D.1. Method comparison - MMFire. We
compare the different diversity-encouraging methods on
the MMFire dataset, sampled from the same starting
noise and conditioning. The order of generated samples
is determined via Hungarian matching, such that the
samples are positioned below the closest ground truth.
This example is cherry-picked for visualization. Non-
cherry-picked examples often show the same number
of correct samples across most methods, or can have
duplicate ground truths. The low difference in visual
appearance makes sense when we consider that the best
method, SPELL, only performs 7.5% better than naive
sampling, and that all methods use the same underlying
diffusion model.

Table D.2. Clustering - comparing distance func-
tions: We use our clustering-based approach to prune
from 256 initial samples to 16 samples on Cityscapes,
using either chamfer or L2 distance. L2 distance per-
forms slightly worse, so we use chamfer distance for all
experiments.

Distance function Image quality ↑ Distinct modes ↑ HM IoU* ↑ Runtime ↓
Chamfer 0.948 6.1 0.571 1h47m
L2 0.952 5.9 0.560 1h33m

E CADS

By adding a noise schedule to the conditioning
information, CADS [30] aims to prevent the de-
noising process from immediately moving towards
high-probability modes, thereby increasing diversity.
We implement this by simply using the same noise
schedule for the conditioning as for xt. We then
re-normalize the noisy conditioning to have an ex-
pected standard deviation of 1, which is the same
as the noise-free Cityscapes data. Without this, the
denoising model would have no chance to work well,
since the noisy values would be out of distribution,
compared to the training data. Since segmentation
very directly relies on the conditioning, we also at-
tenuate the noise level on the conditioning with a
factor γ ≤ 1. This should allow the model to access
noisy conditioning information when it has to use
this information for denoising. Given a conditioning
image c, we therefore compute the noisy image ĉ as:

ĉ =
c+ γϵ

1 + t2
, ϵ ∼ N

(
0, t2I

)
(10)

Figure D.2. Method comparison - Cityscapes. We
compare the different diversity-encouraging methods in
the Cityscapes dataset, sampled from the same starting
noise and conditioning. The order of generated samples
is determined via Hungarian matching, such that the
samples are positioned below the closest ground truth.
This example is cherry-picked for visualization to ensure
that the different ground truth modes are easily enough
visually distinguishable.

15

Attenuation γ Image quality ↑ Distinct modes ↑ HM IoU* ↑
0.00 0.956 4.4 0.416
0.10 0.983 1.5 0.142
0.25 0.995 1.1 0.101
0.50 0.999 1.0 0.085
1.00 1.000 1.0 0.078

Table E.1. CADS: We impose a noise schedule on the
conditioning information, attenuated by a factor γ. We
see that any noise added to the conditioning information
greatly hurts performance.

CADS works well in the original publication
for text prompt embeddings, which are inherently
continuously-valued, such that noisy embeddings
are likely still within in-distribution. For image-
conditioned generation, the diffusion models were
never trained with a noisy conditioning, meaning
that they are likely unable to extract information
from it well. Furthermore, the denoising model
mostly needs to generate low-frequency information,
since the segmentation masks that the model gener-
ates only consist of binary values, without any fine-
grained differences between them. However, such
values are settled on early in the reverse diffusion
process. At that point, CADS is obscuring most of
the conditioning information, making it very difficult
to generate high-quality images. This is very differ-
ent for text-based image generation, which is much
less reliant on correct low-frequency information.
Table E.1 shows the corresponding experimental re-
sults: HM IoU* greatly suffers, even when only 10%
of the original noise schedule is used.

16

	Introduction
	Related work
	Method
	EDM diffusion framework
	Increasing sample diversity
	Clustering-based sample-pruning
	Particle Guidance
	SPELL: SParse repELLency
	Inter-batch diversity

	Multi-modal datasets
	MMFire
	Cityscapes: Multi-modal, binary version
	LIDC

	Experiments
	Evaluation criteria
	Clustering-based sample-pruning
	Particle guidance
	SPELL

	Future work
	Conclusion
	Datasets
	MMFire
	Cityscapes
	LIDC

	Implementation details
	Experimental details
	Training the diffusion models
	Sampling from the diffusion models
	Particle guidance and SPELL
	Probabilistic UNet

	Evaluation
	CADS

