003

004

005 006

007

008

010

011

012

014

015

016

018

019

020

021

022

023

025

026

027

028

029

030

032

033

034

035

036

037

039

040

041

042

043

044

045

050

051

053

058

060

061

# Wildfire Spread Scenarios: Increasing Sample Diversity of Segmentation Diffusion Models with Training-Free Methods

Anonymous Full Paper Submission 56

# Abstract

Wildfire spread is an inherently stochastic process. To capture this stochasticity, we train a generative diffusion model to predict the wildfire spread. Such models can predict multiple different outcomes per input. However, seeing all possible outcomes may require hundreds of samples, since some of them have a low generation probability. To make this more efficient, we examine methods that bias the sampling process: away from the correct generation probabilities and towards higher sample diversity. To train this model, we introduce a simulation-based wildfire spread dataset called MMFire. Furthermore, we use a modified version of Cityscapes and the medical dataset LIDC, to ensure that our methodological findings transfer across domains. The diversityencouraging methods we explore are particle guidance, SPELL, and our own clustering-based approach. All methods beat naive sampling, with SPELL proving to be best, increasing the HM IoU\* metric by 7.5% on MMFire and 16.1% on Cityscapes with little cost to image quality and runtime.

The code and the MMFire dataset will be made publicly available upon acceptance.

### 1 Introduction

Recent papers on daily wildfire spread prediction [1–3] fail to achieve a high predictive performance, even though we know which variables are relevant for the physical processes at play. We believe that this might be related to the high uncertainty that is inherent to wildfire spreading, especially at the typically very low spatial and temporal resolution in these studies. Given this uncertainty, models should likely consider *several* outcomes to capture the range of likely options. We use diffusion models to generate this range of outcomes directly.

Although various papers explore how to use diffusion models to generate segmentation masks [4–12], they tend to simply aggregate the generated masks. This ignores the core advantage of generative models: their ability to generate distinct outputs. Some research examines how to train diffusion models to generate such distinct segmentation masks [10, 11] with well-calibrated probabilities. Yu et al. [13] even generate wildfire spread predictions with a diffusion model, but only compare the averaged predictions



Figure 1. Diversity-biased sampling: We train a conditional diffusion model to generate different outputs for the same input data. If the goal is to find most, or all, different outputs for the current input, naive sampling can require a large number of samples, due to the redundancy in samples. To reduce this redundancy, we employ methods that bias the sampling towards higher diversity for the same number of samples.

to averaged simulated outcomes. We instead want to use the distinct predictions directly, to enable fire fighters to better plan for these different scenarios. To efficiently generate different predictions, instead of redundant ones, we bias the sampling process towards higher diversity.

Output diversity is relevant in various domains that have more than one possible target, e.g. different opinions of medical experts [11], or in temporal prediction: How will an active wildfire spread? Will a child chase a ball that rolls onto the street? In such applications, generating a diversity-biased set of scenarios can be much more useful than generating scenarios according to properly calibrated probabilities, or working with pixel-wise probabilities.

As our main motivation is wildfire spread, we first introduce MMFire as a benchmark dataset. For each starting condition, it contains multiple plausible outcomes of wildfire spread, based on uncertainty about the wind direction. In an application setting, it is unrealistic to not know the wind direction at all. However, this dataset is not meant to be perfectly realistic. It is meant to serve as a controlled environment for evaluating different diversity-encouraging methods. Trained on enough real-world data, or additional synthetic data, future models should be able to generate diverse wildfire spread predictions. Any knowledge gained from working on MMFire can

then be transferred to these models.

To draw conclusions that transfer across domains, we also use a binary variant of Cityscapes [14], and the medical dataset LIDC [15]. These datasets also contain *multiple* binary segmentation masks as targets for each input.

To cost-efficiently increase diversity, we focus on training-free methods: Particle guidance [16] and SPELL [17]. Both methods modify the sampling trajectory by repelling samples from each other, and thus increasing diversity. We also propose a simple clustering-based approach that starts with a large batch of samples and discards redundant ones very early on, to reduce computational cost.

Our key contributions are the following:

- We introduce MMFire, a simulated wildfire spread dataset with multiple valid future outcomes per input (subsection 4.1).
- We draw a connection between diversity statistics for segmentation masks and SPELL's critical parameter that eliminates the need for extensive hyperparameter search (subsection 5.4).
- We develop a clustering-based pruning approach. It beats naive sampling by 2.4% HM IoU\* on MMFire (Table 2) and up to 15.5% on Cityscapes (Table 1), without modifying the original sampling trajectories.
- We demonstrate that particle guidance and SPELL both achieve superior quality-diversity trade-offs compared to naive sampling (Table 2, Table 3). For single batches, SPELL beats naive sampling by 7.5% HM IoU\* on MMFire and 16.1% on Cityscapes.

# 2 Related work

Research on generating segmentation masks with diffusion models either uses the Gaussian diffusion framework or variants of categorical diffusion. When generating binary segmentation masks [4, 5, 12, 18], Gaussian diffusion can be used directly, followed by thresholding to binarize the real-valued outputs. To extend this from binary to multi-class segmentation masks, Analog Bits [7, 8] can be used with little change to the underlying mechanics.

In contrast to Gaussian diffusion, categorical diffusion [6, 9, 11] uses discrete state spaces, instead of real-valued ones. Empirically, Gaussian and categorical approaches perform similarly [9, 11].

In this work, we use Gaussian diffusion. This allows us to integrate diversity-related methods [16, 17], that have been developed for Gaussian diffusion, more easily. We focus on binary masks, assuming that the results can be transferred to the multi-class setting via Analog Bits.

Most studies on diffusion segmentation models focus on achieving a high segmentation performance, by aggregating multiple samples as a form of implicit ensembling [5], or improving segmentation and calibration scores of the mean-aggregated samples [4]. However, these improvements could conceptually also be achieved with discriminative methods. We instead want to focus on the unique ability of generative methods to generate multiple different predictions for the same input. We are only aware of two studies [10, 11] that investigate the performance of their model on a dataset with multiple correct annotations, also termed ambiguous segmentation.

Various methods have been proposed in the diffusion model literature to increase sample diversity, though they usually focus on the text-conditioned generation of natural images. CADS [19] adds a noise schedule to the conditioning. This is supposed to prevent samples from focusing on the most probable modes, and instead explore more of the latent space. In preliminary experiments, we found that CADS severely degrades the image quality and thus do not use it. This degradation is likely due to the need for the model to access conditioning information early in sampling, to establish the low-frequency information that represents the segmentation mask.

Instead of modifying the conditioning to increase diversity, most methods modify the sampling schedule. Particle guidance [16] computes a guidance term based on the pairwise distances between noise-free predictions of the current in-batch samples to repel them from each other. Motion modes [20] extends this to include several additional guidance terms, that encourage properties in the generated data that particle guidance might otherwise not preserve. We directly use particle guidance, since our domain does not lend itself as easily to additional guidance terms.

ProCreate [21] aims to generate samples that differ from existing samples. For a more accurate distance computation, the method 'looks ahead' by denoising for several steps. It then computes a guidance term similar to particle guidance. We also investigate the case of generating multiple batches of data with repellence from previously-sampled images. In contrast to ProCreate, we only use a single-step denoising for distance computations, since we find that initial predictions are rather close to the final samples for binary segmentation masks.

Contrary to guidance-based methods, SPELL [17] does not indiscriminately repel all close samples from each other. Instead, if two samples lie within a pre-defined L2-distance of each other (the *shield radius*), SPELL repels them just enough to ensure that the distance is maintained. We use SPELL as an alternative to particle guidance.

# 3 Method

We use the EDM diffusion framework [22] to generate segmentation masks, conditioned on an input image. At inference, we generate multiple masks by denoising multiple random noise samples with the trained diffusion model. Particle guidance[16] and SPELL [17] are used during the denoising process to increase the diversity among these generated masks. They work heuristically, by pushing the samples in a batch away from each other, thus increasing the diversity within a batch.

### 3.1 EDM diffusion framework

We follow the EDM framework [22] for our denoising diffusion models. The EDM model is based on the following ordinary differential equation (ODE):

$$d\mathbf{x} = -t\nabla_{\mathbf{x}}\log p(\mathbf{x}; t)dt, \tag{1}$$

where x is a noisy mask (also called latent) and t is the ODE time step. We also refer to t as the  $noise\ level$ , given that we use the default variance exploding formulation, where  $\sigma(t)=t$ . The ODE is solved via numerical integration with a 2nd order Heun solver [22]. This numerical integration starts from a pure noise mask with very high noise level  $\sigma_{\rm max}$  and gradually removes all of the noise until a noise-free mask is reached.

We train a denoising neural network  $D_{\theta}$  to remove noise by minimizing the objective:

210 
$$\mathbb{E}_{\boldsymbol{y} \sim p_{\text{data}}} \mathbb{E}_{t \sim p_{\text{train}}} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, t^2 \mathbf{I})} \|D(\boldsymbol{y} + \boldsymbol{\epsilon}; t) - \boldsymbol{y}\|_2^2, (2)$$

where a segmentation mask  $\boldsymbol{y}$  is sampled from the data distribution  $p_{\text{data}}$ ; the current time step t is sampled from  $p_{\text{train}}$ ; and a noise image  $\boldsymbol{\epsilon}$  is sampled from an isotropic Gaussian with standard deviation t. The forward diffusion process then simply consists of adding the noise  $\boldsymbol{\epsilon}$  to the ground truth segmentation mask  $\boldsymbol{y}$ . We refer to the noisy segmentation mask as  $\boldsymbol{y}_t$ . By optimizing this objective, the denoising model  $D_{\theta}$  learns to predict the noise-free  $\boldsymbol{y}$ , given  $\boldsymbol{y}_t$  and the current time step t.

After training  $D_{\theta}$ , Equation 1 can be solved by approximating the score function:

$$score(x,t) = \nabla_{\boldsymbol{x}} \log p(\boldsymbol{x};t) = (D_{\theta}(\boldsymbol{x};t) - \boldsymbol{x})/t^{2}. (3)$$

To use the EDM framework for segmentation, the generated sample needs to be conditioned on an input image that we want to segment. Therefore, we sample pairs  $(\boldsymbol{y}, \boldsymbol{c})$  from the data distribution with segmentation mask  $\boldsymbol{y}$  and input image, or conditioning,  $\boldsymbol{c}$ . We pass  $\boldsymbol{c}$  to the denoising network  $D_{\theta}$  as an additional input. We implement this by concatenating  $\boldsymbol{c}$  to the current noisy segmentation mask  $\boldsymbol{y}_t$  in the channel dimension.

# 3.2 Increasing sample diversity

When generating natural images, the reverse diffusion process first determines low-frequency features at high noise levels (e.g. where in the image we see a dog), and as the sample  $x_t$  moves towards lower noise levels, more high-frequency features are determined (e.g. the details of the face and then of the fur). However, in images that are binary segmentation masks, there are very few such high-frequency features, since all pixels take values of 0 or 1, without any fine-grained differences in between. This is highly relevant for any diversity-encouraging methods that modify the sampling process, since it means that the changes we care about are only possible near high noise levels.

Furthermore, in exploratory experiments, we found that the denoiser model's prediction  $D_{\theta}(x_t, t_{\text{max}})$  at the initial time step  $t_{\text{max}}$  is often relatively close to the final output already. This allows us to treat this first prediction as a proxy for the final sample. While this proxy is not perfect, it is a cost-efficient approximation that we employ.

### 3.2.1 Clustering-based sample-pruning

A straight-forward method to find all modes of a diffusion model's distribution is to simply generate a large number of samples. However, this will always incur a relatively high cost. Ideally, we would like to achieve this large-batch behavior, while keeping the cost low. To achieve this, we sample a large initial batch of pure noise, denoise it in a single step, and discard all samples that are deemed redundant. To decide which samples are redundant, we perform k-medians clustering, with k equal to the number of modes that we expect. We discard all but the medians determined by the clustering and finish the reverse diffusion process for the corresponding samples. The benefit of this approach is that it only uses unmodified sampling steps, thus avoiding any negative impacts on image quality that modifications to the sampling trajectory could have. As a distance metric for clustering, we use the chamfer distance instead of L2 distance, since the former proved slightly better in preliminary experiments.

### 3.2.2 Particle Guidance

A popular approach to increase the fidelity of generated natural images are guidance terms, like classifier guidance [23] or classifier-free guidance [24]. These modify the score function in Equation 1 by an additive term:

$$d\mathbf{x} = -t \left( \nabla_{\mathbf{x}} \log p(\mathbf{x}; t) + \alpha \nabla_{\mathbf{x}} g(\mathbf{x}; t) \right) dt, \quad (4) \quad 282$$

where we call g(x;t) the guidance function and  $\alpha$  is a scalar that we call the guidance strength.

287

288

289

290

291

293

294

295

296

297

298

301

302

303

304

305

306

307

308

309

311

312

313

314

315

318

319

320

321

322

324

325

335

336

339

340

342

343

344

346

351

355

356

357

360

366

367

While classifier-free guidance increases fidelity, it decreases diversity [25]. Particle guidance (PG) [16] does the opposite, by improving the diversity among samples (also called particles) in a batch, possibly at the cost of image quality. The basic mechanic is to compute a gradient that increases the pixel-wise L2-distances between images, based on radial basis function (RBF) kernels. This approach is purely heuristic: Samples are pushed apart from each other, but the directions in which they are pushed are not aligned with any information about the data.

Let  $\{x_i|1 \leq i \leq B\}$  be a batch of B noisy masks. To compute the value of the guidance function  $g(x_i;t)$ , the denoising model first estimates the noise-free masks  $\tilde{x}_i$  in a single step for all i:  $\tilde{x}_i = D_{\theta}(x_i;t)$ . Next, the pairwise RBF-kernels k between those noise-free masks are computed via

$$k\left(\tilde{\boldsymbol{x}}_{i}, \tilde{\boldsymbol{x}}_{j}; t\right) = \exp\left(-\frac{\left\|\tilde{\boldsymbol{x}}_{i} - \tilde{\boldsymbol{x}}_{j}\right\|_{2}^{2}}{h_{t}}\right),$$
 (5)

with  $h_t = m_t^2 / \log(B)$ , where  $m_t$  is the median value of  $\|\tilde{\boldsymbol{x}}_t - \tilde{\boldsymbol{x}}_j\|_2^2$  within the current batch of masks.

The negative kernel sum aggregates all distance relationships from mask i to all other masks:

$$g(\boldsymbol{x_i};t) = -\sum_{j=1}^{B} k\left(\tilde{\boldsymbol{x}}_i, \tilde{\boldsymbol{x}}_j; t\right)$$
 (6)

Finally, the gradient of this scalar sum is computed with regards to the noisy mask  $x_i$ , backpropagating through  $D_{\theta}$ . This gradient is then used as guidance in Equation 4.

# 3.2.3 SPELL: SParse repELLency

In contrast to particle guidance, SPELL [17] only repels samples that are too close to each other. The original authors use the metaphor of a shield of radius r around each sample. If a sample enters this protected area around another sample, it is pushed away to an L2 distance of r.

Furthermore, SPELL is not a guidance method. Instead of adding a term to the score function, it modifies the score function in Equation 3 by changing the noise-free prediction with an additive term  $\Delta$ . The modified score function for  $x_i$  becomes:

$$score_{mod}(x_i, t) = (D(\boldsymbol{x}_i; t) + \Delta_i - \boldsymbol{x}_i)/t^2, \quad (7)$$

with the additive term  $\Delta_i$  computed as:

$$\Delta_i = \sum_{b,b \neq i} \sigma_{\mathrm{relu}} \left( \frac{r}{\|\tilde{\boldsymbol{x}}_{0,i} - \tilde{\boldsymbol{x}}_{0,b}\|_2} - 1 \right) \cdot (\tilde{\boldsymbol{x}}_{0,i} - \tilde{\boldsymbol{x}}_{0,b})$$

backward passes like in particle guidance. But since it changes the target of the denoising process at

all sampling steps, there is a high risk for generating lower-quality samples. Therefore, we will limit SPELL to high-noise areas of the sampling process, to give the score function the chance to correct potential image quality issues caused by the repellence.

### 3.2.4 Inter-batch diversity

When generating multiple batches of samples, we want to encourage diversity across these batches. For this reason, we keep a memory bank containing the already-generated samples for the current input. For both particle guidance and SPELL, we add two more method variants: one that only repels samples in the current batch from the samples in the memory bank, and one that repels both from the memory bank and from samples in the current batch. This is also used in the original SPELL paper [17].

### 4 Multi-modal datasets

We use three different multi-modal datasets (i.e. having multiple targets per input). For MMFire and Cityscapes, we know all targets and explicitly set their probabilities. These datasets are thus very useful for evaluating different methods, but the way their annotations are generated does not represent a real-life use case. LIDC, on the other hand, offers a case of real-life ambiguous segmentation, where different annotations represent differing opinions between domain experts. The datasets also greatly differ in their inter-mode variances: MMFire's modes always overlap in the initial burned area with a medium amount of difference between modes. In Cityscapes, there are large-scale differences between modes, but also large-scale overlaps between some modes. In LIDC, there is often a large amount of overlap between different annotations, with differences being rather small. These differences will become relevant when setting the hyperparameters for SPELL in subsection 5.4.

### 4.1 MMFire

We generated MMFire (MM = multi-modal) with the help of the Simfire [26] simulator. For a given geolocation, it downloads from the LANDFIRE program [27, 28] real-world data that is relevant for predicting how wildfires spread, namely: dead fuel moisture at extinction, fuel bed depth, oven-dry fuel load, surface to volume ratio, and elevation. Initial wind speed and wind direction are randomly generated. An initial fire is set near the center of the image. The well-known Rothermel model [29] then deterministically predicts the spread of the fire for a desired time, based on these initial conditions.

To generate a dataset with multiple different outcomes for each initial condition, we first randomly

383

384

385

387

388

389

390

391

392

393

395

396

397

398

399

402

403

404

405

406

407

408

410

411

412

413

414

420

421

425

432

433

442

443

444

# Input data Multiple future scenarios Dead fuel moisture of extinction Field bad depth Oven-dry Fuel Load Surface area Wind speed 25 1% Wind: 270' Start Wind: 270' Wind: 270' Start Wind: 280' W

Figure 2. MMFire: We use a wildfire spread simulator to generate multiple plausible outcomes based on the current state of the fire. This is done by setting the wind direction to one of eight values across the whole  $64 \times 64$  image. We impose a highly skewed probability distribution on the eight outcomes during training (see the probabilities above). This represents a difficult situation where naively sampling from the diffusion model is a very slow strategy for finding all modes.

pick a geolocation in the western USA, where fuel is abundant and LANDFIRE provides data. We simulate a fire at that location for 10 minutes to have a non-trivial initial state for the fire. From this initial state, we branch into eight different futures by setting the wind direction to  $i\times45^\circ, i\in\{0,1,\ldots,7\}$ , constant across the simulation area of  $64\times64$  pixels. With these eight wind directions, we then simulate another respective 10 minutes of fire spread. We use the eight final states as the targets of the dataset. Figure 2 shows an example pair of input data and eight different futures.

The models we train never get access to the wind direction. Instead, they are supposed to pick a different wind direction according to the probabilities that we set. For this, we set a highly skewed distribution on the different modes (and their associated wind direction), weighting mode i with a weight of  $2^i$ , to create a dataset in which it is challenging to find all modes of the distribution. With naive sampling, the expected number of samples to see each mode at least once is about 307.

# 4.2 Cityscapes: Multi-modal, binary version

Cityscapes [14] is a semantic segmentation benchmark dataset. Inspired by previous studies [30, 31], we synthetically make the annotations multi-modal. Unlike these previous studies, we stay within the binary regime, to stay closer to the data we are interested in, namely wildfire progression data.

To make the Cityscapes dataset multi-modal, previous studies split up one class into two new, synonymous, classes, e.g. road becomes  $road_1$  and  $road_2$ . During training, we randomly choose whether all road pixels in the current image become  $road_1$  or

### Creating multiple targets for Cityscapes



Independently flip classes to 0 or 1 with fixed probabilities, resulting in  $2^4=16$  binary segmentation masks, or modes:



Figure 3. Multi-modal binary Cityscapes: The classes road, sidewalk, vegetation, and car are randomly flipped to the positive or negative class, with fixed probabilities, resulting in  $2^4 = 16$  separate modes per image.

all become  $road_2$ . To stay binary, we instead flip those classes between the positive and the negative class. We do this with the classes road, sidewalk, vegetation and car. All other classes are always set to negative. We flip the classes to positive with respective probabilities 5%, 25%, 75%, 95%. Each class is individually flipped on or off, thus the combination of these flip decisions for all four classes leads to  $2^4 = 16$  modes for each image, assuming all four classes are present. This creates a skewed distribution, where naive sampling is a bad strategy to find all modes. Figure 3 shows all modes for an example image. While previous studies also used the class *person*, we generate segmentation masks at  $64 \times 128$  pixels for faster experimentation. At this resolution, correctly annotating people is very difficult, so we drop this class.

### 4.3 LIDC

The LIDC dataset [15] contains CT scans of lungs and corresponding expert annotations of lung nodules. Each scan is annotated with four binary segmentation masks, that oftentimes disagree with each other. Crucially, if segmentation masks differ from each other, this represents actual disagreement between experts, stemming from epistemic uncertainty. The challenge when working with this dataset is that neither the full set of modes is not available.

# 5 Experiments

For more detailed information on implementation 445 and experimental setup, please refer to the appendix. 446

### 5.1 Evaluation criteria

To evaluate the generated samples, we compute the 4 Hungarian-Matched IoU (HM IoU), which finds the 4

451

452

453

455

456

457

458

459

460

461

462

463

464

465

466

467

468

471

472

473

474

475

478

479

480

481

482

483

484

488

489

491

492

494

495

496

499

502

507

509

513

516

517

518

520

521

524

525

526



Figure 4. Applying clustering-based sample-pruning at different sampling steps: Varying after which sampling step the clustering and pruning is performed influences the final performance. For all datasets, there is large gap between evaluating only the cluster centers and evaluating the full set of generated samples. The x-axis represents the index of the sampling step. However, the noise levels at each step do not decrease linearly. See appendix for details on the noise schedule.

best match between generated and ground truth masks and computes the mean IoU across the matched masks. We modify this metric, indicated by HM IoU\*, by removing duplicate ground truth masks, since our goal is to *avoid* the generation of duplicates. This is especially relevant for LIDC where most images have duplicate targets.

For MMFire and Cityscapes, we know the ground truth set of modes. With this, we additionally compute image quality and the number of distinct generated modes (see Appendix D). Results are averaged over five runs with different random seeds.

# 5.2 Clustering-based sample-pruning

Figure 4 shows the performance of clustering-based sample-pruning, applied at different sampling steps. For all datasets, we see a large difference between evaluating only the cluster centers (illustrated by lines) and evaluating the whole set of generated samples (illustrated by dots). This difference persists across all steps, even when the final denoised samples are chosen for clustering at the last step. For Cityscapes, the difference between clustering at the final step and using the fully denoised batch of samples at this step is 20.8% HM IoU\*. This indicates that the clustering algorithm used is not able to reliably detect the modes of the distribution.

We believe that this clustering failure is the result of two interacting factors: First, the modeling error. In approximating the conditional distributions over segmentation masks, the models produce imperfect outputs. Some of them are outliers and have a distorting influence on which clusters are chosen. Second, the asymmetry in the distributions. The MMFire and Cityscapes distribution over modes have been purposefully chosen to be highly asymmetrical, to represent a challenging benchmark. The

Table 1. Clustering-based sample pruning: Varying initial batch size. We investigate the trade-off between runtime and quality when varying the number of initial samples on Cityscapes. Naive sampling generates a number of samples equal to the batch size, while clustering always generates 16 samples, but starts with a higher number of samples that are clustered.

| Method                          | Batch size B | Image quality $\uparrow$ | Distinct modes $\uparrow$ | HM IoU* ↑ | Runtime $\downarrow$ |
|---------------------------------|--------------|--------------------------|---------------------------|-----------|----------------------|
| Naive sampling                  | 16           | 0.956                    | 12.2                      | 0.416     | 0h41m                |
|                                 | 32           | 0.956                    | 13.3                      | 0.497     | 1h19m                |
|                                 | 64           | 0.956                    | 14.1                      | 0.586     | 2h39m                |
| Clustering [B $\rightarrow$ 16] | 32           | 0.953                    | 5.129                     | 0.469     | 0h46m                |
|                                 | 64           | 0.951                    | 5.680                     | 0.517     | 0h53m                |
|                                 | 128          | 0.949                    | 5.993                     | 0.552     | 1h9m                 |
|                                 | 256          | 0.948                    | 6.122                     | 0.571     | 1h47m                |

rare modes will only show up very seldom. In the light of outliers created by the imperfect models, it is then impossible for the clustering algorithm to decide which outliers are rare modes and which are just noise to be ignored.

We conclude from these results that clustering and pruning immediately after the first sampling step is the best option. Further steps increase the performance on MMFire and LIDC, but also incur the high cost of denoising all samples in the large batch again, while the performance gain is small.

Even with only one denoising step of the full batch, our method incurs a much higher computation cost than naive sampling, while generating the same amount of outputs. We reduce the number of samples in the initial large batch, to investigate the trade-off between performance and runtime. Runtime and performance drop step-wise with reduced batch size, as shown in Table 1. However our approach comes within 1.5% HM IoU\* of naively sampling 64 samples, with only 16 generated samples. Depending on the use case, this superior sample-efficiency can be a very desirable property.

The strength of our clustering approach is not a low runtime, but a high sample quality. Thus, when comparing this method with others, we decide to use 256 samples and ignore the high runtime. Table 2 shows that clustering outperforms the probabilistic UNet and naive sampling by at least 2.4% on MM-Fire, and 15.5% on Cityscapes. On Cityscapes it gets within 0.6% of the best performance by SPELL, even beating particle guidance by 1.8%. However, on MMFire, it is clearly outperformed by both particle guidance and SPELL. We assume that this is caused by the two factors mentioned earlier. However, on LIDC, our approach reaches the first place with a performance almost equal to that of the probabilistic UNet, outperforming the next-best diffusion-based method by 3.9%. This is likely because the rather uniform distribution of modes on LIDC makes it easier to determine correct cluster centers.

To compare with methods that generate multiple batches, we increase the number of clusters k to the total number of desired samples, effectively overclustering. Table 3 shows that clustering still beats

532

533

534

535

536

539

540

541

542

543

544

545 546

547

548

549

550

551

552

553

554

555

556

558

559

560

561

562

563

564

Table 2. Single-batch performance: We generate a batch of N samples per input; N is the number of modes of the respective dataset. Methods should produce a diverse set of samples while retaining a high image quality. PG: Particle Guidance. LIDC's ground truth data does not permit the computation of the image quality and distinct modes metrics.

| Method                                   | Image quality $\uparrow$ | Distinct modes $\uparrow$ | HM IoU* ↑ | Runtime $\downarrow$      |  |  |
|------------------------------------------|--------------------------|---------------------------|-----------|---------------------------|--|--|
| MMFire - 1 batch $\times$ 8 samples      |                          |                           |           |                           |  |  |
| Naive sampling                           | 0.999                    | 3.4                       | 0.638     | 0h26m                     |  |  |
| Prob. UNet                               | 0.999                    | 3.1                       | 0.581     | 0h6m                      |  |  |
| Clustering $[256\rightarrow 8]$          | 0.999                    | 3.8                       | 0.662     | 1h50m                     |  |  |
| PG: batch                                | 0.999                    | 3.9                       | 0.690     | 0h29m                     |  |  |
| SPELL: batch                             | 0.999                    | 4.4                       | 0.713     | 0h25m                     |  |  |
| Cityscapes - 1 batch $\times$ 16 samples |                          |                           |           |                           |  |  |
| Naive sampling                           | 0.956                    | 12.2                      | 0.416     | 41m                       |  |  |
| Prob. UNet                               | 0.960                    | 3.6                       | 0.292     | $6 \mathrm{m}$            |  |  |
| Clustering [256 $\rightarrow$ 16]        | 0.948                    | 6.1                       | 0.571     | 1h47m                     |  |  |
| PG: batch                                | 0.825                    | 15.3                      | 0.553     | 46m                       |  |  |
| SPELL: batch                             | 0.936                    | 7.3                       | 0.577     | 40m                       |  |  |
| LIDC - 1 batch $\times$ 4 samples        |                          |                           |           |                           |  |  |
| Naive sampling                           |                          |                           | 0.523     | 0h50m                     |  |  |
| Prob. UNet                               |                          |                           | 0.573     | 0h5m                      |  |  |
| Clustering [128 $\rightarrow$ 4]         | n/a                      | n/a                       | 0.574     | 3h19m                     |  |  |
| PG: batch                                |                          |                           | 0.528     | 0h57m                     |  |  |
| SPELL: batch                             |                          |                           | 0.535     | $0\mathrm{h}50\mathrm{m}$ |  |  |

naive sampling, but falls behind the other methods.

In summary, while the computational cost of this method is higher than that of competing methods, it can be useful if the goal is only to produce a low number of samples that is as representative as possible, and the underlying distribution is not heavily skewed. Furthermore, particle guidance and SPELL might be more cost-efficient at achieving a high HM IoU; but this clustering-based approach only follows the original sampling trajectory, thus avoiding potential image quality issues stemming from the interference with the sampling process. Application cases for this method could be situations where a low number of high-quality scenarios are presented to a human operator for analysis or planning, but runtime is not a big concern.

### 5.3 Particle guidance

Following our intuition that the determination of modes for binary segmentation masks happens mostly in the early sampling steps, we limit particle guidance to the initial steps. Table D.1 shows that limiting the guidance to the initial step performs similarly well as computing it at every step, but saves computation by avoiding the backward steps necessary for computing the guidance term.

When choosing the strength of particle guidance, Table D.1 shows a trade-off between image quality and diversity. The loss in image quality is caused by the guidance pushing samples apart without any regard for the specific dataset or the learned score function. This can easily cause the samples to move into subspaces on which the denoising model has not been trained well, leading to faulty predictions.

Analyzing the results in Table 2 and Table 3, we find that particle guidance always beats naive sam-

Table 3. Multi-batch performance: We generate two or four batches of N samples per input; N is the number of modes of the respective dataset. For clustering, we only generate one batch, but increase the number of clusters accordingly. PG: Particle Guidance. LIDC's ground truth data does not permit the computation of the image quality and distinct modes metrics.

| Method                                                                                        | Image quality $\uparrow$ | Distinct modes $\uparrow$ | HM IoU* ↑                                                   | Runtime $\downarrow$                               |
|-----------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------------------------------------------|----------------------------------------------------|
|                                                                                               | MMFire - 2 bat           | ches ×8 samples           |                                                             |                                                    |
| Naive sampling                                                                                | 0.999                    | 4.1                       | 0.705                                                       | 0h44m                                              |
| ProbUNet                                                                                      | 0.999                    | 3.6                       | 0.639                                                       | 0h12m                                              |
| Clustering [256→16]                                                                           | 0.999                    | 4.4                       | 0.728                                                       | 2h8m                                               |
| PG: batch                                                                                     | 0.999                    | 4.7                       | 0.746                                                       | 1h3m                                               |
| PG: memory bank                                                                               | 0.999                    | 4.5                       | 0.733                                                       | 1h4m                                               |
| PG: batch & memory bank                                                                       | 0.999                    | 4.6                       | 0.743                                                       | 1h4m                                               |
| SPELL: batch                                                                                  | 0.999                    | 5.2                       | 0.781                                                       | 0h55m                                              |
| SPELL: memory bank                                                                            | 0.999                    | 5.0                       | 0.765                                                       | 0h55m                                              |
| SPELL: batch & memory bank                                                                    | 0.999<br>MMFire - 4 bat  | 5.3<br>tches ×8 samples   | 0.784                                                       | 0h55m                                              |
| Naive sampling                                                                                | 0.999                    | 4.7                       | 0.751                                                       | 1h28m                                              |
| ProbUNet                                                                                      | 0.999                    | 4.1                       | 0.681                                                       | 0h27m                                              |
| Clustering [256→32]                                                                           | 0.999                    | 5.0                       | 0.770                                                       | 2h55m                                              |
| PG: batch                                                                                     | 0.999                    | 5.3                       | 0.789                                                       | 2h35m                                              |
| PG: memory bank                                                                               | 0.999                    | 5.0                       | 0.774                                                       | 2h35m                                              |
| PG: batch & memory bank                                                                       | 0.999                    | 5.1                       | 0.781                                                       | 2h38m                                              |
| SPELL: batch                                                                                  | 0.999                    | 6.0                       | 0.826                                                       | 2h17m                                              |
| SPELL: memory bank                                                                            | 0.999                    | 5.5                       | 0.801                                                       | 2h19m                                              |
| SPELL: batch & memory bank                                                                    | 0.999                    | 6.0                       | 0.830                                                       | 2h17m                                              |
|                                                                                               | Cityscapes - 2 ba        | tches ×16 samples         |                                                             |                                                    |
| Naive sampling                                                                                | 0.956                    | 13.3                      | 0.497                                                       | 1h19m                                              |
| ProbUNet                                                                                      | 0.959                    | 4.2                       | 0.326                                                       | 0h12m                                              |
| Clustering [256→32]                                                                           | 0.948                    | 7.3                       | 0.661                                                       | 2h23m                                              |
| PG: batch                                                                                     | 0.827                    | 10.3                      | 0.654                                                       | 1h37m                                              |
| PG: memory bank                                                                               | 0.892                    | 8.9                       | 0.642                                                       | 1h37m                                              |
| PG: batch & memory bank                                                                       | 0.867                    | 9.6                       | 0.679                                                       | 1h36m                                              |
| SPELL: batch                                                                                  | 0.936                    | 8.7                       | 0.690                                                       | 1h26m                                              |
| SPELL: memory bank                                                                            | 0.946                    | 7.7                       | 0.635                                                       | 1h26m                                              |
| SPELL: batch & memory bank                                                                    | 0.936                    | 8.7                       | 0.690                                                       | 1h26m                                              |
|                                                                                               |                          | tches ×16 samples         |                                                             |                                                    |
| Naive sampling                                                                                | 0.956                    | 14.1                      | 0.586                                                       | 2h39m                                              |
| ProbUNet                                                                                      | 0.960                    | 4.7                       | 0.354                                                       | 0h27m                                              |
| Clustering [256→64]                                                                           | 0.949                    | 8.1                       | 0.699                                                       | 3h44m                                              |
| PG: batch                                                                                     | 0.827                    | 11.8                      | 0.704                                                       | 3h41m                                              |
| PG: memory bank                                                                               | 0.919                    | 9.8                       | 0.705                                                       | 3h40m                                              |
| PG: batch & memory bank                                                                       | 0.904                    | 10.3                      | 0.723                                                       | 3h41m                                              |
| SPELL: batch                                                                                  | 0.936                    | 9.7                       | 0.735                                                       | 3h19m                                              |
| SPELL: memory bank                                                                            | 0.951                    | 8.3                       | 0.680                                                       | 3h19m                                              |
| SPELL: batch & memory bank                                                                    | 0.936                    | 9.8                       | 0.735                                                       | 3h19m                                              |
|                                                                                               | LIDC - 2 batc            | hes ×4 samples            |                                                             |                                                    |
| Naive sampling                                                                                |                          |                           | 0.660                                                       | 1h41m                                              |
| ProbUNet                                                                                      |                          |                           | 0.715                                                       | 0h7m                                               |
| Clustering [128→8]                                                                            |                          |                           | 0.695                                                       | 4h1m                                               |
| PG: batch                                                                                     | ,                        | ,                         | 0.677                                                       | 1h54m                                              |
| PG: memory bank                                                                               | n/a                      | n/a                       | 0.675                                                       | 1h54m                                              |
| PG: batch & memory bank                                                                       |                          |                           | 0.682                                                       | 1h54m                                              |
| SPELL: batch                                                                                  |                          |                           | 0.686                                                       | 1h40m                                              |
| SPELL: memory bank                                                                            |                          |                           |                                                             |                                                    |
|                                                                                               |                          |                           | 0.696                                                       | 1h41m                                              |
| SPELL: batch & memory bank                                                                    | LIDC - 4 bate            | hes ×4 samples            | 0.696<br>0.697                                              | 1h41m<br>1h41m                                     |
| SPELL: batch & memory bank  Naive sampling                                                    | LIDC - 4 bate            | hes ×4 samples            |                                                             |                                                    |
| Naive sampling                                                                                | LIDC - 4 bate            | hes ×4 samples            | 0.697                                                       | 1h41m                                              |
| Naive sampling<br>ProbUNet                                                                    | LIDC - 4 bate            | hes ×4 samples            | 0.697<br>0.727<br><b>0.785</b>                              | 3h32m<br>0h13m                                     |
| Naive sampling<br>ProbUNet<br>Clustering [128→16]                                             | LIDC - 4 bate            | thes ×4 samples           | 0.697<br>0.727<br><b>0.785</b><br>0.732                     | 3h32m<br>0h13m<br>5h23m                            |
| Naive sampling ProbUNet Clustering [128→16] PG: batch                                         |                          |                           | 0.697<br>0.727<br><b>0.785</b><br>0.732<br>0.736            | 3h32m<br>0h13m<br>5h23m<br>3h58m                   |
| Naive sampling ProbUNet Clustering [128→16] PG: batch PG: memory bank                         | LIDC - 4 bate            | hes ×4 samples n/a        | 0.727<br>0.785<br>0.732<br>0.736<br>0.739                   | 3h32m<br>0h13m<br>5h23m<br>3h58m<br>3h58m          |
| Naive sampling ProbUNet Clustering [128→16] PG: batch PG: memory bank PG: batch & memory bank |                          |                           | 0.697<br>0.727<br>0.785<br>0.732<br>0.736<br>0.739<br>0.743 | 3h32m<br>0h13m<br>5h23m<br>3h58m<br>3h58m<br>3h58m |
| Naive sampling ProbUNet Clustering [128→16] PG: batch PG: memory bank                         |                          |                           | 0.727<br>0.785<br>0.732<br>0.736<br>0.739                   | 3h32m<br>0h13m<br>5h23m<br>3h58m<br>3h58m          |

pling, but tends to perform worse than SPELL. Most noticeable, on Cityscapes with 16 samples, it only reaches an image quality of 82.5%, while the next worst method is SPELL with a much higher 93.6%. 569 At the same time, particle guidance reaches an astonishing 15.3 out of 16 distinct modes, while SPELL only reaches 7.3, showcasing the trade-off between image quality and sample diversity inherent to such methods that modify the sampling trajectory.

572

573

574

575

### **5.4** SPELL

SPELL's main hyperparameter is the shield radius r. It defines an L2 distance within which no other sample is allowed to fall. If a sample violates this shield, it is pushed outside of the radius. In the

581

582

583

584

585

586

587

590

591

592

593

594

595

596

597

598

599

600

603

604

605

606

607

608

610

611

612

613

614

615

616

618

619

620

622

623

631

633

637

638

641

649

650

652

653

661

662

Table 4. SPELL: Varying shield radius. Based on diversity statistics on the Cityscapes training set, we perform a coarse search around  $r_0 = 12.7$ .

| Shield radius $r$ | Image quality ↑ | Distinct modes ↑ | HM IoU*↑ |
|-------------------|-----------------|------------------|----------|
| 6.350             | 0.944           | 6.6              | 0.540    |
| 9.525             | 0.934           | 7.4              | 0.564    |
| 12.700            | 0.924           | 7.8              | 0.561    |
| 15.875            | 0.914           | 8.1              | 0.551    |

case of binary segmentation masks, this L2 distance is equivalent to the square root of the number of pixels that must differ between two samples. This correspondence provides a very direct way to specify the desired diversity that does not exist for natural images (which use the full space in [0,1]) or for latent diffusion models (where distances in latent space do not directly correspond to distances in image space). It becomes easy to set a shield radius, even if only single annotations are available in the training set.

We use the fact that we know several targets for each input to determine a starting value  $r_0$  for the shield radius. For each input, we compute the minimum L2 distance among unique targets, and then compute the mean of these minima:

$$r_0 = \frac{1}{N} \sum_{i=1}^{N} \min \left( \{ ||y_{i,j} - y_{i,k}||_2 ||y_{i,j} \neq y_{i,k} \} \right)$$
(9)

For each dataset, we conduct a coarse hyperparameter search around  $r_0$  to determine the parameter to use. Table 4 shows this for Cityscapes. These results confirm that  $r_0$  as computed above is a a very good initial value. For MMFire and LIDC, we found  $r_0$  to be the best (Table C.1).

The hard L2-limit enforced by SPELL means that samples are pushed apart without regard for how realistic the resulting images are. Especially towards the end of sampling, this is contrary to particle guidance, which slowly fades out with decreasing noise level. SPELL's stronger push seems to be unproblematic in the original SPELL paper [17], which uses latent diffusion models. These models have a downstream decoder model that maps the final latent representation to an image, which can potentially counter-act imperfect sampling outcomes. However, since we are directly applying the repellence in image space, we have to be more careful. To prevent SPELL from having a negative influence towards the end of sampling, we limit SPELL's application to  $s_{\min} = 40$ , where  $s_{\min}$  is the highest noise level at which the guidance is still applied. In our case, that corresponds to the second sampling step. This change allows the score function to still guide the samples that were perturbed by SPELL towards more likely outcomes, leading to an improvement of 1.3% HM IoU\* on Cityscapes (see Table 5).

On Cityscapes, SPELL consistently beats all other methods. Similar to particle guidance, repelling

Table 5. SPELL: Limit application to high noise. We vary  $s_{\min}$ , the highest noise level at which SPELL is still applied, to reduce the potentially negative influence during sampling. We begin sampling from pure Gaussian noise with  $\sigma_{\max} = 80$ , the default for the EDM framework.  $s_{\min} = \infty$  represents never using SPELL.  $s_{\min} = 0$  represents always using SPELL.

| $s_{\min}$ | Image quality ↑ | Distinct modes ↑ | HM IoU*↑ | Runtime $\downarrow$      |
|------------|-----------------|------------------|----------|---------------------------|
| $\infty$   | 0.956           | 12.2             | 0.416    | 41m                       |
| 70         | 0.938           | 7.0              | 0.571    | 41m                       |
| 40         | 0.936           | 7.3              | 0.577    | 40m                       |
| 20         | 0.935           | 7.4              | 0.571    | 41m                       |
| 10         | 0.935           | 7.4              | 0.571    | 41m                       |
| 0          | 0.934           | 7.4              | 0.564    | $0\mathrm{h}40\mathrm{m}$ |

from in-batch and previously generated samples performs best, which intuitively makes sense. SPELL stays within 2.4% of the best image quality despite modifying the sampling trajectory, which is an acceptable trade-off for the large HM IoU\* gains. On MMFire, particle guidance matches SPELL.

On LIDC, both particle guidance and SPELL clearly underperform the probabilistic UNet. Further work may be needed to tune our diffusion model on LIDC, though this performance gap is reversed on the other datasets. However, the diversity-encouraging methods always outperforms naive sampling from the diffusion model. Thus, it always seems advisable to use SPELL, even on datasets with fairly symmetric distributions, like LIDC.

### 6 Future work

While MMFire is very useful for benchmarking, it lacks realistic diversity. Such diversity can be added to real-world datasets by simulating alternative futures at each step. For our clustering-based approach, density-based clustering algorithms could make it easier to detect low-probability outliers as separate clusters. Furthermore, we only investigated training-free methods. Training-based approaches might improve upon these. Lastly, consistency models [32] might provide better one-step approximations, which all investigated methods rely upon.

## 7 Conclusion

We introduced MMFire, a simulated multi-modal wildfire spread dataset. We demonstrated that particle guidance and SPELL substantially improve prediction diversity with minimal quality loss, with SPELL achieving 7.5% HM IoU\* gains on MMFire and 16.1% on Cityscapes. Our clustering-based pruning provides an alternative that is computationally intense, but preserves image quality better. These advances enable more sample-efficient multi-modal modeling of wildfire spread.

675

676

677

678

679

680

681

682

683

684

685

687

688

689

690

691

692

693

694

695

696

697

699

700

701

702

703

704

705

707

708

709

710

711

712

713

714

715

716

717

719

723

728

729

731

734

735

741

751

753

755

756

757

765

766

# References

- F. Huot, R. L. Hu, N. Goyal, T. Sankar, M. 665 Ihme, and Y.-F. Chen. "Next Day Wildfire 666 Spread: A Machine Learning Dataset to Pre-667 dict Wildfire Spreading From Remote-Sensing 668 Data". In: IEEE Transactions on Geoscience 669 and Remote Sensing 60 (2022). Conference 670 Name: IEEE Transactions on Geoscience and 671 Remote Sensing, pp. 1–13. ISSN: 1558-0644. 672 DOI: 10.1109/TGRS.2022.3192974.
  - S. Gerard, Y. Zhao, and J. Sullivan. "Wildfire-SpreadTS: A dataset of multi-modal time series for wildfire spread prediction". In: Thirtyseventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track. 2023. URL: https://openreview.net/ forum?id=RgdGkPRQ03.
  - M. Rösch, M. Nolde, T. Ullmann, and T. Riedlinger. "Data-Driven Wildfire Spread Modeling of European Wildfires Using a Spatiotemporal Graph Neural Network". In: Fire 7.6 (June 2024). Number: 6 Publisher: Multidisciplinary Digital Publishing Institute, p. 207. ISSN: 2571-6255. DOI: 10.3390/ fire7060207. URL: https://www.mdpi.com/ 2571-6255/7/6/207 (visited on 07/16/2025).
    - T. Amit, T. Shaharbany, E. Nachmani, and L. Wolf. SegDiff: Image Segmentation with Diffusion Probabilistic Models. Sept. 7, 2022. DOI: 10.48550/arXiv.2112.00390. arXiv: 2112.00390[cs]. URL: http://arxiv.org/ abs/2112.00390 (visited on 08/30/2023).
    - J. Wolleb, R. Sandkühler, F. Bieder, P. Valmaggia, and P. C. Cattin. "Diffusion Models for Implicit Image Segmentation Ensembles". In: Proceedings of The 5th International Conference on Medical Imaging with Deep Learning. Ed. by E. Konukoglu, B. Menze, A. Venkataraman, C. Baumgartner, Q. Dou, and S. Albarqouni. Vol. 172. Proceedings of Machine Learning Research. PMLR, July 6, 2022, pp. 1336-1348. URL: https://proceedings. mlr.press/v172/wolleb22a.html.
    - T. Chen, C. Wang, and H. Shan. "Berdiff: Conditional bernoulli diffusion model for medical image segmentation". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2023, pp. 491–501.
  - T. Chen, L. Li, S. Saxena, G. Hinton, and D. J. Fleed. "A Generalist Framework for Panoptic Segmentation of Images and Videos". In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE, Oct. 1,

- 2023, pp. 909–919. ISBN: 979-8-3503-0718-4. 720 DOI: 10.1109/ICCV51070.2023.00090. URL: https://ieeexplore.ieee.org/document/ 10377333/ (visited on 09/01/2025).
- T. Chen, R. ZHANG, and G. Hinton. "Ana-724 log bits: Generating discrete data using diffu- 725 sion models with self-conditioning". In: The 726 eleventh international conference on learning representations. 2023. URL: https:// openreview.net/forum?id=3itjR9QxFw.
- Z. Lai, Y. Duan, J. Dai, Z. Li, Y. Fu, H. Li, 730 Y. Qiao, and W. Wang. Denoising Diffusion Semantic Segmentation with Mask Prior Modeling. June 22, 2023. arXiv: 2306.01721[cs]. 733 URL: http://arxiv.org/abs/2306.01721 (visited on 10/20/2023).
- [10] A. Rahman, J. M. J. Valanarasu, I. Haci- 736 haliloglu, and V. M. Patel. "Ambiguous Medi-737 cal Image Segmentation Using Diffusion Mod- 738 els". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2023, pp. 11536–11546.
- L. Zbinden, L. Doorenbos, T. Pissas, A. T. 742 [11]Huber, R. Sznitman, and P. Márquez-Neila. 743 "Stochastic Segmentation with Conditional Categorical Diffusion Models". In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE, Oct. 1, 2023, pp. 1119-1129. ISBN: 979-8-3503-0718-4. DOI: 750 10 . 1109 / ICCV51070 . 2023 . 00109. URL: https://ieeexplore.ieee.org/document/ 10376866/ (visited on 01/27/2025).
- J. Wu, R. Fu, H. Fang, Y. Zhang, Y. Yang, H. Xiong, H. Liu, and Y. Xu. "Medsegdiff: Medical image segmentation with diffusion probabilistic model". In: Medical imaging with deep learning. PMLR, 2024, pp. 1623–1639.
- W. Yu, A. Ghosh, T. S. Finn, R. Arcucci, 759 [13]M. Bocquet, and S. Cheng. A Probabilistic Approach to Wildfire Spread Prediction Using a Denoising Diffusion Surrogate Model. 762 July 1, 2025. DOI: 10.48550/arXiv.2507. 763 00761. arXiv: 2507.00761[cs]. URL: http: //arxiv.org/abs/2507.00761 (visited on 09/11/2025).
  - M. Cordts, M. Omran, S. Ramos, T. Rehfeld, 767 M. Enzweiler, R. Benenson, U. Franke, S. 768 Roth, and B. Schiele. "The Cityscapes Dataset for Semantic Urban Scene Understanding". 770 In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 772 2016, pp. 3213-3223. URL: https://www.773 cv-foundation.org/openaccess/content\_ cvpr\_2016/html/Cordts\_The\_Cityscapes\_

777

835

836

837

840

841

846

856

857

858

862

864

865

866

870

871

874

875

880

883

884

886

- Dataset\_CVPR\_2016\_paper.html (visited on 03/02/2025).
- S. G. Armato III, G. McLennan, L. Bidaut, 778 M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, 779 B. Zhao, D. R. Aberle, C. I. Henschke, E. A. 780 Hoffman, E. A. Kazerooni, H. MacMahon, 781 E. J. R. van Beek, D. Yankelevitz, A. M. Bian-782 cardi, P. H. Bland, M. S. Brown, R. M. En-783 gelmann, G. E. Laderach, D. Max, R. C. Pais, D. P.-Y. Qing, R. Y. Roberts, A. R. Smith, A. Starkey, P. Batra, P. Caligiuri, A. Farooqi, 786 G. W. Gladish, C. M. Jude, R. F. Munden, 787 I. Petkovska, L. E. Quint, L. H. Schwartz, 788 B. Sundaram, L. E. Dodd, C. Fenimore, D. 789 Gur, N. Petrick, J. Freymann, J. Kirby, B. 790 Hughes, A. Vande Casteele, S. Gupte, M. Sal-791 lam, M. D. Heath, M. H. Kuhn, E. Dharaiya, R. Burns, D. S. Fryd, M. Salganicoff, V. Anand, U. Shreter, S. Vastagh, B. Y. Croft, and 794 L. P. Clarke. "The Lung Image Database 795 Consortium (LIDC) and Image Database Re-796 source Initiative (IDRI): A Completed Refer-797 ence Database of Lung Nodules on CT Scans". 798 In: Medical Physics 38.2 (2011), pp. 915–931. 799 ISSN: 2473-4209. DOI: 10.1118/1.3528204. URL: https://onlinelibrary.wiley.com/ doi/abs/10.1118/1.3528204 (visited on 802 02/26/2025). 803
- G. Corso, Y. Xu, V. D. Bortoli, R. Barzilay, 804 and T. Jaakkola. "Particle Guidance: non-805 I.I.D. Diverse Sampling with Diffusion Mod-806 els". In: NeurIPS 2023 Workshop on Deep 807 Learning and Inverse Problems. Nov. 3, 2023. 808 URL: https://openreview.net/forum?id= 809 hEyIHsyZ9F (visited on 11/24/2024). 810
- M. Kirchhof, J. Thornton, L. Béthune, P. [17]811 Ablin, E. Ndiaye, and M. Cuturi. "Shielded 812 Diffusion: Generating Novel and Diverse Images using Sparse Repellency". In: Forty-814 second International Conference on Machine 815 Learning. June 18, 2025. URL: https:// 816 openreview . net / forum ? id = XAckVoOiNj 817 (visited on 08/28/2025). 818
- J. Wu, W. Ji, H. Fu, M. Xu, Y. Jin, and Y. [18]819 Xu. "MedSegDiff-V2: Diffusion-Based Medical 820 Image Segmentation with Transformer". In: 821 Proceedings of the AAAI Conference on Artificial Intelligence 38.6 (Mar. 24, 2024). Number: 6, pp. 6030–6038. ISSN: 2374-3468. DOI: 824 10.1609/aaai.v38i6.28418. URL: https:// 825 826 ojs.aaai.org/index.php/AAAI/article/ 827 view/28418 (visited on 07/18/2024).
- [19]S. Sadat, J. Buhmann, D. Bradley, O. Hilliges, 828 and R. M. Weber. "CADS: Unleashing the Di-829 versity of Diffusion Models through Condition-830 Annealed Sampling". In: The Twelfth In-831 ternational Conference on Learning Repre-

- sentations. Oct. 13, 2023. URL: https:// openreview . net / forum ? id = zMoNrajk2X (visited on 02/19/2024).
- K. Pandey, Y. Hold-Geoffroy, M. Gadelha, N. J. Mitra, K. Singh, and P. Guerrero. "Motion modes: What could happen next?" In: 838 Proceedings of the computer vision and pattern recognition conference. 2025, pp. 2030-2039.
- [21]J. Lu, R. Teehan, and M. Ren. "Procreate, 842 don't reproduce! propulsive energy diffusion for creative generation". In: European conference on computer vision. Springer, 2024, pp. 397-414.
- T. Karras, M. Aittala, T. Aila, and S. Laine. 847 "Elucidating the Design Space of Diffusion-Based Generative Models". In: Advances in Neural Information Processing Systems. 850 Ed. by S. Koyejo, S. Mohamed, A. Agarwal, 851 D. Belgrave, K. Cho, and A. Oh. Vol. 35. 852 Curran Associates, Inc., 2022, pp. 26565– 26577. URL: https://proceedings.neurips. 854 cc / paper \_ files / paper / 2022 / file / a98846e9d9cc01cfb87eb694d946ce6b Paper-Conference.pdf.
- [23]P. Dhariwal and A. Nichol. Diffusion Models Beat GANs on Image Synthesis. June 1, 2021. 859 DOI: 10.48550/arXiv.2105.05233. arXiv: 860 2105.05233. URL: http://arxiv.org/abs/ 2105.05233 (visited on 11/18/2024).
- J. Ho and T. Salimans. "Classifier-Free Diffu- 863 sion Guidance". In: NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications. 2021.
- T. Karras, M. Aittala, T. Kynkäänniemi, J. 867 Lehtinen, T. Aila, and S. Laine. "Guiding a Diffusion Model with a Bad Version of Itself". In: The Thirty-eighth Annual Conference on Neural Information Processing Systems. Nov. 6, 2024. URL: https:// openreview.net/forum?id=bg6fVPVs3s& referrer = %5Bthe % 20profile % 20of % 20Tero % 20Karras % 5D(%2Fprofile % 3Fid % 3D~Tero\_Karras1) (visited on 11/18/2024).
- M. Dovle, M. Threet, M. Dotter, C. Kem- 877 [26] pis, A. Tapley, and T. Welsh. SimFire. Ver- 878 sion 2.0.1. July 2024. URL: https://github. 879 com/mitrefireline/simfire.
- LANDFIRE. Anderson Fire Behavior Fuel [27]Model (FBFM13) Layer. LANDFIRE 2.0.0. U.S. Department of the Interior, Geological Survey, and U.S. Department of Agriculture, 2016. URL: https://landfire.gov/ (visited on 09/04/2025).

928

929

930

931

933

934

935

936

937

952

953

954

955

957

958

959

964

965

980

981

984

985

986

987

988

989

990

- LANDFIRE. Elevation Layer. LANDFIRE 887 2.2.0. U.S. Department of the Interior, Ge-888 ological Survey, and U.S. Department of Agri-889 culture, 2020. URL: https://landfire.gov/ 890 (visited on 09/04/2025). 891
- [29]R. C. Rothermel. "A mathematical model for 892 predicting fire spread in wildland fuels". In: 893 Res. Pap. INT-115. Ogden, UT: U.S. Depart-894 ment of Agriculture, Intermountain Forest and 895 Range Experiment Station. 40 p. 115 (1972). 896 URL: https://www.fs.usda.gov/research/ treesearch/32533 (visited on 11/14/2022). 898
- [30] S. Kohl, B. Romera-Paredes, C. Meyer, 899 J. De Fauw, J. R. Ledsam, K. Maier-Hein, S. M. A. Eslami, D. Jimenez Rezende, and 901 O. Ronneberger. "A Probabilistic U-Net 902 903 for Segmentation of Ambiguous Images". In: Advances in Neural Information Pro-904 cessing Systems. Vol. 31. Curran Associates, 905 Inc., 2018. URL: https://proceedings. 906 neurips . cc / paper / 2018 / hash / 907 473447ac58e1cd7e96172575f48dca3b Abstract.html (visited on 11/12/2024). 909
- Z. Gao, Y. Chen, C. Zhang, and X. He. Mod-910 eling Multimodal Aleatoric Uncertainty in Seg-911 mentation with Mixture of Stochastic Experts. 912 Feb. 26, 2023. DOI: 10.48550/arXiv.2212. 913 07328. arXiv: 2212.07328[cs]. URL: http: 914 //arxiv.org/abs/2212.07328 (visited on 915 08/23/2024). 916
- [32]Y. Song, P. Dhariwal, M. Chen, and I. 917 918 Sutskever. "Consistency models". In: Proceedings of the 40th international conference 919 on machine learning. Ed. by A. Krause, E. 920 Brunskill, K. Cho, B. Engelhardt, S. Sabato, 921 and J. Scarlett. Vol. 202. Proceedings of 922 machine learning research. PMLR, July 23, 923 2023, pp. 32211-32252. URL: https:// 924 925 proceedings.mlr.press/v202/song23a. html. 926
  - [33] J. Borovec, W. Falcon, A. Nitta, A. H. Jha, otaj, A. Brundyn, D. Byrne, N. Raw, S. Matsumoto, T. Koker, B. Ko, A. Oke, S. Sundrani, Baruch, C. Clement, C. POIRET, R. Gupta, H. Aekula, A. Wälchli, A. Phatak, I. Kessler, J. Wang, J. Lee, S. Mehta, Z. Yang, G. O'Donnell, and zlapp. Lightning-AI/lightningbolts: Minor patch release. Version 0.6.0.post1. Dec. 2022. DOI: 10.5281/zenodo.7447212. URL: https://doi.org/10.5281/zenodo. 7447212.
- [34]A. Paszke, S. Gross, F. Massa, A. Lerer, J. 938 Bradbury, G. Chanan, T. Killeen, Z. Lin, N. 939 Gimelshein, L. Antiga, A. Desmaison, A. Kopf, 940 E. Yang, Z. DeVito, M. Raison, A. Tejani, 941 S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, 942 and S. Chintala. "PyTorch: An Imperative

- Style, High-Performance Deep Learning Library". In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024-8035. URL: http:// papers.neurips.cc/paper/9015-pytorch- 950 an-imperative-style-high-performancedeep-learning-library.pdf.
- [35]W. Falcon and The PyTorch Lightning team. PyTorchLightning. Ver-10.5281/zenodo.3828935, sion 1.4. doi: https://www.pytorchlightning.ai, Last visited 2021-09-17. Mar. 30, 2019. URL: https://www.pytorchlightning.ai (visited on 09/17/2021).
- [36] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. 960 Kumar, S. Ermon, and B. Poole. Score-Based Generative Modeling through Stochastic Differential Equations. Feb. 10, 2021. arXiv: 2011. 13456[cs, stat]. URL: http://arxiv.org/ abs/2011.13456 (visited on 02/16/2024).
- L. N. Smith and N. Topin. "Super-convergence: 966 [37]very fast training of neural networks using large learning rates". In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications. Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications. Vol. 11006. SPIE, May 10, 2019, pp. 369–386. DOI: 10.1117/12.2520589. URL: https://www.spiedigitallibrary.974 org/conference-proceedings-of-spie/ 11006 / 1100612 / Super - convergence -- 976 very - fast - training - of - neural - 977 networks - using / 10 . 1117 / 12 . 2520589 . 978 full (visited on 08/30/2025).

### **Datasets**

### MMFire A.1

The dataset consists of 9608 input samples of size  $7 \times$  $64 \times 64$ , each associated with eight simulated future fire spread segmentation masks of size  $64 \times 64$ . We use a split of 5000 training samples, 2500 validation samples, and 2108 test samples. We do not apply any augmentations. Any augmentations applied will need to make sure that the wind direction is correctly transformed, e.g. in rotations or flips.

### Cityscapes

Our implementation of the Cityscapes dataset is based on the existing Lightning Bolts [33] Cityscapes data module. We only use the 5000 images with fine annotations, resized to  $64 \times 128$  for faster experiments. We keep the split of 2975 training images,

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1058

500 validation images, and 1525 test images. We use the semantic segmentation labels as a starting point, before filtering down to the four classes which we randomly flip between the positive and negative class. We only use color jittering as augmentations. We train with batch size 32 and parameterize the log-normal training noise distribution with a mean of  $\mu_{\text{train}} = 1.5$ .

### LIDC A.3

To download and preprocess the LIDC dataset, we followed the steps indicated by the authors of [31] at https://github.com/gaozhitong/ MoSE-AUSeg/, and use their dataset class to load the data. The dataset contains 9794 training images, 2314 validation images, and 2988 test images. It includes random horizontal and vertical flipping and rotation by up to 10°, all applied to both image and label simultaneously. The images and labels have a size of  $128 \times 128$  pixels.

### $\mathbf{B}$ Implementation details

Our code base is implemented in PyTorch [34] and PyTorch Lightning [35]. For the diffusion model, we use the official EDM [22] repository at https: //github.com/NVlabs/edm.

All experiments were run on NVIDIA A40 GPUs, provided as part of a scientific computational cluster that is credited in the acknowledgments.

During sampling, the ODE is solved by starting from  $\boldsymbol{x} \sim \mathcal{N}$  at  $\sigma_{\text{max}} = 80$  and numerically integrating to  $\sigma_{\rm min}=0.002,$  using the 2nd order Heun solver from EDM. Unless specifically noted, we only use deterministic sampling, i.e. we set  $S_{\text{churn}} = 0$ .

We use the NCSN++ architecture [36], as implemented in the EDM code base and EDM preconditioning, modified to take an image as conditional information by concatenating it to the noisy mask xthat is being generated. Only the base multiplier for the number of features is modified for the different datasets: For Cityscapes, we use the default value of 128, since the conditioning image and output distribution are rather complex. For MMFire and LIDC, we use 64.

### $\mathbf{C}$ Experimental details

### C.1 Training the diffusion models

Unless mentioned otherwise, we train the base models with AdamW with learning rate 1e-4, and  $\beta_1 = 0.9, \beta_2 = 0.99$ . For Cityscapes, we train for 400 epochs, for LIDC, we train for 200 epochs, for MMFire, we train for 1000 epochs. We compute the validation loss after each training epoch and keep the model checkpoint with the lowest validation loss. During training, this validation loss is com- 1047 puted by randomly sampling noise levels according 1048 to the training noise distribution for each condi- 1049 tioning. The training noise distribution is always 1050a log-normal distribution, with standard deviation 1051  $\sigma_{\rm train} = 1.2$ , which is the default value in EDM, 1052 and mean  $\mu_{\text{train}}$ , which we vary between different 1053 runs. Note that these parameters refer to the normal 1054 distribution, the samples of which are then exponen- 1055 tiated. The mean, mode, and standard deviation of 1056 samples drawn from the log-normal distribution are 1057 different.

For each dataset, we train several models, varying 1059 the mean  $(\mu_{\text{train}})$  of the log-normal distribution used 1060 for sampling the noise levels during training. In pre- 1061 liminary experiments, we observed that performing 1062 model selection simply via lowest validation loss did 1063 not lead to a good calibration of the distribution over 1064 modes. We therefore perform the model selection 1065 with regards to the highest alignment of the sample 1066 distribution over modes with the training distribu- 1067 tion. For this, we sample 64 segmentation masks per 1068 conditioning (e.g. per RGB image in Cityscapes), 1069 and compare the distribution over modes with the 1070 known ground truth distribution via total variation 1071 difference metric (see next paragraph). We also do 1072 not perform model selection with regards to HM 1073 IoU\*. Choosing a model with the highest HM IoU\* 1074 for a highly skewed distribution would mean that 1075 the skewedness is likely not properly represented 1076 by the model, even though we of course want to 1077 achieve a high HM IoU\* in the end. In practice, 1078 the models we choose tend to still be among the 1079 best in terms of HM IoU\* computed over the 64 1080 samples. For datasets for which we only know a set 1081 of segmentation masks per image, but not the actual 1082 probabilities per mask, we can take the pixel-wise 1083 mean across generated masks and compare to the 1084 pixel-wise mean across ground truth labels, as a 1085 measure of calibration. This is the case for LIDC, 1086 where we use the Brier score to select a model. We 1087 end up choosing the models trained with the follow- 1088 ing parameters: MMFire:  $\mu_{\text{train}} = 0.5$ , Cityscapes: 1089  $\mu_{\text{train}} = 1.5$ ; LIDC:  $\mu_{\text{train}} = 1.0$ .

To perform **model selection**, we estimate how 1091 well a large batch of generated segmentation masks 1092  $\{x_i'|0\leq i\leq B\ B\in\mathbb{N}\}$  follows the training distribu- 1093 tion over modes. For Cityscapes, we have flipped 1094 all classes separately, thus we want to estimate how 1095 well the model follows the per-class Bernoulli flip 1096 probabilities. We estimate the flip probabilities from 1097 the B generated masks for each class separately. For 1098 this, we compute the per-class IoU between gener- 1099 ated mask and indicator mask of the respective class, 1100 e.g. a mask that is 1 for the road class, and 0 other- 1101 wise. Then, we threshold the IoU at 0.5 to decide 1102 whether the generated mask represents a choice of 1103 the positive or negative mode for the given class. 1104

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1118

1119

1120

1121

1122

1124

1125

1126

1127

1128

1129

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

From these per-mask modes for each class, we estimate the per-batch distribution of modes and compare it to the true Bernoulli distributions via mean total variation distance (TVD). To compute this distance, we compute the mean distance between the C paired distributions: TVD<sub>mean</sub>( $\{(p_c, q_c)|1 \le c \le$ (C)) =  $\frac{1}{C}\sum_{c=1}^{C}|p_c-q_c|$ , where  $p_c,q_c$  are the true and estimated Bernoulli probability for flipping class c to the positive class. For MMFire, we do conceptually the same, except that we assign a single mode to each image, and we compare a single empirical and a single ground truth *categorical* distribution, instead of several Bernoulli distributions.

# Sampling from the diffusion mod-C.2

For all models, we use the EDM sampling schedule, parameterized by  $\rho = 7$  and n = 10 timesteps. More steps did not lead to better results. This is likely due to the very conditioning signal that is much stronger than in the case of natural images, conditioned on a text prompt, for example. There are many different images that are consistent with 'dog on the beach wearing sunglasses', but very few segmentation masks that are pixel-perfectly aligned with the input and correctly distinguish between the positive and negative classes.

### C.3Particle guidance and SPELL

For particle guidance, we use the a guidance strength  $\alpha = 10$  for all experiments. We ran a coarse grid search across  $\alpha \in \{10, 100, 1000\}$  for all datasets separately, but found that  $\alpha = 10$  performed best for each of them.

For SPELL, we compute  $r_0$  from the respective training dataset, according to Equation 9. Starting from this, we run a coarse grid search across  $\{0.5r_0, 0.75r_0, r_0, 1.25r_0\}$  and choose the best one as r for all experiments. Table C.1 shows the corresponding values. For both MMFire and LIDC, using  $r_0$  proved best among the investigated values. For Cityscapes, we used  $0.75r_0$ . Which exact value proves best depends on the exact distribution of distances. An option would be to replace the mean with the minimum in Equation 9. However, for many cases, SPELL would then not ensure enough diversity (see Table 4). Thus,  $r_0$  can be taken as a strong starting point, but, depending on the concrete distance distribution of the dataset, a better value might exist near  $r_0$ .

### **Evaluation** $\mathbf{D}$

Metrics for the main results in Table 2 and Table 3 are computed on the test sets. All other tables and figures are treated as part of hyperparameter

Table C.1. SPELL: Shield radii used in experi**ments.**  $r_0$  is an initial estimate for a good shield radius determined from dataset diversity statistics in Equation 9. r is the best value we found in a coarse grid search around  $r_0$ . For MMFire and LIDC,  $r_0$  was the best value we found. For Cityscapes, we found in Table 4 that  $0.75r_0$  performs slightly better.

| Dataset    | $r_0$  | r     |
|------------|--------|-------|
| MMFire     | 9.525  | 9.525 |
| Cityscapes | 12.700 | 9.525 |
| LIDC       | 6.000  | 6.000 |

search or optimization, therefore they are computed 1157 on the validation sets. For Cityscapes, the test set 1158 segmentation masks are not public, therefore we can 1159 not compute any of our metrics on the Cityscapes 1160 test set. Therefore, we use the Cityscapes validation 1161 set everywhere, instead. Since we mostly care about 1162 the relative performance of the methods on the same 1163 dataset, this still seems serviceable.

While we mainly focus our evaluations on HM 1165 IoU\*, which is a combined measure of image quality 1166 and diversity, we additionally use explicit measures 1167 of these two qualities on MMFire and Cityscapes. 1168 For each generated sample, we compute which 1169 ground truth mode is closest to the sample. Within 1170 a batch of samples, we then count the number of 1171 distinct modes (or unique modes) that were gen- 1172 erated. Since this is a pure argmax computation, a 1173 sample that is closest to one particular mode might 1174 still have very low quality. Thus, this metric can be 1175 very noisy and should always be interpreted with 1176 regards to an image quality metric.

For **image quality**, we compute a pixel-wise 1178 union of all modes for the current input, to determine 1179 which pixels are allowed to be part of the positive 1180 class, and which ones should always be assigned the 1181 negative class. We want to penalize samples which 1182 set pixels to positive that should never be positive. 1183 Let this union image be  $y_{\rm union}$ . We take the complement to receive  $\bar{y}_{union}$ , which is 0 in all pixels that 1185 are positive in at least one mode, and 1 otherwise. 1186 Let  $x_i$  be a sample to evaluate, then we compute 1187 the image quality metric as  $1 - IoU(x_i, y_{union})$ .

The runtimes we measure include all of the time it 1189 takes to run the respective job on a shared scientific 1190 computation cluster, including loading the respective 1191 model and computing the metrics. The runtimes can 1192 vary, depending on the load imposed by other jobs 1193 using the shared resources. We assume that they 1194 are still useful as broad indications of how much 1195 longer certain methods take than others.

### Probabilistic UNet D.1

Following previous work [10, 11], we use the prob- 1198 abilistic UNet [30] as a baseline for ambiguous 1199

1196

1197

1202

1203

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

12161217

1218

1219 1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

Table D.1. Particle guidance: Varying guidance strength  $\alpha$ . We investigate the trade-off between image quality and diversity on Cityscapes. Applying guidance on the first step only saves several backward passes, but performs almost exactly the same.

| Guidance steps | α    | Image quality ↑ | Distinct modes ↑ | HM IoU*↑ |
|----------------|------|-----------------|------------------|----------|
| None           | 0    | 0.956           | 12.2             | 0.416    |
| First          | 1    | 0.954           | 13.3             | 0.460    |
| First          | 10   | 0.939           | 14.4             | 0.558    |
| First          | 100  | 0.824           | 15.3             | 0.553    |
| First          | 1000 | 0.691           | 15.4             | 0.445    |
| all            | 1    | 0.954           | 13.3             | 0.460    |
| all            | 10   | 0.938           | 14.4             | 0.558    |
| all            | 100  | 0.818           | 15.3             | 0.551    |
| all            | 1000 | 0.685           | 15.4             | 0.445    |

segmentation. We use an unofficial PyTorch reimplementation¹ to train one model per dataset. In our experiments, we try to stay as close as possible to the original hyperparameter choices that were made for training on LIDC in the original probabilistic UNet paper. Unfortunately, we found that training was rather unstable in our case. To remedy this, we removed the custom weight initialization and instead relied on PyTorch's default initialization schemes. Furthermore, for Cityscapes and MMFire, we switched to the OneCycleLR[37] learning rate scheduler and increased the learning rate from 1e-4 to 1e-3 since convergence was extremely slow otherwise.

We generally tried to see how well the probabilistic UNet works 'out of the box'. Since the results for Cityscapes were much worse than the diffusion model, we also attempted to adjust the hyperparameter that was most likely to be responsible for the low performance, which is the model capacity, given that Cityscapes has 16 modes and the differences between them are relatively large. We therefore doubled the latent dimension from 6 to 12 and doubled the hidden dimensions throughout the model. However, this did not improve the results. The main problem we see in the generated samples is that the road is never predicted as positive. In training, this class has a probability of 5% to be observed as the positive class. Given that it also takes the largest amount of pixels among the classes, never predicting it as positive means a large loss in HM IoU\* in half of the modes, explaining the low performance.

<sup>1</sup>https://github.com/stefanknegt/
Probabilistic-Unet-Pytorch