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ABSTRACT

The importance of attribution algorithms in the Al field lies in enhancing model
transparency, diagnosing and improving models, ensuring fairness, and increasing
user understanding. Gradient-based attribution methods have become the most
critical because of their high computational efficiency, continuity, wide applica-
bility, and flexibility. However, current gradient-based attribution algorithms re-
quire the introduction of additional class information to interpret model decisions,
which can lead to issues of information ignorance and extra information. Infor-
mation ignorance can obscure important features relevant to the current model
decision, while extra information introduces irrelevant data that can cause fea-
ture leakage in the attribution process. To address these issues, we propose the
Attribution with Intrinsic Information (AII) algorithm, which analyzes model de-
cisions without the need for specified class information. Additionally, to better
evaluate the potential of current attribution algorithms, we introduce the metrics
of insertion confusion and deletion confusion alongside existing mainstream met-
rics. To continuously advance research in the field of explainable Al (XAI), our
algorithm is open-sourced at https://anonymous.4open.science/r/
AII-787D/.

1 INTRODUCTION

As deep learning continues to advance rapidly, its performance in tasks such as image recogni-
tion (Xu et al.l 2023} [Liu et al.l |2023) has reached unprecedented heights. These technological
breakthroughs have brought revolutionary changes to various fields, including healthcare (Sug-
anyadevi et al.| 2022), autonomous driving (Grigorescu et al., 2020), and management decision-
making (Shrestha et al.| |2021). However, as these fields increasingly rely on deep learning technolo-
gies, the need for decision transparency has become more critical. If a model’s decision-making
process is not explainable, users may find it difficult to fully trust the results and to assign responsi-
bility in the event of an incident.

Therefore, the research and development of Explainable Al (XAI) are of paramount importance.
There has been extensive research in the XAl domain, with early interpretability methods such as
Grad-CAM (Selvaraju et al.l |2017) and LIME (Ribeiro et al., 2016) using heatmaps and local lin-
ear models to explain the decisions of Deep Neural Networks (DNNs). However, these methods
have limitations in providing fine-grained and one-to-one explanations for each input feature. Con-
sequently, researchers have proposed more detailed attribution methods, with Integrated Gradients
(IG)Sundararajan et al| (2017) being one of the most significant. IG addresses the shortcomings
of earlier methods and introduces axioms for attribution, providing a consistent and fair framework
for feature importance. As research progressed, new adversarial example-based attribution methods
were proposed, such as Adversarial Gradient Integration (AGI)Pan et al.[(2021), MFABA (Zhu et al.,
2024])), and AttExplore (Zhu et al., 2023)).

We note that existing attribution methods typically select specific class outputs or cross-entropy as
the loss function and use backpropagation to obtain gradients concerning input samples to guide the
attribution algorithm. We have identified two phenomena that will cause attribution bias due to such
gradient selection: information ignorance and extra information. Information ignorance refers
to the omission of important features from classes not directly related to the model’s final
decision, while extra information involves the incorrect identification of irrelevant features
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as significant. Information ignorance leads to interpretability methods overlooking many features
crucial to the model’s current decision and failing to explain low-confidence situations (applicable
under any non-100% confidence conditions). Extra information results in feature leakage (Shah
et al.| 2021), where features not contributing to the model’s decision are incorrectly identified as
important. To address these phenomena, we propose the Attribution with Intrinsic Information (AII)
algorithm. In AIl, we redefine the form of accumulated gradients and eliminate the need to introduce
class information into the gradients. Additionally, we conduct rigorous mathematical derivations to
ensure the validity of the AII algorithm and its adherence to attribution axioms (Sundararajan et al.,
2017).

Beyond the extra information phenomenon introduced by attribution algorithms, it can also occur
during the evaluation of attribution algorithms. This happens because neural networks cannot dis-
tinguish between feature removal behavior and the feature representation of black information. For
image tasks, removing features and replacing their values with zero might be interpreted by the neu-
ral network as introducing black information, which is unfair for tasks where black is a key feature
(e.g., black-and-white cat classification). Thus, we propose the fair insertion and fair deletion met-
rics to avoid bias during the evaluation process. Additionally, to assess the impact of confusion, we
introduce the KL insertion and KL deletion metrics. We summarize our contributions as follows:

* We systematically pinpoint two phenomena that cause bias in current gradient-based attri-
bution algorithms: information ignorance and extra information, which severely undermine
the reliability of interpretability algorithms.

* To address the extra information phenomenon in the evaluation of attribution algorithms,
we propose two fairer evaluation metrics.

* Based on the first contribution listed above, we design a novel gradient accumulation
method and propose the AII algorithm, supported by rigorous mathematical derivations
to ensure its stability.

* We open-source our experimental code to facilitate subsequent research and replication of
experiments.

2 RELATED WORK

Methods for explaining deep neural networks (DNNs) have evolved through three distinct phases:
local approximation and early layer-wise relevance propagation (LRP) methods (Bach et al.,|2015),
gradient-based attribution methods, and adversarial example-based attribution methods. Local ap-
proximation methods, such as LIME (Ribeiro et al., [2016)), construct an approximate, more inter-
pretable model in the vicinity of specific inputs to understand the behavior of the original model.
LIME was the first to provide local interpretability using multiple interpretable structures near the
sample, although it is time-consuming and the reliance on assumptions may be inaccurate. LRP,
an early layer-wise relevance propagation method, analyzes sample features using the relevance of
inputs, while DeepLIFT (Shrikumar et al.l |2017), a general form of LRP, quantifies feature impor-
tance by comparing input features to predefined reference points, though it is highly sensitive to the
choice of reference points. DeepLIFT does not satisfy the Implementation Invariance axiom pro-
posed in Integrated Gradients (IG) (Sundararajan et al.,[2017), leading to different attribution results
for models with the same functionality. The limitations of these early methods have been discussed
in (Zhu et al., [2024; 2023)).

Gradient-based attribution methods leverage the gradient information during the training of neural
networks to explain model decisions. These methods include Saliency Map (SM) (Simonyan et al.,
2013), Grad-CAM (Selvaraju et al.,|2017), Score-CAM (Wang et al., 2020), IG (Sundararajan et al.,
2017), Fast IG (FIG) (Hesse et al, 2021)), Expected Gradients (EG) (Erion et al., 2021), Smooth-
Grad (SG) (Smilkov et al.l |2017), and Guided IG (GIG) (Kapishnikov et al.l [2021). SM computes
the gradient of input features concerning the model output to identify the most important features,
but it is prone to gradient saturation issues. Grad-CAM and Score-CAM use gradient information
from intermediate layers for explanations, though they cannot provide high-resolution, fine-grained
explanations. IG addresses the limitations of SM by integrating gradients along a path from the
baseline to the input, but it has a high computational cost, which Fast IG mitigates by improving
numerical integration techniques to accelerate IG. EG enhances stability and consistency by averag-
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ing gradients over multiple baselines, while SG improves the smoothness and stability of attribution
results by adding random noise to the input, though it may obscure important subtle features. GIG
combines the principles of IG and guided backpropagation to selectively backpropagate gradients,
enhancing interpretability but potentially overemphasizing directly related features while neglecting
equally important indirect features.

Adpversarial example-based attribution methods represent a highly effective branch of gradient-based
attribution methods. These methods provide deeper explanations by generating adversarial exam-
ples and exploring model decision boundaries, thus avoiding the need to manually specify base-
line points. However, this class of methods introduces numerous intermediate states from out-of-
distribution (OOD) space during adversarial attacks, leading to the introduction of extra information
into the attribution process. Representative methods in this category include Adversarial Gradi-
ent Integration (AGI) (Pan et al.| 2021)), Boundary-based Integrated Gradients (BIG) (Wang et al.,
2021), AttEXplore (Zhu et al., 2023)), and More Faithful and Accelerated Boundary-based Attribu-
tion (MFABA) (Zhu et al.| 2024). AGI uses targeted adversarial attacks to explore decision bound-
aries and improves attribution performance through non-linear path-integrated gradients. BIG intro-
duces boundary search mechanisms to optimize baseline selection, achieving more accurate feature
attribution, but the linear integration path limits its ability to capture the non-linearity and complexity
of model decisions. MFABA improves explanation accuracy and computational efficiency through
second-order Taylor expansion and decision boundary exploration. AttEXplore (Zhu et al., 2023)
combines adversarial attacks with model parameter exploration, emphasizing transition capabilities
across different decision boundaries, thus enhancing the generalizability of its interpretability.

It is noteworthy that these gradient-based attribution methods typically use the output of the max-
imum class or cross-entropy as the loss function during gradient accumulation. This leads to the
information ignorance and extra information phenomena discussed in the following sections, which
significantly exacerbate the bias of attribution algorithms. We will analyze these issues in detail in
Section[3.21

3 METHOD

In this section, we first define the problem, then introduce the phenomena of “Information Igno-
rance” and "Extra Information” in current attribution algorithms, analyze why Extra Information
leads to feature leakage problems, and propose new evaluation methods to address Extra Informa-
tion in the evaluation of attribution algorithms. Finally, we present the AII algorithm, which can
avoid the occurrence of bias.

3.1 PROBLEM DEFINITION

Given the neural network parameters w € R™ and the sample to be attributed € R™, our goal is
to use attribution methods to obtain the attribution result A(z) € R™, where A;(z) represents the
importance of the i-th feature dimension, n represents the number of dimensions. The larger the
attribution result, the more important that dimension is for the model’s decision. We use f;(z) € R
to represent the model’s output for the j-th class, and P;(x) to denote the probability of the j-th
class after applying the softmax function.

3.2 INFORMATION IGNORANCE AND EXTRA INFORMATION

In current gradient-based attribution methods, LU @).y) g typically chosen as the gradient, where

y = argmax f;(z), and L is usually the negative of the output value of the class with the maxi-
J
mum output or the cross-entropy loss function. Intuitively, we use the class with the highest output

from the model for the input sample = to guide the attribution algorithm. This introduces “Extra
Information,” which is detrimental to the attribution algorithm. Additionally, since the loss function
L(f(x),y) contains only the class information of y, this leads to the phenomenon of Information
Ignorance.

Information Ignorance: Information Ignorance refers to the fact that attribution methods tend to
ignore the feature information of classes other than the target class. For example, as shown in Fig-
ure[T] when the target class is the dog, attribution methods ignore the features of the cat. Conversely,
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when the target class is the cat, the dog’s features are ignored. However, in reality, the model con-
siders both the dog and the cat for making decisions. For instance, when the confidence for the dog
class is 0.53, the model attends to both the dog’s and the cat’s features. This indicates that during
the decision-making process, the model uses information from both the dog and the cat features.

LU+ Aa),y) ~ L(f(@)y) + da” - PR 4 M)

We first gain an intuitive understanding of the Information Ignorance phenomenon from the def-
inition of the gradient. By performing a first-order Taylor expansion of the loss function as in
Equation [T] where O represents higher-order infinitesimals (which are ignored in the first-order
analysis), we can observe the sensitivity of different dimensions in x to the loss function L(f(z), y).

Therefore, SM (Simonyan et al., 2013) directly uses W

mulating %ﬁf)’y) during the change process of the sample z reveals the overall performance of
sensitivity, which is the idea behind methods such as AGI (Pan et al.|[2021)), BIG (Wang et al., |2021}),
MFABA (Zhu et al}[2024), and AttExplore (Zhu et al.|2023)). However, it is important to note that

W is only responsible for the loss function L(f(x),y), which in turn is only responsible
OL(f(z).y)

as the interpretability result. Accu-

for the class y. This means that attribution methods using o will ignore information from
classes other than the specified class y.
DOG (confidence: 0.53) All(Ours) Attribution with DOG Attribution with CAT

Figure 1: Illustration of the Information Ignorance phenomenon. Attribution results using the
AttExplore (Zhu et al., [2023) algorithm on an image containing both a cat and a dog. The model’s
classification confidence is 0.53, indicating that the model considers both the cat and the dog when
making its decision. However, traditional attribution methods only focus on the predefined label, in
this case, the dog, and ignore the cat’s features, leading to the Information Ignorance phenomenon.
In contrast, our method, which does not rely on predefined labels, is able to attribute the features of
both the cat and the dog, avoiding the Information Ignorance issue.

As shown in Figure[T] the AttExplore (Zhu et al., 2023) algorithm only provides information about
the dog class, although the model also considers the cat area in its decision-making process. The
Information Ignorance phenomenon worsens when the confidence of the current class is low. In
other words, current gradient-based attribution methods cannot explain why the model has
low confidence in its decision (e.g., the presence of a cat explains why the dog class confidence is
only 0.53). The AII algorithm, introduced below, avoids Information Ignorance by not using class
information as guidance. More experimental results on AlI for low-confidence data can be found in
Section [4.3]

Next, we analyze the causes of the Extra Information phenomenon. In the process of specifying the
loss function class, previous attribution algorithms use the output of the class with the maximum
output, introducing Extra Information. Intuitively, we impose the concept that the input sample
belongs to the current class onto the interpretability method.

Extra Information: Extra Information refers to the introduction of irrelevant features into the image
that are not related to the current task, which attribution methods still focus on. For example, as
shown in Figure [2] attribution methods focus on irrelevant extra features that do not belong to any
class in the original image. The square region at the bottom of the original image is not part of any
class, but if we force the attribution method to focus on class 0, even with extremely low confidence,
we can see that some attribution methods will focus on these extra irrelevant features. This additional
information results in attribution bias.
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Original Image

All (Ours) AttEXplore MFABA

Figure 2: Illustration of the Extra Information phenomenon. As shown in the image, X represents
extra information that does not belong to any class feature. The model does not attend to this region,
yet other attribution methods, apart from ours, display that the model focuses on the X feature. This
demonstrates that our method can effectively avoid the Extra Information phenomenon.

For example, the feature leakage problem mentioned in (Shah et al.l 2021)) is a manifestation of
Extra Information. As shown in Figure[2] the grid patterns do not contribute to the handwritten digit
recognition task, but in the interpretability process, under extremely low confidence, we regard them
as part of one of the ten classes and interpret them. This additional information causes attribution
bias. In other words, the information ’leaks” because we introduce redundant information.

Original Image class: 0 class: 1 class: 2 class: 3 class: 4 class: 5 class: 6 class: 7 class: 8 class: 9

g

Figure 3: Attribution results for digit recognition. No significant class differences observed when
changing the accumulated gradient class.

DOG(confidence: 0.96) Attribution with CAT Attribution with CAT

o s

Figure 4: Attribution results using the cat class on a dog image. Important features mistakenly
identified due to model training errors.

We also explore the interesting viewpoint that specifying the class might help identify important
features for a specific class. However, as shown in Figure [3] using AttExplore and modifying the
accumulated gradient class for digits 0-9 does not show significant class differences for digit 7.
Similarly, Figure ] shows that using the cat class for attribution on a dog image highlights features
on the dog. This could indicate a model training error, where the dog’s features are mistaken for the
cat’s core features. Masking the core feature area shifts the important attribution region to the cat,
indicating the model can respond to the correct cat features. We suspect this is because, during the
accumulated gradient process, the changes in lower confidence classes are limited (Zhu et al.| |2023)),
making the class specification process not always effective.

Remark 1. Specifying class information in the gradient calculation during attribution can lead to
information loss and the phenomenon of Extra Information.
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Zero Replace

Original Image

Figure 5: Comparison of Different Feature Replacement Methods

3.3 EXTRA INFORMATION IN ATTRIBUTION EVALUATION

Besides the Extra Information phenomenon in the attribution process, it also appears in the eval-
uation of attribution algorithms. The core idea of evaluating attribution algorithms is to insert in-
formation from the original image into an all-black pixel image based on the attribution score from
high to low, assessing how quickly the current model decision can be recovered, corresponding to
the Insertion score. Conversely, the Deletion score replaces the original image pixels with black
pixels from high to low based on the attribution score, evaluating how quickly the current model
decision can be destroyed. However, this process inherently assumes that a black image represents
”no information.” In reality, the model cannot distinguish between feature removal and features
represented by black pixels. For instance, in the task of distinguishing between black and white
cats, the color of the cat’s fur is an important feature. Zeroing out the features during this process
makes a white cat more likely to be seen as a black cat, introducing black cat features rather than
removing features.

To replace the zero-out operation with a more reasonable feature removal behavior, we designed the
Confusion Feature Algorithm (CFA).

x* —max?—[ ZP Ylog Pij(z) st zi=xz2=x3- - =2Ip 2)

The core idea of CFA is to find the pixel value that maximizes the entropy of the model output dis-
tribution (the higher the entropy, the greater the uncertainty of the model decision) and ensure that
the entire input consists of the same pixel value, aligning with human intuition of feature removal
by replacing large areas with the same pixel, as shown in Figure [5] This approach makes the ex-
planation process more consistent with human understanding. Because a single pixel value is easier
for humans to comprehend, interpretability methods should aim for results that closely approximate
human intuition.

Since finding the optimal solution for Equation 2]is difficult, we use gradient descent to iteratively
find the optimal solution. Note that all ! are the same, and the features input into the network are
obtained by repeating one pixel. The proof is provided in Appendix [B]

< log Pj(r(z""
o=t . sign (8271 og Pj(r(z ))) 3)

ox

Here, 2° ~ U(0,1), U represents a uniform distribution (this operation maps pixel values to 0-1
through normalization). 2° € R? for image tasks, representing the RGB values of one pixel. 7 is a
repeat function that repeats the pixel to match the input dimensions of the neural network. To avoid
local optima, we sample multiple times and select the 2 that maximizes 7 (z) as the final choice. Re-
placing the all-black image in the attribution evaluation process with the learned = avoids the Extra
Information phenomenon mentioned above. We name the replaced algorithms as Fair Insertion and
Fair Deletion metrics. Additionally, to evaluate the model’s uncertainty in the attribution process, we
propose KL Insertion and KL Deletion metrics, assessing the change in model decision confusion
during the attribution insertion process. Additionally, Our AIl method has complexity comparable
to AGI [2021). Each time we compute Equation 3} we perform both a forward pass and a
backward pass. This means that during the update process, there will be m x ¢ forward and backward
propagations, where m is the number of samples and ¢ is the number of iterations.
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3.4 ATTRIBUTION WITH INTRINSIC INFORMATION (AII)

8>°¢_, log Pj(x")
t =1 J
A(z) = /A:c . det )
Equation[d]represents the core formula of the AII algorithm. In the attribution process, we design the

. d>°5_, log Pj(a’ - .
gradient to be accumulated as w, avoiding the phenomena of Information Ignorance

and Extra Information. Az’ follows the targeted adversarial attack update strategy from AGI (Pan
et al, 2021). Note that the only constraint on Az? is |Ax?| < €, where € is typically limited
to one pixel. Since the importance of each feature dimension is calculated independently, for the

. . . . d3°¢_, log Pj(a?
i-th dimension, the feature importance can be expressed as A(z;) = [ Azl - Wdt.

Additionally, the AII algorithm satisfies the Sensitivity axiom and Implementation Invariance axiom,
with the proof in Appendix [C| Detailed pseudocode will be provided in Appendix

Remark 2. Any feature changes that increase model decision uncertainty can be captured by Equa-
tion

4 EXPERIMENTS

In this section, we provide a detailed account of the experiments conducted to evaluate the AIl
method. This includes information on the datasets used, models, baseline methods, evaluation met-
rics, and an analysis of the results.

4.1 DATASET AND MODELS

Following previous work such as AGI (Pan et al.| [2021), MFABA (Zhu et al.|, 2024), and AttEx-
plore (Zhu et al.| [2023), we randomly selected 1000 images from the ImageNet dataset (Deng
et al., 2009) to maintain the consistency of the experiment. For our models, we chose three classic
deep learning architectures: Inception-v3 (Szegedy et al.l [2016), ResNet-50 (He et al., |2016), and
VGG16 (Simonyan & Zisserman), [2014).

4.2 BASELINES

To comprehensively evaluate and compare our method, we selected 11 existing interpretability meth-
ods. The criteria for selection included publication in top-tier academic conferences and the avail-
ability of open-source code. The methods compared are AttEXplore (Zhu et al., 2023), AGI (Pan
etal.,[2021), MFABA (Zhu et al.,[2024), BIG (Wang et al.|2021)), EG (Erion et al.,[2021)), FIG (Hesse
et al., [2021), DeepLIFT (Shrikumar et al. [2017), SG (Smilkov et al., 2017), SM (Simonyan et al.,
2013)), GIG (Kapishnikov et al.l2021), and IG (Sundararajan et al., [2017).

4.3 PARAMETERS

In all experiments, we used two NVIDIA A100 40GB GPUs. Our method involves two hyperpa-
rameters: the number of explorations M and the number of attack iterations 7', both set to 20. More
ablation experiment results are provided in the Appendix [E.6|

4.4 EVALUATION METRICS

We used four groups of evaluation metrics to assess the performance of the attribution methods.

The Insertion Score (INS) evaluates the area under the curve (AUC) as information from the original
image is incrementally inserted into an all-black pixel image based on the attribution score, from
high to low (Samek et al.l [2016). This metric measures how quickly the current model decision
can be recovered. The Deletion (DEL) Score evaluates the AUC as pixels from the original image
are progressively replaced with black pixels based on the attribution score, from high to low. This
metric assesses how quickly the current model decision can be disrupted. Compared to the DEL,
the INS is generally considered more important (Pan et al., 2021). Therefore, to eliminate the
inconsistency between these two parameters in this paper, we use the GAP metric, which is the
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difference between INS and DEL, for unified comparison. The results of INS and DEL are provided
in Appendix

We found discrepancies in the implementation of Insertion Score and Deletion Score in the open-
source code of RISE (Petsiuk et al| |2018), MFABA (Zhu et al., 2024), BIG (Wang et al., |2021),
and AGI (Pan et al.,|2021). Previous work sorted the importance of each image channel separately,
whereas the evaluation process should treat each input dimension equally. Therefore, we improved
this by not calculating separately for each channel. We refer to these improved metrics as the Unified
Insertion Score (U-INS) and Unified Deletion Score (U-DEL).

To address the issue of extra information in the evaluation process, we propose the Fair Insertion
and Fair Deletion metrics. The Fair Insertion (F-INS) metric replaces the initial all-black image in
the Insertion score with the learned x*. Similarly, the Fair Deletion (F-DEL) metric replaces the
zero-out operation in the Deletion score with the x* pixel operation. These modifications aim to
provide a more accurate assessment by avoiding the introduction of extra information.

Furthermore, we introduce the KL Insertion (KL-INS) and KL Deletion (KL-DEL) metrics to eval-
uate the change in model decision uncertainty during the attribution process. KL Insertion replaces
the current class output probability with the KL divergence K L(Q, P(x)) and calculates the AUC
of the KL curve. A smaller area indicates that the important features identified by the attribution
method quickly reduce the model’s decision uncertainty. Conversely, KL Deletion calculates the
AUC of the KL curve as important features are progressively removed, with a larger value indicat-
ing a rapid increase in model decision uncertainty. To illustrate this, we use the case where entropy
is maximized. For example, in a scenario with 1000 classes, if the model’s output probability for
each class is exactly Wloo’ the model’s uncertainty reaches its maximum. This serves as a reference
point for measuring the reduction in uncertainty during the attribution process.

4.5 RESULTS

In this section, we provide additional experiments in Tables [T} 2| and[3] where we further analyze
the performance of various attribution methods on datasets split by confidence levels (<70% and
>70%). From these results, it is evident that our proposed method consistently achieves the best
performance across both high and low confidence datasets. This demonstrates that our method is
less susceptible to the effects of Information Ignorance and Extra Information, making it more robust
compared to other methods. More experiments, such as the performance on traditional attribution
metrics like Insertion and Deletion, results on the full dataset without confidence level distinctions,
performance on Transformer-based models, and ablation studies can be found in Appendix [E]

Table 1: Evaluation of various interpretability methods via U-INS and U-DEL metrics. 1 indicates
that higher values in the column correspond to better interpretability performance, while | indicates
that lower values correspond to better interpretability performance. The * symbol denotes the pri-
mary reference metric for comparison. The table is divided into three confidence-based categories:
Low Confidence (<70%), High Confidence (>70%).

| Inception-v3 ResNet-50 | VGG16
Low Confidence High Confidence Low Confidence High Confidence Low Confidence High Confidence
(<70%) (=70%) (<70%) (=70%) (<70%) (=70%)
Method U-INS U-DEL GAP* | U-INS U-DEL GAP* | U-INS U-DEL GAP* | U-INS U-DEL GAP* | U-INS U-DEL GAP* | U-INS U-DEL GAP*
M () [ [} [ () [ (€3] [} () ) () () ) () M [©3) ()
SM 0.0226  0.0349  -0.0123 | 0.0889  0.047  0.0419 | 0.0283 0.015  0.0133 | 0.0658 0.0369  0.0289 | 0.0216 0.0137  0.0079 | 0.054 0.0228  0.0312
(¢} 0.0228  0.0283  -0.0055 | 0.1009  0.0312  0.0697 | 0.0228 0.0108 0.012 | 0.0519 0.0254  0.0265 | 0.0164 0.0103  0.0061 | 0.0392 0.0176  0.0216
FIG 0.028 0.019 0.009 | 0.0467 0.0744 -0.0277 | 0.0119 0.0211 -0.0092 | 0.0327 0.0466 -0.0139 | 0.0119 0.0157 -0.0038 | 0.0218 0.0356 -0.0138

BIG 0.0904  0.0328  0.0576 | 0.1843  0.0844  0.0999
MFABA | 0.0975 0.0331 0.0644 | 0.2799 0.0859  0.194

0.047  0.0294 0.0176 | 0.118  0.0693  0.0487 | 0.0331  0.021  0.0121 | 0.088  0.0501  0.0379
0.0504 0.0305 0.0199 | 0.1401 0.078  0.0621 | 0.0369  0.022  0.0149 | 0.1133  0.0529  0.0604

AttEXplore | 0.1324  0.0321  0.1003 | 0.3757 0.0739 03018 | 0.0992 0.0226  0.0766 | 0.2745 0.053  0.2215 | 0.0807 0.0205 0.0602 | 0.2444  0.0468  0.1976
GIG 0.0242  0.0234  0.0008 | 0.0992 0.0287 0.0705 | 0.0225 0.0103  0.0122 | 0.0517 0.0183 0.0334 | 0.0187 0.0094 0.0093 | 0.0409 0.0128  0.0281
EG 0.1697 0.1848 -0.0151 | 0.398 04521 -0.0541 | 0.1162 0.1243  -0.0081 | 0.2988  0.3465 -0.0477 | 0.0924 0.0772  0.0152 | 0.2217 0.1972  0.0245

DeepLIFT | 0.0269 0.0209  0.006 | 0.0811 0.0573 0.0238 | 0.0189 0.0121  0.0068 | 0.0445 0.0333  0.0112 | 0.0165 0.0105 0.006 | 0.0355 0.0198 0.0157
SG 0.0423  0.0299 00124 | 0.1957 0.0251  0.1706 | 0.0663 0.0105  0.0558 | 0.1317 0.0175  0.1142 | 0.0545 0.0098 0.0447 | 0.1296 0.0134  0.1162
AGI 0.1104  0.029  0.0814 | 0.374  0.084 0.29 ] 0.0905 0.0262 0.0643 | 0.3684 0.0654  0.303 | 0.0537 0.0189 0.0348 | 0.2935 0.0475  0.246

AIl (Ours) | 02119  0.0385 01734 | 0.5131 0.1056  0.4075 | 0.1436  0.031  0.1126 | 0.3859 0.0678  0.3181 | 0.1026 0.0219  0.0807 | 0.3118 0.0492  0.2626

U-INS and U-DEL: In this section, we analyze the performance of our method AIl compared to
various state-of-the-art attribution methods using the Unified Insertion Score (U-INS) and Unified
Deletion Score (U-DEL). These metrics provide a more unified and consistent evaluation by treating
each input dimension equally, unlike previous implementations.
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Table 2: Evaluation of various interpretability methods via U-INS and U-DEL metrics.

| Inception-v3 | ResNet-50 VGG16
Low Confidence High Confidence Low Confidence High Confidece Low Confidence High Confidence
(<70%) (=70%) (<70%) (=70%) (<70%) (=70%)
Method F-INS F-DEL GAP* F-INS F-DEL GAP* F-INS F-DEL GAP* F-INS F-DEL GAP* | F- INS F-DEL  GAP* F-INS F-DEL GAP*
[ [3) () () ) () () ) () M 4 M ) [ [ () [

IG 0.0306  0.0288  0.0018 | 0.0586 0.0934 -0.0348 | 0.0222 0.0601 -0.0379 | 0.0527 0.1305 -0.0778 | 0.0172 0.0343 -0.0171 | 0.0282 0.0788 -0.0506
FIG 0.0276  0.0309 -0.0033 | 0.0845 0.0746 0.0099 | 0.0561 0.0271 ~ 0.029 | 0.1188 0.0671 0.0517 | 0.0319 0.0205 0.0114 | 0.0729  0.033  0.0399
BIG 0.0802 0.0296  0.0506 | 0.1629 0.0648 0.0981 | 0.0488 0.035  0.0138 | 0.1399 0.0776 0.0623 | 0.0331  0.019  0.0141 | 0.0729 0.0411 0.0318

MFABA | 0.0923 0.0288 0.0635 | 0.2632 0.0679  0.1953 | 0.0533 0.037  0.0163 | 0.1601 0.0877 0.0724 | 0.0377 0.0195 0.0182 | 0.1018 0.0422  0.0596
AtteXplore | 0.1262  0.0218  0.1044 | 0.3503 0.0462 0.3041 | 0.0943 0.0279 0.0664 | 0.2881 0.0603 0.2278 | 0.0756 0.0161 0.0595 | 0.215  0.036 0.179

GIG 0.0288  0.0284  0.0004 | 0.0615 0.0889 -0.0274 | 0.0198 0.0539 -0.0341 | 0.0485 0.1163 -0.0678 | 0.0154 0.0309 -0.0155 | 0.027 0.0708 -0.0438
EG 0.1306  0.1384 -0.0078 | 0.3073 0.3241 -0.0168 | 0.0838 0.0951 -0.0113 | 0.2282 0.2769 -0.0487 | 0.0629 0.0612 0.0017 | 0.1643 0.1433  0.021

DeepLIFT | 0.0301 0.0296 0.0005 | 0.0779 0.0879  -0.01 | 0.0273 0.0576 -0.0303 | 0.0748 0.1182 -0.0434 | 0.0157 0.0363 -0.0206 | 0.031 0.0742 -0.0432

\
0.024  0.0207  0.0033 | 0.0549 0.0634 -0.0085 | 0.0187 0.0294 -0.0107 | 0.047  0.068  -0.021 001’%3 0.0188  -0.0055 | 0.0238 0.0408 -0.017
\

SG 0.0241  0.0255 -0.0014 | 0.0408 0.0779 -0.0371 | 0.0124 0.0577 -0.0453 | 0.0224 0.1156 -0.0932 | 0.0096 0.0318 -0.0222 | 0.0154 0.0781 -0.0627
AGI 0.1211  0.0217  0.0994 | 03734 0.0555 0.3179 | 0.0808 0.026  0.0548 | 0.3784 0.0661 0.3123 | 0.0545 0.0157 0.0388 | 0.2538 0.039  0.2148
All (our) | 0.2139  0.0273  0.1866 | 0.5223  0.072  0.4503 | 0.1305 0.0368 0.0937 | 0.3881 0.0705 0.3176 | 0.0965 0.0164 0.0801 | 0.2738 0.0372  0.2366

Table 3: Evaluation of various interpretability methods via KL-INS and KL-DEL metrics.

| Inception-v3 ResNet-50 VGG16
Low Confidence High Confidence Low Confidence High Confidence Low Confidence High Confidence
(<70%) (>70%) (<70%) (>70%) (<70%) (>70%)
Method KL lNS KL-DEL GAP* | KLANS KL-DEL GAP* | KLINS KL-DEL GAP* | KLINS KL-DEL GAP* | KLINS KL-DEL GAP* | KLINS KL-DEL GAP*
[©)] [©) () [0 [©)] [©)] (O] [©) [©) ) [©)] M () m () [©)] [©)

SM 4. 000(: 41461 -0.1455 | 42733 42992 -00259 | 57474 57749 00275 | 5.8957 60216 -0.1259 | 40809 40889  -0.008 | 4.1862 43423 -0.1561

G 43213 4478 01567 | 4659 47538  -0.0948 | 51251 52361  -0.111 | 52658 58433 -0.5775 | 39275 40115  -0.084 | 41348 44998  -0365
FIG 43368 42119 01249 | 45255 45143 00112 | 51004 50536  0.0468 | 55885 52709 03176 | 3.8839  3.8245 00504 | 43227 39944 03283
BIG 57597 40682  1.6915 | 58104 42271 15833 | 55494  4.1986  1.3508 | 58397 47798  1.0599 | 42773  3.8223 0455 | 45802  4.0533  0.5359
MFABA | 57783 40013 1777 | 7.1895 40598  3.1297 | 56028 4075 15278 | 62243 43752 18491 | 4454 38081  0.6459 | 4.8555 39935  0.862
AteXplore | 64325 34516 29809 | 83455 34832 48623 | 62566 50651 11915 | 72563 52456 20107 | 60355 41755 186 | 69415 42988  2.6427
GIG 43707 44534 0.0827 | 46371 46904 0.0533 | 53644 54411 00767 | 54456 59125 04669 | 39515  3.9936 -0.0421 | 40372 42935  -0.2563
EG 49925 48459 0.1466 | 6.615 59209  0.6941 | 49839 46738 03101 | 56367 53364 03003 | 5.0065 4906  0.1005 | 58683 56151 02532
DeepLIFT | 4.1727 42879  -0.1152 | 4484 44823 00017 | 48818 51143  -0.2325 | 5.1481 55994 04513 | 37093 40851 -0.3758 | 3.8975 44789 -0.5814
SG 4173 41349 00381 | 42128 4254 -00412 | 62011 61561  0.045 | 6.1479 67031 -05552 | 47479 47833 -0.0354 | 48112 50538 -0.2426
AGI 55176 40858 14318 | 82868 4078 42088 | 58622  4.5894 12728 | 75437 4431 31127 | 52245 41857 10388 | 7.6075 4489  3.1185

All (ur) | 7.6129 36638 39491 | 10802 3789  7.013 | 63754 39806 23948 | 7.6201 42561  3.364 | 6.0499 44146 16353 | 79069  4.6668  3.2401

Table [T] summarizes the performance of various interpretability methods, including AlI, evaluated
on Inception-v3, ResNet-50, and VGG16 models using the U-INS and U-DEL metrics. Our method,
AlI consistently outperforms other advanced attribution methods, achieving the highest GAP scores
across all models. AII excels in both high-confidence and low-confidence datasets, providing supe-
rior interpretability by delivering more faithful explanations across different confidence levels. The
average improvements of AIl over other methods are as high as 0.2232, 0.2049, and 0.1421 on
the three models, respectively. Specifically, on high-confidence data, AIl achieves an average GAP
improvement of 0.2466 over other methods, demonstrating its superior performance under normal
conditions. Additionally, AII achieves an average improvement of 0.099 on low-confidence data,
indicating its robustness in addressing the Information Ignorance phenomenon.

F-INS and F-DEL: In this section, we evaluate the performance of our AIl method and other in-
terpretability methods using the Fair Insertion (F-INS) and Fair Deletion (F-DEL) metrics. These
metrics provide a fairer and more precise evaluation by mitigating the introduction of extra informa-
tion.

Table [2] presents the performance results across the three models. Compared to other methods,
Al demonstrates significant improvements, with an average increase of 0.1085 on low-confidence
data. Specifically, AIl improves performance by 0.1583 on Inception-v3, 0.0927 on ResNet-50, and
0.0744 on VGG16. On high-confidence data, AIl achieves an average GAP improvement of 0.2896,
including a performance increase of 0.3784 on Inception-v3, 0.2835 on ResNet-50, and 0.2067 on
VGG16. These results highlight the consistent and substantial advantages of All over other methods
in both low- and high-confidence scenarios, further establishing its robustness and effectiveness in
interpretability tasks.

KL-INS and KL-DEL: In this section, we analyze the performance of our AIl method and other in-
terpretability methods using the KL Insertion (KL-INS) and KL Deletion (KL-DEL) metrics. These
metrics evaluate the change in model decision uncertainty during the attribution process, providing a
comprehensive assessment of how quickly the model’s decision uncertainty is reduced or increased
by the identified important features.

Table 3| shows the results across the three models, and the performance of our method, AIl, demon-
strates even more significant advantages compared to other attribution methods under this evaluation
metric. Specifically, on low-confidence data, our AIl method achieved an average GAP improve-
ment of 2.1566, with respective improvements of 3.2499 on Inception-v3, 1.9132 on ResNet-50, and
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Figure 6: AII Attribution Result on Inception-v3
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Figure 7: AII Attribution Result on VGG16

1.3067 on VGG16. On high-confidence data, AIl achieved an even more pronounced average GAP
improvement of 3.7242, with respective gains of 5.7152 on Inception-v3, 2.7755 on ResNet-50, and
2.6820 on VGG16. These results highlight the substantial and consistent superiority of AIl across
both confidence levels, solidifying its effectiveness and robustness in interpretability tasks across
diverse models and datasets.

Attribution Results: As shown in Figures[6|and [7] the attribution results for both the VGG16 and
Inception-v3 models demonstrate the superior performance of our AIl method compared to other
state-of-the-art attribution methods. AII consistently provides more precise and focused highlight
regions on the critical features that contribute to the model’s predictions. For instance, in the VGG16
model’s prediction of a “lion,” AIl distinctly highlights the lion’s mane and face, while other meth-
ods like AGI and AttEXplore show less distinct and more scattered focus areas. Similarly, for the
Inception-v3 model’s prediction of an “hourglass,” AlIl accurately highlights the essential regions
around the hourglass, unlike other methods that show broader and less precise attributions.

5 CONCLUSION

This paper identifies the phenomena of Information Ignorance and Extra Information, which can
cause attribution bias in current gradient-based attribution algorithms. We propose a novel AlI attri-
bution algorithm that can avoid these issues and achieve accurate attributions. Additionally, we have
designed a more comprehensive multi-dimensional attribution evaluation method. Looking towards
future directions, our algorithm, like current gradient-based attribution algorithms, is primarily lim-
ited to visual models due to the continuity of pixels in image tasks. In future work, we will attempt
to address the challenges of continuity in NLP tasks and apply our algorithm to NLP tasks.

10
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A APPENDIX

B PROOF OF EQUATION [3]

Proof.
c
max—ZP )log Pj(z) s.t. ZPj(a:)zl
j=1
Construct the Lagrangian function: (5)
c c
L(Py(x), Py(),..., Po(x)) = Y Pi(x)log Pi(z) = A | Y Pi(z) — 1
j=1 j=1
m?L(I) —logPj(z) —1+A=0 (1) ©)
S Pi@)—1=0 ()
substituting P;(x) = e Linto equation (1) @)
1
Pj(z) = Il (®)

We define the maximum entropy distribution (), where the probability for class j is Q; = é We
aim to learn a model that maximizes the entropy for input =, which can be defined with the following
loss function:

c Q
— J
KL(P,Q) = ; Qilog s
¢ 4 9
=2 gl - & o5 Py (@)
Jj=1
OKL(P,6) 1 23", log Pj() o
ox - C o
5% log P;
x_a‘Sign(aKL(P,e)>=x+a.sign< Z:le og J(@) (11
ox Oz
O

C PROOF OF AXIOM

Sensitivity Proof. In the case where Ax is sufficiently small, the first-order Taylor expansion holds.
Given |x| < €, which in this context represents a difference of 1 pixel value, we have:

055, Q(x)log Pj(x)

KL(Q||P(z + Az)) ZQ )log P;(z) + Ax

ox
95°C log P (12)
ZIOng($)+Ax Ej:lazg i ()
KL(Q||P(z + Az)) — KL(Q||P(z)) = GA 05 1812gP( 2 (13)
t oy log Pj(x)

Jur@ipt + an) - kr@ipe) - [ LatZm e BE),
14
= KL(Q|IP(z")) - KL(Q||P(«° /A %5 181ng< ) 4 (14)

AlI
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Therefore, it is proven that Sensitivity is valid because all distribution changes can result in non-zero
attribution. O

Implementation Invariance Proof. The Attribution with Intrinsic Information (AIl) algorithm ad-
heres to the chain rule. Based on the properties of gradients, the AII algorithm satisfies implemen-
tation invariance, ensuring that results are consistent across different valid implementations of the
same functional relationship. [

D PSEUDOCODE

Algorithm 1 Attribution with Intrinsic Information (AII)

Input: Number of explorations M, number of attack iterations T’
Output: A
1: A=0
2: for m in range M do
3: =z
4: fortin(l,..,7+1)do
5

t—1
2t =zt~ — - sign (W
6: A+ =1 -sign ag({j) . 621-0:1810;571?@“)
7:  end for ” o
8: end for
9: return A

Algorithm 2 Confusion Feature Algorithm (CFA)

Input: Number of attack iterations 7'
Output: z7+!

1: L=]]
20 ~U(0,1)
:fortin(1,..,7+ 1) do

. 03¢ log Pj(r(zt~?
zt =2t~ — o sign ( J=1 i (r( )

wn

ox
if convergence then
break
end if
Select z7+! from L that maximizes H(x)
end for
return

YR IN ok

T+1

—_—

E ADDITIONAL EXPERIMENTS

E.1 RESULT OF INS AND DEL

In this section, we present the results of our method AIl and various state-of-the-art interpretability
methods evaluated using the Insertion Score (INS) and Deletion Score (DEL) metrics. These metrics
assess the effectiveness of attribution methods by measuring how quickly the model’s decision can
be recovered (INS) or disrupted (DEL) as information is inserted or deleted from the image based on
the attribution scores. A higher INS and a lower DEL indicate better interpretability performance.
The GAP metric, representing the difference between INS and DEL, is used as the primary reference
metric for comparison.

As shown in Table 4] our AIl method achieved the highest INS score of 0.4692 and a DEL score
of 0.0706, resulting in a GAP of 0.3987, significantly outperforming other methods on Inception-
v3. Notably, the second-best GAP was achieved by AttEXplore with 0.4337, followed by AGI with
0.3806. This highlights the superior capability of All in accurately identifying important features
and providing robust model explanations. In the ResNet-50, AIl also demonstrated outstanding

14



Under review as a conference paper at ICLR 2025

Table 4: Evaluation of various interpretability methods via INS and DEL metrics. 7 indicates that
higher values in the column correspond to better interpretability performance, while | indicates that
lower values correspond to better interpretability performance. The * symbol denotes the primary
reference metric for comparison.

\ Inception-v3 ResNet-50 VGG16
Method INS DEL GAP INS DEL GAP INS DEL GAP
Q) ) ) M ) Q) Q) ) Q)
SM 0.1976  0.0296 0.1680 0.1229 0.0315 0.0914 0.0775 0.0207 0.0567
1G 0.2274 0.0265 0.2009 0.1121 0.0230 0.0892 0.0688 0.0156 0.0531
FIG 0.1431 0.0322 0.1109 0.0875 0.0296 0.0580 0.0610 0.0197 0.0413
BIG 0.3565 0.0360 0.3204 0.2270 0.0402 0.1868 0.1753 0.0289 0.1464

MFABA | 0.3961 0.0400 0.3560 0.2576 0.0458 0.2118 0.2145 0.0299 0.1846
AttEXplore | 0.4632 0.0295 0.4337 0.4027 0.0295 0.3732 0.3092 0.0224 0.2868
GIG 0.3204 0.0375 0.2829 0.1452 0.0214 0.1238 0.1047 0.0192 0.0855

EG 0.3759 0.2661 0.1098 0.3503 0.2833 0.0670 0.2890 0.2423  0.0468
DeepLIFT | 0.2959 0.0434 0.2525 0.1258 0.0322 0.0936 0.0950 0.0248 0.0701
SG 0.3895 0.0352 0.3543 0.2759 0.0240 0.2520 0.1857 0.0182 0.1676
AGI 0.4230 0.0424 0.3806 0.3792 0.0450 0.3342 0.2557 0.0302 0.2255
All | 04692 0.0706 0.3987 03906 0.0491 0.3415 0.2791 0.0313 0.2478

Table 5: Evaluation of various interpretability methods via U-INS and U-DEL metrics. 1 indicates
that higher values in the column correspond to better interpretability performance, while | indicates
that lower values correspond to better interpretability performance. The * symbol denotes the pri-
mary reference metric for comparison.

| Inception-v3 | ResNet-50 | VGG16
Method U-INS U-DEL GAP* | U-INS U-DEL GAP* | U-INS U-DEL GAP*
) 4 M M ) ) ) ) M
SM 0.0701  0.0436  0.0265 | 0.0580 0.0323  0.0257 | 0.0426 0.0196  0.0230
IG 0.0787 0.0304 0.0483 | 0.0458 0.0223  0.0235 | 0.0312 0.0151 0.0162

FIG 0.0414 0.0587 -0.0173 | 0.0284 0.0413 -0.0129 | 0.0183 0.0286 -0.0103
BIG 0.1577 0.0698  0.0879 | 0.1031 0.0609  0.0422 | 0.0688 0.0399  0.0289
MFABA | 0.2281 0.0709 0.1572 | 0.1214 0.0681  0.0533 | 0.0865 0.0420  0.0444
AttEXplore | 0.3066 0.0620 0.2446 | 0.2379 0.0466 0.1912 | 0.1870 0.0376  0.1494
GIG 0.1094 0.0414 0.0680 | 0.0522 0.0221 0.0302 | 0.0433 0.0182  0.0251

EG 0.3437 0.2890 0.0547 | 0.2763 0.2215 0.0548 | 0.2602 0.2126  0.0476
DeepLIFT | 0.0944 0.0715 0.0229 | 0.0461 0.0358 0.0102 | 0.0413 0.0252 0.0161
SG 0.1887 0.0388  0.1499 | 0.1256 0.0246  0.1010 | 0.1300 0.0194  0.1106

AGI 0.2992 0.0684 0.2308 | 0.3103 0.0572  0.2531 | 0.2094 0.0374  0.1719
AII (Ours) | 0.4276  0.0866  0.3410 | 0.3353 0.0601  0.2752 | 0.2383 0.0397  0.1987

performance with an INS score of 0.3906 and a DEL score of 0.0491, leading to a GAP of 0.3415.
This outperformed the GAP scores of other methods, with the second-best being AttEXplore’s GAP
of 0.3732 and AGI’s GAP of 0.3342. These results reinforce the robustness of All in maintaining
high interpretability across different models. Similarly, for the VGG16, AII achieved an INS score
of 0.2791 and a DEL score of 0.0313, resulting in a GAP of 0.2478. This again surpasses other
methods, with AttEXplore achieving a GAP of 0.2868 and AGI achieving a GAP of 0.2255.

E.2 RESULT OF U-INS AND U-DEL

Table E] summarizes the evaluation results on three different models: Inception-v3, ResNet-50, and
VGG16. Our method AII shows an average improvement of 0.1968 across all models. Specifically,
Al achieved a GAP of 0.3410 on Inception-v3, 0.2752 on ResNet-50, and 0.1987 on VGG16.
This represents average improvements of 0.2434, 0.2049, and 0.1421 over all other methods, and
improvements of 0.1302, 0.1093, and 0.0768 over the three most advanced attribution methods
(AGI, AttExplore, and MFABA).
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Table 6: Evaluation of various interpretability methods via F-INS and F-DEL metrics.

Inception-v3 | ResNet-50 VGG16

FINS F-DEL GAP* | FINS F-DEL GAP* | FINS F-DEL GAP*
M 2 M M ) ) M ) M

SM 0.0461 0.0513 -0.0052 | 0.0411 0.0599 -0.0188 | 0.0201 0.0331 -0.0130

1G 0.0507 0.0751 -0.0244 | 0.0463 0.1158 -0.0695 | 0.0244 0.0632 -0.0388
FIG 0.0683 0.0622 0.0061 | 0.1057 0.0587 0.0470 | 0.0585 0.0286 0.0299
BIG 0.1394 0.0548 0.0846 | 0.1208 0.0687  0.0522 | 0.0589 0.0333  0.0256
MFABA | 0.2147 0.0568  0.1579 | 0.1378 0.0771  0.0606 | 0.0793 0.0343  0.0451
AttEXplore | 0.2867 0.0393 0.2474 | 0.2476  0.0535 0.1941 | 0.1661 0.0290 0.1371
GIG 0.0693 0.0846 -0.0153 | 0.0501 0.1025 -0.0524 | 0.0262 0.0497 -0.0235

Method

EG 0.3031 0.2508 0.0522 | 0.2379 0.1893 0.0486 | 0.1829 0.1589  0.0240
DeepLIFT | 0.0844 0.0890 -0.0046 | 0.0712 0.1030 -0.0318 | 0.0277 0.0557 -0.0280
SG 0.0561 0.0793 -0.0232 | 0.0272 0.1106 -0.0834 | 0.0147 0.0537 -0.0390

AGI 0.3017 0.0459 0.2559 | 0.3162 0.0577 0.2586 | 0.1838 0.0309 0.1530
AII (Ours) | 04347 0.0593 0.3754 | 0.3343 0.0635 0.2708 | 0.2116 0.0299  0.1817

Table 7: Evaluation of various interpretability methods via KL-INS and KL-DEL metrics.

\ Inception-v3 \ ResNet-50 \ VGG16
Method KL-INS KL-DEL GAP* | KL-INS KL-DEL GAP* | KL-INS KL-DEL GAP*
M ) M ) ) Q) M (@) M

1G 4.6330 47326  -0.0996 | 5.2411 57370 -0.4959 | 4.0892 43924  -0.3032
GIG 4.6166 4.6722  -0.0556 | 5.4314 5.8300  -0.3986 | 4.0184 4.2275  -0.2092
SM 4.2523 4.2874  -0.0351 | 5.8697 59784  -0.1087 | 4.1630 4.2865  -0.1235
SG 4.2098 4.2448  -0.0351 | 6.1572 6.6074  -0.4501 | 4.7972 49943  -0.1971
DeepLIFT | 4.4600 44673  -0.0073 | 5.1015 5.5145  -0.4130 | 3.8561 43923  -0.5362
FIG 4.5110 4.4910 0.0199 | 5.5031 5.2329 0.2702 | 4.2262 3.9570 0.2692
EG 6.4901 5.8381 0.6520 | 5.5225 5.2205 0.3020 | 5.6787 5.4591 0.2196
BIG 5.8065 4.2149 1.5916 | 5.7889 4.6781 1.1109 | 4.5206 4.0025 0.5181
MFABA 7.0808 4.0553 3.0255 | 6.1156 4.3226 1.7929 | 4.7672 3.9528 0.8145
AGI 8.0736 4.0786 3.9949 | 7.2495 4.4588 2.7907 | 7.0833 4.4223 2.6610
AttExplore | 8.1982 3.4808 47174 | 7.0813 5.2140 1.8674 | 6.7422 4.2717 2.4705

All (Ours) | 10.5564  3.7794  6.7771 | 7.4023 42079 31944 | 7.4984 46113  2.8871

E.3 RESULT OF F-INS AND F-DEL

Table [6] presents the performance results across the three models. AII shows a pronounced im-
provement compared to other methods, with an average enhancement of 0.2333 over all methods.
Specifically, AIl demonstrates a performance gain of 0.3089 on Inception-v3, 0.2340 on ResNet-
50, and 0.1569 on VGG16. Compared to the top three advanced methods (AGI, AttExplore, and
MFABA), AIl shows an average improvement of 0.1082.

E.4 RESULT OF KL-INS AND KL-DEL

Table[7]presents the results across the three models. For Inception-v3, AIl achieved a GAP of 6.7771,
indicating a significant reduction in model decision uncertainty with an average improvement of
5.5254 over all methods and 5.2004 over the top three advanced methods. On ResNet-50, AIl
achieved a GAP of 3.1944, with improvements of 2.6246 and 2.6196, respectively. For VGG16,
AII attained a GAP of 2.8871, with enhancements of 2.3795 and 2.1526 over all methods and the
top three advanced methods. These results underscore the robustness of our approach in enhancing
model interpretability by effectively reducing decision uncertainty.

E.5 PERFORMANCE ON TRANSFORMER-BASED MODEL VIT-B/16

In this section, we evaluate the performance of different attribution methods on the ViT-B/16 model,
a widely-used transformer-based architecture in vision tasks. As shown in Table[9} our method (AII)
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Table 8: KL-INS and KL-DEL on High and Low Confidence Data

| Inc-v3 | Res-50 | VGG16
Low Conf High Conf Low Conf High Conf Low Conf High Conf
(<70%) (=70%) (<70%) (=70%) (<70%) (>70%)
| KL-INS KL-DEL | KL-INS KL-DEL | KL-INS KL-DEL | KL-INS KL-DEL | KL-INS KL-DEL | KL-INS KL-DEL
SM 4.0006  4.1461 4.2733 4.2992 57474  5.7749 5.8957 6.0216 | 4.0809 4.0889 | 4.1862  4.3423
1G 4.3213 4.478 4.659 4.7538 5.1251 5.2361 5.2658 5.8433 3.9275 4.0115 4.1348  4.4998
FIG 4.3368 42119 | 4.5255 4.5143 5.1004  5.0536 5.5885 5.2709 3.8839 3.8245 4.3227 3.9944
BIG 5.7597 4.0682 5.8104 42271 5.5494  4.1986 5.8397 47798 | 4.2773 3.8223 45892 4.0533

MFABA 5.7783 4.0013 7.1895 4.0598 5.6028 4.075 6.2243 4.3752 4.454 3.8081 4.8555 3.9935
AtteXplore | 6.4325 3.4516 8.3455 3.4832 6.2566 5.0651 7.2563 5.2456 6.0355 4.1755 6.9415 4.2988

GIG 4.3707 4.4534 4.6371 4.6904 5.3644 5.4411 5.4456 59125 3.9515 3.9936 4.0372 4.2935
EG 4.9925 4.8459 6.615 5.9209 4.9839 4.6738 5.6367 5.3364 5.0065 4.906 5.8683 5.6151
DeepLIFT | 4.1727 4.2879 4.484 4.4823 4.8818 5.1143 5.1481 5.5994 3.7093 4.0851 3.8975 4.4789
SG 4.173 4.1349 4.2128 4.254 6.2011 6.1561 6.1479 6.7031 4.7479 4.7833 4.8112 5.0538
AGI 5.5176 4.0858 8.2868 4.078 5.8622 4.5894 7.5437 4.431 5.2245 4.1857 7.6075 4.489

All (our) | 7.6129 3.6638 | 10.802 3789 | 6.3754 3.9806 | 7.6201 42561 | 6.0499 4.4146 | 7.9069 4.6668

outperforms others in both Insertion (INS) and Deletion (DEL) metrics, achieving the highest INS
score of 0.4357 and a low DEL score of 0.1067. This demonstrates that AII can effectively recover
model decisions with minimal feature insertion while accurately identifying critical features whose
removal significantly impacts the model. AIl shows greater robustness compared to other methods,
such as IG, FIG, and MFABA.

Table 9: Performance of different attribution methods on the ViT-B/16 model

| 1G FIG BIG MFABA AtteXplore SM GIG EG  DeepLIFT  SG AGI | Al (our)

INS | 0.1123 0.0616 0225  0.2239 0.2749 0.1215 0.1052 0.285 0.0899 0.2082  0.3236 | 0.4357
DEL | 0.0511 0.0968 0.1387  0.1724 0.1239 0.07  0.0461 0.269 0.0695 0.0299 0.1034 | 0.1067

E.6 ABLATION EXPERIMENTS

Our method involves two key hyperparameters: the number of explorations (M) and the number of
attack iterations (7'). Both parameters were varied to observe their impact on different evaluation
metrics, namely INS, DEL, GAP, U-INS, U-DEL, F-INS, F-DEL, KL-INS, and KL-DEL. The values
of M and T were set to 10, 15, 20, and 25 in our experiments. Detailed results of these ablation
studies are provided in Table[T0]

Table 10: Ablation study results for different hyperparameter settings of explorations (M) and attack
iterations (7"). The metrics include Insertion Score (INS), Deletion Score (DEL), Unified Insertion
Score (U-INS), Unified Deletion Score (U-DEL), Fair Insertion Score (F-INS), Fair Deletion Score
(F-DEL), KL Insertion (KL-INS), and KL Deletion (KL-DEL). The GAP metric represents the
difference between the respective insertion and deletion scores.

M| T | INS DEL GAP | UINS UDEL GAP | FINS FDEL GAP | KLINS KL-DEL GAP

10 | 0.6369 0.0866 0.5503 | 0.5753 0.1070 0.4683 | 0.5713 0.0778 0.4936 | 10.2542  3.7087  6.5455
10 15| 0.6382 0.0887 0.5495 | 0.5804 0.1092 0.4711 | 0.5768 0.0790 0.4978 | 10.3205  3.7195  6.6010
20 | 0.6394 0.0897 0.5497 | 0.5826 0.1097 0.4729 | 0.5815 0.0797 0.5018 | 10.3568  3.7395  6.6174
251 0.6395 0.0909 0.5485 | 0.5840 0.1109 0.4730 | 0.5837 0.0805 0.5032 | 10.3743  3.7447  6.6296
10 | 0.6407 0.0917 0.5490 | 0.5851 0.1106 0.4745 | 0.5835 0.0803 0.5032 | 10.4150  3.7504  6.6646
15 15 0.6422 0.0942 0.5480 | 0.5887 0.1118 0.4769 | 0.5878 0.0827 0.5052 | 10.4560  3.7702  6.6858
20 | 0.6430 0.0957 0.5473 | 0.5907 0.1121 0.4786 | 0.5905 0.0827 0.5078 | 10.4815  3.7840  6.6976
25| 0.6430 0.0966 0.5464 | 0.5913 0.1130 0.4782 | 0.5920 0.0840 0.5081 | 10.4902  3.7934  6.6968
10 | 0.6430 0.0952 0.5478 | 0.5904 0.1121 0.4783 | 0.5903 0.0825 0.5078 | 10.4740  3.7864  6.6876
20 15| 0.6431 0.0977 0.5454 | 0.5934 0.1132 0.4802 | 0.5929 0.0850 0.5079 | 10.5059  3.8044  6.7015
20 | 0.6435 0.0991 0.5444 | 0.5948 0.1135 0.4812 | 0.5946 0.0856 0.5089 | 10.5260  3.8149  6.7111
25| 0.6439 0.1000 0.5439 | 0.5950 0.1144 0.4805 | 0.5963 0.0863 0.5100 | 10.5346  3.8238  6.7109
10 | 0.6443 0.0984 0.5460 | 0.5936  0.1137 0.4799 | 0.5933 0.0844 0.5089 | 10.5115  3.8068  6.7047
25 15| 0.6447 0.1003 0.5444 | 0.5961 0.1143 0.4818 | 0.5959 0.0861 0.5098 | 10.5397  3.8242  6.7155
20 | 0.6450 0.1016  0.5434 | 0.5963 0.1149 0.4814 | 0.5969 0.0867 0.5102 | 10.5520  3.8385  6.7134
25 ] 0.6450 0.1022 0.5428 | 0.5967 0.1152 0.4816 | 0.5981 0.0875 0.5106 | 10.5621  3.8474  6.7148
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