
Published as a conference paper at ICLR 2022

DIURNAL OR NOCTURNAL? FEDERATED LEARNING
OF MULTI-BRANCH NETWORKS FROM PERIODICALLY
SHIFTING DISTRIBUTIONS

Chen Zhu1∗, Zheng Xu2, Mingqing Chen2, Jakub Konecný2, Andrew Hard2, Tom Goldstein1

1 University of Maryland, College Park, 2 Google

ABSTRACT

Federated learning has been deployed to train machine learning models from de-
centralized client data on mobile devices in practice. The clients available for
training are observed to have periodically shifting distributions changing with the
time of day, which can cause instability in training and degrade the model perfor-
mance. In this paper, instead of modeling the distribution shift with a block-cyclic
pattern as previous works, we model it with a mixture of distributions that grad-
ually shifts between daytime and nighttime modes, and find this intuitive model
to better match the observations in practical federated learning systems. Further-
more, we propose to jointly train a clustering model and a multi-branch network to
allocate lightweight specialized branches to clients from different modes. A tem-
poral prior is used to significantly boost the training performance. Experiments
for image classification on EMNIST and CIFAR datasets, and next word predic-
tion on the Stack Overflow dataset show that the proposed algorithm can counter
the effects of the distribution shift and significantly improve the final model per-
formance.

1 INTRODUCTION

In Federated Learning (FL), many clients collaboratively train a machine learning model with de-
centralized data under the orchestration of a central server (Kairouz et al., 2019). FL is designed for
privacy protection: the private data of local clients will never be directly transferred to the server
or shared with other clients, which follows the principle of data minimization and keeps the attack
surface of the system small (Wang et al., 2021). Initially introduced for decentralized training on
mobile devices (McMahan et al., 2017), FL has been widely applied for various different appli-
cations including finance, health, digital assistance and personalized recommendations (see a few
recent surveys (Yang et al., 2019; Kairouz et al., 2019; Li et al., 2020a; Lim et al., 2020; Wang et al.,
2021)). Specifically, cross-device FL has been used in practice to improve utility and privacy of
applications such as next word prediction (Hard et al., 2018), emoji suggestion (Ramaswamy et al.,
2019), query suggestion (Yang et al., 2018), out-of-vocabulary word discovery (Chen et al., 2019),
and keyword trigger models (Granqvist et al., 2020; Hard et al., 2020).

A typical communication round of FL starts with a server broadcasting a global model to clients.
Clients then perform local computation on private data and only send back aggregated model up-
dates. Finally, the server aggregates the client updates and apply them to the global model before
beginning the next round. In practical FL systems (Bonawitz et al., 2019; Paulik et al., 2021), clients
can only participate when the local criteria is met, such as when mobile devices are charging, idle,
and connected to an unmetered network. For the server, clients that satisfy their local criteria and
participate training at different times of the day are usually from different time zones that can have
significant differences, which can cause a periodically shifting data distribution that may degrade
the training stability and final model performance (Yang et al., 2018; Eichner et al., 2019). For cen-
tralized systems where client data can be collected, such a problem may be mitigated by caching and
uniformly sampling from cached data. However, due to the privacy and system constraints (Wang

∗Work done as an intern at Google. Correspondence to: chenzhu@umd.edu, xuzheng@google.com.

1

mailto:chenzhu@umd.edu
mailto:xuzheng@google.com

Published as a conference paper at ICLR 2022

et al., 2021), the orchestrator (server) in FL systems is not allowed to collect the raw user data, and
must deal with such non-IID, heterogeneous data distribution.

To our knowledge, there are only a few previous works (Eichner et al., 2019; Ding et al., 2020) dis-
cussing periodical distribution shift of client population in federated learning. These works assume a
block-cyclic structure where daytime clients and nighttime clients alternately participate in training.
Eichner et al. (2019) proposed the semi-cyclic SGD approach, where clients participating training at
different time slots will contribute to and only use the corresponding model of the group. By learn-
ing separate models for different blocks, they can obtain the same guarantee as the i.i.d. non-cyclic
setting under their assumptions. However, there are several caveats of semi-cyclic SGD that makes
it difficult to apply in practice: (1) It assigns models to clients based on their participation time, but
not all clients will participate in federated learning, hence it is hard to decide the correct group for
these clients. (2) It maintains a version of the full model for each clients group, which potentially
increases the communication cost or privacy risk. (3) The assumption of the abrupt switch from the
daytime group to the nighttime group at a specific time of a day is unintuitive in practice. (Ding
et al., 2020) is a variant of semi-cyclic SGD that inherits these issues. We provide discussions of
more related works such as heterogeneity, clustering, and multi-branch networks in Appendix A.7.

In this paper, we study periodical distribution shift of clients, and make the following contributions:

1. We revisit the periodical distribution shift. Instead of adopting the block-cyclic structure (Eichner
et al., 2019), we assume a smooth transition between the daytime mode and nighttime mode, and
empirically verify through simulation that its impact on training better matches the observation
in practical FL systems.

2. We propose to jointly train a multi-branch network and a clustering model to select the branch that
better fits the client’s distribution based on the feature representations. The lightweight branches
for the day and night modes only slightly increase the communication cost, but significantly
improve the model performance. Unlike (Mansour et al., 2020; Ghosh et al., 2020; Marfoq et al.,
2021), the feature-based clustering model does not rely on labelled data, and can be easily applied
for inference on new clients.

3. We propose to use the temporal prior of the client distribution to enhance the clustering models.
We assume participating clients per communication round is a mixture of daytime and nighttime
clients, and the number of participating clients from the daytime group will gradually increase as
time goes from nighttime to daytime, and vice versa. By exploiting this prior, we can train models
that are even more accurate than models trained with uniformly sampled clients in a conventional
federated simulation.

4. We provide simulations of the distribution shift on three benchmark datasets (EMNIST, CIFAR
and Stack Overflow) to evaluate the empirical performance of FL algorithms under the periodic
distribution shift with smooth transition. We perform extensive experiments, where the multi-
branch networks trained by our method outperform the distribution-oblivious baselines by a large
margin: 3-5% on EMNIST, 2-14% on CIFAR, and 0.4-1.35% on the challenging Stack Overflow
dataset under various degrees of distribution shifts. By leveraging the temporal priors, the pro-
posed method can take advantage of the periodic distribution shift and beat the strong baselines
of training with uniformly sampled clients by 4%, 4% and 0.45%, respectively.

2 MODELING PERIODICAL DISTRIBUTION SHIFT

FL setting. We consider federated learning algorithms for a set of clients I, where the i-th client
has data Di sampled IID (independent and identically distributed) from its own distribution, but the
distribution of different clients can be heterogeneous. We minimize the expected loss on all clients,

minimize
w

L(w) =
∑
i∈I

piLi(w), where Li(w) =
1

|Di|
∑
ξ∈Di

`(w, ξ), and
∑
i∈I

pi = 1, (1)

where pi is the weight (probability) of client i, and ξ = (x,y) is a training sample pair of data and
label on a client. By setting pi = |Di|/

∑
j∈I |Dj |, the federated training loss recovers the empirical

risk minimization (ERM) objective on all client samples. For simplicity, we abuse notation and use
x ∈ Di to denote a training sample (without label) for client i.

2

Published as a conference paper at ICLR 2022

Figure 1: Training accuracy of language models. (Left): on-device training in a practical FL system. (Middle):
simulation of the smooth distribution shift with qL,1(t) on Stack Overflow (T = 256). In the beginning of each
period, the probability of clients coming from nighttime mode is 1, which linearly decreases to 0 at the middle
of each period so that all clients are from daytime mode, corresponding to the peaks and valleys of the curves
respectively. (Right): simulation of the block-cyclic shift on Stack Overflow (T = 256).

Periodic distribution shift. A subset of clients I ′(t) ⊂ I(t) are available for training in a com-
munication round t. I(t) periodically changes with most of the clients from a daytime (nighttime)
client group in midday (midnight). Figure 1 (left) shows that the training loss in a cross-device FL
system has daily oscillation. Such oscillations was also observed by Yang et al. (2018), who con-
jecture it is due to the domain differences between clients from different time zones. Eichner et al.
(2019) study the block-cyclic structure, where the model is trained for T rounds each day, and the
clients are from the day mode and night mode alternately, each last continuously for T/2 rounds.
We plot the training curves of block-cyclic structure in Figure 1 (right), and observe it is different
from the (left) curves from a practical FL systems.

Smooth transition. We also assume the distribution changes periodically with a period of T . Unlike
(Eichner et al., 2019), we assume clients at round t are a mixture of daytime clients and nighttime
clients, denoted as I1(t) and I2(t), respectively. Intuitively, since the available population is usually
large around the clock, the population distribution of available clients should shift gradually, rather
than abruptly from one mode to another as in the block-cyclic structure. To better approximate the
behavior in practice, we assume that in each period, clients come from the day mode I1(t) with
a probability q(t) that varies smoothly between 0 and 1. Specifically, we simulate I1(t) and I2(t)
with two disjoint sets of clients with different data distributions, and define q : R+ → [0, 1] to be
a periodic function with a period of T . At each round t, we sample the clients from the following
distribution

P (i ∈ I1(t)) = q(t), P (i ∈ I2(t)) = 1− q(t). (2)

We consider a periodic Linear function (L) and a smooth Cosine function (C) for q(t), each further
parameterized by an exponent factor p > 0 to control smoothness of the transition,

qL,p(t) =

∣∣∣∣2 t mod T

T
− 1

∣∣∣∣p , qC,p(t) =

[
1

2
(cos (2πt/T) + 1)

]p
. (3)

We visualize the transition probability q(t) in Figure 7 of the appendix. When p < 1, more daytime
clients are available in T rounds, and when p > 1, more nighttime clients are available. This can
simulate the difference in the number of completed training rounds during daytime and nighttime
observed in practice (Yang et al., 2018).

Observation and insight. Figure 1 (middle) simulates the training curve with qL,1(t) to control
the probability for sampling from I1(t), which more accurately approximates the curves from a
practical FL system. The three curves show that training a single model around the clock achieves
the best performance on both modes despite the domain differences, which motivates us to train
a model with a large amount of shared weights. Semi-cyclic SGD (Eichner et al., 2019) provides
the worst-case guarantees when the domains of each block are unrelated, and argues that training
a single model on both modes is not optimal, which is different from our observations. Another
important observation is that the training accuracy reaches its minima (maxima) when the client
population is most biased towards the day mode or night mode, e.g., round 1024 and 1152 in the
middle figure, from which we can infer the peak moment of daytime clients and nighttime clients in
practice and use it to define a strong prior to improve the learning process.

3

Published as a conference paper at ICLR 2022

3 LEARNING FROM PERIODICAL DISTRIBUTION SHIFT

We consider applications in which clients collaboratively train a model with a common input and
output space, and the distribution of clients changes with time. We propose to jointly train a multi-
branch network and a clustering model to assign specialized branches for prediction on clients from
different modes, guided by the temporal prior of the client distributions. We consider two methods
for enforcing the temporal prior: FEDTEM (Section 3.1), which is based on a Gaussian Mixture
Model (GMM), and FEDTKM (Section 3.2), which is based on K-means clustering.

Multi-branch network. Eichner et al. (2019) showed the merits of training separate models for
different data distributions when the distributions can be identified during evaluation. However,
training a single model with shared feature extraction layers on all available data can usually im-
prove the data efficiency of representation learning. For example, for vision tasks, it helps to learn
to extract common low-level features, while for language tasks it helps to learn shared embeddings
and grammars from the context. To handle the distribution shift while learning shared feature repre-
sentations and alleviating the communication overhead, we adopt the weight-sharing strategy from
multi-task learning (Caruana, 1997) to train a multi-branch network with shared feature extraction
layers f(wf ,x) followed by one of the specialized prediction branches gk(wk, f(wf ,x)) for clients
from each cluster k (1 ≤ k ≤ K). We set each prediction branch gk to be a single linear layer, which
is more communication efficient and data efficient than having K versions of the same model.

Temporal prior. The temporal prior q̃(t) is an estimate for the ratio of clients coming from the
daytime cluster, q(t). From the observations in Section 2, we can locate the time when q(t) is most
likely to be 0 or 1 by observing when the minima and maxima occur from the training curve. In
between these minima and maxima, we consider three types of q̃(t) in our current experiments: 1)
Linear: q̃(t) = qL,1(t); 2) Cosine: q̃(t) = qC,1(t); 3) Soft: see Appendix A.3.

Training Objective. Our model assumes clients are from either the daytime or the nighttime cluster
(K = 2), so it has two branches, and each branch is used for one group of clients. Let k∗i be the
branch index of client i chosen by the clustering model, and k̄∗i be the index of the other branch.
Each client trains the network with the following objective

minimize
w

Li(w) =
1

|Di|
∑
ξ∈Di

`CE(gk∗i (w,x),y) + λ`CE(gk̄∗i (w,x), s(ε,y)), (4)

where s(ε,y) = ε 1
n +(1−ε)y is the label smoothing function for one-hot vector y , ε ∈ [0, 1] deter-

mines the amount of label smoothing, and λ > 0 is the regularization strength. The label smoothing
regularization updates the other branch jointly with the feature extractor to prevent staleness, while
encouraging the two branches to specialize in different feature subspaces: branch k̄∗i is trained to
become less certain on features of samples from cluster k∗i .

3.1 LEARNING A GAUSSIAN MIXTURE MODEL WITH PER-CLIENT TEMPORAL STATISTICS

We propose Federated Expectation-Maximization with Temporal prior (FEDTEM) to learn a Gaus-
sian Mixture Model (GMM) to infer the cluster a client is from, and select the corresponding branch
in the multi-branch network. We define discrete latent variables z and ζ to represent which cluster
a sample and a client is from, respectively. FEDTEM assumes samples on the same client are from
the same cluster, so the GMM prior P (ζ = k) = P (z = k) for any k. We define P (x|z = k) as a
Gaussian distribution N (f(w,x)|µk,σk) in the feature space. For efficiency, we assume and learn
a diagonal covariance σk for the Gaussian models. Algorithm 1 summarizes the training process,
and the details of each step are provided in the following sections.

3.1.1 MODELING THE CLIENT DISTRIBUTIONS AND SELECTING BRANCHES FOR TRAINING

The prior P (ζ) of the client distribution are constantly changing due to the periodic distribution
shift. To stay up-to-date, the i-th client estimates its probability of coming from the k-th cluster
based on its data Di before the local update steps during training. Specifically, given the GMM
parameters, since P (ζ) = P (z), the local maximum likelihood estimation (MLE) of P (ζi) on each
new client i is equal to the MLE of p(z) on client i. Let π∗i be the MLE of P (z) on client i, where

4

Published as a conference paper at ICLR 2022

the k-th dimension of π∗i , denoted as π∗ik, is the MLE of P (z = k) on client i. Then

P (ζi = k) = π∗ik =
1

|Di|
∑
x∈Di

P (z = k|x) =
1

|Di|
∑
x∈Di

πkN (f(w,x)|µk,σk)∑K
j=1 πjN (f(w,x)|µj ,σj)

, (5)

For completeness, we give the derivation of Eq. 5 in Appendix A.1, where we also compare with the
empirical results of using the posterior P (ζ|Di) instead of the MLE π∗i for branch selection.

We select the branch based on the MLE of P (ζi) and train the network by optimizing Eq. 4. We can
either greedily select the branch k∗i = arg maxk π

∗
i , or sample from the discrete distribution π∗i .

We show the greedy approach achieves better empirical results in Figure 6, and use it by default.

Algorithm 1 FEDTEM: Federated EM with Temporal Prior (Training)
1: Input: A stream of clients I(t) with periodical distribution shift; Number of communication rounds N ;

Number of rounds per day T .
2: Output: Network parameterswN = (wN

f ,w
N
1 ,w

N
2), GMM parameters θN = (µN ,σN ,πN).

3: for t = 0 to N − 1 do
4: A set of m clients I′(t) ⊂ I(t) participates training;
5: Server broadcasts parameters of the networkwt and the GMM θt to I′(t);
6: for clients i ∈ I′(t) in parallel do
7: Estimate π∗i on Di, and choose the branch k∗i = arg maxk π

∗
ik; . see Eq. 5

8: Given k∗i , run local updates for the network by optimizing Eq. 4 and get w̃t+1
i ;

9: On Di, compute the MLE π̃∗i and all feasible Gaussian parameters (µ̃t+1
i , σ̃t+1

i); . see Eq.9
10: Server aggregates the model update

∑
pi(w̃

t+1
i −wt)

11: Update network parameters towt+1 with the prescribed server optimizer.
12: Server collects GMM params {π̃∗i , µ̃t+1

i , σ̃t+1
i |i ∈ I′(t)};

13: Update the GMM parameters to (µt+1,σt+1,πt+1) with the temporal prior on π̄∗i ; . see Eq. 10

3.1.2 UPDATING THE MIXTURE MODEL PARAMETERS

We introduce a federated Expectation-Maximization (EM) (Dempster et al., 1977) enhanced by the
temporal prior to update the parameters of the GMM. The temporal prior is enforced via a bottom-
up approach: we start by running EM on each client i and send all possible locally optimal GMM
parameters to the server, and then select and aggregate the GMM parameters with the temporal prior
on the server. We find the optimal GMM parameters after the local update steps as described in
Section 3.1.1, so that the GMM is updated in the feature space of the updated network. We give
details of the process in the following.

E step. For each client i ∈ I(t), evaluate the posterior γik(x) for each sample x to infer the
probability of x coming from cluster k, based on the locally updated network with parameterswt+1

i

γik(x) = P (z = k|x) =
πt
kN (f(wt+1

i ,x)|µt
k,σ

t
k)∑K

j=1 π
t
jN (f(wt+1

i ,x)|µt
j ,σ

t
j)
. (6)

M step on clients. To learn a GMM that better distinguishes the daytime and nighttime clus-
ters, we incorporate the temporal prior q̃(t) into the M step by considering the posterior P (ζ =
k|Di,θ

t, q̃(t)), where θt = (µt,σt,πt) is the collection of all GMM parameters. The M step
optimizes the following objective

maximize
θ

∑
i∈I′(t)

K∑
k=1

P (ζ = k|Di,θ
t, q̃(t)) logP (Di, ζ = k|θ, q̃(t)). (7)

Since the clients cannot share their data with the server, we first find locally optimal parameters
θ̃t+1
i = argmaxθ

∑K
k=1 P (ζ = k|Di,θ

t, q̃(t)) logP (Di, ζ = k|θ, q̃(t)) on each client i, and then
average on the server. However, it is hard to evaluate the posterior P (ζ = k|Di,θ

t, q̃(t)) locally
without additional communication rounds, since q̃(t) is an estimate of the ratio of clients from one
cluster, and the posterior for one client depends on the estimates of other clients. A viable approach
is to assume the posterior to be one-hot, i.e., for a certain cluster k∗, P (ζ = k|Di,θ

t, q̃(t)) = 1 if
k = k∗, and P (ζ = k|Di,θ

t, q̃(t)) = 0 if k 6= k∗. Under this modeling assumption, we can learn

5

Published as a conference paper at ICLR 2022

more distinctive features for the clusters at no communication overhead. To see this, when k∗ is
given, we only need to solve

θ̃t+1
ik∗ = argmaxθP (ζ = k∗|Di,θ

t, q̃(t)) logP (Di, ζ = k∗|θ, q̃(t)), (8)
where its optimal mean and variance, and the MLE of the GMM prior for cluster k∗ on client i are

µ̃t+1
ik∗ =

1

|Di|
∑
x∈Di

f(wt+1
i ,x), [σ̃t+1

ik∗]2 =
1

|Di|
∑
x∼Di

(f(wt+1
i ,x)−µ̃t+1

ik∗)2, π̃∗ik∗ =
1

|Di|
∑
x∈Di

γik∗(x).

(9)
Note µ̃t+1

ik∗ and σ̃t+1
ik∗ are identical for different k∗; see Appendix A.2 for derivations. The clients

send the optimal mean and variance to the server. To enforce temporal priors on the server, clients
also send the MLE of the prior on Di for each cluster k, i.e., π̃∗ik, to the server.1 In this way, the total
number of parameters sent to the server can be less than a single GMM model.

M step on server with temporal prior. The temporal prior is enforced via a bottom-up approach:
each client sends all possible solutions and MLEs {(µ̃t+1

ik , σ̃t+1
ik , π̃∗ik)|i ∈ I ′(t), k ∈ {1, 2}} to the

server; the server then estimates the one-hot posterior P (ζ|Di,θ
t, q̃(t)) based on π̃∗ik. A set Ĩ ′1(t)

of bq̃(t) · |I ′(t)| + 1
2c clients with highest π̃∗i1 will have P (ζ = 1|Di,θ

t, q̃(t)) = 1, while the
remaining clients, constituting a set Ĩ ′2(t), will have P (ζ = 2|Di,θ

t, q̃(t)) = 1. Then, similar as
FedAvg (McMahan et al., 2017), the server updates the GMM parameters for each mode k as the
weighted average of the optimal GMM parameters of each client i ∈ Ĩ ′k(t):

µt+1
k =

∑
i∈Ĩ′k(t)

|Di|
M t

k

µ̃t+1
ik , [σt+1

k]2 =
∑

i∈Ĩ′k(t)

|Di|
M t

k

[σ̃t+1
ik]2, πt+1

k =
M t

k∑K
j=1M

t
j

, (10)

where M t
k =

∑
i∈I′k(t) |Di| is the total number of samples from clients assigned to mode k. Note

σt+1 is not necessarily an unbiased estimate, but we find this estimate gives good results in practice.
We also use a running average of the GMM prior πt+1

k during training and set it to be a uniform
distribution during inference; see Appendix A.4 for details.

3.2 LEARNING A CLUSTERING MODEL WITH AGGREGATED TEMPORAL STATISTICS

FEDTEM collects per-client π̃∗i to use the temporal prior and update the GMM parameters, which
may not satisfy the strong aggregation-only data minimization principle (Bonawitz et al., 2021;
Wang et al., 2021). We propose an alternative Federated K-Means algorithm augmented by the
Temporal prior (FEDTKM), where the temporal prior is enforced based on only aggregated results,
described in Algorithm 2. FEDTKM clusters the ith client and selects the branches based on the
averaged distance of the features to the k cluster centers,

dik(wt) =
1

|Di|
∑
x∈Di

αk‖f(wt,x)− ck‖, (11)

where the superscript t denotes the communication round, and αk are distance scalar factors to con-
trol the “prior” of the clusters and enforce the temporal priors. During training, a client i computes
dik on its training set to select the branch with minimal dik, while at test time, we use a minibatch
to estimate dik. In the case of two centers, we fix α1 = 1, and learn a scalar α2 > 0 to rescale the
distances to the second cluster c2: when α2 > 1, it makes the FEDTKM algorithm more likely to
assign the client to the first cluster, and vice versa. α2 > 1 is updated by a quantile-based (private)
estimator inspired by (Andrew et al., 2021).

The clients train the network with their selected branches by Eq. 11 through the objective in Eq. 4.
After the local training steps, each client estimates its cluster assignment again with the locally up-
dated parameters w̃t

i , and computes an indicator variable qi(t) = 1[di1(w̃t
i) < di2(w̃t

i)] for quantile
estimation, and the feature means f̄(w̃t

i) = 1
|Di|

∑
x∈Di

f(w̃t
i ,x) for k-means centers. Then qi(t)

and f̄(w̃i) can be sent to a trusted, secure aggregator to get the ratio of clients assigned to cluster 1,
q̄(t), and the averaged k-means centers ct+1

1 , ct+1
2 as

q̄(t) =
1

|I ′(t)|
∑

i∈I′(t)

qi(t), c
t+1
k =

∑
i∈I′(t)

rik|Di|∑
i∈Ĩ′(t) rik|Di|

f̄(w̃t
i), k = 1 or 2, (12)

1The MLE is defined in Eq. 14.

6

Published as a conference paper at ICLR 2022

where ri1 = qi(t), ri2 = 1− qi(t).

The distance factor α2 is updated by tracking the difference between the empirical quantile q̄(t) and
the oracle quantile q̃(t) estimated by the temporal prior,

αt+1
2 = exp

{
ηt [q̃(t)− q̄(t)]

}
αt

2, (13)

where ηt ≥ 0 is the step size of the geometric update at step t. In all experiments, we use the
periodical linear function q̃(t) = qL,1(t) as the temporal prior.
Algorithm 2 FEDTKM: Federated k-means with Temporal Prior
1: Input: A stream of clients I(t) from a periodically shifting distribution; Number of communication rounds
N ; Number of rounds per day T .

2: Output: Network parameters wN = (wN
f ,w

N
1 ,w

N
2), k-means cluster centers cN1 and cN2 (k = 2),

distance scalar αN
2 .

3: for t = 0 to N − 1 do
4: A set of m clients I′(t) ⊂ I(t) participate training;
5: Server broadcasts parameters of the networkwt and the k-means parameters (ct1, ct2, αt) to I′(t);
6: for clients i ∈ I′(t) in parallel do
7: Compute average distance dik(wt) = 1

|Di|
∑

x∈Di
αk‖f(wt,x)− ck‖;

8: Choose the branch with minimal distance k∗i = arg mink dik(w);
9: Given k∗i , run local updates for the network by optimizing Eq. 4 and get w̃t

i ;
10: Compute qi(t) = 1[di1(w̃t

i) < di2(w̃t
i)] to be aggregated for q̄(t);

11: Compute f̄(w̃t
i) = 1

|Di|
∑

x∈Di
f(w̃t

i ,x) to be aggregated for ct+1
1 or ct+1

2 ;

12: Server receives aggregated network and k-means parameters {w̄t, ct+1
1 , ct+1

2 , q̄(t)} from the clients;
13: Update the distance scalar αt+1

2 with the temporal prior q̃(t): αt+1
2 = exp

{
ηt [q̃(t)− q̄(t)]

}
αt
2;

14: Update the k-means centers into ct+1
1 , ct+1

2 using Eq. 12;
15: Update network parameters towt+1 using w̄t −wt with the prescribed server optimizer.

3.3 COMPARISONS AND DISCUSSIONS

Privacy. In our simulation experiments (Section 4), FEDTEM often performs better than FEDTKM.
However, the server has to observe the GMM parameters for participating client in FEDTEM, which
may require new techniques to satisfy the strong data minimization and data anonymization princi-
ples (Wang et al., 2021; Bonawitz et al., 2021). On the other hand, FEDTKM only uses aggregated
results, which is compatible with the strong data minimization principle, and easier to be further pro-
tected by other privacy techniques such as secure aggregation (Bonawitz et al., 2019) and differential
privacy (McMahan et al., 2018; Kairouz et al., 2021).

Differences from previous methods. Compared with previous methods that jointly train a cluster-
ing model with multiple networks, our method has four key differences that better suits cross-device
FL under temporal distribution shift. First, our method introduces the temporal prior to regularize
the clustering model, which is missing in previous works. Second, our k-branch network with shared
feature extractor is more communication and data efficient than using k networks. Third, our clus-
tering model selects the branches based on the feature, which eliminates the need for labeled data
for clients not participate in training. Clustering models of (Ghosh et al., 2020; Marfoq et al., 2021)
are based on the loss, which is impractical for clients without labeled data. Fourth, our method does
not maintain states on clients. (Marfoq et al., 2021) assumes stateful clients, which is impractical for
cross-device setting where each client only participate limited times (Wang et al., 2021). We give
more detailed comparison with previous methods in Appendix A.7.

4 EXPERIMENTS

Dataset. We consider two image classification datasets, EMNIST and CIFAR, and one next word
prediction task on Stack Overflow (SO). The split of the day mode (I1) and night mode (I2), and
other statistics, are shown in Table 1 in the Appendix. On SO, we use a vocabulary size of 10K and
report the test accuracy without special tokens. We truncate each sentence to have no more than 20
tokens. For the distribution shift, we use T = 256 for the majority of our results, and we compare
results under both linear and cosine distribution shifts with p ∈ {0.1, 0.25, 0.5, 1, 2, 4, 10}.
Architecture of the multi-branch networks. On EMNIST, we train LeNet with 2 Conv layers and
2 FC layers. On CIFAR, we train a ResNet-18 with the Batch Norm replaced by Group Norm (Wu

7

Published as a conference paper at ICLR 2022

0.1 0.25 0.5 1.0 2.0 4.0 10
p

65

70

75

80

85

90

Ac
cu

ra
cy

Accuracy on EMNIST (Linear Shift)

Vanilla
SCSGD
T-shot K-means
Min Loss (IFCA)
FedEM
FedTEM (linear)
FedTKM
No Dist. Shift

0.1 0.25 0.5 1.0 2.0 4.0 10
p

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

Accuracy on CIFAR (Linear Shift)

Vanilla
SCSGD
T-shot K-means
Min Loss (IFCA)
FedEM
FedTEM (linear)
FedTKM
No Dist. Shift

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

24.00

24.25

24.50

24.75

25.00

25.25

25.50

25.75

Ac
cu

ra
cy

Accuracy on Stack Overflow (Linear Shift)

Vanilla
SCSGD
Min Loss (IFCA)
FedEM
FedTEM (cosine)
FedTKM
No Dist. Shift

0.1 0.25 0.5 1.0 2.0 4.0 10
p

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

Accuracy on EMNIST (Cosine Shift)

Vanilla
SCSGD
T-shot K-means
Min Loss (IFCA)
FedEM
FedTEM (linear)
FedTKM
No Dist. Shift

0.1 0.25 0.5 1.0 2.0 4.0 10
p

44
46
48
50
52
54
56
58

Ac
cu

ra
cy

Accuracy on CIFAR (Cosine Shift)

Vanilla
SCSGD
T-shot K-means
Min Loss (IFCA)
FedEM
FedTEM (linear)
FedTKM
No Dist. Shift

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

24.00

24.25

24.50

24.75

25.00

25.25

25.50

Ac
cu

ra
cy

Accuracy on Stack Overflow (Cosine Shift)

Vanilla
SCSGD
Min Loss (IFCA)
FedEM
FedTEM (cosine)
FedTKM
No Dist. Shift

Figure 2: Comparing the results of FEDTEM and FEDTKM with baseline methods. On EMNIST and CIFAR,
FEDTKM can achieve similar performances as FEDTEM and outperforms most of the other methods. On Stack
Overflow, FEDTKM is not as good as FEDTEM, but it still outperforms other methods, and can be even better
than the model trained without distribution shift when the training population is less biased (p is closer to 1).

& He, 2018) for stability in federated learning. We use the last FC layer of these convolutional
networks as the multi-branch part and share all the remaining layers. We use the output from the
shared feature extractor for clustering, which are 128 and 512 dimensional for EMNIST and CIFAR
respectively. On SO, we train a single-layer LSTM (Hochreiter & Schmidhuber, 1997) with a hid-
den size of 670 and embedding size of 96. To alleviate the communication overhead and prevent
overfitting, we define the branches to be the last projection layer before the final prediction layer,
which is 15x smaller than the final prediction layer. The communication overheads of the extra
branch are 0.7%, 0.5% and 1.6% respectively for models on EMNIST, CIFAR and SO.

Hyperparameters. We use FedAdam (Reddi et al., 2021) as the optimizer. Table 2 shows the
training hyperparameters, with implementation details and practical notes given in Section A.4. For
Min Loss, FEDTEM and FEDTKM, we also do a grid search on the label smoothing parameters
ε and λ. For each hyperparameter setting, we run 3 experiments with different random seeds and
report their mean and standard error.

Ablation study and temporal prior. In Appendix A.5 and Figure 3, we provide ablation studies
on the temporal prior to quantify its efficacy, and see which temporal prior (Linear, Cosine, or Soft)
works better in practice. From the results we can see: 1) all three types of priors improve the baseline
in most cases; 2) linear prior works better on image datasets, while cosine prior works better on SO;
3) with weaker assumptions, Soft prior is able to fit the distribution shift and improves the results.
With these observations, for FEDTEM, we choose the linear prior q̃L,1(t) on EMNIST and CIFAR
and the cosine prior q̃C,1(t) on SO. For FEDTKM, we only consider the linear prior q̃L,1(t).

Baselines. For fair comparisons, unless otherwise stated, we adapt all methods into our settings
to maintain two important properties: 1) training the same multi-branch network to keep model
capacities the same; 2) labels are not available for test clients. For the baseline without any branch
selection technique, we train the same multi-branch network by taking the averaged output from
both branches for prediction. Such networks trained under shifting data distribution are denoted as
“Vanilla”, while those trained without distribution shift are denoted as “No Dist. Shift” (NDS).In
Appendix A.8, we also provide results of training single-branch models in these two settings, which
obtained almost identical results. The baseline methods are: 1) “SCSGD”, where similar as Semi-
Cyclic SGD (Eichner et al., 2019), we train one model during first half of each period, and the other
model on the other half. During test time, since there is no indicator of which mode the clients come
from in practice, we select the models according to the certainty of their predictions, measured by
evaluating the KLD between the prediction and a uniform distribution over all labels. 2) T-shot
K-means, which is an enhanced variant of one-shot K-means (Dennis et al., 2021), collecting the
cluster centers on raw data from all participating clients during a whole period of T rounds before
training. For both training and test, it selects the branches for each sample according to the nearest
cluster center. 3) “Min Loss (IFCA)”, where same as IFCA (Ghosh et al., 2020), we choose the

8

Published as a conference paper at ICLR 2022

branch with minimum loss on the local training set of each client during training, but different from
IFCA, we choose branches with highest certainty on the unlabeled test set clients, using the same
criterion as 1). We applied the label smoothing regularization (Eq. 4) to IFCA, which improves the
results. 4) FedEM (Marfoq et al., 2021), where we use the same algorithm on participating clients
during training. FedEM is implemented with privilege to access sample labels for test clients, to
enable its EM steps which uses the loss.

Main Results. The results of all methods are shown in Figure 2. By comparing results of Vanilla
and NDS, we find the temporal distribution shift indeed degrades vanilla training, causing the worst-
case decrease in accuracy by more than 7%, 20% and 1% respectively on EMNIST, CIFAR and
SO. While with FEDTEM and FEDTKM, the accuracy can be even higher than models trained in
the NDS setting in most cases, demonstrating the efficacy of the temporal prior for learning more
distinctive feature representations for the daytime and nighttime modes with specialized prediction
branches. The improvement on the strong NDS baseline can be as high as 4%, 4% and 0.45% with
FEDTEM on the three datasets. FEDTEM is not better than NDS when p deviates too much from 1
as the data distribution is extremely skewed in such settings, while our methods are still better than
most other methods in most cases. For baseline methods, SCSGD performs surprisingly well on
EMNIST when p is large, but the performance quickly drops on the more complicated CIFAR and
SO. T-shot K-means achieves improvements for extreme p’s on EMNIST, but it is not significantly
better than “Vanilla” on CIFAR, due to the difficulty in reliable clustering in more complicated image
spaces. We did not implement T-shot K-means for SO due to the difficulty of clustering the raw data
of the language task. Min Loss (IFCA) alleviates the drop and sometimes competes with NDS, but
cannot achieve improvements over NDS. By contrast, FedEM often achieves inferior results even
with the privilege access to the test labels for EM estimation. This is probably due to the staleness
of the priors in the challenging periodic distribution shift setting, as we simulate cross-device FL on
a large population where clients only participate training for a few rounds on EMNIST and CIFAR,
and at most one round on SO.

Effect of label smoothing regularization. Shown in Figure 5. Since EMNIST is relatively easy and
the network on it is small, the label smoothing does not show significant improvements. However,
it is critical to the success on CIFAR and SO. Without the regularization, one branch will not be
updated simultaneously with the feature extractor, resulting in instability and low test accuracy.

MLE for Evaluation. For FEDTEM, during evaluation, we find it beneficial for image classification
to use the MLE in Eq. 5 on the minibatches (typically of size no larger than 64) to select the best
branch, compared with the sample-level inference. We show its benefit in Figure 4 in the appendix.
In practice, similar approaches can be realized through caching. We find Min Loss does not show
much difference when a similar approach is applied, where branches are chosen by the averaged
certainty on minibatches. The baseline model even gets worse performance with this approach, as
shown in Figure 4, indicating our model is much better at distinguishing two modes in expectation.
However, this approach does not show improvements for FEDTEM on SO.

Effect of T . As shown in Figure 8, for FEDTEM with linear prior on EMNIST, a smaller T tends
to decrease the performance when p deviates too much from 1. In such scenarios, the distribution
changes frequently and abruptly. However, the performance of FEDTEM is maintained when the
distribution changes in a frequent but more balanced way.

5 CONCLUSIONS
In this paper, we showed the influence of a smoothly shifting distribution between daytime and
nighttime modes better matches the phenomenon in practical FL systems, and developed algorithms
to train multi-branch networks to tackle the distribution shift. Our methods incorporates priors of the
temporal distribution shifts to learn a mixture or clustering model to guide the network and select
corresponding branches for clients from different modes during both training and inference. The
clustering models are defined in the feature space and does not require labelled data for inference,
hence is ready to be deployed on clients without labeled data. The branches are lightweight with little
communication overhead, and the model demonstrates significant improvements in test accuracy on
the benchmark datasets. Our methods also satisfies many other real-world constraints like single
round communication and stateless clients (Bonawitz et al., 2019; Paulik et al., 2021; Wang et al.,
2021), which makes it possible to be deployed in practical FL systems.

9

Published as a conference paper at ICLR 2022

6 REPRODUCIBILITY STATEMENT

Our code is available on GitHub.2 For reproducibility, we have reported the mean and standard error
for 3 experiments with different random seeds for all settings. The dataset we used for simulations
are all available in Tensorflow Federated, and our implementation is largely based on the code from
Adaptive Federated Optimization (Reddi et al., 2021).3 We have listed our hyperparameters in
Table 2. We have given the pseudo code in Algorithm 1 and the detailed formulas and derivations
of our algorithm in Section 3.1.

7 ACKNOWLEDGEMENTS

The authors would like to thank Galen Andrew and Brendan McMahan for helpful discussions.
Goldstein was supported by the National Science Foundation #1912866, the DARPA GARD pro-
gram, and the Sloan Foundation.

REFERENCES

Maruan Al-Shedivat, Jennifer Gillenwater, Eric Xing, and Afshin Rostamizadeh. Federated learning
via posterior averaging: A new perspective and practical algorithms. In International Conference
on Learning Representations (ICLR), 2021.

Mathieu Andreux, Jean Ogier du Terrail, Constance Beguier, and Eric W Tramel. Siloed federated
learning for multi-centric histopathology datasets. In Domain Adaptation and Representation
Transfer, and Distributed and Collaborative Learning, pp. 129–139. Springer, 2020.

Galen Andrew, Om Thakkar, Swaroop Ramaswamy, and Hugh Brendan McMahan. Differentially
private learning with adaptive clipping. In Thirty-Fifth Conference on Neural Information Pro-
cessing Systems, 2021.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Kallista Bonawitz, Peter Kairouz, Brendan McMahan, and Daniel Ramage. Federated learning and
privacy: Building privacy-preserving systems for machine learning and data science on decentral-
ized data. Queue, 19(5):87–114, 2021.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al. Towards
federated learning at scale: System design. SysML, 2019.

Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical clustering
of local updates to improve training on non-iid data. In 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–9. IEEE, 2020.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. Federated learning of out-
of-vocabulary words. arXiv preprint arXiv:1903.10635, 2019.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Don Kurian Dennis, Tian Li, and Virginia Smith. Heterogeneity for the win: One-shot federated
clustering. ICML, 2021.

2https://github.com/google-research/federated/tree/
7525c36324cb022bc05c3fce88ef01147cae9740/periodic_distribution_shift

3https://github.com/google-research/federated/tree/
780767fdf68f2f11814d41bbbfe708274eb6d8b3/optimization

10

https://github.com/google-research/federated/tree/7525c36324cb022bc05c3fce88ef01147cae9740/periodic_distribution_shift
https://github.com/google-research/federated/tree/7525c36324cb022bc05c3fce88ef01147cae9740/periodic_distribution_shift
https://github.com/google-research/federated/tree/780767fdf68f2f11814d41bbbfe708274eb6d8b3/optimization
https://github.com/google-research/federated/tree/780767fdf68f2f11814d41bbbfe708274eb6d8b3/optimization

Published as a conference paper at ICLR 2022

Yucheng Ding, Chaoyue Niu, Yikai Yan, Zhenzhe Zheng, Fan Wu, Guihai Chen, Shaojie Tang, and
Rongfei Jia. Distributed optimization over block-cyclic data. arXiv:2002.07454, 2020.

Moming Duan, Duo Liu, Xinyuan Ji, Yu Wu, Liang Liang, Xianzhang Chen, and Yujuan Tan.
Flexible clustered federated learning for client-level data distribution shift. arXiv preprint
arXiv:2108.09749, 2021.

Hubert Eichner, Tomer Koren, Brendan McMahan, Nathan Srebro, and Kunal Talwar. Semi-cyclic
stochastic gradient descent. In ICML, 2019.

Yanan Fu, Xuefeng Liu, Shaojie Tang, Jianwei Niu, and Zhangmin Huang. Cic-fl: Enabling class
imbalance-aware clustered federated learning over shifted distributions. In International Confer-
ence on Database Systems for Advanced Applications, pp. 37–52. Springer, 2021.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. NeurIPS, 33, 2020.

Filip Granqvist, Matt Seigel, Rogier van Dalen, Áine Cahill, Stephen Shum, and Matthias Paulik.
Improving on-device speaker verification using federated learning with privacy. arXiv preprint
arXiv:2008.02651, 2020.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

Andrew Hard, Kurt Partridge, Cameron Nguyen, Niranjan Subrahmanya, Aishanee Shah, Pai Zhu,
Ignacio Lopez Moreno, and Rajiv Mathews. Training keyword spotting models on non-iid data
with federated learning. arXiv preprint arXiv:2005.10406, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire of
decentralized machine learning. In International Conference on Machine Learning, pp. 4387–
4398. PMLR, 2020.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world
data distribution. In ECCV, pp. 76–92. Springer, 2020.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng
Xu. Practical and private (deep) learning without sampling or shuffling. International Conference
on Machine Learning (ICML), 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for on-device federated
learning. International Conference on Machine Learning (ICML), 2020.

Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive gradient-based meta-
learning methods. In Advances in Neural Information Processing Systems, 2019.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2020b.

Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B. Allen, Randy P. Auerbach, David Brent, Ruslan
Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:2001.01523, 2020.

11

Published as a conference paper at ICLR 2022

Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang,
Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile edge networks: A
comprehensive survey. IEEE Communications Surveys & Tutorials, 2020.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv:2002.10619, 2020.

Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal. Federated
multi-task learning under a mixture of distributions. arXiv:2108.10252, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, pp.
1273–1282. PMLR, 2017.

Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. In International Conference on Learning Representations (ICLR),
2018. URL https://openreview.net/pdf?id=BJ0hF1Z0b.

Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier van Dalen,
Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al. Federated evalua-
tion and tuning for on-device personalization: System design & applications. arXiv preprint
arXiv:2102.08503, 2021.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. Federated learning
for emoji prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329, 2019.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. ICLR, 2021.

Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali Jadbabaie. Robust federated
learning: The case of affine distribution shifts. In NeurIPS, 2020.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 2020.

Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, Keith Rush, and Sushant Prakash.
Federated reconstruction: Partially local federated learning. arXiv preprint arXiv:2102.03448,
2021.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, 2017.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Blaise Aguera y
Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, et al. A field
guide to federated optimization. arXiv:2107.06917, 2021.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing Jiang, and Chengqi Zhang.
Multi-center federated learning. arXiv preprint arXiv:2108.08647, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ra-
mage, and Françoise Beaufays. Applied federated learning: Improving google keyboard query
suggestions. arXiv preprint arXiv:1812.02903, 2018.

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated contin-
ual learning with weighted inter-client transfer. In International Conference on Machine Learn-
ing, pp. 12073–12086. PMLR, 2021.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. ICML, 2021.

12

https://openreview.net/pdf?id=BJ0hF1Z0b

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 FURTHER DISCUSSIONS OF BRANCH SELECTION WITH GMM

Derivation of the MLE. Recall θ is the parameters of the GMM model. We consider maximizing
the expectation of the complete-data log likelihood logP (Di,Z|θ) under the posterior distribution
P (Z|Di,θ), whereZ is the collection of latent variables associated with each of the sample x ∈ Di.
Formally, it is solving the following constrained optimization problem

maximize
θ

EZ∼P (Z|Di,θ) [logP (Di,Z|θ)] ,

subject to
K∑
j=1

πj = 1, πj ≥ 0, for all 1 ≤ j ≤ K.
(14)

We introduce an indicator function 1[z=k] which is 1 if z = k or 0 otherwise. In this way, the log
likelihood can be represented as

logP (Di,Z|θ) = log

|Di|∏
n=1

K∏
k=1

[P (xn, zn|θ)]1[z=k]

=

|Di|∑
n=1

K∑
k=1

1[zn=k] [log πk + logP (xn|zn,θ)] .

(15)

Meanwhile,

EZ∼P (Z|Di,θ)

[
1[zn=k]

]
= P (zn = k|xn,θ) =

πkP (xn|zn = k,θ)∑K
j=1 πjP (xn|zn = j,θ)

. (16)

Plug Eq. 15 and Eq. 16 back into Eq. 14, and ignore terms that do not depend on π, we find we are
solving the following problem for π

maximize
π

|Di|∑
n=1

K∑
k=1

P (zn = k|xn,θ) log πk,

subject to
K∑
j=1

πj = 1, πj ≥ 0, for all 1 ≤ j ≤ K.

(17)

The Lagrangian multiplier of this problem is

h(π, λ) =

|Di|∑
n=1

K∑
k=1

P (zn = k|xn,θ) log πk + λ(1−
K∑
j=1

πj). (18)

Let the derivative w.r.t. πk be 0,

∂h

∂πk
=

|Di|∑
n=1

P (zn = k|xn,θ)
1

πk
− λ = 0. (19)

Multiply both sides of Eq. 19 with πk, sum over 1 ≤ k ≤ K, and apply the constraint that∑K
k=1 πk = 1, we have

λ =

|Di|∑
n=1

K∑
k=1

P (zn = k|xn,θ) = |Di|. (20)

Plug this back into Eq. 19, we get the equation as desired.

πk =
1

|Di|

|Di|∑
n=1

P (zn = k|xn,θ) (21)

13

Published as a conference paper at ICLR 2022

An alternative for branch selection. Instead of computing the MLE, with the assumption that sam-
ples in Di are IID, we can compute P (ζi|Di) = P (z|Di) using Bayes’ theorem and use P (ζi|Di)
for branch selection. Specifically,

P (ζi = k|Di) = P (z = k|Di) =
πk
∏
x∈Di

P (x|z = k)∑K
j=1 πj

∏
x∈Di

P (x|z = j)
. (22)

As shown in Figure 6, we find MLE achieves better empirical results than this alternative.

A.2 DERIVATION OF THE LOCALLY OPTIMAL GMMS

We give the derivation of the optimal mean and variance of the GMM on each client, under the
one-hot assumption that P (ζ = k|Di,θ

t, q̃(t)) = 1 if k = k∗, and P (ζ = k|Di,θ
t, q̃(t)) = 0 if

k 6= k∗, for some given k∗. Under this assumption, we need to solve

θ̃t+1
ik∗ = argmax

θ
logP (Di, ζ = k∗|θ, q̃(t))

= argmax
θ

logP (ζ = k∗|θ, q̃(t)) +
∑
x∈Di

logP (x|ζ = k∗,θ, q̃(t))

= argmax
θ

log πk∗ −
∑
x∈Di

 d∑
j=1

([f(wt+1
i ,x)]j − [µk∗]j)

2

2 [σk∗]
2
j

+ log [σk∗]j
√

2π


(23)

where d is the dimension of the features, [µk∗]j , [σk∗]j and [f(wt+1
i ,x)]j denote the j-th dimension

of µk,σk, f(wt+1
i ,x), respectively. From Eq. 23, we can see the optimal solution for client i is to

set the mean and variance for the k∗-th mode as

µ̃t+1
ik∗ =

1

|Di|
∑
x∈Di

f(wt+1
i ,x), [σ̃t+1

ik∗]2 =
1

|Di|
∑
x∼Di

(f(wt+1
i ,x)− µ̃t+1

ik∗)2. (24)

A.3 THE SOFT PRIOR

The soft prior q̃S(t) gives strong signals only at time steps where we believe q(t) = 0 or q(t) = 1.
In between, it only requires the ratio to be non-increasing or non-decreasing, where the ratio is
estimated using the posterior from Eq. 6 as

q̃′S(t) =
|{x|x ∈ Di, γi1(x) > γi2(x)}|

|Di|
, (25)

i.e., the ratio of samples whose posterior has higher probability on mode 1. In this way, the model
can still learn to distinguish the modes but we do not enforce a strong prior at every time step.
Specifically, it is defined as

q̃S(t) =


1, if t mod T = 1

0, if t mod T = T
2

min(q̃S(t− 1), q̃′S(t)), if 1 < t mod T < T
2

max(q̃S(t− 1), q̃′S(t)). if t mod T > T
2

(26)

A.4 IMPLEMENTATION DETAILS AND PRACTICAL NOTES

Setting the GMM prior. During test, to compare the model performance with established baselines
and ensure fairness, we consider a static test set where the number of clients and samples from both
modes are roughly the same. Therefore, we use a uniform distribution for the priors on the test
set. This does not make the GMM worse if it estimates P (x|z) accurately on the test set. During
training, we estimate the prior πt in every step to match the shifting distribution. However, we
find it beneficial to use a running average of πt+1

k = βπt
k + (1 − β)πkM

t
k/(
∑K

j=1M
t
j) during

training, which achieves better results than setting β = 0 or using uniform prior in our preliminary
experiments. We use β = 0.99 for the moving average in all experiments.

14

Published as a conference paper at ICLR 2022

Figure 3: The effect of the temporal prior. Note we always use the same periodical linear or cosine priors,
q̃L,1(t) or q̃C,1(t), under all types and p’s for the distribution shift.

Setting ηt for FEDTKM. Although we can identify the modes through the local minima and max-
ima of the training curve, the distribution shift can happen in arbitrary ways in between. As a result,
the certainty of the temporal prior should also be lower in between the modes. To incorporate this
heuristic, instead of using a constant ηt, we let

ηt = 2|0.5− q̃(t)|ηmax, where ηmax > 0 is a constant. (27)
We find this to give better results when p 6= 1, i.e., when the underlying distribution shift is biased
and different from the linear temporal prior.

A.5 ABLATION STUDIES: THE EFFECT OF TEMPORAL PRIOR

To quantify the effect of temporal prior on training, we compare four versions of FEDTEM: 1)
EM Only: only apply the EM part of our algorithm without the temporal priors, where the only
difference from FEDTEM is that the server, in the M step, greedily uses client i to update parameters
of mode k∗i = arg maxk π̃

∗
ik (see Eq. 9 and Eq. 10); 2) FedTEM (linear): our algorithm where the

temporal prior is the periodic linear function P (i ∈ I1(t)) = qL,1(t); 3) FedTEM (cosine): our
algorithm where the temporal prior is the cosine function P (i ∈ I1(t)) = qC,1(t); 4) FedTEM
(soft): our algorithm with the soft temporal prior introduced in Section A.3. The results are shown
in Figure 3. We find all three priors improves the “EM Only” baseline in most cases. “FedTEM
(linear)” is better on image datasets, while “FedTEM (cosine)” is better on the language dataset.
The soft prior has very weak assumptions about the prior, only requiring the estimated ratios to be
non-increasing or non-decreasing within certain intervals, but still improves the results.

Table 1: Stats of the datasets. We use |D·| to denote number of samples in each subset. On SO, #
Classes is the vocabulary size.

Dataset # Classes I1 |I1| |DI1 | I2 |I2| |DI2 | |Dtest|
EMNIST 62 Digits 3383 341,873 Characters 3400 329,712 77,483
CIFAR 110 CIFAR10 500 50,000 CIFAR100 500 50,000 20,000
Stack Overflow 10K Questions 171K 67M Answers 171K 67M 16M

A.6 VERIFYING THE EFFECT OF MLE FOR EVALUATION

To quantize the effect the batch-level MLE, we compare the results of our method with or without
MLE on EMNIST and CIFAR. As shown in Figure 6, this only decreases the accuracy of the baseline
model, indicating our model is much better at distinguishing the two modes in expectation.

15

Published as a conference paper at ICLR 2022

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

Accuracy on EMNIST (linear shift)

Vanilla (vote)
Vanilla (no vote)
FedTEM (MLE)
FedTEM (no MLE)

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

48

50

52

54

56

58

Ac
cu

ra
cy

Accuracy on CIFAR (linear shift)

FedTEM (MLE)
FedTEM (no MLE)

Figure 4: Comparing the effect of MLE on EMNIST and CIFAR.

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

82

84

86

88

90

Ac
cu

ra
cy

Accuracy on EMNIST

reg (lin. shift)
no reg (lin. shift)
reg (cos shift)
no reg (cos shift)

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

Accuracy on CIFAR

reg (lin. shift)
no reg (lin. shift)
reg (cos shift)
no reg (cos shift)

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

18

20

22

24

26

Ac
cu

ra
cy

Accuracy on Stack Overflow

reg (lin. shift)
no reg (lin. shift)
reg (cos shift)
no reg (cos shift)

Figure 5: Compare the effect of the label smoothing regularization on FEDTEM under linear and cosine
distribution shifts. We use the linear prior in all cases.

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

80

82

84

86

88

90

Ac
cu

ra
cy

Accuracy on EMNIST (Linear Shift)

Bayes (sampling)
Bayes (greedy)
MLE (sampling)
MLE (greedy)

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

20

30

40

50

60

Ac
cu

ra
cy

Accuracy on CIFAR (Linear Shift)

Bayes (greedy)
MLE (greedy)

Figure 6: Comparing the Bayesian and MLE based branch selection on EMNIST and CIFAR under linear
distribution shifts. We also compare the greedy branch selection vs. sampling based branch selection on
EMNIST.

Table 2: Training hyperparameters on the datasets. The network parameters are trained for one
epoch on each client. In addition, on Stack Overflow, we also limit each client to use no more than
512 samples during training.

Dataset Server Opt Server LR ε Client Opt Client LR |Ĩ(t)| Batch Size Total Rounds

EMNIST Adam 10−2.5 10−4 SGD 10−1.5 10 20 2049
CIFAR Adam 1 10−1 SGD 10−1.5 10 20 8196
Stack Overflow Adam 0.01 10−5 SGD 10−0.5 50 16 2048

0 200 400
Rounds

0.0

0.5

1.0
linear, p = 0.1

0 200 400
Rounds

0.0

0.5

1.0
linear, p = 0.25

0 200 400
Rounds

0.0

0.5

1.0
linear, p = 0.5

0 200 400
Rounds

0.0

0.5

1.0
linear, p = 1.0

0 200 400
Rounds

0.0

0.5

1.0
linear, p = 2.0

0 200 400
Rounds

0.0

0.5

1.0
linear, p = 4.0

0 200 400
Rounds

0.0

0.5

1.0
linear, p = 10.0

0 200 400
Rounds

0.0

0.5

1.0
cosine, p = 0.1

0 200 400
Rounds

0.0

0.5

1.0
cosine, p = 0.25

0 200 400
Rounds

0.0

0.5

1.0
cosine, p = 0.5

0 200 400
Rounds

0.0

0.5

1.0
cosine, p = 1.0

0 200 400
Rounds

0.0

0.5

1.0
cosine, p = 2.0

0 200 400
Rounds

0.0

0.5

1.0
cosine, p = 4.0

0 200 400
Rounds

0.0

0.5

1.0
cosine, p = 10.0

Figure 7: Probability of sampling of clients from I1(t) in each round, with T = 256, under the linear and
cosine transit functions and different values of p.

16

Published as a conference paper at ICLR 2022

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

82

84

86

88

90

Ac
cu

ra
cy

Accuracy on EMNIST (linear shift)

T=128
T=256
T=512

0.1 0.25 0.5 1.0 2.0 4.0 10.0
p

78

80

82

84

86

88

90

Ac
cu

ra
cy

Accuracy on EMNIST (cosine shift)

T=128
T=256
T=512

Figure 8: Evaluating the effect of the underlying T on FEDTEM with linear prior.

A.7 ADDITIONAL RELATED WORKS

As mentioned above, Semi-cyclic SGD (Eichner et al., 2019) and (Ding et al., 2020) are the only
previous works we are aware of that explicitly consider periodical distribution shift in FL. We now
review other related works that either consider other types of distribution shift, or have (weak)
similarity as the proposed FEDTEM method.

Heterogeneity and client distribution shift. Client heterogeneity is an active topic in FL, and
various methods have been proposed to address the distribution difference among clients. No-
tably, FedProx (Li et al., 2020b) applies proximal regularizer when perform client updates; SCAF-
FOLD (Karimireddy et al., 2020) uses control variates as local states on clients for variance reduc-
tion; FedPA (Al-Shedivat et al., 2021) provides a Bayesian view and adopts posterior sampling;
FedGen (Zhu et al., 2021) learns a generator that can be shared among clients; FedRobust (Rei-
sizadeh et al., 2020) applies gradient descent ascent to tackle distribution shifts in the form of affine
transforms in the image domain. Transfer learning, multi-task learning, and meta learning are intro-
duced into FL to explicitly handle distribution shifts among clients assuming heterogeneous clients
are from different domains or tasks (Smith et al., 2017; Khodak et al., 2019). Continual learning
is introduced to handle distribution shift due to streaming tasks on each client (Yoon et al., 2021).
More recently, distribution shift in clusters of clients instead of each individual client are studied
in Mansour et al. (2020); Ghosh et al. (2020), while still assuming the clients can be uniformly
accessed during the training process. We kindly ask interested readers to find more papers on het-
erogeneity in a few recent surveys (Kairouz et al., 2019; Li et al., 2020a; Wang et al., 2021). All
these methods consider the distributions shift among different clients, while the proposed FEDTEM
considers periodic distribution shift of client population.

Clustering and mixture models. We do not assume strong control over the clients and the avail-
able client population is always changing due to the periodical distribution shift. We also do not
require stateful clients, since our prior is applied globally to all clients. Our mixture model is based
on the feature space, therefore we do not require labeled data for unseen clients to infer its mode.
To our knowledge, existing works in clustered FL, including those on personalization, mostly fail
to satisfy at least one of the three properties and therefore not applicable in our setting. Dennis
et al. (2021) propose a one-shot clustering approach based on the raw client data before training,
which implicitly assumes all representative clients are available simultaneously. Clustering on raw
data can also be unreliable when the data demonstrates complicated distributions in the input space.
Clustered Federated Learning (Sattler et al., 2020) applies an one-shot clustering based on a trained
global model, and then train a personalized model for each cluster. To achieve this, it implicitly
assumes strong control over population and clients sampling. Ghosh et al. (2020) and Mansour et al.
(2020) propose a similar algorithm that alternatively perform clustering and updating the personal-
ized models for corresponding clusters. Both of them require labled data for the clients to compute
the loss for model selection. During the preparation of this draft, we notice a concurrent work, Fe-
dEM (Marfoq et al., 2021), which proposes a Federated EM algorithm to learn a mixture model for
each client and weigh the predictions from multiple models. The modified EM algorithm requires
computing the loss and therefore labeled data for every client. It maintains a different prior distri-
bution for every client, which requires stateful clients and strong control over client sampling. The
hierarchical or bi-partitioning clustering process of (Briggs et al., 2020; Fu et al., 2021) requires all

17

Published as a conference paper at ICLR 2022

0.1 0.25 0.5 1.0 2.0 4.0 10
p

78

80

82

84

86

88

90

Ac
cu

ra
cy

Accuracy on EMNIST (Linear Shift)

Vanilla
Vanilla (s)
FedTEM (linear)
No Dist. Shift
No Dist. Shift (s)

0.1 0.25 0.5 1.0 2.0 4.0 10
p

78

80

82

84

86

88

90

Ac
cu

ra
cy

Accuracy on EMNIST (Cosine Shift)

Vanilla
Vanilla (s)
FedTEM (linear)
No Dist. Shift
No Dist. Shift (s)

Figure 9: The effect of using multi-branch networks for the baselines. “Vanilla (s)” is the single-branch
network trained with FedAdam under various distribtuion shifts. “No Dist. Shift (s)” is the single-branch
network trained with FedAdam with no distributoin shift.

clients to be available for clustering simultaneously, violating our assumption that the distribution of
the population is constantly changing and is not practical in on-device FL in the real world. In addi-
tion, for unseen clients, either additional communications are needed for determining their clusters,
or the client has to download models for all clusters, which adds significantly to the communica-
tion cost. (Xie et al., 2021) maintains one set of weights on each client while maintaining multiple
weights as cluster centers on the server. It takes two communication rounds for each weight update,
which can be impractical. It remains unclear if this mechanism can be generalized to unseen clients.
(Marfoq et al., 2021) trains a different set of weights for each node/client, which requires all the
nodes/clients to be available all the time. It is more suitable for the cross-silo setting but not prac-
tical for on-device setting. (Duan et al., 2021) clusters the clients based on the similarities between
their gradients at the initial model weights. This is impractical in our setting since the training pop-
ulation changes throughout the day and we cannot assume clients from both modes are available at
the first round for clustering. In addition, there is no guarantee that the gradient at the chosen round
can separate the clusters well. And to compute the gradients, it still requires labeled data. (Andreux
et al., 2020) advocates using different sets of BNs to track different running statistics for different
silos, which is not practical for on-device FL since BN has been widely observed to cause instability
in on-device FL, and is often replaced by Group Normalization which does not track running statis-
tics (Hsieh et al., 2020; Hsu et al., 2020). Another limitation is it assumes every client is seen during
training.

Multi-branch networks in FL. Multi-branch networks have been explored in FL when a person-
alized model is preferred for each client: the branchs are either locally stored on clients (Arivazhagan
et al., 2019; Liang et al., 2020), or reconstructed based on client data (Singhal et al., 2021). All the
aforementioned three works require labeled data and additional training efforts to learn the weights
of the branches. By comparison, our method does not need re-training the branches and does not
need labeled data for unseen clients to select the branches. The branch selection is based on the
mixture model in the feature space, and the weights of the branches are fixed.

A.8 COMPARING SINGLE-BRANCH AND MULTI-BRANCH BASELINES WITHOUT CLUSTERING

For fair comparisons, we have used two branches for the baselines (“Vanilla” and “No Dist. Shift”)
so that their capacities are the same as our method. Since these two baselines are just training the
networks with FedAdam, it is more natural to train single-branch networks directly. In Figure 9, we
show that the single-branch and multi-branch networks obtain similar results under various settings,
with or without distribution shift. Our method still outperforms these two single-branch baselines.

A.9 THE EFFECT OF LOCAL TRAINING SET SIZES

When the number of training samples is small, the EM estimates may have high variance, caus-
ing misspecifications and resulting in worse performance. Meanwhile, models trained on smaller
training sets tend to have worse generalization, so the test accuracy will drop for any method in
general. To see which factor has more significant effect on the test accuracy, we compare with the

18

Published as a conference paper at ICLR 2022

Figure 10: The effect of local training set sizes of each client. x-axis represents the maximum number of
training samples per client. For “inf”, we use all available training samples from the original dataset. To add
to the challenge, we ensure the distribution shift is different from the temporal prior. On EMNIST and CIFAR,
we consider cosine data distribution shift with p = 1 and use linear prior for FedTEM. On Stack Overflow,
we consider cosine distribution shift and linear prior. We also compare with the results for the baseline model
trained without distribution shift (No Dist. Shift).

Figure 11: The training accuracy, out of vocabulary rates and total number of tokens at each round for training
a next word prediction model in a real FL system. In general, the out of vocabulary rates become lower on
nighttime clients, and the sentence lengths become longer on nighttime clients. The plots also show training is
faster during nighttime, since more rounds are finished during nighttime.

baselines trained with or without distribution shift in Figure 10, where we only change the maximum
training samples per client while keeping other hyperparameters unchanged. From the plot, we can
see FedTEM maintains the advantage over the baselines and oracle (No Dist. Shift) under various
training set sizes, though its accuracy also decays as the baselines due to the decreased numbers of
training samples.

A.10 STATS OF TRAINING A LANGUAGE MODEL IN A PRACTICAL FL SYSTEM

In Figure 11, we show some stats that could characterize the data distribution shifts in a real FL
system. Generally, the data of daytime clients is more difficult to fit and generalize. Data during
daytime has higher out of vocabulary rates, and lower sequence length, indicating these sentences
might be more arbitrary or informal than data during nighttime. From the plots, we can also see
more rounds are completed during nighttime. This is because the product is mainly deployed in
one region, so during daytime, fewer devices are idle for training and the round completion rates
are lower (Yang et al., 2018). These plots further justify that the data shifts smoothly rather than
abruptly in practice.

19

	Introduction
	Modeling Periodical Distribution Shift
	Learning from Periodical Distribution Shift
	Learning a Gaussian Mixture Model with Per-client Temporal Statistics
	Modeling the Client Distributions and Selecting Branches for Training
	Updating the Mixture Model Parameters

	Learning a Clustering Model with Aggregated Temporal Statistics
	Comparisons and Discussions

	Experiments
	Conclusions
	Reproducibility Statement
	Acknowledgements
	Appendix
	Further discussions of branch selection with GMM
	Derivation of the locally optimal GMMs
	The Soft Prior
	Implementation details and practical notes
	Ablation studies: the effect of temporal prior
	Verifying the effect of MLE for evaluation
	Additional Related Works
	Comparing single-branch and multi-branch baselines without clustering
	The effect of local training set sizes
	Stats of training a language model in a practical FL system

