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ABSTRACT

Teacher-Student Curriculum Learning (TSCL) is a curriculum learning framework
that draws inspiration from human cultural transmission and learning. It involves a
teacher algorithm shaping the learning process of a learner algorithm by exposing
it to controlled experiences. Despite its success, understanding the conditions
under which TSCL is effective remains challenging. In this paper, we propose a
data-centric perspective to analyze the underlying mechanics of the teacher-student
interactions in TSCL. We leverage cooperative game theory to describe how the
composition of the set of experiences presented by the teacher to the learner, as
well as their order, influences the performance of the curriculum that are found by
TSCL approaches. To do so, we demonstrate that for every TSCL problem, there
exists an equivalent cooperative game, and several key components of the TSCL
framework can be reinterpreted using game-theoretic principles. Through experi-
ments covering supervised learning, reinforcement learning, and classical games,
we estimate the cooperative values of experiences and use value-proportional cur-
riculum mechanisms to construct curricula, even in cases where TSCL struggles.
The framework and experimental setup we present in this work represent a foun-
dation that can be used for a deeper exploration of TSCL, shedding light on its
underlying mechanisms and providing insights into its broader applicability in
machine learning.

1 INTRODUCTION

Controlling the sequence of tasks that a learning algorithm is exposed to through curriculum has
been shown to potentially enhance learning efficiency (Elman, 1993; Krueger & Dayan, 2009;
Bengio et al., 2009). One widely used curriculum framework, known as Teacher-Student Curriculum
Learning (TSCL) (Graves et al., 2017; Matiisen et al., 2020), specifically gives a teacher algorithm the
ability to control this sequence. While it is commonly understood that presenting tasks in increasing
difficulty can improve learning, the underlying dynamics and structure of teacher-student interaction
in this context are still relatively unexplored. Very few works have attempted to understand when,
and how TSCL works (Lee et al., 2021; Wu et al., 2020) while most have focused on providing
algorithmic improvements to the problem (Portelas et al., 2019; Turchetta et al., 2020; Liu et al.,
2020; Feng et al., 2021). In this paper, we propose a novel data-centric perspective (Ng, 2021) to
understand and analyze TSCL algorithms.

We begin by formalizing a general notion of units of experience to describe the control objects
of the teacher algorithm (that are consumed by the learner). Subsequently, our approach draws
inspiration from work on feature attribution (Patel et al., 2021), data valuation (Ghorbani & Zou,
2019; Yan & Procaccia, 2021) and explainability (Lundberg & Lee, 2017), and leverages tools from
cooperative game theory (Von Neumann & Morgenstern, 1944; Shapley, 1952) to analyze how the
compositions of these units impact teacher-student interactions. We show that, for every TSCL
problem, there exists an equivalent cooperative game where units of experience are players and
teacher-student interactions approximate a sequential coalition formation process (Sec. 4). As a result,
the learning progression objective (Schmidhuber, 1991; Oudeyer et al., 2007; Graves et al., 2017) and
the teacher bandit policy (Gittins, 1979; Matiisen et al., 2020), two essential components of TSCL,
have alternative interpretations as an approximation of player (unit) marginal contribution (Weber,
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1988) and a fair allocation mechanism, respectively (Sec. 4.2 & 4.3). Furthermore, because the order
matters in the case of curriculum learning (Krueger & Dayan, 2009; Bengio et al., 2009), traditional
cooperative game-theoretic arguments produce unintuitive results (Nowak & Radzik, 1994). Thus,
we leverage generalized cooperative games and their solution concepts (Nowak & Radzik, 1994;
Sanchez & Bergantiños, 1997) to overcome these limitations and formally extend these data-centric
game-theoretic formulations to the curriculum learning setting.

To demonstrate the predictive power and range of problems where this game-theoretic and data-
centric interpretation of TSCL applies, we build an experimental setting that evaluates the prospect of
cooperation among units of experience in problems spanning supervised learning (SL), reinforcement
learning (RL), and classical games (Sec. 5). These experiments simulate ordered and unordered
coalition formation processes and approximate the cooperative games we developed to describe TSCL.
For every problem, we estimate units a priori value (e.g., Shapley or Nowak & Radzik values) and
demonstrate that these a priori values, although expensive to compute (Deng & Papadimitriou,
1994), are useful proxies to find curricula. To this end, we design unordered and ordered value-
proportional curriculum mechanisms inspired by value-proportional allocations (Bachrach et al.,
2020). In most settings, the unordered mechanism fails to find a reasonable curriculum, demonstrating
the unsuitability of traditional game-theoretic tools for the TSCL problem. However, the ordered
mechanism consistently finds an optimal or near-optimal ordering (i.e., a curriculum) even when
TSCL fails (Sec. 5.5). To understand what impacts the ability of TSCL in those settings, we leverage
another cooperative game-theoretic tool, namely, measures of interactions (Grabisch & Roubens,
1999; Procaccia et al., 2014), and in particular the Value of a Player to other Player (vPoP) (Hausken
& Mohr, 2001), to quantify positive, neutral, or negative pairwise interactions among units. We show
that in settings with considerable unit interference (i.e., negative interactions) TSCL is unable to
produce useful curricula.

2 PRELIMINARIES

2.1 COOPERATIVE GAME THEORY

Cooperative Games. Cooperative games model problems where players interact to maximize
collective gain (Roth, 1988). In a (traditional) cooperative game in characteristic function form among
a set of players U, denoted by G = ⟨U, v⟩, the characteristic function v : 2U → R associates to each
coalition C ∈ 2U, belonging to the powerset 2U, a real number that represents the benefits produced
by the players in C acting jointly. In a cooperative game, a solution concept represents a mechanism
that produces allocation vectors ϕ ∈ R|U| (Shubik, 1981). Particularly, Shapley’s value (Shapley,
1952) allocates to each player u ∈ U its average marginal contribution v(C + u)− v(C) to coalitions
C ⊆ U, where u ∈ U − C

ϕ(u) =
∑

C:u̸∈C

|C|!(|U| − |C| − 1)!

|U|!
[v(C + u)− v(C)] (1)

and uniquely satisfies the axioms of efficiency, null-player, symmetry, and linearity which are
generally considered to be properties of a fair allocation mechanism (van den Brink & van der Laan,
1998).

Generalized Cooperative Games. When the order on which players join determines coalitional
worth, traditional cooperative games and their solution concepts (e.g., Shapley’s value) may produce
unintuitive allocations (Nowak & Radzik, 1994). In these games, the generalized characteristic func-
tion v : P(2U) → R assigns to every ordered coalition C ∈ P(2U) in the powerset of permutations
P(2U) its worth if members join in the permutation order. Nowak & Radzik (1994) and Sanchez &
Bergantiños (1997) extended Shapley’s work and propose solution concepts for these generalized
cooperative games. We focus on the former due to its intuitive formulation

ϕNR(u) =
1

|U|!
∑

C∈P(2U)
C:u̸∈C

[v(C : u)− v(C)] (2)

that averages, for all ordered coalitions C ∈ P(2U) where the unit u ∈ U is appended last, its
marginal contribution to the newly formed ordered coalition C : u.
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Measures of Interactions. A measure of interactions (Grabisch & Roubens, 1999; Procaccia et al.,
2014) computes players’ influences on other players’ outcomes. In particular, we leverage the value
of a player to another player (vPoP) (Hausken & Mohr, 2001). For the games above, vPoP constructs
a matrix whose entries ϕ(ui,uj) ∈ R measure the influence player ui exerts over player uj . It
measures how the Shapley value of a unit changes in the absence of another. More precisely,

ϕ(ui,uj) =
∑
C⊆U

ui,uj∈C

(|U| − |C|)(|C| − 1)!

|U|!
[ϕ(uj ,C)− ϕ(uj ,C − ui)] (3)

where ϕ(uj ,C) is the Shapley value of unit uj (Eq. 1) in the cooperative game restricted to players
in C. This matrix marginal ϕ(ui) =

∑
j ϕ(ui,uj) corresponds to each player’s Shapley value. We

extend vPoP to games in generalized characteristic function form by applying Eq. 3 mutatis mutandis
using Nowak & Radzik (1994) value to provide an ordered pairwise interaction metric ϕNR(ui,uj).

2.2 BANDIT ALGORITHMS

Multi-armed bandit algorithms provide a solution to problems decision-making under uncertainty
(Gittins, 1979; Lattimore & Szepesvári, 2020) where, at each interaction, a decision must be made
about with arm u ∈ U must be pulled. We are particularly interested on action-value based algorithms
that maintain empirical value estimates qk(u) computed as

qk(u) ≈
1

Nu
k

k−1∑
i=1

r(ui)Iui=u (4)

and that estimate the average reward received by the algorithm in the iterations Nu
k ≤ k where the

u-arm has been pulled. Bandit algorithms, like the ones Graves et al. (2017) and Matiisen et al. (2020)
use in their work, transform the estimated average contributions into arms interactions by deriving
from estimated values a Boltzmann policy τk ∈ ∆(U) such that the probability of interaction is
proportional to the value estimates:

τk(u) ∝ B(qk(u)) =
e

qk(u)
T∑

u′ e
qk(u′)

T

(5)

More sophisticated approaches (e.g., the EXP3 (Auer et al., 2003) used in our experiments) account
for other factors, like recency, bias, stochasticity, or non-stationarity (Lattimore & Szepesvári, 2020).

3 EXPERIENCE TO CONTROL

The TSCL framework commonly operates under the assumption that tasks presented to a learning
algorithm can influence its learning dynamics. Modern iterative learning algorithms process tasks in
discrete units. For instance, SL and RL algorithms operate over instances and transitions, respectively.
But also, collections of these elementary units, such as batches or episodes, datasets or environments,
or more generally benchmarks or environment suites describe a hierarchy of aggregations of experi-
ence. Henceforth, we utilize the term unit of experience for referring to any collection of discrete
units that a teacher algorithm can use to control the dynamics of the learner algorithm.
Example 3.1. For an analysis, we may define a unit of experience as the set of instances of class in a
SL classification problem. For example, in the MNIST dataset (LeCun & Cortes, 2010), there may be
ten units of experience, namely, classes ZERO, ONE, TWO, . . . , NINE.

The units of experience abstraction indistinctly applies to supervised or reinforcement learning
problems. On either paradigm, any iterative learning algorithm is a controllable system whose control
inputs are units of experience.
Example 3.2. There are four control inputs in mini-batch gradient descent (Goodfellow et al., 2016):
the mini-batch {x1, . . . , xB}, the loss function ℓ, the parameters θ, and the learning rate η such that:

θk+1 = θk − η∇θk

B∑
i=1

ℓ(θk, xi)

A TSCL-style algorithm, as presented in Alg. 1, solves a data-centric control problem and thus, we
adopt a data-centric perspective to perform a systematic investigation of its components.
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1: procedure GENTSCL
2: inputs policy: π0, algorithm: L, units: U, metric: J
3: teacher: τ0 ∈ ∆(U), targets: Ū, budget: K
4: for k = 1 . . .K do
5: uk ∼ τk(u)
6: πk ∼ L(πk−1, uk)
7: rk ← J (πk, Ū)− J (πk−1, Ū) ▷ learning progression
8: τk+1 ← UPDATERULE(τk, uk, rk) ▷ a bandit algorithm
9: end for

10: output: πK

11: end procedure

Algorithm 1: In Experience-based Teacher-Student Curriculum Learning (TSCL), the learner algorithm
L(πk−1, uk) is a black-box system (line 6) controlled by a teacher algorithm through units drawn with probabil-
ity uk ∼ τk(u). The learner output, at each iteration k, is policy or model πk whose performance is measured by
a metric function J that quantifies model’s performance on a set of evaluation units Ū. The teacher’s objective
is to maximize the cumulative learning progression reward (line 7). For the teacher’s UPDATERULE, we focus
on multi-armed bandit learning (see Sec. 2.2).

4 THE COOPERATIVE MECHANICS OF EXPERIENCE

The ideal teacher-student interaction mechanics assume that the learner monotonically increases
its performance on the target task. We conjecture that a prerequisite for this idealistic curriculum
learning dynamics (Matiisen et al., 2020) to occur within TSCL-style algorithms is that experience (or
data) presented to the learner should not interfere with each other. In other words, units of experience
should interact cooperatively. We explain how this cooperative mechanics may emerge among units
by examining the history of teacher-student interactions, the reward function, and the bandit selection
policy from a cooperative game-theoretic perspective.

4.1 THE MECHANICS OF COALITION FORMATION

We establish a cooperative game where each unit of experience u ∈ U is a player. Next, we interpret
the history of k ≤ K teacher-student interactions Hk = {u1, . . . ,uk} through their empirical
frequencies pk(u) ∈ ∆U which form unit vectors that lie in the |U|-probability simplex ∆(U). The
effective support (i.e., non-zero probabilities) determine an unordered coalition (i.e., a set) Ck ⊆ U
(see Faigle (2022), Chapter 8), formed by the units presented to the learner up to interaction k ≤ K.
We study this interpretation through a cooperative game in characteristic function form (Sec. 2.1).

Example 4.1. (Example 3.1 cont’d) In the class-as-unit equivalence on MNIST, an unordered train-
ing coalition, e.g., the two-unit coalition C = {ZERO, NINE}, describes teacher-student interactions
limited to instances from those classes.

Next, we note that the outcome of a coalition’s work is the policy or model πk. Thus, estimating the
performance of the policy πk through the metric function J is akin to approximating the characteristic
function v(Ck) (Alg. 1, line 7). Moreover, these approximations are conditioned on an evaluation (or
target) unit ū ∈ Ū. We model the target-task and multiple-task settings (Graves et al., 2017) where
units of experience should increase learner performance on an evaluation unit (e.g., a task, or an
environment) or on multiple evaluation units (e.g., a set of tasks or environments). Consequently,
every notion of coalitional worth is conditional on the evaluation units, thus generating a space of
cooperative games.

Definition 4.1. (TSCL Cooperative Games) Let U denote a set of units of experience u ∈ U and Ū a
set evaluation units ū ∈ Ū. Every evaluation coalition C̄ ∈ 2Ū induces a parameterized characteristic
function vC̄(Ck) ∈ R whose value measures the worth of a coalition Ck when the members of C̄ are
the evaluation units. Therefore, the TSCL-family of algorithms operate over a parameterized space
of cooperative games:

G ⟨U, ·⟩ =
{
⟨U, vC̄⟩ | C̄ ⊆ Ū

}
comprising 2|U| × 2|Ū| possible games and where the target-task (i.e., C̄ = ū) and the multiple-tasks
(i.e., C̄ = Ū) settings are special cases.
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Example 4.2. If a learner algorithm is presented with units from C = {ZERO, NINE} on MNIST,
the following condition is expected to hold:

vC̄={ZERO,NINE}(C) > vC̄={ZERO,ONE}(C)

4.2 MARGINAL CONTRIBUTIONS TO LEARNING

The notions of coalitions and coalitional worth above induce a game-theoretic interpretation of the
learning progression reward. At any iteration k ≤ K, this reward r(uk) ∈ R (Alg. 1, line 7) measures
the improvement in policy performance after the teacher presents a unit uk to the learner algorithm
that produces a new policy πk ∼ L(πk−1,uk). Thus, we can restate this reward in terms of a game
in characteristic function form:

r(uk) = v(Ck)− v(Ck−1) = v(Ck−1 + uk)− v(Ck−1) (6)
and note its equivalence to computing the marginal contribution (see Sec. 2 and Eq. 1) of aggregating
the unit of experience uk = u to the existing coalition Ck−1.

4.3 A FAIR ALLOCATION MECHANISM

A principle of fair attribution in cooperative games is that players get assigned values proportional
to their expected marginal contribution. We note that under the learning progression objective, a
bandit action-value estimate qk(u) (Eq. 4) approximates every unit’s (or arm’s) average marginal
contribution after k interactions. Moreover, as discussed in Sec. 2.2, multi-arm bandit algorithms may
transform action-values through a Boltzmann projection (Eq. 5) that converts the value estimates into
units’ probabilities of interaction with the learner (i.e., the (stochastic) policy τk(u)). Consequently,
the units that up to interaction k ≤ K have produced larger increases on learner performance would
be allocated larger fractions of the remaining K − k interactions.

Thus, a multi-armed bandit teacher implements a fair allocation mechanism that computes units’
values by approximating their average marginal contributions and converts these approximations into
the currency-like utility of the TSCL games, namely, interactions with the learner.

5 AN EXPERIMENT ON THE PROSPECT OF COOPERATION

We introduce an experimental setting that, for any given set of units of experience that may be given to
the teacher algorithm, approximates the a priori units’ values in a series of experiments that include
problems in supervised learning, reinforcement learning, and classical games. Through the prospect
prior, as we dub these experiments, we study how units’ interactions impact TSCL’s prospects to
find useful curricula.

5.1 A SIMULATION OF COOPERATION

We simulate two coalition formation processes where units of experience (e.g., classes, environments,
or opponents) in each coalition fairly share a finite interaction budget K ∈ N. First, to simulate a
traditional cooperative game and approximate its characteristic function (Sec. 2), we draw at each
interaction k ≤ K a unit uk ∈ C with uniform probability τC(uk) ∝ 1

|C| , from a coalition |C|, and
present it to a learner with algorithm L. We repeat this procedure for every unordered coalition of
units C ∈ 2U. The uniform distribution reflects our ignorance on units’ values before simulating their
effect on the learner. Then, to study order in curriculum, we simulate a generalized cooperative game
and approximate its corresponding characteristic function, a unit u ∈ C is continually presented to the
learner, for ⌊K/|C|⌋ interactions, in its permutation order on an ordered coalition C. We repeat this
procedure for every C ∈ P(2U). Similarly to the unordered case, we select an ordered equipartition
of interactions to reflect ignorance about a priori units’ values.

Coalitional Worth. In both simulations, and for every coalition, we obtain a model πK at the end of
the K interactions. The resulting policy or model is not biased with respect to any evaluation unit or
coalition. Thus, we leverage the established equivalence between policy or model performance and
(conditional) coalitional worth to estimate the value of every parameterized characteristic function
and form the space of traditional or generalized cooperative games. By estimating every coalition
worth, we have the complete specification of a cooperative game.
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Example 5.1. (Example 4.1 cont’d) Assume a budget of K = 100 interactions and a subset
(coalition) of classes from MNIST, for instance, units (classes) ZERO and NINE. In the simulation of
a traditional game, for a coalition C = {ZERO, NINE}, we uniformly draw instances from each unit
with probability τ(u) = 1

2 . For a coalition C = [ZERO, NINE] in a generalized game, instances from
unit ZERO are presented for the first k = 50 iterations followed by k = 50 instances from NINE.

5.2 VALUE APPROXIMATIONS

The central quantity for the cooperative solution concepts we introduced in Sec. 2 is a unit’s marginal
contribution. We design the prospect prior experiment such that adding a unit u to a coalition C
has the effect of reducing the learner algorithm’s interactions with the existing units in the coalition
by keeping the budget K fixed, regardless of the coalition size. In the traditional cooperative
game simulation, the probability of drawing any unit uk in C gets reduced from pC(uk) =

1
|C| to

pC + u(uk) =
1

|C|+1 . Similarly, in the generalized game simulation adding a unit uk to a coalition
C reduces the number of interactions of units in C from ⌊ K

|C|⌋ to ⌊ K
|C+1|⌋. Consequently, in either

prospect prior simulation, a unit u marginal contribution v(C + u)− v(C) measures the change in
performance produced by increasing interactions with u while reducing interactions of the existing
units in C.
Example 5.2. (Example 5.1 cont’d) In a traditional game simulation on MNIST, a marginal
contribution such as v({ZERO, NINE})− v({ZERO}) measures the change in learner performance
produced by exchanging approximately K/2 interactions with unit ZERO for interactions with
NINE. However, in the generalized game simulation, the same expression measures the change in
performance produced by exchanging K interactions with unit {ZERO} for K/2 with ZERO first
(pre-training) followed by K/2 with NINE (fine-tuning).

Thus, the solution concepts for each simulated cooperative game, namely, the Shapley value for
traditional games (Eq. 1) and the Nowak & Razik’s value for generalized games (Eq. 2) estimate a
unit’s average marginal contribution to learning, thus capturing its helpfulness or cooperativeness.

5.3 SUPERVISED CLASSIFICATION

The first setting we examine is inspired by our running examples on MNIST. There, we considered
instances aggregated in classes as units of experience. The main benefit of this toy example is that it
is straightforward to produce ground truth information about units’ interactions by training a model
on the complete dataset (e.g., for 200 epochs), extracting the model’s confusion matrix on validation,
and identifying the top-k most confused pairs of classes. We applied the same general procedure to
CIFAR10 (Krizhevsky, 2009). On MNIST, we selected the five classes TWO, THREE, FOUR, FIVE
and SEVEN belonging to top-three most confused pairs (see Appendix A, Fig. 5a), grouped their
instances into five units of experience, and conduct the prospect prior simulations for a traditional
cooperative game. We did similarly for CIFAR10 six classes with larger pairwise confusion errors
on validation, namely, CAR, CAT, DEER, DOG, FROG and HORSE (see Appendix A, Fig. 5b).

Units’ Values. For either MNIST or CIFAR10, each unit’s Shapley value estimated from the traditional
cooperative game simulations correctly matches the ground truth information. In the target-unit
setting, where each unit of experience is also used as evaluation unit, each unit of experience (or
class) matching the evaluation unit (or class) has the largest Shapley value, as depicted in Fig. 2a
(first five targets) for MNIST and Fig. 2c (first six targets) for CIFAR10. For instance, on MNIST,
unit u = TWO has the largest Shapley value ϕ(TWO) = 0.995 when the evaluation unit is ū = TWO.
We observed a similar effect on CIFAR10. Then, for the all-units setting, every unit’s Shapley value
is approximately equal on both MNIST and CIFAR10 (Fig. 2a and 2c, all column), matching the
intuition that, conditional on an all units evaluation, every unit of experience should be equally
valuable. These results confirm the prospect prior’s ability to correctly estimate units’ values.

Measures of Interactions. We also computed the vPoP measure (see Sec. 2.1, Eq. 3) to verify
whether its decomposition of Shapley values into pairwise interaction values correctly identifies the
most confused pairs of classes. For both MNIST and CIFAR10, their respective vPoP matrices,
displayed in Fig. 2b and 2d, provide a good approximation to the ground-truth pairwise interactions
extracted from the confusion matrices. For instance, on MNIST the units TWO and SEVEN have the
lowest interaction value ϕ(TWO, SEVEN) = ϕ(SEVEN, TWO) = −0.007 which corresponds to largest
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Figure 2: We validated the prospect prior using the class-as-a-unit analogy on MNIST and CIFAR10. In
Figures (a) and (c), each column represents units’ Shapley values ϕ(u) in each cooperative game parameterized
by a target-unit ū and the target coalition of all units. In Figures (b) and (d), we present the vPoP decomposition
matrix (Eq. 3) measuring the pairwise interaction values ϕ(ui, uj) among units in the all-units target.

entry M(2, 7) = 20 of the confusion matrix (see Appendix A, Fig. 5a). Also, in CIFAR10 the units
DOG and CAT have the lowest interaction value ϕ(DOG, CAT) = −0.0164 coinciding with the most
confused classes M(DOG, CAT) = 66 on validation (see Appendix A, Fig. 5b). However, we note
that, for instance, on MNIST confusion matrix M(2, 7) ̸= M(7, 2) and, similarly, on CIFAR10’s
M(DOG, CAT) ̸= M(CAT, DOG). Nevertheless, we interpret these values as good proxies for units
negative, positive, or neutral pairwise interactions.

Our formulation is not limited to the toy supervised classification setting. We also demonstrate its
general applicability to problems in RL and classical games1.

5.4 OTHER LEARNING PARADIGMS

Reinforcement Learning. We investigate the MINIGRID-ROOMS (Chevalier-Boisvert et al., 2018)
set of three environments, namely, TWOROOMS, FOURROOMS, and SIXROOMS for which it is folk
knowledge that an optimal curriculum exists. We apply the prospect prior simulation of a generalized
game where we consider each environment a unit of experience. As a learner algorithm, we used
PPO (Schulman et al., 2017) with an interaction budget of K = 500, 000 steps, and estimated,
from the outcome of these simulations, the Nowak & Radzik values (Sec. 2, Eq. 2), conditioned
on the every environment, and on a uniform distribution over all, as evaluation targets. In Fig. 3a
we show that the Nowak & Radzik values we estimate match folk knowledge. First, there is no
requirement for environments other than TWOROOMS as the only positive value ϕū(TWOROOMS) =
0.423 correctly measures. Then, for FOURROOMS, the values of ϕū(TWOROOMS) = 0.041 and
ϕū(FOURROOMS) = 0.107 indicate that both environments are required. And finally, environments
values of ϕū(FOURROOMS) = 0.03 and ϕū(SIXROOMS) = 0.03 indicate that both are needed for
solving SIXROOMS.

Classical Games. We introduce an experimental setting, the Adversarial Sparse Iterated Prisoner’s
Dilemma (A-SIPD), that utilizes the Prisioner’s Dilemma (Flood, 1952; Axelrod & Hamilton, 1981)
classical two-player game as a base but in a more challenging sparse and iterated version where at the
end of a finite number of interactions (e.g., 200 steps), a win-draw-loss reward is given to the learner
if it accrues more cumulative payoff than its opponent. Opponents are drawn from a population
of five well-known strategies: ALWAYSCOOPERATE, ALWAYSDEFECT, WINSTAYLOSESWITCH,
TITFORTAT (Axelrod, 1981) and a ZERODETERMINANT strategy (Hilbe et al., 2013). We apply the
prospect prior simulation of a generalized game where we consider each opponent a unit of experience.
As a learner algorithm, we used PPO (Schulman et al., 2017) with a budget of K = 100, 000
interactions. We estimated the Nowak & Radzik values (Sec. 2, Eq. 2), conditioned on each opponent,
and on a uniform mixture over all, as evaluation targets. The results we present in Fig. 3c show that
playing uniquely against TITFORTAT is sufficient across all evaluation targets, including the strongest
opponents, ALWAYSDEFECT and ZERODETERMINANT. This result contrasts with folk knowledge
in population-based training (e.g, playing against the population’s Nash strategy (Nash, 1950)). We
defer to Appendix B a more in-depth discussion of this finding.

1Details to reproduce these experiments are provided in Appendix A.
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Figure 3: Nowak & Radzik values (a, c) conditional on each single-unit and the multiple-units (all) evaluations,
and the learning curves (b,d) for our mechanisms and TSCL.

5.5 PROSPECT VALUES AND CURRICULUM

Inspired by value-proportional allocations (Bachrach et al., 2020), we developed a mechanism that
turns units’ values into interactions with the learner by projecting any value vector ϕ(u) ∈ R|U|

onto vectors τ(u) ∈ ∆U in a |U|-simplex. We investigate two of these projections2, the Boltzmann
or softmax projection, commonly used in multi-arm bandit algorithms (see Sec. 2.2, Eq. 5), and an
Euclidean projection (Blondel et al., 2014) that projects to zero any unit with negative value. When
values ϕ(u) are Shapley values, the projected vectors are used as pre-computed teacher policies
(i.e., probability distributions), mimicking TSCL’s interactions but fixed a-priori knowledge of
units’ value. However, when values ϕ(u) are Nowak & Radzik, vectors τ ∈ ∆U are used as ordered
compositional vectors (Aitchison, 1982) that represent ordered fractions of K interactions. Thus,
we construct a pre-computed teacher policy that, first orders units by their Nowak & Radzik values,
projects the ordered values onto τ ∈ ∆K

U , and presents the i-th ranked unit ui ∈ U to the learner
for the number of interactions indicated by τi ∈ N. This mechanism preserves the ordered values
captured by Nowak & Radzik’s solution concept.

We compare these value-proportional mechanisms with the multi-arm bandit approach to TSCL using
EXP3 (Auer et al., 2003; Graves et al., 2017). Fig. 3 shows, for the all-units evaluation, that for
both MINIGRID-ROOMS and A-SIPD the teacher policies obtained from the Euclidean projection
of Nowak & Radzik values (i.e, nowak-all-simplex) consistently produce learner-induced policies
outperforming those produced by TSCL (i.e, tscl-all-exp3s), and the other mechanisms. These
results highlight TSCL’s inability to produce effective curriculum in the presence of units that have
non-cooperative interactions. Fig. 4 presents the vPoP decomposition of Shapley and Nowak &
Radzik values conditioned on the all-units evaluation. In both settings, the interactions measured
from the Shapley-based decomposition produce lower (negative) value than those obtained with
Nowak & Radzik. As we show through Sec. 4 and Sec. 5, we take the Shapley-based interaction
values as fair approximations of TSCL interactions, and thus they provide a data-centric explanation
to TSCL failures (see Appendix C). On the other hand, the Nowak & Radzik-based values explain the
nowak-all-simplex mechanism success, along with the elimination, through the Euclidean projection,
of negatively-valued units3.
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Figure 4: The vPoP decomposition of Shapley’s and Nowak & Radzik values, conditioned on the all-units
evaluation target, for the MINIGRID-ROOMS (a, b) and A-SIPD (c, d) problem settings.

2Bachrach et al. (2020) use a linear projection unable to handle negative marginal contributions.
3This elimination strategies are employed effectively by data valuation techniques (Yan & Procaccia, 2021)
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6 RELATED WORK

Since the seminal work of Elman (1993), curriculum learning has become a fundamental problem
in machine learning (Krueger & Dayan, 2009; Bengio et al., 2009). The TSCL framework we
study here was concurrently introduced by Graves et al. (2017) and Matiisen et al. (2020). Most
follow-up works have generally focused on algorithmic innovations (Narvekar et al., 2022; Wang
et al., 2022; Soviany et al., 2022). However, Wu et al. (2020) empirically explore the questions on
when and how curriculum learning works but lack any formal grounding. Meanwhile, Lee et al.
(2021) explore TSCL interactions through catastrophic forgetting in neural networks (McCloskey &
Cohen, 1989). However, the data-centric perspective we introduced is less explored.

Moreover, our work continues the cross-pollination tradition between machine learning and game
theory (Cesa-Bianchi & Lugosi, 2006). Recently, game theory has fuelled several areas of machine
learning (Goodfellow et al., 2014; Gemp et al., 2021; Chang et al., 2020). In particular, cooperative
game theory has influenced analysis on feature attribution (Patel et al., 2021), data valuation (Ghorbani
& Zou, 2019; Ghorbani et al., 2021; Yan & Procaccia, 2021; Yao et al., 2022), and explainability
(Lundberg & Lee, 2017). The feature-as-a-player analogy used in literature on explainability inspired
the notion of units of experience we introduced in Sec. 3.

Recasting TSCL through cooperative game theory highlights its connections to active learning (Set-
tles, 2010), multitask (Caruana, 1997) and continual learning (Parisi et al., 2019). As Graves et al.
(2017); Matiisen et al. (2020) note, TSCL is connected to active learning (Settles, 2010) through the
idea of sampling experience according to a prioritization mechanism. Our work also relates TSCL to
multitask (Caruana, 1997) and continual learning (Parisi et al., 2019; Mundt et al., 2023) through
solution concepts for generalized cooperative games (Nowak & Radzik, 1994; Sanchez & Bergantiños,
1997) which may warrant further investigation on those areas. Likewise, measures of interaction
like vPoP may provide a formalism for task relatedness and its effects on learning (Standley et al.,
2019; Zhang et al., 2021; Fifty et al., 2021).

7 LIMITATIONS

The simulations we computed in our experiments would be hard to carry beyond a handful of
units. It is well-established that cooperative solution concepts are computationally hard (Deng &
Papadimitriou, 1994; Elkind et al., 2009). Although better approximations are possible (Yan &
Procaccia, 2021; Mitchell et al., 2022), we do not explore them in this work. Consequently, we do
not consider the prospect prior experiments and the value-proportional curriculum mechanism as
algorithmic replacements of TSCL. The data-centric approach we present studies the limits imposed
on TSCL-style algorithms by the (non)cooperative mechanics among units of experience. However,
we acknowledge that the mechanics of units’ interactions also affect other aspects of TSCL. These
aspects may include, for instance, the teacher’s credit-assignment problem (Gittins, 1979) or neural
networks learning and forgetting dynamics (e.g., Lee et al. (2021)). We control for these factors by
keeping them constant in our experiments (see Appendix A) but do not undertake their analysis here.
Our work is a starting point for more thorough explorations of TSCL and curriculum learning, their
underlying mechanisms and broader applicability in machine learning.

8 CONCLUSIONS & FUTURE WORK

We reexamined TSCL through the lens of cooperative game theory. By drawing inspiration from work
on data valuation, feature attribution and explainability, we provide a novel data-centric perspective
that re-frames several of its components through alternative cooperative game-theoretic interpretations.
Our experiments confirmed the appropriateness of studying TSCL-style under this framework and
highlights the impact of units cooperative mechanics on this problem. However, we only began to un-
veil the potential of allocation mechanisms, solution concepts, and measures of interactions to explain
some fundamental aspects of TSCL and hope our work inspires an influx of novel game-theoretic
approaches to the problem. Future work would explore more theoretically-grounded analysis of this
problem through the connection between convex games (Shapley, 1971) and super(sub)modularity in
discrete combinatorial optimization (Dughmi, 2009; Bach, 2011; Krause & Guestrin, 2011) and the
extension to continuous set of units through values of non-atomic games (Aumann & Shapley, 1974).
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A PROSPECT PRIOR EXPERIMENTS DETAILS

We provide for all problems, models or policies architectures, algorithm hyperparameters, and other
reproducibility details4. All models and architectures are implemented with PYTORCH (Paszke et al.,
2019), are configured using HYDRA (Yadan, 2019), and fit on a workstation equipped with a 16 GB
NVIDIA RTX A4000 GPU, 32 GB of RAM, and 32 CPU cores.

A.1 SUPERVISED LEARNING

MNIST. We trained a model on the MNIST (LeCun & Cortes, 2010) supervised 10-digits classification
task. Specification of the model architecture and hyper-parameters selection are provided in Table 1.

Hyperparameter Value

optimizer ADAM (Kingma & Ba, 2015)
learning-rate 10−4

betas (0.9, 0.999)
eps 10−8

batch-size 4
epochs 200
shuffle Yes

Model

CONV2D(32, 3, 1)
RELU()

CONV2D (64, 3, 1)
RELU()

MAXPOOL2D (2, 2)
DROPOUT(0.25)

FLATTEN()
LINEAR(9216, 128)

RELU()
DROPOUT(0.5)

LINEAR(128, 10)

Table 1: Details on the learning algorithm hyperparameters (left) and model architecture (right) used in
the MNIST (LeCun & Cortes, 2010) experiments. Model components and the optimizer are provided by
PYTORCH (Paszke et al., 2019). These details remained constant throughout the rest of the experiments with
MNIST.

CIFAR10. The experiments on CIFAR10 (Krizhevsky et al., 2009) follow the same setting as those
on MNIST. We similarly trained a model on the supervised 10-classes task. Specification of the
model architecture and hyperparameter selection are provided in Table 2.

Hyperparameter Value

optimizer ADAM (Kingma & Ba, 2015)
learning-rate 10−4

betas (0.9, 0.999)
eps 10−8

batch-size 4
epochs 200
shuffle Yes

Model

CONV2D (3, 6, 5)
RELU()

MAXPOOL2D (2, 2)
CONV2D (6, 16, 5)

RELU()
MAXPOOL2D (2, 2)

FLATTEN()
LINEAR(400, 120)

RELU()
LINEAR(120, 84)

RELU()
LINEAR(84, 10)

Table 2: Details on the learning algorithm hyperparameters (left) and model architecture (right) used in
the CIFAR10 (Krizhevsky et al., 2009) experiments. Model components and the optimizer are provided by
PYTORCH (Paszke et al., 2019). These details remained constant throughout the rest of the experiments with
CIFAR10.

4Regardless, we plan to release the complete source code of all our experiments.
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Figure 5: The class-as-a-unit analogy applied to MNIST (a) and CIFAR10 (b) served as our ground truth. For
each problem, we derived the Shapley’s value from the precomputed priors (left) [Eq. 1] on each cooperative
game (Sec. 5). Our results verify that units values on the target-unit settings approximately ordered the most
confused pairs of classes. For instance, digits 2 & 7 in MNIST, or dog & cat in CIFAR10. When the target is all
classes, the vPoP decomposition (right) also (Sec. 2.1) identifies interfering pairs.

A.2 REINFORCEMENT LEARNING

MINIGRID ROOMS. We utilized a sequence of TWOROOMS, FOURROOMS, and SIXROOMS
gridworlds provided on MINIGRID (Chevalier-Boisvert et al., 2018) as units of experience. As
the learning algorithm, we trained for 500, 000 steps a PPO Schulman et al. (2017) agent, whose
implementation we derived from CLEANRL Huang et al. (2022). Policy and actor-critic architecture,
with shared backbone, as well as other PPO hyperparameters details are presented in Table 3. For the
TSCL experiments, we leveraged Exp3S (Auer et al., 2003) implementation from Besson (2018) with
default hyperparameters α = 10−5 and γ = 0.05, as defined in Graves et al. (2017).

Hyperparameter Value

optimizer ADAM Kingma & Ba (2015)
learning-rate 0.0025

annealing Yes
num-steps 128

total-timesteps 500, 000
seeds 5

gamma 0.99
GAE-lambda 0.95

num-minibatches 4
update-epochs 4

advantage-normalization Yes
clip-value-loss Yes

clip-coeff 0.2
entropy-coeff 0.01

vf-coeff 0.5
max-grad-norm 0.5

target-kl No

Actor Critic

CONV2D(16, 2, 2)
RELU()

MAXPOOL2D(2, 2)
CONV2D(16, 32, 2, 2)

RELU()
CONV2D(16, 64, 2, 2)

RELU()

LINEAR(64, 64) LINEAR(64, 64)
TANH() TANH()

LINEAR(64, 7) LINEAR(64, 1)

Table 3: Details on the PPO hyperparameters (left) and actor-critic architecture (right) used in the MINIGRID-
ROOMS (Chevalier-Boisvert et al., 2018) experiments. Policy and critic components, and the optimizer, are
provided by PYTORCH (Paszke et al., 2019). Implementation and default hyperparameters are derived from
CLEANRL (Huang et al., 2022). These details remained constant throughout the rest of the experiments with
MINIGRIDROOMS.
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A.3 POPULATIONS & GAMES.

Adversarial SIPD. In our more challenging sparse and iterated version of Prisoner’s Dilemma, at the
end of 200 interactions, inspired by Axelrod’s competition (Axelrod, 1981). A win-draw-loss reward
r = {−1, 0, 1} is given to a learning player if it beats a fixed opponent. Opponents are drawn from
a population of five well-known strategies: always cooperate, always defect, win-stay-lose-switch,
tit-for-tat, and a zero-determinant strategy (Axelrod, 1981; Hilbe et al., 2013; Knight et al., 2021).
We trained for 500 episodes (or 100, 000 steps) a PPO (Schulman et al., 2017) agent adapted from
CLEANRL Huang et al. (2022) default implementation. Policy and actor-critic architecture, without
shared backbone, as well as other PPO hyperparameters details are presented in Table 4. For the
TSCL experiments, we leveraged Exp3S (Auer et al., 2003) implementation from Besson (2018) with
default hyperparameters α = 10−5 and γ = 0.05, as defined in Graves et al. (2017).

Hyperparameter Value

optimizer ADAM Kingma & Ba (2015)
learning-rate 0.0025

annealing Yes
num-steps 128
timesteps 100, 000

seeds 5
gamma 0.99

GAE-lambda 0.95
minibatches 4

epochs 4
advantage-norm Yes
clip-value-loss Yes

clip-coeff 0.2
entropy-coeff 0.01

vf-coeff 0.5
max-grad-norm 0.5

target-kl No

Actor Critic

LINEAR(2, 64) LINEAR(2, 64)
ORTHOINIT() ORTHOINIT()

TANH() TANH()
LINEAR(64, 64) LINEAR(64, 64)
ORTHOINIT() ORTHOINIT()

TANH() TANH()
LINEAR(64, 2) LINEAR(64, 1)

Table 4: Details on the PPO hyperparameters (left) and actor-critic architecture (right) used in the ADVERARIAL-
SIPD experiments. Policy and critic components, and the optimizer, are provided by PYTORCH (Paszke et al.,
2019). Implementation and default hyperparameters are derived from CLEANRL (Huang et al., 2022). These
details remained constant throughout the rest of the experiments.

B TSCL AND POPULATION-BASED TRAINING

These results in some sense contradict what population-based training approaches prescribe as
curriculum learning (Lanctot et al., 2017; Balduzzi et al., 2019; Garnelo et al., 2021; Liu et al.,
2022). Generally, meta-strategy solvers for population-based training leverage tools from non-
cooperative game theory (Von Neumann & Morgenstern, 1944) to find, for instance, the mixed Nash
equilibrium (Nash, 1950) of the empirical meta-game (Wellman, 2006) played by the population
of opponents. In this sense, we may also understand TSCL as a cooperative meta-strategy solver
that prioritizes among a fixed population of (non-learning) opponents (units of experience) those that
improve the learning progression of a single learning player against one or more opponents of the
same population.

In the sparse and iterated version of Prisoner’s Dilemma that we introduced, the Defector strategy
remains to be the (empirical) game Nash equilibrium. However, the ordered prospect prior results in
Fig. 3c show that when evaluated on the population Nash ū = Defector, the largest Nowak & Radzik
value corresponded to the TitForTat strategy ϕū(TitForTat) = 0.34. Playing against the TitForTat
strategy remains to be the optimal solution across all evaluation targets, meaning that TitForTat is the
best proxy opponent to beat and reach the Nash equilibrium strategy.

We can interpret this result from two perspectives. First, it could indicate that the sparse, iterated,
and overtly adversarial version of the game we constructed is a more complicated problem than

17



Under review as a conference paper at ICLR 2024

the original, and the Nash equilibrium, the Defector strategy, is a stronger opponent. However,
these result may also indicate that a cooperative approach to meta-strategy selection may improve
performance in some scenarios.

C EXTENDED EXPERIMENTS RESULTS

C.1 VALUE-PROPORTIONAL CURRICULUM

0 100000 200000 300000 400000 500000
Step

0.0

0.2

0.4

0.6

0.8

re
tu

rn
s projection

nowak-softmax
tscl-exp3s
nowak-simplex

TwoRooms

0 100000 200000 300000 400000 500000
Step

0.0

0.1

0.2

0.3

0.4

re
tu

rn
s

projection
nowak-softmax
tscl-exp3s
nowak-simplex

FourRooms

0 100000 200000 300000 400000 500000
Step

0.000

0.001

0.002

0.003

0.004

0.005

re
tu

rn
s

projection
nowak-softmax
tscl-exp3s
nowak-simplex

SixRooms

(a) MINIGRIDROOMS

0 20000 40000 60000 80000 100000
Step

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

projection
shapley-simplex
shapley-softmax
nowak-softmax
tscl-exp3s
nowak-simplex

Cooperator

0 20000 40000 60000 80000 100000
Step

1.0

0.8

0.6

0.4

0.2

0.0

re
tu

rn
s

projection
shapley-simplex
shapley-softmax
nowak-softmax
tscl-exp3s
nowak-simplex

Defector

0 20000 40000 60000 80000 100000
Step

0.0

0.2

0.4

0.6

0.8

1.0

re
tu

rn
s

projection
shapley-simplex
shapley-softmax
nowak-softmax
tscl-exp3s
nowak-simplex

TitForTat

0 20000 40000 60000 80000 100000
Step

1.0

0.5

0.0

0.5

1.0

re
tu

rn
s

projection
shapley-simplex
shapley-softmax
nowak-softmax
tscl-exp3s
nowak-simplex

WinLooseSwitch

0 20000 40000 60000 80000 100000
Step

1.0

0.5

0.0

0.5

1.0

re
tu

rn
s

projection
nowak-player4-softmax
shapley-simplex
shapley-softmax
tscl-exp3s
nowak-simplex
nowak-player4-simplex

ZD-Extortioner

(b) ADVERSARIAL-SIPD

Figure 6: We also investigated the prior-proportional curriculum in the target-unit setting. For each target
unit, we allocate to each training unit interactions proportional to their pre-computed values for each target.
For the ADVERSARIAL-SIPD and MINIGRID-ROOMS controlled their learning dynamics by presenting the
units according to unordered and ordered mechanisms in ??. On each task, the value-proportional curriculum
derived from the prospect priot outperforms TSCL (tscl-*-exp3s). We further investigate the reason for TSCL
failures on this scenario.
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C.2 TSCL FAILURES
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Figure 7: To understand the failure modes of TSCL on ADVERSARIAL-SIPD, we represented the individual runs
(i.e., each of the five seeds) on every target unit. TSCL (tscl-*-exp3s) (top row) is extremely brittle, unstable, and
generally not robust to units interference. We surmise that these failures are related to the exploration-exploitation
dilemma. Exploratory steps presenting a negatively-valued unit are hard to overcome (forgetting dynamics).
This issue requires further investigation, and we defer it to future work.
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(a) MINIGRIDROOMS

Figure 8: We found that TSCL presents a similar problem in MINIGRIDROOMS. When actions (units) need to
be almost deterministically drawn for several steps, and other actions (units) have negative interference with the
target, TSCL is unable to find a stable and robust solution to the p roblem.
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