
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CUT YOUR LOSSES
IN LARGE-VOCABULARY LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As language models grow ever larger, so do their vocabularies. This has shifted
the memory footprint of LLMs during training disproportionately to one single
layer: the cross-entropy in the loss computation. Cross-entropy builds up a logit
matrix with entries for each pair of input tokens and vocabulary items and, for
small models, consumes an order of magnitude more memory than the rest of the
LLM combined. We propose Cut Cross-Entropy (CCE), a method that computes
the cross-entropy loss without materializing the logits for all tokens into global
memory. Rather, CCE only computes the logit for the correct token and evalu-
ates the log-sum-exp over all logits on the fly. We implement a custom kernel that
performs the matrix multiplications and the log-sum-exp reduction over the vocab-
ulary in flash memory, making global memory consumption for the cross-entropy
computation negligible. This has a dramatic effect. Taking the Gemma 2 (2B)
model as an example, CCE reduces the memory footprint of the loss computa-
tion from 24 GB to 1 MB, and the total training-time memory consumption of the
classifier head from 28 GB to 1 GB. To improve the throughput of CCE, we lever-
age the inherent sparsity of softmax and propose to skip elements of the gradient
computation that have a negligible (i.e., below numerical precision) contribution
to the gradient. Experiments demonstrate that the dramatic reduction in memory
consumption is accomplished without sacrificing training speed or convergence.

1 INTRODUCTION

Progress in large language models (LLMs) has been fueled in part by an increase in parameter count,
context length, and vocabulary size (the number of tokens that can be used to represent the input).
As LLMs grew, so did the associated infrastructure. Large mini-batch gradient descent (Goyal et al.,
2017) combined with data-parallelism (Hillis & Steele, 1986) enabled the harnessing of increasing
computational power. ZeRO (Rajbhandari et al., 2020) broke the dependence between the number
of GPUs and the memory used for model parameters, gradients, and optimizer state. Activation
checkpointing (Chen et al., 2016) reduced the amount of memory used for activations, supporting the
development of deeper models. FlashAttention (Dao et al., 2022) reduced the memory used in self-
attention from O(N2) to O(N), thereby supporting longer context windows. These improvements
gradually shifted the memory consumption of LLM training to one single layer – the cross-entropy
loss, whose memory footprint grows with the product of vocabulary size and number of tokens per
batch. The cross-entropy loss is responsible for up to 90% of the memory footprint of modern
LLM training (see Fig. 1a). The problem grows only more acute with time, since even the largest
contemporary vocabularies (e.g., 256K tokens) may benefit from further expansion (Tao et al., 2024).

We propose a cross-entropy implementation, Cut Cross-Entropy (CCE), that has a negligible mem-
ory footprint and scales to arbitrarily large vocabularies. Our key insight is that computation of the
loss and its gradient only depends on a single log-probability, that of the ground-truth label. With an
arithmetic reformulation, we decompose the cross-entropy loss into an index matrix multiplication
over a single ground-truth label and a log-sum-exp operation over all vocabulary entries for each
token. Each operation has small and well-defined inputs – the network embeddings and classifier
matrix – and a single scalar output per token. Both operations do, however, rely on a large interme-
diate logit matrix that computes the score for each token and potential vocabulary entry. We show
that there is no need to materialize this logit matrix in GPU memory. Instead, we compute logits as
needed in SRAM in a series of custom CUDA kernels. The result is a cross-entropy computation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6

Jul 2023

Jun 2024

Jan 2024

Feb 2019

Mar 2021

GPT 2

GPT Neo
1.3B

GPT Neo
2.7B

Llama 2
7B

Llama 2
13B

Phi 1.5Mistral 7B

Mixtral
8x7B

Qwen
1.5 7B

Gemma 2B

Phi 3
Medium

Gemma 2
27B

Llama 3.1
70B

Llama 3.1
8B

Gemma 2
2B

Max batch size (M Tokens)

Re
le

as
e

Da
te

(a) Regular cross-entropy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 70

Log Probabilities
Weights + Optimizer + Gradients
Activation Checkpoints

GPT 2

GPT Neo 1.3BGPT Neo 2.7B

Phi 1.5

Llama 2
7B

Llama 2
13B

Mistral 7B

Mixtral
8x7B

Qwen
1.5 7B

Gemma 2B

Phi 3
Medium

Gemma 2
27B

Llama 3.1
70B

Llama 3.1
8B

Gemma 2
2B

Max batch size (M Tokens)

(b) Cut cross-entropy (ours)

Figure 1: Memory use and maximum attainable batch size (in millions of tokens) for a vari-
ety of frontier models on a 16-GPU (80 GB each) fully-sharded data-parallel setup (Rajbhan-
dari et al., 2020) with activation checkpointing (Chen et al., 2016) and a mixed-precision 16-bit
(fp16/bf16) AdamW optimizer (Kingma & Ba, 2015; Loshchilov & Hutter, 2019). For each model,
we break its memory use down into weights and optimizer states, activation checkpoints, and the
log-probabilities computed by the cross-entropy loss layer. Our Cut Cross-Entropy (CCE) enables
increasing the batch size by 1.5x (Llama 2 13B) to 10x (GPT 2, Gemma 2 2B), with no sacrifice in
speed or convergence. Exact values in Table A4.

that has negligible memory footprint, with no detrimental effect on latency or convergence. See
Fig. 1b for a breakdown of memory savings and consequent batch size increases afforded by CCE.

2 RELATED WORK

Attention mechanisms. The effectiveness of transformers (Vaswani et al., 2017) in modeling lan-
guage has drawn attention to their compute and memory requirements. Multiple works have pro-
posed alternatives to scaled dot-product attention that reduce transformers’ computation and mem-
ory (Kitaev et al., 2020; Wang et al., 2020; Choromanski et al., 2021). Other model classes, such as
structured state-space models (Gu et al., 2022; Gu & Dao, 2023), have also shown promising results.
We study a different part of the model – its classifier head – that is not considered in these works.

Attention implementations. In addition to alternative attention mechanisms, the community has
also tackled the daunting memory consumption of LLMs via efficient implementations. Rabe &
Staats (2021) developed a self-attention implementation that makes use of chunking. Chen et al.
(2023) proposed an implementation that broke the operation into two stages, reduction and matrix
multiplication. This makes efficient use of GPU memory and registers but requires recomputation in
the forward pass. FlashAttention (Dao et al., 2022) uses an online softmax (Milakov & Gimelshein,
2018) and, like CCE, materializes blocks of the N2-sized self-attention matrix in on-chip SRAM
rather than slower global DRAM. This is one of the key ideas that CCE builds on to develop a
memory-efficient cross-entropy formulation.

Vocabulary reduction. One way to minimize the amount of memory used by the log-probabilities
over the tokens is to reduce the number of ‘active’ tokens in the vocabulary. Grave et al. (2017)
proposed to use a vocabulary with a hierarchical structure, thereby requiring the log-probabilities
for only a subset of the vocabulary at any given time. Yu et al. (2023) explore tokenization-free
byte-level models that operate on dramatically smaller vocabularies.

Sequence and model parallelism. Sequence parallelism (Jacobs et al., 2023; Li et al., 2023) enables
training very large models (with large vocabularies) by splitting an individual input sequence across
multiple GPUs. Various model parallelism techniques (Huang et al., 2019; Narayanan et al., 2019;
Shoeybi et al., 2019) achieve the same goal of training very large models (with large vocabularies)
by distributing the computation and memory consumption of different pieces across multiple GPUs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Efficient cross-entropy implementations. A number of recent implementations use chunking to
reduce the memory usage of the cross-entropy layer. Yet chunking induces a trade-off. Memory
footprint is minimized when the number of chunks is high, but latency is minimized when the
number of chunks is low. CCE utilizes only on-chip SRAM and minimizes both memory footprint
and latency. Liger Kernels (Hsu et al., 2024) make efficient use of the GPU via chunking and by
computing the loss+gradient simultaneously. The latter requires that any transform applied to the
loss (such as masking) is implemented in the kernel itself. CCE has separate forward and backward
stages, enabling user-defined transformations on the loss.

3 PRELIMINARIES

Let P (x) =
∏N

i=1 P (xi | x1 . . . xi−1) be a Large Language Model (LLM) over a vocabulary V .
The LLM parameterizes an autoregressive distribution over all possible tokens xi ∈ V given the
preceding N − 1 tokens. Specifically, this distribution is the combination of a backbone network
f : x1 . . . xi−1 → RD and a linear classifier C ∈ RD×|V |:

P (xi | x1 . . . xi−1) = softmaxxi(C
⊤f(x1 . . . xi−1)), (1)

softmaxk(v) =
exp(vk)∑
j exp(vj)

. (2)

The backbone network f(x1, . . . , xi−1) ∈ RD encodes a token sequence in the D-dimensional
feature vector. The linear classifier C ∈ RD×|V | projects the embedding into an output space of
the vocabulary V . The softmaxk(v) produces the probability over all vocabulary entries from the
unnormalized log probabilities (logits) produced by C⊤f(x1 . . . xi−1).

3.1 VOCABULARY

LLMs represent their input (and output) as a set of tokens in a vocabulary V . The vocabulary is
typically constructed by a method such as Byte Pair Encoding (BPE) (Gage, 1994). BPE initializes
the vocabulary with all valid byte sequences from a standard text encoding, such as utf-8. Then,
over a large corpus of text, BPE finds the most frequent pair of tokens and creates a new token that
represents this pair. This continues iteratively until the maximum number of tokens is reached.

Large vocabularies enable a single token to represent multiple characters. This reduces the length of
both input and output sequences, compresses larger and more diverse documents into shorter context
windows, thus improving the model’s comprehension while reducing computational demands.

3.2 INFERENCE AND TRAINING

Even with a large vocabulary, sampling from an LLM is memory-efficient at inference time. Specif-
ically, the LLM produces one token at a time, computing P (xi|x1 . . . xi−1) and sampling from this
distribution (Kwon et al., 2023). Because the distribution over the vocabulary is only needed for a
single token at a time, the memory footprint is independent of sequence length.

At training time, the LLM maximizes the log-likelihood of the next token:

ℓ(x̂) =

N∑
i=1

logP (x̂i|x̂1, . . . , x̂i−1). (3)

Due to the structure of most backbones (Vaswani et al., 2017; Gu et al., 2022; Gu & Dao, 2023),
f(x1), f(x1, x2), . . . , f(x1, . . . , xN) is efficiently computed in parallel. However, activations for
non-linear layers have to be saved for the backward pass, consuming significant memory. Most
LLM training frameworks make use of aggressive activation checkpointing (Chen et al., 2016),
sharding (Rajbhandari et al., 2020), and specialized attention implementations (Dao et al., 2022) to
keep this memory footprint manageable.

With the aforementioned optimizations, the final (cross-entropy loss) layer of the LLM becomes
by far the biggest memory hog. For large vocabularies, the final cross-entropy layer accounts for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

C⊤

En

xn

Indexed
load

dot
prod.

anC⊤
xn ⊗

(a) Indexed matmul
(forward)

|V|

N

En

C⊤
v

LSEn

LSEnv

Blk.
matmul
Blk. LSE

log(exp(LSEn)

+exp(LSEnv))

Anv

D

D

(b) Linear-log-sum-exp,
forward pass

C⊤
v

∇En

∇C⊤
vŜnE⊤

n

Atomic
Add

Atomic
Add

C⊤
n Ŝnv

If
any(Snv >ε)

Snv =
exp(Anv−

LSEn)

En

LSEn ∇LSEn

Anv Ŝnv

Ŝnv =
Snv ⋅ ∇LSEn

(c) Linear-log-sum-exp,
backward pass

Figure 2: Access patterns and computation of blockwise (a) indexed matrix multiplication, (b)
linear-log-sum-exp forward pass, and (c) linear-log-sum-exp backward pass. See Algorithms 1 to 3
for the corresponding algorithms.

the majority of the model’s memory footprint at training time (Fig. 1a). For example, the log-
probabilities materialized by the cross-entropy layer account for 40% of the memory consumption
of Phi 3.5 (Mini) (Abdin et al., 2024) (|V | = 32,064), 65% of the memory consumption of Llama
3 (8B) (Dubey et al., 2024) (|V | = 128,000), and 89% of the memory consumption of Gemma 2
(2B) (Rivière et al., 2024) (|V | = 256,128). In fact, the log-probabilities of Gemma 2 (2B) for a
single sequence x with length N = 80,000 use the entire available memory of an 80GB H100 GPU.
(The sequence length is a factor due to the use of teacher forcing for parallelism.)

We show that a reformulation of the training objective leads to an implementation that has negligible
memory consumption above what is required to store the loss and the gradient.

4 CUT CROSS-ENTROPY

Consider the cross-entropy loss ℓi over a single prediction of the next token P (xi|x1 . . . xi−1):

ℓi(x) = log softmaxxi

(
C⊤Ei

)
= C⊤

xi
Ei − log

∑
j

exp
(
C⊤

j Ei

)
.

Here the first term is a vector product over D-dimensional embeddings Ei = f(x1 . . . xi−1) and a
classifier C. The second term is a log-sum-exp operation and is independent of the next token xi.
During training, we optimize all next-token predictions ℓ = [ℓ1 . . . ℓN] jointly using teacher forcing:

ℓ =
(
C⊤E

)
x
− log

∑
j

exp(C⊤
j E), (4)

where E = [E1 . . . EN] and
(
C⊤E

)
x
=

[
C⊤

x1
E1 . . . C

⊤
xN

EN

]
. The first term in Equation (4)

is a combination of an indexing operation and matrix multiplication. It has efficient forward and
backward passes, in terms of both compute and memory, as described in Section 4.1. The second
term in Equation (4) is a joint log-sum-exp (LSE) and matrix multiplication operation. Section 4.2
describes how to compute the forward pass of this linear-log-sum-exp operation efficiently using a
joint matrix multiplication and reduction kernel. Section 4.3 describes how to compute its backward
pass efficiently by taking advantage of the sparsity of the gradient over a large vocabulary. Putting
all the pieces together yields a memory-efficient low-latency cross-entropy loss.

4.1 MEMORY-EFFICIENT INDEXED MATRIX MULTIPLICATION

A naive computation of indexed matrix multiplication involves either explicit computation of the
logits C⊤E with an O(N |V |) memory cost, or indexing into the classifier Cx = [Cx1 . . . CxN

] with
an O(ND) memory cost. Our implementation fuses the classifier indexing Cx with the consecutive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Memory-efficient indexed matrix multiplication

Inputs: E ∈ RD×N , C ∈ RD×|V |, x ∈ RN .
Block sizes NB and DB .

Outputs: o = (C⊤E)x ∈ RN

for blocks En, xn do ▷ Divide E and x into blocks of size D ×NB and NB , respectively
on = 0NB

▷ Zero vector of size NB in on-chip SRAM
for blocks En,d do ▷ Divide En into blocks of size DB ×NB

c = Cxn,d ▷ Indexed load into on-chip SRAM
on += En,d · c ▷ Column-wide dot product

end for
write on ▷ From on-chip SRAM to main GPU memory

end for

dot product between columns Cxi
and Ei in a single CUDA/Triton kernel (Tillet et al., 2019). Our

kernel retrieves the value xi, the xi-th column from C, and the i-th column from E, and stores them
in on-chip shared memory (SRAM). It then performs a dot product between Cxi and Ei and writes
the result into global memory. The kernel uses only on-chip SRAM throughout and does not allocate
any GPU memory. For efficiency, we perform all operations blockwise to make the best use of GPU
cache structure. Algorithm 1 and Fig. 2a summarize the computation and access patterns.

4.2 MEMORY-EFFICIENT LINEAR-LOG-SUM-EXP, FORWARD PASS

Implementing a serial memory-efficient linear-log-sum-exp is fairly straightforward: use a triple for-
loop. The innermost loop computes the dot product between Cv and En for the v-th token and the
n-th batch element. The middle loop iterates over the vocabulary, updating the log-sum-exp (LSE)
along the way. Finally, the outermost loop iterates over all batch elements. Parallelizing over the
outermost loop is trivial and would expose enough work to saturate the CPU due to the number of
tokens in training batches (commonly in the thousands). Parallelization that exposes enough work
to saturate the GPU is more challenging.

Let us first examine how efficient matrix multiplication between the batch of model output embed-
dings E ∈ RD×N and the classifier C ∈ RD×|V | is implemented on modern GPUs (Kerr et al.,
2017). A common method is to first divide the output O = C⊤E ∈ R|V |×N into a set of blocks
of size VB ×NB . Independent CUDA blocks retrieve the corresponding parts En of E with size
D ×NB and blocks Cm of C with size D × VB , and perform the inner product Onm = C⊤

mEn

along the D dimension. Due to limited on-chip SRAM, most implementations use a for-loop for
large values of D. They loop over smaller size DB ×NB and DB × VB blocks and accumulate
Onv =

∑
d C

⊤
vdEnd in SRAM. Each CUDA block then writes Onm back into global memory. This

method exposes enough work to the GPU and makes efficient use of SRAM and L2 cache.

To produce log-sum-exp(C⊤E), we use the same blocking and parallelization strategy as matrix
multiplication. Each block first computes a matrix multiplication, then the log-sum-exp along the
vocabulary dimension m for its block, and finally updates LSE with its result.

Note that multiple CUDA blocks are now all writing to the same location of LSE. This includes
blocks in the same input range n but different vocabulary ranges m. We use a spin-lock on an
atomic operation in global memory to synchronize the updates by different CUDA blocks as this is
simple to implement in our Triton framework and incurs little overhead. Alternative methods, such
as an atomic compare-and-swap loop, may perform better when implementing in CUDA directly.

Algorithm 2 and Fig. 2b summarize the computation and access patterns.

4.3 MEMORY-EFFICIENT LINEAR-LOG-SUM-EXP, BACKWARD PASS

The backward pass needs to efficiently compute two gradient updates:

∇E = λ⊤ ∂

∂E
log

∑
exp(C⊤E) and ∇C = λ⊤ ∂

∂C
log

∑
exp(C⊤E)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Memory-efficient linear-log-sum-exp, forward pass

Inputs: E ∈ RD×N and C ∈ RD×|V |.
Block sizes NB , VB , and DB .

Outputs: LSE = log
∑

j exp(C
⊤
j E) ∈ RN

LSE = −∞N ▷ −∞ vector of size N in main GPU memory
for all pairs of blocks En, Cv do ▷ Divide E and C into blocks of size D ×NB and D × VB

Anv = 0VB×NB
▷ Zero matrix of size VB ×NB in on-chip SRAM

for blocks En,d, Cv,d do ▷ Divide En and Cv into blocks of DB ×NB and DB × VB

Anv += C⊤
v,d ·En,d ▷ Blockwise matrix multiplication

end for
LSEnv = log

∑
exp(A⊤

nv) ▷ Numerically stable implementation with max
LSEn = log(exp(LSEn) + exp(LSEnv)) ▷ Locking thread-safe log-add-exp

end for

for a backpropagated gradient λ = ∇LSE. Formally, the gradient is defined as

∇E⊤ = (S · ∇LSE)C and ∇C⊤ = (S · ∇LSE)
⊤
E

where S = softmax(C⊤E) and · refers to the row-by-row elementwise multiplication of the soft-
max S and the gradient ∇LSE: Ŝ = S · ∇LSE.

Computationally, the backward pass is a double matrix multiplication C⊤E and ŜC or Ŝ⊤E with
intermediate matrices S and Ŝ that do not fit into GPU memory and undergo a non-linear operation.
We take a similar approach to the forward pass, recomputing the matrix C⊤E implicitly in the GPU’s
shared memory. For the backward pass, we do not need to compute the normalization constant of
the softmax, since S = softmax(C⊤E) = exp(C⊤E − LSE). This allows us to reuse the global
synchronization of the forward pass, and compute S efficiently in parallel.

We implement the second matrix multiplication in the main memory of the GPU, as a canonical
blockwise implementation would require storing or synchronizing S. Algorithm 3 and Fig. 2c sum-
marize the computation and access patterns. A naive implementation of this algorithm requires zero
additional memory but is slow due to repeated global memory load and store operations. We use
two techniques to improve the memory access pattern: gradient filtering and vocabulary sorting.

Gradient filtering. By definition, the softmax S sums to one over the vocabulary dimension. If
stored in bfloat16 with a 7-bit fraction, any value below ε = 2−12 will likely be ignored due to
truncation in the summation or rounding in the normalization.1 This has profound implications
for the softmax matrix S: For any column, at most 1

ε = 4096 entries have non-trivial values and
contribute to the gradient computation. All other values are either rounded to zero or truncated. In
practice, the sparsity of the softmax matrix S is much higher: empirically, in frontier models we
evaluate, less than 0.02% of elements are non-zero. Furthermore, the sparsity of the softmax matrix
grows as vocabulary size increases. In Algorithm 3, we take advantage of this sparsity and skip
gradient computation for any block whose corresponding softmax matrix Snm has only negligible
elements. We chose the threshold ε = 2−12 to be the smallest bfloat16 value that is not truncated.
In practice, this leads to a 3.5x speedup without loss of precision in any gradient computation. See
Section 5 for a detailed analysis.

The efficiency of gradient filtering is directly related to the block-level sparsity of the softmax matrix.
We cannot control the overall sparsity pattern without changing the output. However, we can change
the order of the vocabulary to create denser local blocks for more common tokens.

Vocabulary sorting. Ideally the vocabulary would be ordered such that all tokens with non-trivial
gradients would be contiguously located. This reduces the amount of computation wasted by par-
tially populated blocks – ideally blocks would either be entirely empty (and thus skipped) or entirely
populated. We heuristically group the non-trivial gradients by ordering the tokens by their average
logit. Specifically, during the forward pass (described in Section 4.2) we compute the average logit

1The 5 extra bits above the fractional size (7) account for rounding rules, and the consideration that small
but not tiny values will likely not get truncated due to the blocking strategies used to compute a sum.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 3 Memory-efficient linear-log-sum-exp, backward pass

Inputs: E ∈ RD×N , C ∈ RD×|V |, LSE ∈ RN , and ∇LSE ∈ RN .
Block sizes NB , VB , and DB .
Accuracy threshold ε.

Outputs: ∇E ∈ RD×N , ∇C ∈ RD×|V |

for all pairs of blocks En, Cv do ▷ Divide E and C into blocks of size D ×NB and D × VB

Anv = 0VB×NB
▷ Zero matrix of size VB ×NB in on-chip SRAM

for blocks En,d, Cv,d do ▷ Divide En and Cv into blocks of DB ×NB and DB × VB

Anv += C⊤
v,d ·En,d ▷ Blockwise matrix multiplication

end for
Snv = exp(Anv − LSEn) ▷ Compute the softmax
if all(Snv < ε) then

skip ▷ Skip computation if below desired numerical precision
end if
for blocks En,d, Cv,d do ▷ Divide En and Cm into blocks of DB ×NB and DB × VB

∇E⊤
n,d += (Snv · ∇LSEn)Cv,d ▷ Locking thread-safe gradient update

∇C⊤
v,d += (Snv · ∇LSEn)

⊤
En,d ▷ Locking thread-safe gradient update

end for
end for

per token using an atomic addition. For the backward pass, we divide the vocabulary dimension |V |
into blocks with similar average logit instead of arbitrarily. This requires a temporary buffer of size
O(|V |), about 1 MB for the largest vocabularies in contemporary LLMs (Rivière et al., 2024).

Putting all the pieces together, we arrive at forward and backward implementations of cross-entropy
that have a negligible incremental memory footprint without sacrificing speed. Note that in practice,
we found it to be easier and more memory-efficient to merge the indexed matrix-multiplication
backward implementation with the backward pass of the linear-log-sum-exp operator (Algorithm 3).
The two operations share much of the computation and memory access pattern, see Algorithm 4.

5 ANALYSIS

5.1 RUNTIME AND MEMORY

First we examine the runtime and memory of various implementations of the cross-entropy loss
log softmaxxi(C

⊤E). We consider a batch of 8,192 tokens with a vocabulary size of 256,000 and
hidden dimension 2,304. This corresponds to Gemma 2 (2B) (Rivière et al., 2024). We use the Al-
paca dataset (Taori et al., 2023) for inputs and labels and Gemma 2 (2B) Instruct weights to compute
E and for C. The analysis is summarized in Table 1. The baseline implements the loss directly in
PyTorch (Paszke et al., 2019). This is the default in popular frameworks such as Torch Tune (Torch
Tune Team, 2024) and Transformers (Wolf et al., 2019). This method has reasonable throughput but
a peak memory usage of 28,000MB of GPU memory to compute the loss+gradient (Table 1 row
5). Due to memory fragmentation, just computing the loss+gradient for the classifier head requires
an 80GB GPU. torch.compile (Ansel et al., 2024) is able to reduce memory usage by 43% and
computation time by 33%, demonstrating the effectiveness of kernel fusion (Table 1 row 4 vs. 5).
Torch Tune (Torch Tune Team, 2024) includes a method to compute the cross-entropy loss that di-
vides the computation into chunks and uses torch.compile to save memory. This reduces memory
consumption by 65% vs. Baseline and by 40% vs. torch.compile (to 9,631MB, see Table 1 row
3 vs. 4 and 5). Liger Kernels (Hsu et al., 2024) provide a memory-efficient implementation of the
cross-entropy loss that, like Torch Tune, makes uses of chunked computation to reduce peak mem-
ory usage. While very effective at reducing the memory footprint, using 95% less memory than
Baseline, it has a detrimental effect on latency, more than doubling the wall-clock time for the com-
putation (Table 1, row 2 vs. 4). The memory usage of CCE grows with O(N + |V |), as opposed to
O(N × |V |) for Baseline, torch.compile, and Torch Tune, and O(N ×D) for Liger Kernels. In
practice, CCE has a negligible memory footprint regardless of vocabulary size or sequence length.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Loss Gradient Loss+Gradient

Method Memory Time Memory Time Memory Time

Lower bound 0.004MB 1,161MB 1,161MB

1) CCE (Ours) 1MB 45ms 1,164MB 104ms 1,164MB 145ms
2) Liger Kernels (Hsu et al., 2024)2 1,474MB 303ms 1,475MB 303ms
3) Torch Tune Team (2024) (8 chunks) 8,000MB 54ms 1,630MB 114ms 9,631MB 169ms
4) torch.compile 4,000MB 49ms 12,000MB 91ms 16,000MB 142ms
5) Baseline 24,000MB 82ms 16,000MB 121ms 28,000MB 206ms

6) CCE (No Vocab Sorting) 0.09MB 43ms 1,162MB 121ms 1,162MB 162ms
7) CCE (No Grad. Filter) 0.09MB 43ms 1,162MB 323ms 1,163MB 363ms

Table 1: Peak memory footprint and time to compute the loss, its gradient, and their combination.
Note that intermediate buffers can often (but not always) be reused between the loss and gradient
computation, resulting in lower peak memory consumption than the sum of the parts. Batch of 8,192
tokens with a vocabulary size of 256,000 and hidden dimension 2304. Embedding and classifier
matrix taken during Gemma 2 (2B) training on Alpaca. Measured on an A100-SXM4 GPU with
80GB of RAM, PyTorch 2.4.1, CUDA 12.4, rounded to closest MB. Some numbers are multiples of
1,000 due to dimensions chosen and PyTorch’s allocation strategy. ‘Lower bound’ is the amount of
memory required for the output buffer(s), i.e., ∇E and ∇C, this is the lower bound for the memory
footprint of any method.

Compared to the fastest method, torch.compile, CCE computes the loss slightly faster (5%, 4ms,
Table 1 row 1 vs. 4). This is because CCE does not write all the logits to global memory. CCE
computes the loss+gradient slightly slower (6%, 3ms). While CCE needs to recompute C⊤E, it
is able to save time in other parts of the computation. See Appendix C.2 for a breakdown of the
backwards pass of CCE and Baseline. This increase is largely negligible as the forward+backward
pass for even a small LLM (2B parameters) is on the order of seconds.

N-th most likely token (log-scale)

Pr
ob

ab
ili

ty
 (l

og
-s

ca
le

)

100 101 102 103 104 105

10−14

10−11

10−8

10−5

10−2

Token Probabilities
BF16 Cutoff

Figure 3: Average probability for the ith most
likely token, log-log plot. The probabilities very
quickly vanish below numerical precision.

The performance of CCE is enabled by both
gradient filtering and vocabulary sorting. With-
out vocabulary sorting CCE takes 15% (23ms)
longer (Table 1 row 1 vs. 6) and without gra-
dient filtering it is 3.4x (356ms) longer (row
1 vs. 7). In Appendix B, we demonstrate that
CCE (and other methods) can be made up to
3 times faster by removing tokens that are ig-
nored from the loss computation.

In Appendix C we benchmark with more mod-
els. We find that as the ratio of vocabulary size
(|V |) to hidden size (D) decreases, CCE be-
gins to be overtaken in computation time for the
Loss+Gradient, but continues to save a substan-
tial amount of memory.

5.2 GRADIENT FILTERING

Fig. 3 shows the sorted softmax probability of vocabulary entries. Note that the probabilities vanish
very quickly and, for the top 105 most likely tokens, there is a linear relationship between log rank
and log probability. Second, by the ∼50th most likely token, the probability has fallen bellow our
threshold for gradient filtering.

This explains why we are able to filter so many values from the gradient computation without af-
fecting the result. At these sparsity levels, most blocks of the softmax matrix S are empty.

2The gradient and loss are computed simultaneously, not in separate forward/backward passes.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

00 200200 400400 600600
0.90.9

11

1.11.1

1.21.2

1.31.3

0 200 400 600
0.9

1.0

1.1

1.2

1.3

Gradient Steps

Tr
ai

ni
ng

 L
os

s

(a) Gemma 2 2B

00 200200 400400 600600
0.90.9

11

1.11.1

1.21.2

1.31.3
p95 Confidence Rangep95 Confidence Range
Torch Compile Cross Entropy LossTorch Compile Cross Entropy Loss
Cut Cross Entropy LossCut Cross Entropy Loss

Confidence Interval (p=0.95)
Torch Compile Cross-Entropy
Cut Cross-Entropy

00 200200 400400 600600
0.90.9

11

1.11.1

1.21.2

1.31.3
p95 Confidence Rangep95 Confidence Range
Torch Compile Cross Entropy LossTorch Compile Cross Entropy Loss
Cut Cross Entropy LossCut Cross Entropy Loss

0 200 400 600
0.9

1.0

1.1

1.2

1.3

Gradient Steps

Tr
ai

ni
ng

 L
os

s

(b) Phi 3.5 Mini

00 200200 400400 600600
0.90.9

11

1.11.1

1.21.2

1.31.3

0 200 400 600
0.9

1.0

1.1

1.2

1.3

Gradient Steps

Tr
ai

ni
ng

 L
os

s

(c) Llama 3 8B

00 200200 400400 600600
0.90.9

11

1.11.1

1.21.2

1.31.3

0 200 400 600
0.9

1.0

1.1

1.2

1.3

Tr
ai

ni
ng

 L
os

s

Gradient Steps

(d) Mistral Nemo

Figure 4: Training loss curves for four models on the Alpaca dataset (Taori et al., 2023). The loss
curves for CCE and torch.compile are nearly indistinguishable, showing that the gradient filtering
in CCE does not impair convergence. Results averaged over 5 seeds.

5.3 TRAINING STABILITY

Fig. 4 demonstrates the training stability of CCE. We fine-tune Llama 3 8B Instruct (Dubey et al.,
2024), Phi 3.5 Mini Instruct (Abdin et al., 2024), Gemma 2 2B Instruct (Rivière et al., 2024), and
Mistral NeMo (Mistral AI Team, 2024) on the Alpaca Dataset (Taori et al., 2023) using CCE and
torch.compile as the control. As shown in the figure, CCE and torch.compile have indistin-
guishable loss curves, demonstrating that the gradient filtering in CCE does not impair convergence.

In ?? we examine pre-training with randomly initialized networks.

6 DISCUSSION

As vocabulary size |V | has grown in language models, so has the memory footprint of
the loss layer. The memory used by this one layer dominates the training-time memory
footprint of many recent language models. We described CCE, an algorithm to compute
ℓi = log softmaxi(C

T f(x1 . . . xi−1)) and its gradient with negligible memory footprint.

Beyond the immediate impact on compact large-vocabulary LLMs, as illustrated in Fig. 1, we expect
that CCE may prove beneficial for training very large models. Specifically, very large models are
trained with techniques such as pipeline parallelism (Huang et al., 2019; Narayanan et al., 2019).
Pipeline parallelism works best when all stages are equally balanced in computation load. Achiev-
ing this balance is easiest when all blocks in the network have similar memory-to-computation
ratios. The classification head is currently an outlier, with a disproportionately high memory-to-
computation ratio. CCE may enable better pipeline balancing or reducing the number of stages.

We implemented CCE using Triton (Tillet et al., 2019). Triton creates efficient GPU kernels and
enables rapid experimentation but has some limitations in control flow. Specifically, the control flow
must be specified at the block level and therefore our thread-safe log-add-exp and gradient filtering
are constrained to operate at the block level as well. We expect that implementing CCE in CUDA
may bring further performance gains because control flow could be performed at finer-grained levels.

It could also be interesting to extend CCE to other classification problems where the number of
classes is large, such as image classification and contrastive learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, et al. Phi-3 technical
report: A highly capable language model locally on your phone, 2024. URL https://arxiv.
org/abs/2404.14219.

Jason Ansel, Edward Z. Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and graph compilation. In ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016. URL http://arxiv.org/abs/1604.06174.

Yu-Hui Chen, Raman Sarokin, Juhyun Lee, Jiuqiang Tang, Chuo-Ling Chang, Andrei Kulik, and
Matthias Grundmann. Speed is all you need: On-device acceleration of large diffusion mod-
els via GPU-aware optimizations. In Conference on Computer Vision and Pattern Recognition,
Workshops, 2023.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
formers. In International Conference on Learning Representations, 2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Neural Information Processing Systems,
2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019. URL
http://Skylion007.github.io/OpenWebTextCorpus.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training Ima-
geNet in 1 hour, 2017. URL http://arxiv.org/abs/1706.02677.

Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. Efficient
softmax approximation for gpus. In International Conference on Machine Learning, 2017.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

W. Daniel Hillis and Guy L. Steele. Data parallel algorithms. Commun. ACM, 29(12):1170–1183,
1986.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, and Siyu Zhu. Liger-
Kernel: Efficient Triton kernels for LLM training, 2024. URL https://github.com/linkedin/
Liger-Kernel.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. GPipe: Efficient
training of giant neural networks using pipeline parallelism. In Neural Information Processing
Systems, 2019.

10

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
http://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2407.21783
http://Skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/1706.02677
https://arxiv.org/abs/2312.00752
https://github.com/linkedin/Liger-Kernel
https://github.com/linkedin/Liger-Kernel

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuaiwen Leon Song,
Samyam Rajbhandari, and Yuxiong He. Deepspeed ulysses: System optimizations for en-
abling training of extreme long sequence transformer models, 2023. URL https://doi.org/
10.48550/arXiv.2309.14509.

Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. CUTLASS: Fast lin-
ear algebra in CUDA C++, 2017. URL https://developer.nvidia.com/blog/
cutlass-linear-algebra-cuda/.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Symposium on Operating Systems Principles, 2023.

Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence parallelism:
Long sequence training from system perspective. In Association for Computational, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax, 2018. URL
http://arxiv.org/abs/1805.02867.

Mistral AI Team. Mistral NeMo, 2024. URL https://mistral.ai/news/mistral-nemo/.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline paral-
lelism for DNN training. In ACM Symposium on Operating Systems Principles, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. In Neural Information Processing Systems, 2019.

Markus N. Rabe and Charles Staats. Self-attention does not need O(n2) memory, 2021. URL
https://arxiv.org/abs/2112.05682.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
toward training trillion parameter models. In International Conference for High Performance
Computing, Networking, Storage and Analysis, 2020.

Morgane Rivière, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, et al. Gemma
2: Improving open language models at a practical size, 2024. URL https://arxiv.org/abs/
2408.00118.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
allelism, 2019. URL http://arxiv.org/abs/1909.08053.

Chaofan Tao, Qian Liu, Longxu Dou, Niklas Muennighoff, Zhongwei Wan, Ping Luo, Min Lin,
and Ngai Wong. Scaling laws with vocabulary: Larger models deserve larger vocabularies, 2024.
URL https://arxiv.org/abs/2407.13623.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An instruction-following LLaMA model,
2023. URL https://github.com/tatsu-lab/stanford alpaca.

11

https://doi.org/10.48550/arXiv.2309.14509
https://doi.org/10.48550/arXiv.2309.14509
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
http://arxiv.org/abs/1805.02867
https://mistral.ai/news/mistral-nemo/
https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
http://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2407.13623
https://github.com/tatsu-lab/stanford_alpaca

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. Triton: An intermediate language and
compiler for tiled neural network computations. In ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, 2019.

Torch Tune Team. torchtune, 2024. URL https://github.com/pytorch/torchtune.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020. URL https://arxiv.org/abs/2006.04768.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s trans-
formers: State-of-the-art natural language processing, 2019.

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis.
MEGABYTE: Predicting million-byte sequences with multiscale transformers. In Neural Infor-
mation Processing Systems, 2023.

12

https://github.com/pytorch/torchtune
https://arxiv.org/abs/2006.04768

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A NOTATION

Throughout the paper, we use the following notation conventions. Matrices are bold, capital letters,
e.g., A. Indexed matrices are capital letters and are indexed by column and then, optionally, row.
For example, given A ∈ RN×M , then e.g., Aj is the length N vector that is the jth column for A,
Aj,i is then the ith value in the vector Aj . When we combine indexing and transposing, we always
index and then transpose.

Vectors are bold lower-case letters, e.g., x, with the exception of LSE which is the vector containing
the log-sum-exp (LSE). Indexed vectors are lower-case letters, xi.

In addition to scalar indexing, we also block index matrices when describing how our algorithms
are implemented. In these cases, the matrix and vector will maintain their bold to indicate that the
indexing refers to a block and thus are still a matrix or vector.

Notation Description

E A D ×N matrix containing batch of inputs.
Ei A D-dimensional vector containing the embedding for the ith input.
C A D × |V | classifier matrix used to compute the logit for each token.
Ci A D-dimensional vector used to create the logit for the ith token.
x A length N vector containing the inputs.
xi A scalar that is the ith input.
Cxi A length D containing the vector used to create the logit for the xith token.
C⊤E A |V | ×N matrix containing the logits over the vocabulary for each input.(
C⊤E

)
x

A length N vector where the ith entry is the logit for the xith token.
LSE A length N vector containing the log-sum-exp (LSE) for each input over the vocabulary.
En The nth D ×NB block of E.
En,d The dth DB ×NB block of En.[[

a = b⊤]] An indicator matrix where the value at the ith column and jth row is 1 if aj = bi and 0 otherwise.

B REMOVING IGNORED TOKENS

It is common to have tokens that have no loss computation when training LLMs in practice. Ex-
amples include padding, the system prompt, user input, etc.. While these tokens must be processed
by the backbone – to enable efficient batching in the case of padding or to give the model the cor-
rect context for its prediction in the case of system prompts and use inputs – they do not contribute
directly to the loss.

In all implementations we are aware of, the logits and loss for these ignored tokens is first com-
puted and then set to zero. We notice that this is unnecessary. These tokens can be removed before
logits+loss computation with no change to the loss/gradient and save a significant amount of com-
putation.

Table A1 shows the performance of all methods in Table 1 with a filter that removes ignored tokens
before logits+loss computation. This represents a significant speed up for all methods but Liger
Kernels. Due to heavy chunking in Liger Kernels to save memory, it is bound by kernel launch
overhead, not computation, and therefore reducing the amount of computation does not increase
speed. Filtering ignored tokens is also a significant memory saving for most all but CCE (because
CCE already uses the minimum amount of memory possible).

C ADDITIONAL RESULTS

C.1 TRAINING RANDOMLY INITIALIZED NETWORKS

In the main text, we examined fine-tuning an LLM. This is more common due to the expensive
nature of pre-training. In this section, we perform an initial analysis of pre-training with CCE on
a small scale. Specifically, we train Gemma 2 (2B) (Rivière et al., 2024), Llama 3 (8B) (Dubey

3The gradient and loss are computed simultaneously, not in separate forward/backward passes.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Loss Gradient Loss+Gradient

Method Memory Time Memory Time Memory Time

Lower bound 0.004MB 1,161MB 1,161MB

1) CCE (Ours) 1MB 15ms 1,163MB 40ms 1,164MB 52ms
2) Liger Kernels (Hsu et al., 2024)3 1,230MB 313ms 1,228MB 315ms
3) Torch Tune Team (2024) (8 chunks) 2,700MB 22ms 2,709MB 52ms 5,410MB 73ms
4) torch.compile 1,356MB 18ms 4,032MB 32ms 5,388MB 50ms
5) Baseline 8,076MB 28ms 5,376MB 41ms 9,420MB 70ms

6) CCE (No Vocab Sorting) 0.05MB 15ms 1,162MB 46ms 1,162MB 58ms
7) CCE (No Grad. Filter) 0.05MB 15ms 1,162MB 156ms 1,162MB 170ms

Table A1: Table 1 where all methods include a filter that removes tokens that are ignored in loss
computation. This simple change represents large improvements in practice.

00 500500 10001000 15001500
33

3.53.5

44

4.54.5

55

5.55.5

66

Tr
ai

ni
ng

 L
os

s

Gradient Steps

(a) Gemma 2 2B

Tr
ai

ni
ng

 L
os

s
Gradient Steps

00 500500 10001000 15001500
33

3.53.5

44

4.54.5

55

5.55.5

66
p95 Confidence Rangep95 Confidence Range
Torch Compile Cross Entropy LossTorch Compile Cross Entropy Loss
Cut Cross Entropy LossCut Cross Entropy Loss

Confidence Interval (p=0.95)
Torch Compile Cross-Entropy
Cut Cross-Entropy

(b) Phi 3.5 Mini

00 500500 10001000 15001500
33

3.53.5

44

4.54.5

55

5.55.5

66

Tr
ai

ni
ng

 L
os

s

Gradient Steps

(c) Llama 3 8B

00 500500 10001000 15001500
33

3.53.5

44

4.54.5

55

5.55.5

66

Tr
ai

ni
ng

 L
os

s

Gradient Steps

(d) Mistral Nemo

Figure A1: Training loss curves for four models on 5% of the Open WebText dataset (Gokaslan
et al., 2019). Results averaged over 5 seeds.

et al., 2024), Mistral NeMo (Mistral AI Team, 2024), and Phi 3.5 Mini (Abdin et al., 2024) for next-
token prediction on Open WebText (Gokaslan et al., 2019). We use 5% of the dataset for training
and 0.25% for validation. We follow the standard practice of concatenating all documents together,
separated by BOS/EOS tokens, and then select contiguous chunks of tokens. We train using a global
batch size of 512 sequences of length 512 (262,144 tokens).

Convergence. We find that CCE results in identical training loss curves as torch.compile for
Gemma 2 (2B), Phi 3.5 Mini, and Llama 3 (8B) while Mistral NeMo has some minor fluctuations
but converges to the same value (Fig. A1.

However, validation perplexity behaves differently for CCE than torch.compile. Specifically, for
Gemma 2 (2B), and Llama 3 (8B) perplexity using CCE is higher than using torch.compile for
all but the final iterations (Fig. A2. For Mistral NeMo, perplexity using CCE converges to a higher
value.

We find that these differences are because CCE results in lower probability (and thus higher per-
plexity) on tokens that are not present in the training set. This also explains why this effect is not
seen for Phi 3.5 Mini – it has a smaller vocabulary and thus there are fewer tokens that are in val but
not train.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

500500 10001000 15001500

100100

200200

300300

400400

500500

Va
lid

at
io

n
Pe

rp
le

xi
ty

Gradient Steps

(a) Gemma 2 2B

Va
lid

at
io

n
Pe

rp
le

xi
ty

Gradient Steps
500500 10001000 15001500 20002000

100100

200200

300300

400400

500500
p95 Confidence Rangep95 Confidence Range
Torch Compile Cross Entropy LossTorch Compile Cross Entropy Loss
Cut Cross Entropy LossCut Cross Entropy Loss

Confidence Interval (p=0.95)
Torch Compile Cross-Entropy
Cut Cross-Entropy

(b) Phi 3.5 Mini

Va
lid

at
io

n
Pe

rp
le

xi
ty

Gradient Steps
200200 400400 600600 800800 10001000 12001200 14001400 16001600

100100

200200

300300

400400

500500

(c) Llama 3 8B

Va
lid

at
io

n
Pe

rp
le

xi
ty

Gradient Steps
500500 10001000 15001500

100100

200200

300300

400400

500500

(d) Mistral Nemo

Figure A2: Validation perplexity curves for four models on trained using 5% of the Open WebText
dataset (Gokaslan et al., 2019). The validation set is a 0.25% subset of Open WebText that does not
overlap with the train set. We find that CCE results in higher perplexities because it assigns lower
probabilities to tokens that are present in the validation set but no the training set. If we consider
only seen-token sequences, then CCE performs the same (Fig. A3). Results averaged over 5 seeds.

To demonstrate this, we examine the validation perplexity of sequences where all tokens are present
in the training (Fig. A3). Under this regime, CCE has nearly-identical curves for Gemma 2 (2B),
Phi 3.5 Mini, and Llama 3 (8B). For Mistral NeMo, CCE has a higher seen-perplexity for early
iterations but converges a value within the margin of error. We suspect that this higher perplexity
early on is due to tokens that occur only once or twice in the training set remaining effectively unseen
to early iterations of the model.

It is not the common case for there to be tokens that the model is expected to handle at evaluation
time that are not present in the training set and thus this difference is likely an artifact of this smalle-
scale experiment. Whether or not CCE differs from torch.compile in full-scale pre-training (where
all tokens are present in the training set) remains an open question.

Runtime. We find that gradient filtering is less effective in pre-training and thus CCE increases total
training time. The impact depends on the model. In our experiments, the largest increase in training
time due to using CCE instead of torch.compile was 25% for Phi 3.5 mini while Gemma 2 2B
saw an increase of less than 1%. We note that this is a relatively very small scale experiment and
thus the impact on runtime at scale remains an open question.

C.2 FURTHER PERFORMANCE ANALYSIS

Table A2 shows a breakdown of the time spent for different components of in the backward pass of
CCE and Baseline. For CCE, we selectively disabled/enabled portions of the kernel and measured
the time saved to determine the amount of time taken by that component. For Baseline, we manually
implemented each operation of the backward pass and timed them seperately.

CCE spends considerably less time on the cross-entropy loss and softcap portions of the gradient
computation. For Baseline, these are very memory intensive operations as there is relatively very
little computation done compared the amount of reading/writing. For CCE, the logits are already in
SRAM (they were just recomputed) and CCE does not write the result of this computation to main
memory, saving a significant amount of time.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Va
lid

at
io

n
Se

en
-P

er
pl

ex
ity

Gradient Steps
500500 10001000 15001500

4040

6060

8080

100100

120120

140140

160160

180180
200200

(a) Gemma 2 2B

Va
lid

at
io

n
Se

en
-P

er
pl

ex
ity

Gradient Steps
500500 10001000 15001500

4040

6060

8080

100100

120120

140140

160160

180180
200200

p95 Confidence Rangep95 Confidence Range
Torch Compile Cross Entropy LossTorch Compile Cross Entropy Loss
Cut Cross Entropy LossCut Cross Entropy Loss

Confidence Interval (p=0.95)
Torch Compile Cross-Entropy
Cut Cross-Entropy

(b) Phi 3.5 Mini

Va
lid

at
io

n
Se

en
-P

er
pl

ex
ity

Gradient Steps
500500 10001000 15001500

4040

6060

8080

100100

120120

140140

160160

180180
200200

(c) Llama 3 8B

Va
lid

at
io

n
Se

en
-P

er
pl

ex
ity

Gradient Steps
500500 10001000 15001500

4040

6060

8080

100100

120120

140140

160160

180180
200200

(d) Mistral Nemo

Figure A3: Validation perplexity curves for sequences where all tokens occur at least once in the
training set. In this case, CCE is nearly identical to torch.compile at convergence. Note that some
tokens will still be unseen for all but the last iteration, resulting in higher perplexity for CCE. Results
averaged over 5 seeds.

Component Baseline CCE

logits = softcap
(
C⊤E

)
recomputation 45ms (43.2%)

∇ log softmaxx (logits) 35ms (28.5%) 4.7ms (4.4%)

Gradient Filter 1.3ms (1.2%)

∇softcap
(
C⊤E

)
17ms (13.7%) 4.7ms (4.4%)

∇E 37ms (30.0%) 31ms (29.6%)

∇C 34ms (27.7%) 18ms (17.3%)

Table A2: Performance breakdown for the backward pass of CCE and Baseline. Gemma 2 (2B)
model. Batch of 8192 tokens. Alpaca dataset used to generate inputs.

Coincidentally, CCE spends a very similar amount of time computing the gradient wrt. the embed-
dings. CCE spends less time computing the gradient wrt. the classifier. This is because the axis we
reduce along for the classifier, N, is shorter than the axis for the embeddings, —V—, and thus leads
to less contention on global memory.

Compared to Baseline, CCE saves 30ms on the gradient of the logits wrt. cross-entropy loss, 12ms
on the gradient wrt. softcapping, 5ms on the gradient wrt. E, and 15ms on the gradient wrt. C. This
saving of 62ms more than offsets the 45ms spent re-computing and applying the gradient filter.

C.3 ADDITIONAL RUNTIME AND MEMORY

Table A3 shows additional results for Gemma 2 (9B), Gemma 2 (27B), and Llama 3 (Dubey et al.,
2024), PHI 3.5 Mini (Abdin et al., 2024), and Mistral NeMo (Mistral AI Team, 2024) in the same
setting as Table 1. For each model CCE is able to reduce the total memory consumed by the loss
by an order of magnitude from the baseline. For forward (Loss) and backward (Gradient) passes
combined, CCE is within 3MB of the lowest possible memory consumption. Compared to Gemma

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

2 (2B) all these models have a smaller ratio of the vocabulary size to hidden dimension. This has
two impacts.

First, the number of tokens that have a significant gradient is largely constant (it is dependent on the
data type). Therefore proportionally less of the gradient will be filtered out.

Second, for all other methods increasing the hidden dimension increase the amount of parallelism
that can be achieved. Liger Kernels (Hsu et al., 2024) sets its chunk size based on |V |/D – the
lower that ratio, the bigger the chunk size. As |V |/D continues to decrease, Liger Kernels is able
to make better use of the GPU. All other methods use two matrix multiplications to compute the
gradient. The amount of work that can be performed in parallel to compute ∇E and ∇C is B ×D
and |V | × D, respectively4. The amount of parallel work for CCE is B × |V |, thus increasing D
increases the amount of work but not the amount of parallelism. It may be possible leverage ideas
from split-k matrix multiplication kernels to expose more parallelism to CCE for large values of D.

For the smallest |V |/D considered, Phi 3.5 Mini (|V |=32,064, D=3,072) ours is approximately 50%
slower (11ms) than torch.compile (although it uses substantially less memory). In our exper-
iments, this increase in linear-cross-entropy loss computation time is largely negligible and only
increases training time by one to two percent.

We also consider how changing the number of tokens changes performance (Figs. A4 and A5). We
find that CCE behaves very similarly to Baseline and torch.compile. Further, because CCE does
not utilize chunking, it does not reach a point where the overhead of dispatching all the kernels
becomes the dominating factor.

D MEMORY USE METHOD DETAILS

Table A4 contains the raw numbers used to create Fig. 1. The maximum batch size for 16 GPUs was
calculated by assuming that the total amount of memory available is 75× 16 (i.e., each 80GB GPU
will be fully occupied expect for a 5GB buffer for various libraries), then subtracting the memory
used for weights + optimizer + gradients and then diving by the memory used per token.

The numbers in Table A4 are computed using the following methods. When present, the number of
tokens is assumed to be 65,536.

We compute the amount of memory used for intermediate activations as the number of layers times
the hidden size times number of tokens times 2 bytes per bfloat16. This assumes the use of activa-
tion/gradient checkpointing (Chen et al., 2016) for transformer layer.

The amount of memory used by the logits is the number of tokens times the vocabulary size times 4
bytes per float32. This likely undercounts the amount of memory used for computing the probability
distribution, as its common to also keep a copy of the logits in bfloat16 and, for models like Gemma
2 (Rivière et al., 2024) that use logit softcapping, an additional copy of the logits after softcapping
may be needed. However, this method can be uniformly applied to all models.

The amount of memory used by Weights+Opt+Grad is the number of parameters times 4 (parame-
ters, gradient, and Adam first and second moments) times 2 bytes per bfloat16.

E FLOATING POINT ADDITION

Here we provide a brief explanation of floating point addition and how it relates to our proposed
gradient filtering.

Given two numbers a and b represented using floating point, such that |a| < |b|, the following steps
are performed

1. Separate the mantissa (the fractional part) and the exponent from both numbers a and b.

2. Re-write the mantissa of the smaller number (a in our case) such that it shares the same
exponent as the b.

4Ignoring split-k matrix multiplication kernels for simplicity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Loss Gradient Loss+Gradient

Method Memory Time Memory Time Memory Time

Gemma 2 (9B) (Rivière et al., 2024) (|V |=256,000, D=3,584)
Lower bound 0.004MB 1,806MB 1,806MB

CCE (Ours) 1MB 65ms 1,808MB 145ms 1,809MB 207ms
Liger Kernels (Hsu et al., 2024) 2,119MB 420ms 2,119MB 420ms
Torch Tune Team (2024) (8 chunks) 8,000MB 75ms 3,264MB 168ms 11,264MB 243ms
torch.compile 4,000MB 70ms 12,000MB 133ms 16,000MB 204ms
Baseline 24,000MB 102ms 16,000MB 163ms 28,000MB 268ms

Gemma 2 (27B) (Rivière et al., 2024) (|V |=256,000, D=4,608)
Lower bound 0.004MB 2,322MB 2,322MB

CCE (Ours) 1MB 82ms 2,324MB 206ms 2,325MB 285ms
Liger Kernels (Hsu et al., 2024) 2,948MB 362ms 2,948MB 363ms
Torch Tune Team (2024) (8 chunks) 8,000MB 92ms 4,768MB 204ms 12,768MB 296ms
torch.compile 4,000MB 86ms 12,000MB 167ms 16,000MB 253ms
Baseline 24,000MB 119ms 16,000MB 196ms 28,000MB 318ms

Llama 3 (8B) (Dubey et al., 2024) (|V |=128,256, D=4,096)
Lower bound 0.004MB 1,066MB 1,066MB

CCE (Ours) 0.6MB 35ms 1,067MB 103ms 1,068MB 136ms
Liger Kernels (Hsu et al., 2024) 1,317MB 163ms 1,317MB 164ms
Torch Tune Team (2024) (8 chunks) 2,004MB 40ms 2,521MB 91ms 4,525MB 130ms
torch.compile 2,004MB 39ms 6,012MB 74ms 8,016MB 113ms
Baseline 10,020MB 49ms 8,016MB 80ms 12,024MB 130ms

Mistral NeMo (Mistral AI Team, 2024) (|V |=131,072, D=5,120)
Lower bound 0.004MB 1,360MB 1,360MB

CCE (Ours) 0.6MB 45ms 1,361MB 134ms 1,362MB 177ms
Liger Kernels (Hsu et al., 2024) 1,872MB 166ms 1,872MB 167ms
Torch Tune Team (2024) (8 chunks) 2,048MB 49ms 3,348MB 113ms 5,396MB 161ms
torch.compile 2,048MB 48ms 6,144MB 93ms 8,192MB 141ms
Baseline 10,240MB 60ms 8,192MB 99ms 12,288MB 159ms

Phi 3.5 Mini (Abdin et al., 2024) (|V |=32,064, D=3,072)
Lower bound 0.004MB 236MB 236MB

CCE (Ours) 0.2MB 7ms 236MB 27ms 237MB 34ms
Liger Kernels (Hsu et al., 2024) 488MB 26ms 488MB 27ms
Torch Tune Team (2024) (8 chunks) 502MB 9ms 451MB 18ms 952MB 26ms
torch.compile 502MB 8ms 1,504MB 15ms 2,006MB 22ms
Baseline 2,506MB 10ms 2,004MB 16ms 3,006MB 27ms

Table A3: Memory usage and time of CCE, Liger Kernels, Torch Tune, torch.compile, and Base-
line for additional models. Batch of 8,192 tokens.

3. Add the re-written mantissa of a to the mantissa of b.
4. Combine the resulting mantissa and exponent of b and then convert them into normalized

form.

Step 2 is where truncation happens and the intuition of gradient filtering comes from. In bfloat16, if
the exponent of b is more than 27 times larger than that of a, the 7-bit mantissa no longer has enough
precision to represent any of a’s mantissa and in the process of re-writing, a will be, in effect, set to
zero. For gradient filtering, we are only concerned with values in the range [0, 1], so the threshold
of 2−12 means that we only keep values that don’t get rounded to zero when b = 2−5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

100

120

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

250

300

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

(a) Gemma 2 2B

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

100

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

25

50

75

100

125

150

175

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

100

200

300

400

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

(b) Gemma 2 9B

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

100

120

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

50

100

150

200

250

300

350

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

(c) Gemma 2 27B

28 210 212

Num Tokens (Log Base 2 Scale)

0

10

20

30

40

50

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

100

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

25

50

75

100

125

150

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

(d) Llama 3 8B

Figure A4: Performance of CCE and baselines for all models with a varying batch sizes. Continued
in Fig. A5

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

28 210 212

Num Tokens (Log Base 2 Scale)

0

10

20

30

40

50

60

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

20

40

60

80

100

120

140

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

25

50

75

100

125

150

175

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

(a) Mistral NeMo

28 210 212

Num Tokens (Log Base 2 Scale)

0

2

4

6

8

10

R
un

ti
m

e
(m

s)

Loss

28 210 212

Num Tokens (Log Base 2 Scale)

0

5

10

15

20

25

R
un

ti
m

e
(m

s)

Gradient

28 210 212

Num Tokens (Log Base 2 Scale)

0

5

10

15

20

25

30

35

R
un

ti
m

e
(m

s)

Loss+Gradient

CCE (Ours)

Liger Kernels

Torch Tune (8 chunks)

torch.compile

Baseline

(b) Phi 3.5 Mini

Figure A5: Performance of CCE and baselines for all models with a varying batch sizes.

Model Logits Activations Weights+Opt+Grad Max Batch Size (Before) Max Batch Size (After) Increase

GPT 2 12,564MB 1,152MB 1,045MB 5,866,190 69,845,595 11.9×
GPT Neo (1.3B) 12,564MB 6,144MB 10,421MB 4,268,047 12,996,042 3.0×
GPT Neo (2.7B) 12,564MB 10,240MB 20,740MB 3,471,784 7,731,585 2.2×
Gemma (2B) 64,000MB 4,608MB 19,121MB 1,155,515 17,204,330 14.9×
Gemma 2 (27B) 64,000MB 26,496MB 207,727MB 739,448 2,525,554 3.4×
Gemma 2 (2B) 64,000MB 7,488MB 19,946MB 1,108,206 10,580,057 9.5×
Llama 2 (13B) 8,000MB 25,600MB 99,303MB 2,203,057 2,891,512 1.3×
Llama 2 (7B) 8,000MB 16,384MB 51,410MB 3,164,429 4,709,560 1.5×
Llama 3 (70B) 32,064MB 81,920MB 538,282MB 397,019 552,414 1.4×
Llama 3 (8B) 32,064MB 16,384MB 61,266MB 1,579,333 4,670,136 3.0×
Mistral 7B 8,000MB 16,384MB 55,250MB 3,154,108 4,694,200 1.5×
Mixtral 8x7B 8,000MB 16,384MB 356,314MB 2,344,949 3,489,944 1.5×
Phi 1.5 12,574MB 6,144MB 10,821MB 4,264,482 12,991,781 3.0×
Phi 3 Medium 8,003MB 25,600MB 106,508MB 2,188,824 2,873,067 1.3×
Qwen 1.5 (7B) 37,912MB 16,384MB 58,909MB 1,412,087 4,679,564 3.3×

Table A4: Raw data for Fig. 1. Memory usage calculated using a global batch size of 65,536.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 4 Memory-efficient linear-cross-entropy loss, backward pass

Inputs: E ∈ RD×N , C ∈ RD×|V |, LSE ∈ RN , ∇CEL ∈ RN , and x ∈ RN .
Block sizes NB , VB , and DB .
Accuracy threshold ε.
v = [1, . . . , |V |].

Outputs: ∇E ∈ RD×N , ∇C ∈ RD×|V |

for all pairs of blocks En, Cv do ▷ Divide E and C into blocks of size D ×NB and D × VB

Anv = 0VB×NB
▷ Zero matrix of size VB ×NB in on-chip SRAM

for blocks En,d, Cv,d do ▷ Divide En and Cv into blocks of DB ×NB and DB × VB

Anv += C⊤
v,d ·En,d ▷ Blockwise matrix multiplication

end for
Snv = exp(Anv − LSEn) ▷ Compute the softmax
Gnv =

[[
vv = x⊤

n

]]
− Snv ▷ Gradient of cross-entropy loss wrt. logits

if all(|Gnv| < ε) then
skip ▷ Skip computation if below desired numerical precision

end if
for blocks En,d, Cv,d do ▷ Divide En and Cm into blocks of DB ×NB and DB × VB

∇E⊤
n,d += (Gnv · ∇CELn)Cv,d ▷ Locking thread-safe gradient update

∇C⊤
v,d += (Gnv · ∇CELn)

⊤
En,d ▷ Locking thread-safe gradient update

end for
end for

21

