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Abstract

Traditional task-oriented dialog (ToD) systems001
rely heavily on labor-intensive turn-level anno-002
tations, such as dialogue states and policy la-003
bels, for training. This work explores whether004
large language models (LLMs) can be fine-005
tuned solely on natural language dialogs to006
perform ToD tasks, without requiring such an-007
notations. We evaluate their ability to general-008
ize to unseen domains and compare their per-009
formance with models trained on fully anno-010
tated data. Through extensive experiments with011
three open-source LLMs of varying sizes and012
two diverse ToD datasets, we find that mod-013
els fine-tuned without turn-level annotations014
generate coherent and contextually appropriate015
responses. However, their task completion per-016
formance – measured by accurate execution of017
API Calls – remains suboptimal, with the best018
models achieving only around 53% success in019
unseen domains. To improve task completion,020
we propose ZeroToD, a framework that incor-021
porates a schema augmentation mechanism to022
enhance API Call accuracy and overall task023
completion rates, particularly in out-of-domain024
settings. We also compare ZeroToD with fine-025
tuning-free alternatives, such as prompting off-026
the-shelf LLMs, and find that our framework027
enables smaller, fine-tuned models that outper-028
form large-scale proprietary LLMs in task com-029
pletion. Additionally, a human study evaluating030
informativeness, fluency, and task completion031
confirms our empirical findings. These find-032
ings suggest the feasibility of developing cost-033
effective, scalable, and zero-shot generalizable034
ToD systems for real-world applications.035

1 Introduction036

Task-oriented dialog (ToD) systems (Zhang et al.,037

2020a) enable users to accomplish diverse tasks038

through natural language interactions. These039

systems power virtual assistants, customer ser-040

vice chatbots, and various other applications such041

as making reservations or scheduling appoint-042

ments (Williams et al., 2016; Zhang et al., 2019b). 043

To be effective, ToD systems must not only en- 044

gage in user interactions to collect and provide 045

task-specific information but also interface with 046

external systems to accurately complete user tasks. 047

Traditionally, the development of ToD systems 048

has relied heavily on turn-level manually anno- 049

tated conversational data, where natural language 050

turns are labeled with dialog states and policy ac- 051

tions (Zhang et al., 2020b). However, this reliance 052

on turn-level annotated data limits the scalabil- 053

ity of ToD systems, as it prevents them from fully 054

leveraging the vast amounts of readily available 055

unannotated task-oriented conversational data. Fur- 056

thermore, the annotation process is labor-intensive, 057

expensive, and prone to inconsistencies and er- 058

rors (Eric et al., 2020; Zang et al., 2020; Han et al., 059

2021; Budzianowski and Vulic, 2019). 060

Recent advancements in natural language pro- 061

cessing, particularly the emergence of pre-trained 062

large language models (LLMs) (Vaswani et al., 063

2017; Devlin et al., 2019; Radford et al., 2019), 064

offer new opportunities to address these scalability 065

challenges. LLMs have demonstrated remarkable 066

capabilities in diverse language tasks, from under- 067

standing context to generating coherent responses. 068

While pre-trained models (e.g., GPT-2) have been 069

employed to develop ToD systems (Hosseini-Asl 070

et al., 2020; Yang et al., 2020; Mosharrof et al., 071

2023b; Budzianowski et al., 2018), their potential 072

to train ToD systems without turn-level annotations 073

remains largely unexplored, as does their ability to 074

generalize effectively to unseen domains. 075

Beyond natural language interactions – such as 076

requesting task-specific information or providing 077

updates – ToD systems must also interact with ex- 078

ternal systems (e.g., databases) to ensure successful 079

task completion. This often requires retrieving in- 080

formation or executing actions, such as making 081

a reservation via an API Call. While ToD sys- 082

tems described in the literature could, in theory, be 083

1



trained to make such API Calls, this capability is084

rarely evaluated in practice. The lack of rigorous085

evaluation in this area leaves a significant gap in un-086

derstanding the readiness of current ToD systems087

for real-world deployments.088

Motivated by the need to evaluate and enhance089

the out-of-domain generalization of ToD systems,090

this work investigates three research questions:091

RQ1: Can pre-trained LLMs be adapted into effec-092

tive ToD systems without turn-level annotated data093

(e.g., annotated dialog states)?094

RQ2: How can we improve the out-of-domain095

generalization of ToD systems for task completion?096

RQ3: How does the out-of-domain generalization097

of fine-tuned ToD systems compare to that of large-098

scale, proprietary LLMs?099

To address RQ1, we frame ToD as a multi-task100

instruction fine-tuning problem, where the model101

learns to generate both natural language responses102

and API Calls by conditioning on the dialog history103

and domain schema. To enhance task completion104

performance, we introduce a schema augmenta-105

tion mechanism that enriches training data with106

diverse schema variations, significantly improving107

robustness in unseen domains (RQ2). Finally, to108

investigate RQ3, we compare fine-tuned ToD sys-109

tems against fine-tuning-free approaches that rely110

on large-scale, proprietary LLMs, which are often111

costly and less controllable.112

We conduct extensive experiments on two bench-113

mark ToD datasets – SGD (Rastogi et al., 2019)114

and KETOD (Chen et al., 2022) – using three115

open-source models: GPT-2(Radford et al., 2019),116

Llama-3.2, and FLAN-T5 (Chung et al., 2022).117

To provide a comprehensive evaluation, we intro-118

duce multiple metrics to assess API Call genera-119

tion, including method name accuracy, parameter120

correctness, and complete API Call accuracy. For121

response generation, we use BERTScore (Zhang122

et al., 2019a) to better capture the semantic sim-123

ilarity between system outputs and ground truth124

responses. Additionally, we conduct human stud-125

ies and qualitative analyses on a subset of both126

datasets to complement automatic evaluations.127

Our empirical results provide clear answers to128

the research questions posed in this study. For129

RQ1, we compare our approach against state-of-130

the-art (SOTA) methods that rely on annotated data131

and find that ToD systems can function effectively132

without manual annotations by leveraging multi-133

task instruction fine-tuning. On the complete API134

accuracy metric, our best model improves by an135

average of 62.9% across both datasets compared 136

to the strongest baseline SOTA model trained with 137

turn-level annotated data. For RQ2, we evaluate 138

the impact of schema augmentation by comparing 139

models trained with and without this mechanism. 140

Our results show that augmentation significantly 141

enhances out-of-domain generalization, improv- 142

ing complete API accuracy on unseen domains by 143

17.05% for FLAN-T5 and 35.6% for Llama-3.2 144

compared to their non-augmented counterparts. 145

For RQ3, we compare ZeroToD against fine- 146

tuning-free alternatives in unseen domains and con- 147

firm that fine-tuning is advantageous for learning 148

when to make API Calls and maintaining strong 149

out-of-domain performance in complex, multi-turn 150

task completion scenarios. On complete API ac- 151

curacy for unseen domains, FLAN-T5 achieves 152

an average improvement of 30.45% over the best 153

SOTA approach built with the large-scale GPT-4o 154

model. Furthermore, human study results evaluat- 155

ing informativeness, fluency, and task completion 156

closely align with automatic metrics, confirming 157

our empirical findings. 158

2 Related Work 159

Pipeline Approaches. ToD systems have tradition- 160

ally been designed as pipeline systems, where sepa- 161

rate components for Natural Language Understand- 162

ing (NLU), Dialog State Tracking (DST), Dialog 163

Policy, and Natural Language Generation (NLG) 164

are used to handle specific parts of the dialog pro- 165

cessing (Ren et al., 2018; Lee, 2013; Peng et al., 166

2018; Le et al., 2021; Wen et al., 2015; Peng et al., 167

2020; Chen et al., 2019; Budzianowski et al., 2018; 168

Mosharrof et al., 2023a). However, this approach 169

has drawbacks like error propagation, where errors 170

made in early stages adversely effect modules later 171

on in the pipeline. 172

End-to-End Approaches. Recent works have 173

shifted towards E2E learning methods, where the 174

ToD task is formulated as a conditional generation, 175

where the model generates responses based on the 176

entire dialog history and other relevant annotations 177

(e.g., DST) (Hosseini-Asl et al., 2020; Lin et al., 178

2021; Bang et al., 2023; Zhang et al., 2023; hyun 179

Ham et al., 2020; Chung et al., 2023; Yang et al., 180

2020; Sun et al., 2022a; Imrattanatrai and Fukuda, 181

2023; Sun et al., 2022b; Zhao et al., 2022; Peng 182

et al., 2021; Mosharrof et al., 2023b; Siddique et al., 183

2022). A major drawback of these approaches is 184

the dependency on manually annotated data, thus 185

limiting the usage of the wealth of available data. 186
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Additionally, most of these approaches assume that187

API Call results are included in the annotated data,188

thus limiting their ability to evaluate task comple-189

tion.190

Prompting Approaches. Another recent research191

direction in ToD systems is in-context learning,192

where pre-trained LLMs are adapted to specific193

domains based on contextual examples without re-194

quiring fine-tuning (Labruna et al., 2023; Hudevcek195

and Dusek, 2023; Dingliwal et al., 2021; Madotto196

and Liu, 2020; Li et al., 2022; Madotto et al., 2021;197

Xu et al., 2024). Even though these approaches198

show promise on generic domains, they fail on199

complex domains, and have specialized structure200

or requirements.201

3 Methodology202

3.1 Problem Formulation203

We formulate ToD task completion as a condi-204

tional sequence generation problem, where the sys-205

tem generates natural language responses or API206

Calls using the dialog history and related domain207

schemas. We leverage domain schema to facilitate208

out-of-domain generalization in ToD systems.209

We formalize the schema for a given domain210

dx ∈ D by specifying a set of user intents Idx . For211

example, in the Restaurants domain, one such212

intent might be ReserveRestaurant. Each intent213

id ∈ Idx is then associated with a set of slots Sid .214

For instance, party size and reservation time215

might be slots for the ReserveRestaurant intent.216

Each slot si ∈ Sid is characterized by a tuple217 (
name(s), is_required(s)

)
, indicating the name of218

slot (e.g., reservation date) and whether it219

is mandatory to fulfill a desired intent. We de-220

note the entire domain schema for domain dx as:221

Γdx =
(
dx, Id, { Sid | id ∈ Idx}

)
.222

A dialog session Ti of up to T turns is de-223

fined as a sequence of user and system utterances:224

Ti =
(
(u1, r1), (u2, r2), . . . , (uT , rT )

)
, where ut225

is the user utterance and rt is the system response226

at turn t. We denote the dialog history at turn t by227

Ht = { (u1, r1), (u2, r2), . . . , (ut−1, rt−1), ut},228

which encapsulates all user-system exchanges up229

to and including the current user utterance ut.230

Since a single dialog may reference multiple do-231

mains, if Ti spans m domains, we write Ti ∼232

{ d1, d2, . . . , dm} ⊆ D.233

3.2 Schema Augmentation234

Beyond the original set of domain schemas, we235

create semantic variations of each domain’s intents236

and slots. Specifically, for each domain dx ∈ D, 237

we we define its k-th schema variant as: Γd̃kx
= 238(

d̃kx, Ĩdkx ,
{
S̃k
id

| ĩkd ∈ Ĩdkx
})

, where Ĩdkx is 239

the renamed set of intents, and S̃k
id

represents the 240

renamed slots for each intent ĩkd. 241

For example, in the Restaurants domain, 242

the original intent ReserveRestaurant might be 243

changed to ReserveTable, and the slot party 244

size might become number of people. To in- 245

tegrate these augmented schemas into the dialogs, 246

we systematically replace schema references in 247

existing dialogs with their counterparts from Γd̃kx
. 248

Concretely, for each dialog Ti associated with do- 249

main dx, we construct an augmented dialog T̃ k
i by 250

substituting all intents and slots with those from 251

Γd̃kx
. This procedure preserves the underlying dia- 252

log flow but exposes ZeroToD to multiple schema 253

variations, ultimately improving its ability to gen- 254

eralize to out-of-domain task scenarios. 255

3.3 Multi-task Instruction Fine-tuning 256

A ToD system must handle diverse interactions, 257

including general conversation, requesting task- 258

specific information, providing details, and making 259

API Calls for task completion. Broadly, the sys- 260

tem generates two types of outputs: (i) natural lan- 261

guage responses, and (ii) API Calls, which include 262

a method name, parameters, and corresponding val- 263

ues. We employ multi-task instruction fine-tuning 264

that trains the model to autonomously decide be- 265

tween generating an API Call or a user response, 266

without introducing special tokens. 267

Formally, an autoregressive language model 268

(e.g., GPT-2 (Radford et al., 2019)) generates 269

text by predicting the next token given the pre- 270

ceding context. For a given sequence of to- 271

kens (x1, x2, . . . , xt−1), the probability distribu- 272

tion for the next token xt is computed as: p(xt | 273

x1:t−1; θ) = fθ(x1:t−1), where fθ represents the 274

model parameterized by θ and outputs a proba- 275

bility distribution over the vocabulary V . The 276

next token xt is then sampled from this distri- 277

bution. This formulation extends naturally to re- 278

sponse generation in ToD systems, where the sys- 279

tem response rt at turn t is generated recursively un- 280

til an end-of-sequence token (<eos>) is produced: 281

rt ∼ p(rt | Ht; θ), where Ht denotes the dialog 282

history up to turn t. 283

To improve out-of-domain generalization, 284

ZeroToD introduces an additional conditioning 285

variable, the domain schema Γdx for each domain 286
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Datasets SGD KETOD
# Dialogs 16142 5324
Average Turns / Dialog 20.44 9.78
# Unique API methods:all 46 46
# Unique API methods:unseen 8 8
# Unique API parameters: all 137 134
# Unique API parameters: unseen 88 88

Table 1: Dataset statistics.

dx and an instruction prompt P . The instructions287

encourage the model to comprehend schema288

representations to better generalize across unseen289

domains and dialog contexts. Extending the above290

formulation to multi-task instruction fine-tuning for291

multi-turn dialogs of length T , where each dialog292

may span multiple domains {d1, d2, . . . , dm} ⊆ D,293

we optimize the following objective:294

−
∑T

t=1 log p(rt | P, {Γdj}mj=1, Ht, ; θ). Since295

LLMs operate under a finite context length, the296

dialog history Ht consists of only the most recent297

k turns, where k ≤ t.298

3.4 Training Details299

The dialog history and domain schema are passed300

through a structured template to form the inputs301

to the model. The template is detailed in Fig-302

ure 2 in Appendix D. Training begins with 500303

warm-up steps and early stopping on the evalua-304

tion loss with a patience value of 3. We used the305

AdamW (Loshchilov and Hutter, 2017) optimizer306

with weight decay and a learning rate of 0.001.307

Experiments were conducted with GPT2-Medium,308

FLAN-T5 Large and Llama 3.2 3B Instruct models.309

GPT-2 and FLAN-T5 were fine-tuned fully, while310

Llama-3.2 used Low-Rank Adaptation (LoRA) (Hu311

et al., 2021) and 8-bit quantization (Jacob et al.,312

2018) for memory efficiency.313

4 Experimental Setup314

4.1 Datasets315

We use two ToD datasets: Schema-Guided Dia-316

log (SGD) dataset, and Knowledge-Enhanced Task-317

Oriented Dialog (KETOD) dataset. Table 1 shows318

detailed statistics about the datasets. These datasets319

are publicly available, large, and represent a wide320

range of domains that span different tasks. We have321

selected these datasets as they describe the domain322

using schema and have the necessary information323

to simulate communication with external resources324

through API Calls.325

4.2 Evaluation326

We evaluate the system across four domain cat-327

egories: All Domains (dialogs from all domains),328

Seen Domains (dialogs from training domains), Un-329

seen Domains (dialogs from domains not included 330

in the training data), and Mixed Domains (dialogs 331

with both seen and unseen domains). We analyze 332

the performance of overall responses as well as 333

its sub-tasks—Request and Inform. For task com- 334

pletion, we introduce custom metrics to assess the 335

performance of individual components. 336

Response Generation. To evaluate the quality 337

of the response generation of models, we report 338

BERTScore. We used microsoft/mpnet-base as 339

the model type for calculating the BERTScore. We 340

report BLEU-4 (Papineni et al., 2002) scores in 341

Appendix B 342

API Calls. The format for an API Call is: 343

APICall(method=method_name, parameters = 344

{(si, vi)ni=1}). The parameters attribute is a list of 345

slot name and slot value pairs, where si represents 346

the slot name and vi represents the value of that 347

slot. 348

We use regular expressions to extract different 349

parts of the API Call, and apply custom metrics to 350

access different parts of an API Call. 351

Invoke Accuracy measures whether the system 352

can understand when to make an API Call. Method 353

Accuracy checks whether the appropriate method 354

name was used in the API Call. Param Name Accu- 355

racy assesses whether all the parameter names used 356

to construct the API Call are accurately. Param 357

Value Accuracy evaluates whether each parameter 358

value corresponding to a parameter name is cor- 359

rect. It is important to note that this metric will 360

only be considered if the corresponding parameter 361

name is correct. Complete API Call Accuracy met- 362

ric checks whether the complete API Call (i.e., all 363

components) was generated correctly. 364

4.3 Baselines 365

SOLOIST (Peng et al., 2021) introduced an E2E 366

ToD system that employs a transformer-based au- 367

toregressive model that generates dialog responses 368

grounded in user goals and real-world knowledge 369

for task completion. 370

SimpleTOD (Chen et al., 2022) introduced a ToD 371

model as an end-to-end sequence generation prob- 372

lem that utilizes the dialog history, dialog states 373

and system actions to generate system responses. 374

ZS-TOD (Mosharrof et al., 2023b) introduced a 375

zero-shot generalizable E2E ToD model that incor- 376

porates domain schema and dialog annotations to 377

generate dialog responses. 378

AutoTOD (Xu et al., 2024) introduced a zero shot 379

autonomous ToD agent, that works without manual 380
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Dataset Model Annotations Overall Response (BertScore-F1) Complete API Accuracy
Required all seen mixed unseen all seen mixed unseen

SGD

SimpleTOD Yes 0.6100 0.600 0.6300 0.5800 20.30 44.94 25.57 09.39
SOLOIST Yes 0.6214 0.6538 0.6265 0.6097 19.25 47.82 24.32 07.66
ZS-ToD Yes 0.5704 0.6439 0.5648 0.5600 20.38 56.15 20.28 12.62
GPT-2 No 0.7002 0.7291 0.7149 0.6800 35.53 74.77 42.87 19.24

Llama-3.2 No 0.7629 0.7850 0.7708 0.7507 52.84 90.19 57.44 39.84
FLAN-T5 No 0.7633 0.7792 0.7723 0.7513 65.87 89.88 72.99 53.16

KETOD

SimpleTOD Yes 0.5248 0.5540 0.5382 0.4735 36.24 61.07 31.19 08.74
SOLOIST Yes 0.5035 0.5201 0.4895 0.4983 24.12 43.79 17.29 05.98
ZS-ToD Yes 0.4759 0.4822 0.4643 0.4809 26.70 43.29 21.75 10.34
GPT-2 No 0.6766 0.7001 0.6821 0.6410 36.75 59.56 32.62 10.80

Llama-3.2 No 0.7369 0.7624 0.7363 0.7057 63.32 91.61 55.08 35.17
FLAN-T5 No 0.7431 0.7665 0.7457 0.7112 77.26 95.97 75.58 53.79

Table 2: Performance comparison between annotation-dependent baselines and annotation-free ZeroToD models on
Overall Response and API Accuracy (RQ1).

Dataset Model Annotations Inform (BertScore-F1) Request (BertScore-F1)
Required all seen mixed unseen all seen mixed unseen

SGD

SimpleTOD Yes 0.6100 0.6400 0.6300 0.5800 0.4300 0.4000 0.4500 0.4200
SOLOIST Yes 0.6596 0.6982 0.6730 0.6356 0.4852 0.5069 0.4797 0.4858
ZS-ToD Yes 0.4714 0.5324 0.4590 0.4681 0.5012 0.5561 0.4944 0.4970
GPT-2 No 0.7451 0.7597 0.7516 0.7344 0.5287 0.5200 0.5302 0.5291

Llama-3.2 No 0.7853 0.7962 0.7904 0.7771 0.6073 0.6244 0.6038 0.6071
FLAN-T5 No 0.7838 0.7906 0.7876 0.7781 0.6034 0.6169 0.5965 0.6066

KETOD

SimpleTOD Yes 0.4275 0.4445 0.4637 0.3659 0.4267 0.4341 0.4376 0.4076
SOLOIST Yes 0.5076 0.4961 0.5317 0.4971 0.4638 0.4588 0.4604 0.4729
ZS-ToD Yes 0.3489 0.3334 0.3456 0.3734 0.5167 0.5473 0.4989 0.4991
GPT-2 No 0.6831 0.7048 0.6878 0.6489 0.4814 0.4919 0.4733 0.4772

Llama-3.2 No 0.7488 0.7691 0.7503 0.7198 0.5976 0.6198 0.5794 0.5901
FLAN-T5 No 0.7447 0.7656 0.7607 0.6994 0.5981 0.6189 0.5893 0.5829

Table 3: Results for Response Generation sub-tasks: Inform and Request (RQ1).

annotations and also has the ability to communicate381

with external resources.382

SOLOIST, SimpleTOD and ZS-ToD were im-383

plemented using GPT-2 Medium. During inference,384

we extract the system response and disregard the385

additional information like dialog state and system386

actions.387

5 Results388

Table 2 presents the findings for RQ1: Can pre-389

trained LLMs be adapted into effective ToD systems390

without turn-level annotated data ? Our results391

show that ZeroToD models, which do not rely on392

turn-level annotations, outperform models trained393

with annotated data in response generation. A key394

reason for this improvement is that ZeroToD mod-395

els focus solely on generating system responses,396

whereas annotation-based models must produce397

structured outputs that include dialog state, system398

actions, and responses—requiring the model to op-399

timize for multiple complex tasks simultaneously.400

Furthermore, the substantial performance gap be-401

tween the baseline approaches built with GPT-2402

and the GPT-2 variant of ZeroToD suggests that403

learning to generate responses directly is a more404

effective approach for ToD systems.405

For task completion, all models trained without406

turn-level annotations consistently outperform the407

annotated models. This finding highlights the suffi- 408

ciency of dialogue history as a standalone source 409

of context for completing complex tasks. Table 2 410

reveals more insights about the different ZeroToD 411

models. FLAN-T5 and Llama-3.2 being the larger 412

models, significantly outperform the smaller GPT-2 413

model for task completion. However, even though 414

Llama-3.2 is a larger model than FLAN-T5, it does 415

not have better task completion performance. 416

This discrepancy may stem from differences in 417

the training methodologies. Specifically, Llama- 418

3.2 was trained using 8-bit quantization and LoRA 419

adapters, whereas FLAN-T5 underwent full fine- 420

tuning. The use of LoRA significantly reduces 421

the number of trainable parameters and the 8-bit 422

quantization introduces precision loss due to the 423

reduced bit width. These factors likely contributed 424

to Llama-3.2’s lower performance despite its larger 425

model size. 426
Detailed Response Generation Performance. To 427

get a better understanding of the response gener- 428

ation task, we break it down into two sub-tasks— 429

Inform and Request—and present the results in 430

Table 3. The inform sub-task focuses on provid- 431

ing responses to user requests, while the request 432

sub-task involves prompting users for additional 433

information. Similar to Table 2, the results here 434
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Dataset Model Augm- Overall Response(BertScore-F1) Complete API Accuracy
ented all seen mixed unseen all seen mixed unseen

SGD

GPT-2 ✗ 0.7002 0.7291 0.7149 0.6800 35.53 74.77 42.87 19.24
GPT-2 ✓ 0.7266 0.7431 0.7437 0.7068 47.66 82.01 53.76 33.75

Llama-3.2 ✗ 0.7629 0.7850 0.7708 0.7057 52.84 90.19 57.44 39.84
Llama-3.2 ✓ 0.7623 0.7852 0.7693 0.7506 62.38 94.31 63.99 53.68
FLAN-T5 ✗ 0.7633 0.7792 0.7723 0.7513 65.87 89.88 72.99 53.16
FLAN-T5 ✓ 0.7320 0.7494 0.7411 0.7196 73.49 90.65 81.76 61.07

KETOD

GPT-2 ✗ 0.6766 0.7001 0.6821 0.6410 36.75 59.56 32.62 10.80
GPT-2 ✓ 0.6677 0.6867 0.6738 0.6372 48.43 72.48 40.64 25.52

Llama-3.2 ✗ 0.7369 0.7624 0.7363 0.7057 63.32 91.61 55.08 35.17
Llama-3.2 ✓ 0.7405 0.7679 0.7389 0.7082 73.24 97.48 67.02 48.05
FLAN-T5 ✗ 0.7431 0.7665 0.7457 0.7112 77.26 95.97 75.58 53.79
FLAN-T5 ✓ 0.7549 0.7786 0.7541 0.7261 82.66 96.48 82.35 64.14

Table 4: Impact of Schema Augmentation Mechanism on Response Generation and API Accuracy (RQ2).

show a consistent trend, with ZeroToD models out-435

performing those trained on annotated data. Addi-436

tionally, we observe that the Request sub-task is437

significantly more challenging than Inform. This is438

expected, as there are multiple plausible pieces of439

information a system could request, but if they do440

not align with the gold standard, the model receives441

a lower score. In contrast, the Inform sub-task is442

more straightforward since the user explicitly re-443

quests specific information, making it easier for the444

system to generate the correct response.445

Schema Augmentation Performance. Table 4446

presents the results for RQ2: How can we improve447

the out-of-domain generalization of ToD systems448

for task completion?? Across all the models, we449

can see that the response generation performance450

is similar, but there are improvements in task com-451

pletion performance, specially a big increment in452

the unseen domain. For seen domains, there is a453

small improvement, which is expected as the aug-454

mentation mainly teaches the models how to use455

the schema to generalize to out-of-domain data,456

however for unseen domains, this learning is very457

useful and the models have shown considerable458

improvements. Between Llama-3.2 and FLAN-T5,459

we can see that for seen domains Llama-3.2 has460

a slightly better performance however for unseen461

domains Llama-3.2 has much lower performance.462

One reason for this could be the size of the two463

models, Llama-3.2 being the larger model may464

have a higher capacity to memorize the training465

data, which could explain its stronger performance466

on seen domains. However, this can also make it467

more prone to over-fitting and may not generalize468

well to new, unseen domains.469

Detailed Task Completion Performance. To com-470

plete a task, a model has to make a correct API471

Call. An API Call has many aspects in it, and472

we present detailed results in Table 5. We can473

see that ZeroToD models considerably outperform 474

baseline approaches across all metrics. Upon in- 475

specting the API Call Invoke Accuracy, we see that 476

baseline approaches have much lower scores, in- 477

dicating that they struggle in identifying when to 478

make API Calls. The API Call Method Accuracy 479

evaluates whether a model generates the correct 480

method name in the API Call. A common pattern 481

that we see across all models is that there is a drop 482

in parameter names accuracy when compared to 483

the previous metrics. Generating the correct list of 484

parameters for the API Call is inherently a harder 485

problem than deciding when to make an API Call 486

and what method to use, so the performance degra- 487

dation is understandable. 488

A key observation from Table 5 is the signif- 489

icant impact of the schema augmentation on the 490

API Call parameter names metric. Our results in- 491

dicate that schema augmentation yields the largest 492

improvement for this metric. API Call parameters 493

are directly derived from the schema, and schema 494

augmentation enables the models to better recog- 495

nize and utilize these patterns, thus improving the 496

model’s ability to generate the correct list of pa- 497

rameters, leading to a notable increase in parameter 498

names accuracy. Furthermore, the API Call param- 499

eter values accuracy also improved as a result, since 500

a model is only rewarded for generating the correct 501

value if it is assigned to the appropriate parameter 502

name. 503

For instance, consider the task of finding a bus 504

using the FindBus method. We compare two 505

schema variations, Buses_1 and Buses_11, which 506

define different slot names for the same concepts. 507

In Buses_1, the slot names are from_station and 508

to_station, and for Buses_11, the slot names are 509

origin and destination. 510

A model trained without schema augmentation 511

tends to overfit to specific slot names seen 512
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Dataset Model Augm- API Invoke Accuracy API Method Accuracy Param Names Accuracy Param Values Accuracy
ented all seen unseen all seen unseen all seen unseen all seen unseen

SGD

SOLOIST ✗ 79.92 80.37 79.44 64.51 72.82 60.74 47.06 72.05 35.54 45.16 71.30 33.13
SimpleTOD ✗ 66.28 54.52 68.44 32.94 26.32 33.53 28.52 29.13 26.25 26.98 28.54 24.45
ZS-ToD ✗ 86.65 90.97 86.91 64.18 80.69 61.82 44.44 73.15 40.17 42.74 72.22 38.13
GPT-2 ✗ 90.51 97.66 86.21 78.62 96.26 71.42 60.65 92.07 49.52 58.64 91.24 46.98
GPT-2 ✓ 93.89 96.81 91.26 83.07 89.17 77.92 76.94 91.71 72.15 74.18 90.86 68.59

Llama-3.2 ✗ 98.08 99.69 97.52 92.18 99.69 91.00 84.53 98.36 80.44 81.55 97.92 76.55
Llama-3.2 ✓ 98.78 99.38 98.80 95.26 99.38 94.97 89.23 99.10 88.11 86.25 98.73 84.02
FLAN-T5 ✗ 98.65 99.61 98.24 96.84 99.61 95.23 79.71 96.97 74.58 76.03 94.04 70.43
FLAN-T5 ✓ 96.28 99.53 94.42 95.97 99.53 93.89 94.37 97.23 92.17 92.08 96.99 88.86

KETOD

SOLOIST ✗ 52.20 56.04 44.14 42.96 47.65 34.25 37.10 47.43 24.94 36.31 46.98 23.95
SimpleTOD ✗ 44.85 41.95 41.84 34.30 33.39 29.43 25.87 30.74 16.87 25.31 30.38 16.30
ZS-ToD ✗ 43.03 43.62 40.46 32.91 36.58 31.72 28.06 31.92 26.89 26.53 30.94 24.43
GPT-2 ✗ 78.83 80.87 73.56 71.48 78.36 62.53 57.02 72.98 39.60 55.46 71.83 37.73
GPT-2 ✓ 92.96 91.78 94.48 86.62 88.09 85.29 75.66 84.53 69.97 72.85 83.55 65.02

Llama-3.2 ✗ 96.55 97.48 95.17 92.90 96.98 88.97 86.04 97.13 76.43 84.26 96.65 73.37
Llama-3.2 ✓ 98.49 99.16 97.70 96.80 99.16 94.94 91.86 98.67 86.05 90.10 98.62 82.83
FLAN-T5 ✗ 90.45 89.93 90.34 89.07 89.93 86.67 78.62 88.92 67.93 76.52 87.94 65.28
FLAN-T5 ✓ 92.34 93.46 92.18 92.15 93.12 92.18 90.77 93.53 88.84 88.86 93.23 85.26

Table 5: Additional API Metrics for baseline approaches and ZeroToD models (RQ1, RQ2).

during training. If the model was trained on513

Buses_1, it might always generate from_station514

and to_station, even when interacting with515

Buses_11, leading to incorrect API Calls.516

For example, given the user utterance: “I517

want to find a bus from LA to SFO”, the518

model without augmentation might generate:519

API Call(method=FindBus, parameters=

from_station=LA, to_station=SFO }).
520

In the Buses_11 schema, the slot names521

from_station and to_station do not exist, thus522

making the API Call invalid.523

On the other hand, a model trained with524

schema augmentation learns to generalize across525

schema variations by recognizing slot name pat-526

terns from multiple schemas, and might generate:527

API Call(method=FindBus, parameters=

origin=LA, destination=SFO}).
528

The model can dynamically align its output with529

the schema it is conditioned on. By learning to use530

the slot names from the provided schema rather531

than relying on the memorized slot names, a model532

trained with schema augmentation demonstrates533

improved robustness and generalization.534

Fine-tuning Performance. Table 7 presents the re-535

sults on unseen domains for ZeroToD models, and536

Auto-ToD, which was built using GPT-4o. Using537

the results in Table 7, we can answer RQ3: How538

does the out-of-domain generalization of fine-tuned539

ToD systems compare to that of large-scale, propri-540

etary LLMs? For the Complete API Accuracy met-541

ric, except for the GPT-2 model, all other ZeroToD542

models outperform Auto-ToD. For all the other543

metrics, Auto-ToD has much lower scores than the544

ZeroToD models. A key metric to note here is545

the API Invoke Accuracy, which measures whether 546

a model is making an API call on the right turn, 547

and Auto-ToD has a very low score on this metric 548

when compared to ZeroToD models. Due to this 549

issue, Auto-ToD also has a much lower score for 550

the Overall Response metric, as it makes API Calls 551

on turns where a general interaction is expected. 552

Based on these results, we can state that fine-tuning 553

is an important step to identify the timing of mak- 554

ing an API Call in ToD systems. 555

Domain Specific Results. To get a deeper un- 556

derstanding of the performance of Auto-ToD and 557

ZeroToD models, we present some domain specific 558

results for the API Invoke Accuracy and Complete 559

API Accuracy metrics in Table 6. For the Api In- 560

voke Accuracy, we see the same pattern as before, 561

with Auto-ToD having much lower scores than 562

ZeroToD models. From these results, we can make 563

another interesting observation, Auto-ToD has 564

higher Complete Api Accuracy for simple domains 565

like Alarm and Movies, however it has poor per- 566

formance for complex domains like Restaurants, 567

Buses, and Music. Since ZeroToD models have 568

been fine-tuned, the models have a better under- 569

standing of the structure of complex domains. The 570

models do not have a big drop in performance 571

across domains, showing the robustness achieved 572

through fine-tuning. FLAN-T5 and Llama-3.2 be- 573

ing the larger models, show more stability in per- 574

formance over the smaller GPT-2 model. 575

Human Evaluation. To supplement the automatic 576

metrics and get a qualitative analysis, we conducted 577

a human evaluation using Amazon Mechanical 578

Turk to assess the performance of various models. 579

Two baseline models (SOLOIST and Auto-ToD) 580
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Dataset Domains API Invoke Accuracy Complete API Accuracy
Auto-ToD GPT-2 Llama-3.2 FLAN-T5 Auto-ToD GPT-2 Llama-3.2 FLAN-T5

SGD

Alarm_1 77.78 71.11 98.89 100.00 76.67 15.56 78.89 61.11
Buses_3 62.84 94.59 100.00 99.32 37.16 29.05 46.62 57.43
Events_3 64.29 92.06 92.86 96.83 27.78 55.56 50.79 60.32
Homes_2 43.06 97.92 100.00 99.31 39.58 69.44 76.39 74.31
Hotels_4 43.88 94.24 100.00 98.56 40.29 49.64 100.00 77.70
Movies_3 67.80 54.24 98.31 96.61 47.46 23.73 77.97 67.80
Music_3 41.51 94.34 98.11 100.00 30.19 58.49 73.58 84.91
RentalCars_3 48.67 99.12 99.12 100.00 41.59 35.40 54.87 63.72
Restaurants_2 60.29 99.26 100.00 100.00 28.68 84.56 77.94 85.29

KETOD

Alarm_1 66.67 100.00 100.00 100.00 66.67 00.00 100.00 66.67
Buses_3 50.00 86.36 95.45 100.00 09.09 18.18 45.45 36.36
Events_3 81.82 100.00 100.00 90.91 45.45 72.73 72.73 54.55
Homes_2 70.59 100.00 94.12 93.75 70.59 41.18 64.71 70.59
Hotels_4 43.75 100.00 100.00 100.00 37.50 37.50 81.25 100.00
Movies_3 71.43 85.71 85.71 95.00 57.14 28.57 57.14 57.14
Music_3 22.22 88.89 100.00 78.26 22.22 44.44 88.89 66.67
RentalCars_3 62.50 100.00 100.00 100.00 56.25 31.25 50.00 50.00
Restaurants_2 50.00 100.00 87.50 87.50 25.00 00.00 87.50 62.50

Table 6: Domain-wise evaluation of API Invoke and Complete API on unseen domains for Auto-ToD and ZeroToD
models (RQ3).

Informativeness Fluency Task Completion
1

2

3

4

5

SOLOIST AutoToD GPT-2 Llama 3.2 Flan-T5

Figure 1: Human Evaluation Study on SGD and KE-
TOD. Evaluators were asked to rate the dialog samples
between a range of 1-5 on 3 categories.

and three ZeroToD models (GPT-2, Llama-3.2, and581

FLAN-T5) were taken into account. We sampled582

100 dialogs from each dataset, with 50 coming583

from single-domain tasks and the remaining 50584

from multi-domain tasks, all from the test dataset.585

Human evaluators were asked to rate the models586

on a scale from 1 to 5 on three questions: the ac-587

curacy of information presented in the responses588

(Informativeness), how fluent and natural the con-589

versation is (Fluency), and whether the models can590

make accurate API Call (Task Completion).591

The results, shown in Figure 1, align with the592

automatic metrics, where ZeroToD models outper-593

form the existing SOTA approaches. This demon-594

strates a strong alignment between quantitative and595

qualitative assessments. Notably, for task comple-596

tion and fluency, Llama-3.2 and FLAN-T5 demon-597

strate superior performance compared to all other598

models, which is consistent with our previous find-599

ings. Another important observation is that Llama-600

3.2 and FLAN-T5 have less variance in perfor-601

mance across all tasks when compared to all other602

Dataset Model Overall
Response

API
Invoke

Accuracy

Complete
API

Accuracy

SGD

Auto-ToD 0.5471 63.15 42.20
GPT-2 0.7068 91.26 33.75

Llama-3.2 0.7506 98.80 53.68
FLAN-T5 0.7196 94.42 61.07

KETOD

Auto-ToD 0.5471 63.22 41.61
GPT-2 0.6372 94.48 25.52

Llama-3.2 0.6454 97.70 48.05
FLAN-T5 0.7050 92.18 59.54

Table 7: Evaluation of fine-tuned approaches against
large-scale proprietary LLMs on unseen domains
(RQ3).

models, which further solidifies the robustness of 603

our approach. 604

6 Conclusion 605

This work demonstrates that LLMs fine-tuned 606

solely on natural language dialogs can effectively 607

generalize to unseen domains by framing ToD as 608

a multi-task instruction fine-tuning problem. To 609

further enhance their out-of-domain task comple- 610

tion performance, we introduce schema augmenta- 611

tion, which improves model adaptability to unseen 612

domains and strengthens task completion perfor- 613

mance. To ensure robust evaluation of task comple- 614

tion, we explicitly incorporate API Calls as a core 615

task and assess performance using both automatic 616

metrics and human evaluations. Furthermore, we 617

show that fine-tuned ToD systems generalize better 618

to unseen domains than fine-tuning-free approaches 619

that rely on large-scale proprietary LLMs. These 620

results highlight the feasibility of developing cost- 621

effective, scalable, and zero-shot generalizable ToD 622

systems that achieve strong out-of-domain gener- 623

alization without requiring turn-level annotations, 624

paving the way for their practical adoption in real- 625

world applications. 626
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7 Limitations627

ZeroToD has been developed by fine-tuning LLMs628

such as GPT-2, Llama-3.2, and FLAN-T5. These629

LLMs require significant computational resource630

requirements to train, particularly Llama-3.2.631

Training and inference with these models can be ex-632

pensive, limiting their practicality for deployment633

in resource-constrained environments.634

The LLMs used in the system function as black635

boxes, making it challenging to interpret the rea-636

soning behind their responses. This lack of trans-637

parency hinders the ability to diagnose and cor-638

rect erroneous outputs, which is crucial in ToD639

systems where accuracy is critical. Furthermore,640

the models may inherit biases present in the train-641

ing data, leading to biased or unfair responses in642

certain scenarios. Although efforts were made to643

mitigate this issue by fine-tuning using the dialog644

datasets, completely eliminating biases remains a645

challenging task. The reliance on pre-trained mod-646

els introduces limitations related to the coverage of647

the pre-training data. If the pre-training data lacks648

specific domain knowledge, the ToD system may649

under perform in those domains.650

The deployment of LLMs in ToD systems raises651

ethical and privacy concerns, particularly regarding652

the handling of sensitive user data. Ensuring that653

the system complies with privacy regulations and654

ethical standards is an ongoing challenge that re-655

quires continuous monitoring and updates. Similar656

to other AI technologies, there is a scope for poten-657

tial misuse of our system. If ZeroToD is used with658

malicious intent or the model is fed inappropriate659

data, there is a risk of abuse. We would strongly ad-660

vise to take necessary precautions and appropriate661

usage policies.662

Addressing the limitations outlined above is cru-663

cial for advancing the effectiveness and reliability664

of ToD systems. While the usage of pre-trained665

LLMs offers significant advantages, these models666

are not without their challenges. Increasing model667

interpretability, mitigating biases, and addressing668

ethical and societal concerns are essential steps669

toward creating more robust and responsible ToD670

systems.671
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Dataset Model Overall Response (BLEU-4) Inform (BLEU-4) Request (BLEU-4)
All Seen Mixed Unseen All Seen Mixed Unseen All Seen Mixed Unseen

SGD

SimpleTOD 0.1696 0.1834 0.1877 0.1494 0.1685 0.1790 0.1896 0.1438 0.0228 0.0195 0.0216 0.0243
SOLOIST 0.1902 0.2798 0.1990 0.1655 0.1813 0.2226 0.1945 0.1568 0.0281 0.0339 0.0265 0.0284
ZS-ToD 0.0590 0.1413 0.0568 0.0512 0.0255 0.0402 0.0228 0.0246 0.0231 0.0367 0.0221 0.0215
Auto-ToD 0.0487 0.0523 0.0501 0.0466 0.0854 0.0743 0.0884 0.0851 0.0173 0.0111 0.0159 0.0195

GPT-2 0.2015 0.2109 0.2229 0.1802 0.2181 0.2421 0.2368 0.1923 0.0400 0.0275 0.0423 0.0403
Llama-3.2 0.2445 0.2905 0.2568 0.2242 0.2888 0.3180 0.3043 0.2650 0.0641 0.0803 0.0614 0.0634
FLAN-T5 0.2110 0.2332 0.2226 0.1961 0.2811 0.3098 0.2911 0.2631 0.0569 0.0625 0.0541 0.0582

KETOD

SimpleTOD 0.0821 0.1015 0.0910 0.0538 0.1147 0.1362 0.1268 0.0726 0.0178 0.0266 0.0149 0.0106
SOLOIST 0.0970 0.1018 0.0945 0.0848 0.0957 0.1185 0.0933 0.0675 0.0167 0.0145 0.0174 0.0185
ZS-ToD 0.0394 0.0439 0.0254 0.0385 0.0183 0.0231 0.0059 0.0250 0.0260 0.0328 0.0198 0.0243
Auto-ToD 0.0480 0.0528 0.0492 0.0415 0.0797 0.0678 0.0932 0.0812 0.0134 0.0157 0.0151 0.0092

GPT-2 0.1890 0.2106 0.1961 0.1524 0.2105 0.2437 0.2078 0.1687 0.0346 0.0500 0.0252 0.0263
Llama-3.2 0.2398 0.2864 0.2354 0.1862 0.2701 0.3165 0.2579 0.2208 0.0581 0.0723 0.0508 0.0490
FLAN-T5 0.2082 0.2351 0.2048 0.1792 0.2727 0.3025 0.2811 0.2234 0.0526 0.0750 0.0454 0.0339

Table 8: BLEU Scores for Overall Response Generation, Inform and Request.

A Template for multi-task instruction fine-tuning903

Figure 2 shows the template used to process the inputs for ZeroToD. The template first informs about904

the domains involved in the dialog. Next, it provides task-specific instructions and provides the domain905

schemas. The dialog history is provided and the model is instructed to generate a system response based906

on the dialog history, search results, and the task instructions.907

You are an expert chat assistant for the domains: [domains].
Instructions: As an expert, you must generate the most appropriate response for the chat assistant.
The response can be an api call or a response to the user.
Based on the Last User Utterance, you must find the relevant Intent from the Schema and your
request should use the required slots and optional slots from that Intent.
You will be provided with the Schema for domains: [domains]
[schemas]
You will be provided an incomplete dialog between a user and a chat assistant, and an optional
search results.
Dialog History: [dialog history]
Using the Dialog History, Search Results, and by following the Instructions please generate the
response for the chat assistant.

Figure 2: Multi-task instruction finetuning template. Items in blue are dynamic elements and those in purple are
important aspects of the prompt.

B BLEU Scores for Response Generation908

Table 8 presents additional metrics for response generation. BLEU-4 scores are reported for baselines909

(SimpleTOD, SOLOIST, ZS-ToD, Auto-ToD), and ZeroToD models (GPT-2, Llama-3.2, FLAN-T5) with910

schema augmentations. We see a similar trend here as well, with ZeroToD models outperforming baseline911

approaches. However, BLEU-4 scores are better for Llama-3.2 than FLAN-T5, particularly for the seen912

domains. Since the BLEU-4 metric is calculated by n-gram matches, Llama-3.2 having better supervised913

performance tends to generate responses closer to the ground truth, thus yielding higher BLEU-4 scores.914

C Dialog Examples915

Table 9 shows an example dialog in the Restaurant domain. The table contains the turn id, user utterance,916

gold response, SOLOIST, Auto-ToD, GPT-2, Llama-3.2, and FLAN-T5 response. Text highlighted in917
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red outlines the portions where the system response by a model is incorrect and green highlights the 918

correct parts. Texts highlighted in orange indicate that the model is partially correct and is missing some 919

information. 920

In the example dialog, we can see that the responses of Auto-ToD is longer and more descriptive, 921

whereas ZeroToD models produce succinct responses, similar to the gold standards. This observation 922

indicates that ZeroToD was able to pick up the text generation style of the gold standard, which is an 923

important aspect for ToD systems. 924

The baseline SOLOIST fails to generate a valid response on a few turns. This stems from the complex 925

structure of the output, which consists of dialog states, actions and system response. The output structure 926

has a certain format and different parts are identified with special tokens. On many occasions, the model 927

does not produce the correct tokens, thus leading to invalid generations. 928

On turns where the user asks about multiple information, the GPT-2 and SOLOIST model struggles to 929

respond to all the user requests. However, all the other models do not have this problem. This could be 930

attributed to the fact that GPT-2 models are the smallest model when compared to all the other models. 931

Llama-3.2 and FLAN-T5 generates responses that are very similar to the gold standard. These models 932

are able to pickup the generation style and can respond to multiple requests of the user. In the example 933

dialog, the user provided information about the restaurant name, time and date on turn 1, but then changed 934

the restaurant name on turn 2. Llama-3.2 and FLAN-T5 models were able to identify what changed and 935

moved forward with the API Call by using all the correct information. However, Auto-ToD was not 936

able to keep track of all the changes and made an incorrect API Call. SOLOIST was able to make a 937

partially correct API Call since it was not able to generalize to the number_of_seats slots. It used the 938

party_size slot that it had seen during training. 939

This dialog example showed some of the drawbacks of baseline approaches and some example cases of 940

where they struggle. For ZeroToD models, the limitations of GPT-2 was evident, as it was not able to 941

process multiple requests of the user. However, Llama-3.2 and FLAN-T5 had performance similar to the 942

gold standard across multiple turns, which falls in line to our automatic metrics and human evaluation. 943

Table 9: Dialog Example—SGD dataset. Dialog id 1_00001

Model Response—SGD dataset. Dialog id 1_00001
Turn 1
User Can you book a table for me at the Ancient Szechuan for the 11th of this month at

11:30 am?
Gold In which city are you trying to book the table?
SOLOIST Please confirm the following details: Booking a table for 2 at Ancient Szechuan in

San Francisco on March 11th at 11:30 am.
Auto-ToD Could you please provide the city where the restaurant ‘Ancient Szechuan” is located

and the number of seats you would like to reserve?
GPT-2 Sure, I have a table for 2 at Ancient Szechuan in San Francisco at 11:30 am today.
Llama-3.2 What is the location of the restaurant?
FLAN-T5 Where should I look for the restaurant?
Turn 2
User Can you book a table at the Butterfly restaurant in San Francisco?
Gold Please confirm that you need a table for 2 at the Butterfly Restaurant in San Francisco

at 11:30 am on March 11th.
SOLOIST Can you please confirm that you want to book a table for 2 at the Butterfly restaurant

in San Francisco at 11:30 am on March 11th?
Continued
on next
page...
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Dataset Response—SGD dataset. Dialog id 1_00001
Auto-ToD Could you please confirm the date and time for the reservation at the Butterfly restau-

rant in San Francisco? Additionally, let me know the number of seats you would like
to reserve.

GPT-2 Can you please confirm that you want to book a table for 2 people at the Butterfly
restaurant in San Francisco at 11:30 am on March 11th?

Llama-3.2 Can you confirm the following details: You want to book a table at the butterfly Hotel
in San Francisco at 11:30 am. You want 2 seats. You want to book the table on March
11th.

FLAN-T5 You wish to book a table for 2 at the Butterfly Restaurant in San Francisco for March
11th at 11:30 am. Is this correct?

Turn 3
Gold ApiCall(method=‘ReserveRestaurant’, parameters= ‘date’: ‘2019-03-11’, ‘location’:

‘San Francisco’, ‘number_of_seats’: ‘2’,‘restaurant_name’: ‘Butterfly Restaurant’,
‘time’: ‘11:30’ )

SOLOIST ApiCall(method=’ReserveRestaurant’, parameters=‘city’: ’San Francisco’, ‘date’:
‘2019-03-11’, ‘party_size’: ‘2’,‘restaurant_name’: ‘The Butterfly Restaurant’, ‘time’:
‘11:30’)

Auto-ToD ApiCall(method=‘FindRestaurants’,parameters=‘category’: ‘Butterfly’, ‘location’:
‘San Francisco’)

GPT-2 ApiCall(method=‘ReserveRestaurant’, parameters=‘date’: ‘2019-03-11’, ‘location’:
‘San Francisco’, ‘number_of_seats’: ‘2’,‘restaurant_name’: ‘The Butterfly Restaurant’,
‘time’: ‘11:30’)

Llama-3.2 ApiCall(method=‘ReserveRestaurant’, parameters=‘date’: ‘2019-03-11’, ‘location’:
‘San Francisco’, ‘number_of_seats’: ‘2’,‘restaurant_name’: ‘Butterfly Restaurant’,
’time’: ‘11:30’)

FLAN-T5 ApiCall(method=‘ReserveRestaurant’, parameters= ‘date’: ‘2019-03-11’, ‘location’:
‘San Francisco’,‘restaurant_name’: ‘Butterfly Restaurant’, ‘number_of_seats’: ‘2’,
‘time’: ‘11:30’ )

Turn 4
User That’s perfect. What cuisine do they offer?
Gold Your table has been booked successfully and they serve Asian cuisine.
SOLOIST Your table has been booked.
Auto-ToD It looks like the reservation at the Butterfly Restaurant in San Francisco has been

successfully made for March 11th at 11:30 am for 2 people. The restaurant offers
Asian cuisine. If you need any more assistance or have any other questions, feel free
to ask. Have a great day! Goodbye!

GPT-2 Your table is booked.
Llama-3.2 Your reservation has been successful. They offer Asian cuisine.
FLAN-T5 Your reservation has been made. They serve Asian food.
Turn 5
User Can you get me the user rating of the restaurant? Is it expensive?
Gold Their prices are moderate and they have a user rating of 4.0.
SOLOIST ✗ (Failed to generate a valid response)
Auto-ToD The Butterfly Restaurant in San Francisco has a user rating of 4.00. The price range is

moderate, so it’s not considered expensive. If you have any more questions or need
further assistance, feel free to ask!

GPT-2 The rating is 4.0.
Continued
on next
page...
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Dataset Response—SGD dataset. Dialog id 1_00001
Llama-3.2 The restaurant has a 4.0 rating and is considered moderate in price.
FLAN-T5 They have a moderate price range and a 4.0 rating.
Turn 6
User Thanks a bunch!
Gold Is there anything else I can do for you?
SOLOIST ✗ (Failed to generate a valid response)
Auto-ToD You’re welcome! If you need any more assistance, feel free to ask. Have a great day!

Goodbye!
GPT-2 Is there anything else I can help you with?
Llama-3.2 Do you need anything else?
FLAN-T5 Do you need help with anything else?
Turn 7
User No. Thank you. That’s all I need.
Gold Have a great day!
SOLOIST Have a great time at the restaurant!
Auto-ToD You’re welcome! If you need any more assistance in the future, feel free to reach out.

Have a great day! Goodbye!
GPT-2 Have a good one!
Llama-3.2 Have a great day.
FLAN-T5 Have a nice day.

D User Study Instructions 944

Disclaimers of any risks to participants or annotators 945

There are no significant risks associated with participating in this study. However, annotators may experi- 946

ence mild fatigue or cognitive strain due to prolonged reading and evaluation of multiple conversations. If 947

you feel discomfort or fatigue, please take breaks as needed. 948

Instructions for Human Study Participants 949

Your task is to evaluate model-generated responses in multi-turn, task-oriented conversations based on the 950

following criteria: 951

1. Fluency 952

2. Informativeness 953

3. Task Completion 954

Task Overview 955

• You will be presented with multiple conversations, where a user interacts with a model to complete a 956

task (e.g., booking a flight). 957

• Your job is to rate each model response independently using a 1-5 scale based on the provided 958

criteria. 959

• This study is blind — you will not know which model produced which response. 960

How to Rate Responses 961

You will assign a score for each response based on the following: 962

15



1. Fluency963

Measures whether the response is grammatically correct, well-structured, and natural to read.964

• 1 = Unnatural, grammatically incorrect, or hard to read.965

• 5 = Perfectly fluent, natural, and error-free.966

Example (Good Fluency)967

User: I need to book a flight to New York next Monday.968

Model: Sure! What time would you like to depart?969

Example (Poor Fluency)970

User: I need to book a flight to New York next Monday.971

Model: Sure! You next Monday flight want time what?972

2. Informativeness973

Measures whether the response provides useful and relevant information to advance the task.974

• 1 = Vague, incorrect, or unhelpful.975

• 5 = Precise, relevant, and useful.976

Example (Good Informativeness)977

User: Can you recommend a vegetarian restaurant nearby?978

Model: Yes! Green Leaf Café is a highly rated vegetarian restaurant.979

Example (Low Informativeness)980

User: Can you recommend a vegetarian restaurant nearby?981

Model: There are many restaurants in your area.982

3. Task Completion983

Measures whether the response successfully progresses or completes the task in the conversation.984

• 1 = Fails to address the request.985

• 5 = Fully completes the task.986

Example (Good Task Completion)987

User: I’d like to book a table for two at an Italian restaurant at 7 PM today.988

Model: I found a reservation at Bella Italia for 7 PM. Would you like me to reserve it for 2989

people at 7 PM today?990

Example (Failed Task Completion)991

User: I’d like to book a table for two at an Italian restaurant at 7 PM.992

Model: There are Italian restaurants in your area.993

Additional Guidelines994

• Be objective — rate based on quality, not personal preference.995

• If a response is unclear or ambiguous, leave a comment.996

• Do not try to guess which model produced the response.997
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Study Duration & Submission 998

• The study will take approximately 10 minutes to complete. 999

• Once you have evaluated all responses, submit your ratings. 1000

Thank you for your time and valuable feedback! 1001
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