
Visual Manipulation with Legs

Xialin He†,1, Chengjing Yuan†,2, Wenxuan Zhou3, Ruihan Yang2,
David Held3, Xiaolong Wang2

1University of Illinois Urbana-Champaign 2UC San Diego 3Carnegie Mellon University
†Equal Contributions

Page: Visual-Manipulation-With-Legs

Figure 1: We propose a system that enables legged robots to interact with various objects, moving them to
distant goals through repeated pushing and walking.

Abstract: Animals use limbs for both locomotion and manipulation. We aim to
equip quadruped robots with similar versatility. This work introduces a system
that enables quadruped robots to interact with objects using their legs, inspired
by non-prehensile manipulation. The system has two main components: a visual
manipulation policy module and a loco-manipulator module. The visual manip-
ulation policy, trained with reinforcement learning (RL) using point cloud obser-
vations and object-centric actions, decides how the leg should interact with the
object. The loco-manipulator controller manages leg movements and body pose
adjustments, based on impedance control and Model Predictive Control (MPC).
Besides manipulating objects with a single leg, the system can select from the left
or right leg based on critic maps and move objects to distant goals through base ad-
justment. Experiments evaluate the system on object pose alignment tasks in both
simulation and the real world, demonstrating more versatile object manipulation
skills with legs than previous work. Videos can be found on project website.

Keywords: Reinforcement Learning, Loco-Manipulation, Legged Robot

1 Introduction
In robotics, manipulation is often associated with robot arms and locomotion with legs. Typically,
quadruped robots use dedicated arms for manipulation, while legs are used for walking [1, 2, 3].
However, animals seamlessly use their limbs for both tasks. Primates adeptly utilize all four limbs
for walking, climbing, and object manipulation, suggesting quadruped robots could leverage their
legs for a broader range of tasks, simplifying design and expanding manipulation capabilities.

This work bridges the gap between locomotion and manipulation by leveraging non-prehensile ma-
nipulation for leg-based tasks. Non-prehensile manipulation, which involves tasks without grasping,

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://legged-manipulation.github.io/
https://legged-manipulation.github.io/

aligns with the capabilities of quadruped robot legs [4]. Unlike previous efforts focused on simpler
tasks like kicking a ball or pushing a button [5, 6, 7, 8, 9], our task demands more precise control.

Our system for solving object manipulation tasks with legs comprises a learned visual manipulation
policy and a model-based loco-manipulation controller. The manipulation module, trained with
reinforcement learning in simulation using point cloud observations, dictates how the leg interacts
with the object to achieve the goal pose. We utilize an object-centric action space based on point
cloud data [10], allowing precise leg manipulation. The policy determines a contact point and motion
vector, and critic values assist in choosing between the left or right leg.

The model-based loco-manipulation controller synchronizes leg movements and body adjustments
to execute commands. It translates high-level actions from the visual manipulation policy into low-
level torque commands. The manipulation leg uses impedance control, while other legs maintain
stability with Model Predictive Control (MPC). The controller adjusts the base pose when the object
is out of reach, facilitating effective pushing toward distant goals.

We evaluate the system on various object pose alignment tasks, demonstrating the visual manipula-
tion policy’s effectiveness against baselines, its generalization to unseen objects, and the advantages
of leg selection. Real-world experiments assess the feasibility of zero-shot sim2real transfer and
the system’s precision in moving objects toward distant goals, showing improvements over previous
work [5, 6, 7, 8, 9].

2 Related Work

Quadrupedal Locomotion: Legged robots have traditionally relied on proprioceptive senses for
navigating complex terrains, using model-based methods that ensure stability but require signif-
icant computational power [11, 12, 13, 14, 15, 16, 17, 18]. Recent advancements in model-
free reinforcement learning have reduced computational demands while enhancing generaliza-
tion [19, 20, 21, 22, 23, 24, 25]. Although these techniques have primarily been applied to lo-
comotion, recent work has integrated exteroceptive perception, such as elevation maps and depth
sensing, to enhance high-level planning [26, 27, 28, 29, 30, 31, 32, 33, 34]. While most research
uses these approaches for locomotion, our work uniquely applies them to dexterous manipulation,
leveraging model-based controllers for precise end-effector positional control.

6D Manipulation with Manipulators: Previous work in 6D manipulation has focused on dexterous
hands and grippers on fixed bases designed for manipulation [35, 36]. In contrast, we use the leg of
a robot dog for 6D manipulation, an underexplored approach.

Non-Prehensile Manipulation: Non-prehensile manipulation, which involves interacting with ob-
jects without grasping, has been a focus for tasks like pushing, sliding, and flipping. Foundational
work by Mason [4] established the mechanics of these tasks, while more recent approaches have
integrated reinforcement learning and model-based methods to enhance precision and adaptability
[37, 38]. For instance, Zhou et al. [39] developed learning frameworks for robust manipulation in
unstructured environments. Building on these advances, our work applies non-prehensile techniques
in legged robots, achieving 6D object control through precise actions like pushing and flipping.

Manipulation with Legged Robot: Legged robots are increasingly recognized for their poten-
tial in manipulation tasks. Leveraging research that integrates leg and arm mechanisms [40] and
biomimetic designs, these robots enhance movement and object transportation [41]. Existing meth-
ods predominantly use mounted arms [1, 2, 42] or the robot’s body [5, 6] for basic tasks, with
few employing legs. In this context, some works have extended quadruped capabilities by at-
taching small grippers at the end-effectors of their legs to facilitate prehensile skills [43]. Others
have utilized the legs for broader, large-scale manipulations, such as door pushing and basket lift-
ing [3, 44, 45, 9] or rotating large yoga balls [46] but sacrificing mobility. In contrast, our approach
emphasizes non-prehensile manipulation, using the quadruped’s legs to directly control objects with
precise actions like pushing and flipping smaller items, achieving 6D object control without relying
on additional appendages and maintaining full mobility.

2

Camera View Point Cloud

Seg PC
Network

Seg PC
Network

Per-Point Motion
Parameter

Per-point
Features

fi

am
i

Pose Info

(postar quattar)Target pose:
Object pose: (posobj quatobj)

Model
Predictive

Control

Impedance
Control

Action Torque
Commands

Left Leg Heat Map

Right Leg Heat Map

Leg Selection

Figure 2: Visual Manipulation with Legs. Our system operates in stages: 1) A depth camera captures the
object’s point cloud. 2) The point cloud and target pose are processed by our network. 3) The manipulation
leg is chosen based on the highest Q-value. 4) Pre-contact, contact, and action details are sent to the low-
level control system. 5) The control system uses impedance control to direct the selected leg, while a Model
Predictive Controller maintains balance, sending torques to the robot.

QP Stand Manipulation Post-Act
COM ShiftWalking

Pose

Reached
COM Shift

Manipulation

Finished

Pose

Reached

Pose

Reached

Figure 3: Control FSM. Our Finite State Machine (FSM) transition design follows a closed-loop approach,
allowing for the repeated execution of manipulation actions through such a design.

Our system employs visual cues for detailed manipulation, an area not extensively explored in legged
robotics. By combining advanced perception technologies with agile quadruped legs, we enhance
the robots’ precision and adaptability for complex tasks.

3 Visual Manipulation with Legs

We define our task as Object Pose Alignment; further details can be found in appendix A. An
overview of the proposed system is summarized in Figure 2. Our proposed system includes two
modules: 1) a learned visual policy that takes a point cloud observation of the object and outputs
an action consisting of a contact location and a vector of motion parameters. 2) a model-based
loco-manipulation controller that uses the front leg of the robot to interact with the object while
maintaining the robot’s balance and moving the robot for long-horizon object manipulation.

Our system integrates the visual policy and the model-based loco-manipulation controller to achieve
object manipulation tasks. The model-based loco-manipulation controller operates within a frame-
work that alternates between motion and manipulation states using a finite state machine structured
around MPC. This approach requires multiple transitions between these states to accomplish a task.
Every locomotion state is guided by the previous observation, setting a target position for the robot
to approach. Upon reaching the target, the system transits into the manipulation state. Here, our
learned visual policy computes and executes the necessary actions based on the current object and
the goal object pose. Once the action is completed, the system reverts to the locomotion state to
continue towards the next segment of the task, repeating this process until the task is completed.

3.1 Learning Visual Manipulation Policy

Our visual manipulation policy is trained with reinforcement learning using point cloud observations
similars to [47]. The policy operates in an object-centric action space, selecting a contact location
among the observed object points and a vector of motion parameters that define the post-contact
movement [10]. Upon action selection, the robot moves its foot to the chosen contact location on
the object. Once close enough, the robot executes the motion parameters, a 3D vector defining the
push direction after contact. The range of motion parameters exceeds the robot’s leg reach, allowing
the policy to learn to apply varying force magnitudes for object manipulation.

The policy is trained with off-policy reinforcement learning algorithms based on TD3 [48]. We use
a segmentation-style network architecture (e.g., PointNet++ [49]) for both the actor and the critic.
Given a point cloud observation, the actor outputs per-point motion parameters (actor map), and the

3

critic outputs per-point Q-values (critic map). The policy output is determined by selecting the point
with the highest Q-value from the critic map and the associated motion parameters.

3.1.1 Selecting from left or right legs
We propose using the critic values to select between the left or right legs during manipulation. The
legs on quadruped robots usually have a restricted range of motion due to limited degrees of freedom
and joint limits. Choosing between the front legs during manipulation can broaden the available
motion possibilities. As our experiments will show, using the right leg for tasks on the right side of
the robot is more efficient and results in a higher success rate.

We implement a policy capable of selecting the appropriate leg for tasks by modifying the structure
of the actor map and critic map. Each point is associated with two motion parameters and two Q-
values corresponding to the left and right legs. We select the point with the highest Q-value and its
corresponding motion parameter and leg to complete the task. At testing time, a single point cloud
is processed once, facilitating decision-making for both legs simultaneously.

3.2 Model-Based Loco-Manipulation Controller
Our loco-manipulation controller serves two purposes: 1) interact with the target object using the
learned visual policy, and 2) move the robot for long-horizon object manipulation.

Built on an MPC controller [11] and [50], our controller divides the process into stages represented
by a finite-state machine (FSM) in Figure 3: QP Stand, COM Shift, Manipulation, Walking, and
Post-Act COM Shift. At each control step, the robot starts in QP Stand, where it stands with four
legs. The visual policy computes the action from the object point cloud. The robot then shifts to
COM Shift, lifting one leg to prepare for interaction. In Manipulation, the lifted leg moves to the pre-
contact point and manipulates the object. MPC calculates torque for the stance legs, and impedance
control is used for the swing leg. After manipulation, the swing leg returns to the ground in Post-Act
COM Shift state, preparing the robot for walking. If the object is out of reach, the controller moves
the robot closer.

Model Predictive Control. Our MPC, based on Bledt et al. [11] and Chen et al.[50], uses ground
reaction force over a finite horizon k to determine optimal control inputs and trajectory:

min
x,u

k−1∑
i=0

||xi+1 −xi+1,ref ||Qi
+ ||ui||Ri

subject to xi+1 = Aixi +Biui, ci ≤ Ciui ≤ ci, Diui = 0,

Here, xi is the state, ui the control input, Qi and Ri are weight matrices, Ai and Bi describe
system dynamics, and Ci, ci, ci set control constraints. Di identifies forces for feet not in contact.
MPC commands include roll, pitch, yaw, Cartesian position, and target velocities. We primarily
manipulate yaw (Z-axis) and provide linear velocity for X and Y directions. More details in Bledt
et al. [11].

Impedance Control. Our impedance control adjusts mechanical impedance for optimal leg move-
ment, enabling precise object interaction. Control torques (τ) are computed as:

τ = JT (Kp(pdes − pfoot) +Kd(vdes − vfoot)) ,

where pdes and vdes are the desired foot position and velocity, pfoot and vfoot are the actual position and
velocity, Kp and Kd are proportional and derivative gains, and J maps foot force to joint torques.

This control algorithm achieves precise control over the robot’s manipulating leg, enabling opti-
mized interaction with the environment and task execution.

3.3 Point-cloud Registration Module
To perform accurate 6D object pose alignment, our system relies on the relative transformation
between the target and current poses. While simulation provides accurate 6D poses, obtaining them
in the real world is challenging, especially with egocentric visual observation.

We integrate RPM-Net [51], a learning-based point-cloud registration method, into our framework.
RPM-Net processes source and target point clouds with per-point normals, outputting the transfor-
mation from source to target. We fine-tune the pre-trained RPM-Net on a subset of ModelNet40 [52]

4

Figure 4: We employ RPM-Net for the registration process of a real robot, emphasizing successful registrations.
In the illustration, the blue point cloud represents the source data captured by the camera, the yellow point
cloud corresponds to the complete scan of the object, and the red point cloud shows the source data after
transformation. Green lines indicate the flow vectors.

(a) Box push (top) and box flip (bottom). (b) Multi-object push. (c) Ours policy learns to push gently (top) and
planning baseline does not (bottom).

Figure 5: We visualize the real robot trajectories. The semi-transparent overlies are the goal poses.

with domain-specific augmentations, including perturbed point-cloud normals and visual occlusions.
Further fine-tuning on YCB [53] objects improves accuracy. At deployment, the source point cloud
comes from the robot’s camera, and the target point cloud is a object full scan set to the desired pose.

To enhance registration quality at inference, we augment the source point cloud with 6 random
rotations, feed the augmented point clouds into RPM-Net, and use the best result for our visual ma-
nipulation policy. We evaluate registration quality using flow distance and Chamfer distance metrics.
Flow distance favors minimal rotational adjustment, while Chamfer distance assesses average simi-
larity between the registered object and target model. By ranking results according to both metrics
and applying a preference weighting to Chamfer distance, we select the registration outcome with
the lowest cumulative rank. Known rotations allow recovery of the registration result to the original
pose. Point-cloud registration examples are shown in Figure 4.

4 Experiments
We evaluate our system and compare it with various baselines in simulation and the real world on
object pose alignment and present quantitative and qualitative results in this section.

4.1 Experiment Setup
Task. We evaluate all methods on the following 5 tasks.

• Box push (Fixed goal): Push a box forward (along x-axis in the robot frame) by 15cm.
• Box push (Random goals): Push a box to a target position (in the robot frame) on the ground.

The X and Y coordinates of the target position are uniformly sampled from (10cm, 20cm) and
(−5cm, 5cm) respectively.

• Box flip + push (Random goals): Flip a box left or right by 90 degrees and push to a target
position sampled as in the Box push (Random goals) task.

• Multi-object push (Fixed goal): Push an object forward (along x-axis in the robot frame) by
15cm.

• Multi-object push (Random goals): Push an object to a target position sampled as in the Box
push (Random goals) task.

5

For Box push and Box flip + push (Random goals) task, we randomize the length, width and height
of the box within (5cm, 10cm), (5cm, 10cm) and (4cm, 8cm) respectively. For Multi-object push
tasks, we use 37 objects from Liu et al. [54], where we use 27 objects for training and 10 objects for
evaluation. The object visualization is provided in the supplementary section. Sampled trajectories
in the real-world experiment are visualized in Figure 5.

Locomotion Strategy. In the real deployment, our robot uses MPC to approach the object. MPC
calculates foothold positions based on gait settings, allowing the robot to walk stably to the target.
Initially, the target is placed in front of the robot without base movement. Later, the object’s position
is obtained through point-cloud registration. Commands for MPC are calculated using the robot’s
current position and the object’s position, as described in Sec 3.2. In the simulation, we directly set
the robot’s position in front of the object with small variations, eliminating the need to walk over.

Baselines. We compare with the following baselines to verify the necessity of learning contact
location and motion parameters:

• Random Location Baseline: Selects a contact location uniformly from the object point cloud
and learns motion parameters for manipulation as our method does.

• Flow Baseline: Maintains contact location selection but replaces motion parameters with the
flow between the object and goal point cloud at the selected point.

• Planning Baseline: For pushing tasks, strategically select the center point of an object’s side
as the contact point; for flipping tasks, select the midpoint of the edge in the direction of the
top side flip. Tuned motion parameters ensure effective interaction with minimal unintended
movements or rotations. These parameters are then applied to other objects.

Training and Evaluation. Our policy (except for leg-selection) and all baselines are trained in
IsaacGym [55] for 50,000 steps, while the leg-selection policy requires 100,000 steps for optimal
performance. Each policy is trained with three different seeds. The main evaluation metric is the
success rate, defined as the mean flow between the object and goal being smaller than 3 cm. The
mean flow measures the average distance between corresponding points in the current and target
point clouds, considering both rotational and translational errors. By default, the evaluation uses the
front left leg. Section 4.2 explores the advantages of selecting either the left or right leg.

Box Push
(Fixed Goal)

Box Push
(Random Goal)

Box Flip + Push
(Random Goal)

Multi-object Push
(Fixed Goal)

Multi-object Push
(Random Goal)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

97.50
91.33

81.42

91.91

83.00

55.00

35.91

58.42

72.50
77.25

72.50

6.25 8.75

68.75

15.00

92.92
88.75

0.00

77.75

55.00

40.67
35.42

5.83

52.50

32.08

Novel Objects Push
(Fixed Goal)

Novel Objects Push
(Random Goal)

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

83.63
77.08

62.91
57.50

60.25

12.50

61.25

32.50

40.42
37.50

Ours Flow Baseline Planning Baseline Planning + Baseline Random Location Baseline

Figure 6: Quantitative Results in Simulation and Generalization. We evaluate the performance of our
method against flow, planning, and random location baselines in various object manipulation challenges. The
left plot shows results for training objects across different manipulation tasks. The right plot demonstrates
generalization to novel objects in a pushing task. Our method consistently outperforms the baselines across all
tasks.

4.2 Evaluation in Simulation

We first evaluate our method on single-box manipulation tasks, with results shown in Figure 6 (left).
Our method achieves nearly 100% success on Box push (Fixed goal), and over 80% success on
the harder Box push (Random goals) and Box flip + push (Random Goals) tasks. Our method
significantly outperforms all baselines on all three tasks.

Learning to select a contact point significantly outperforms random selection. The performance gap
between the flow baseline and our method highlights the importance of learning motion parameters
for accurate object manipulation, even with a simple box.

6

-15 -10 -5 5 10 15
Offset (cm)

0

20

40

60

80

Su
cc

es
s R

at
e

(%
)

Leg Selection
Left Leg Only

Box Push
Fixed Goal

Box Push
Random Goal

Flip
0

10
20
30
40
50
60
70
80

Su
cc

es
s R

at
e

(%
)

60

5050

10

50

0

40

10

50

0 0

10

Stone Floor

Ours Planning Baseline Planning + Baseline Flow Baseline

Box Push
Fixed Goal

Box Push
Random Goal

Flip
0

10
20
30
40
50
60
70
80

Su
cc

es
s R

at
e

(%
)

60

40

50

20

50

10

40

20

40

0 0

10

Wood Surface

Box Push
Fixed Goal

Box Push
Random Goal

Flip
0

10
20
30
40
50
60
70
80

Su
cc

es
s R

at
e

(%
)

50

40

50

20

50

20

30

10

40

0 0

10

Foam Mats

Figure 7: Leg Selection and Real Experiment. (Left) Success rates of single-leg control vs. our method on
the Box Flip + Push (Random Goal) task with varying initial object positions. (Right) Average performance
from ten real-world tests on various object manipulation tasks on three different type of surfaces.

When the robot needs to push the box forward, our visual manipulation policy outputs a vector
pointing forward and slightly downward, enabling the robot to obtain larger friction and control
the box’s movement. The flow baseline’s forward-only vector cannot effectively control the box,
leading to poor performance.

Table 1: Box Multi-Step. Tasks
fail if they exceed 20 steps or have
a y-error over 20 cm. Data in the ta-
ble shows the average from 5 real-
world tests. We define the Y-error
as the horizontal axis error, and it
is measured with an April tag at-
tached to the box and manually ver-
ified.

Method Steps y-error (cm)

Ours 12.8 ± 1.89 7.35 ± 2.08

Flow >20 >20

When we expand our object set from a single box to diverse ob-
jects, our method still achieves over 80% on both Multi-object
push (Fixed goal) and Multi-object push (Random goals) tasks.

To further illustrate the superiority of our method, we compare the
trajectory of our method and the flow baseline manipulating the
same object in simulation in Figure 5c. When the policy manip-
ulate a tall bottle, our method learned to use motion parameters
that result in a gentle push. In contrast, without adjusting the mo-
tion parameters according to the object, the flow baseline flipped
over the bottle and failed to push it forward.

Generalization to unseen objects. To evaluate the generaliza-
tion capability of our proposed system across object shapes, we
evaluated the policy trained with 27 objects on 10 novel objects and provided the results in Figure 6
(right). We found that our learned visual manipulation policy generalized well to novel objects with-
out a significant performance drop, while the performance of other baselines dropped significantly.

Ablation of leg selection. As stated in Section 3.1.1, our model outputs actions for both legs,
selecting the one with the highest Q-value.

We compare our method with a variant that only uses the left front leg for the Box Flip + Push
(Random Goal) task. The object’s location is randomized laterally in front of the quadruped, and
the success rates for different object locations are shown in Figure 7 (left). When the object is
close to the left front leg (offset ≥ −5cm), both variants perform similarly. However, the left-leg-
only variant fails when the object is farther away (offset ≤ −5cm), while our method consistently
outperforms it. This shows our leg selection strategy significantly enlarges the robot’s operation
space for manipulation tasks.

Visualizations of the Policy Output To better understand our system, we visualized the critic map
in our learned visual manipulation policy, which scores each contact location on the object (Fig. 8).
These Critic Maps capture goal-conditioned object affordances, providing insights into manipula-
tion strategies. Figure 8a shows two scenarios involving pushing different objects, while Figure 8c
focuses on flipping and pushing a box to the target pose.

We deploy our system in the real world for all 5 tasks using Unitree Go1 [56]. We quantitatively
evaluated our method on Box Push (Fixed Goal), Box Push (Random Goal), and Box Flip + Push
(Random Goal). Each task had 10 trials, and the average success rates are provided in Figure 7
(right).

7

(a) Box push (b) Box left flip (c) Box flip + push

Figure 8: Blue points represent the goal point cloud. The color map shows the observed object point cloud
(purple points in Picture 8c are the final object’s point cloud), with lighter colors indicating higher critic map
scores. Red arrows show motion parameters at selected contact locations. The policy selects different contact
locations based on object geometry and goals.
4.3 Evaluation in the Real World

(a) Flow baseline (b) Ours

Figure 9: Low-level Control Error. Red arrows de-
note commanded movements, yellow arrows represent
actual movements.

We compared our method with flow and plan-
ning baselines in real-world scenarios, omitting
the random location baseline due to poor simu-
lation performance. Our method achieved up to
60% success rate, while other baselines barely
succeeded. Despite a smaller simulation gap,
the flow baseline performed significantly worse
in real-world tests. We hypothesize it is more sensitive to environment parameters like friction,
object mass, and the sim2real gap in low-level control.

Figure 9 illustrates this gap with a scenario where the robot needs to push a box forward by 10 cm.
The flow baseline outputs a 10 cm forward vector, but control errors cause the actual foot trajectory
to move upward, losing contact with the object. In contrast, our method compensates for this error
by maintaining contact and completing the task.

Moving the object to a distant goal. Our system combines locomotion and manipulation, allowing
the robot to move objects beyond its leg’s reach. In an experiment, the robot pushed a box 1 meter
forward, maintaining minimal lateral deviation. The manipulation policy, trained with close goals,
repeatedly commands the robot to push the object 10 cm forward until it reaches the 1-meter target.
After each action, the robot updates its observation using RPM-Net and adjusts its position for the
next action with MPC. We evaluate performance with two metrics: steps to reach 1 meter and y-axis
error at the final destination. Results in Table 1 show our system achieves higher accuracy and lower
y-axis error compared to the baseline.

5 Conclusion

We propose a system that allows quadruped robots to manipulate objects with their legs using visual
input. Our RL policy leverages point cloud observations for object interaction, with actions imple-
mented via impedance control and MPC. We evaluate the system in both simulation and real-world,
demonstrating significant advancements in legged manipulation skills not seen in previous work.

Limitation: While our system explores using a quadruped leg as a manipulator, it has limitations.
For example, using an iPhone’s lidar introduces accuracy issues in point cloud observations due
to distortion from reflective surfaces, affecting the registration results of RPM-nets. Additionally,
our reliance on MPC during training, though beneficial for sim-to-real transfer, faces challenges
due to the lack of parallel processing for the Quadratic Programming (QP) problem, which slows
down training. The current state estimator, relying on the robot’s internal IMU, is susceptible to
translation and rotation errors, which can result in inaccuracies in motion parameters and contact
location during execution. Additionally, the front-mounted camera’s inability to capture the object’s
side point cloud further restricts the robot’s action space.

Future work: To further improve our approach, we could accelerate the QP solution by reducing
the number of state variables through motion parameterization as quintic splines, as proposed in
[57]. Additionally, incorporating friction estimation [58] or utilizing a friction dataset as a prior
[59] could enhance the system’s ability to generalize manipulation tasks to more complex terrains,
addressing some of the challenges we identified.

8

Acknowledgments

We sincerely thank Yiyu Chen for the invaluable support in our MPC work and assistance with the
real robot experiments, and Bowen Jiang for his guidance and help during the training phase. This
project was supported in part by the Amazon Research Award, the Intel Rising Star Faculty Award,
and gifts from Qualcomm, Covariant, and Meta.

References
[1] J.-R. Chiu, J.-P. Sleiman, M. Mittal, F. Farshidian, and M. Hutter. A collision-free mpc for

whole-body dynamic locomotion and manipulation, 2022.

[2] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter. A unified mpc framework for
whole-body dynamic locomotion and manipulation, 2021.

[3] Z. Fu, X. Cheng, and D. Pathak. Deep whole-body control: Learning a unified policy for
manipulation and locomotion. Conference on Robot Learning (CoRL), 2022.

[4] M. T. Mason. Progress in nonprehensile manipulation. The International Journal of Robotics
Research, 18(11):1129–1141, 1999.

[5] M. Sombolestan and Q. Nguyen. Hierarchical adaptive loco-manipulation control for
quadruped robots, 2023.

[6] M. Sombolestan and Q. Nguyen. Hierarchical adaptive control for collaborative manipulation
of a rigid object by quadrupedal robots, 2023.

[7] Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth, and K. Sreenath. Hierarchical reinforce-
ment learning for precise soccer shooting skills using a quadrupedal robot, 2022.

[8] Y. Ji, G. B. Margolis, and P. Agrawal. Dribblebot: Dynamic legged manipulation in the wild,
2023.

[9] X. Cheng, A. Kumar, and D. Pathak. Legs as manipulator: Pushing quadrupedal agility beyond
locomotion, 2023.

[10] W. Zhou, B. Jiang, F. Yang, C. Paxton, and D. Held. Hacman: Learning hybrid actor-critic
maps for 6d non-prehensile manipulation. 2023.

[11] J. D. Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in the MIT
cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2018, Madrid, Spain, October 1-5, 2018,
pages 1–9. IEEE, 2018. doi:10.1109/IROS.2018.8594448. URL https://doi.org/10.

1109/IROS.2018.8594448.

[12] C. Gehring, S. Coros, M. Hutter, M. Blösch, M. A. Hoepflinger, and R. Siegwart. Control of
dynamic gaits for a quadrupedal robot. In 2013 IEEE International Conference on Robotics
and Automation, Karlsruhe, Germany, May 6-10, 2013, pages 3287–3292. IEEE, 2013. doi:
10.1109/ICRA.2013.6631035. URL https://doi.org/10.1109/ICRA.2013.6631035.

[13] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim. Dynamic locomotion in the mit
cheetah 3 through convex model-predictive control. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 1–9. IEEE, 2018.

[14] Y. Ding, A. Pandala, and H.-W. Park. Real-time model predictive control for versatile dynamic
motions in quadrupedal robots. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8484–8490. IEEE, 2019.

9

http://dx.doi.org/10.1109/IROS.2018.8594448
https://doi.org/10.1109/IROS.2018.8594448
https://doi.org/10.1109/IROS.2018.8594448
http://dx.doi.org/10.1109/ICRA.2013.6631035
http://dx.doi.org/10.1109/ICRA.2013.6631035
https://doi.org/10.1109/ICRA.2013.6631035

[15] G. Bledt and S. Kim. Extracting legged locomotion heuristics with regularized predictive
control. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages
406–412. IEEE, 2020.

[16] R. Grandia, F. Farshidian, A. Dosovitskiy, R. Ranftl, and M. Hutter. Frequency-aware model
predictive control. IEEE Robotics and Automation Letters, 4(2):1517–1524, 2019.

[17] Y. Sun, W. L. Ubellacker, W.-L. Ma, X. Zhang, C. Wang, N. V. Csomay-Shanklin,
M. Tomizuka, K. Sreenath, and A. D. Ames. Online learning of unknown dynamics for model-
based controllers in legged locomotion. IEEE Robotics and Automation Letters (RA-L), 2021.

[18] J. Carius, R. Ranftl, V. Koltun, and M. Hutter. Trajectory optimization for legged robots
with slipping motions. IEEE Robotics and Automation Letters, 4(3):3013–3020, 2019. doi:
10.1109/LRA.2019.2923967.

[19] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke. Sim-
to-real: Learning agile locomotion for quadruped robots. In H. Kress-Gazit, S. S. Srinivasa,
T. Howard, and N. Atanasov, editors, Robotics: Science and Systems XIV, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018, 2018. doi:10.15607/RSS.2018.
XIV.010. URL http://www.roboticsproceedings.org/rss14/p10.html.

[20] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-
ing agile and dynamic motor skills for legged robots. Science Robotics, 4, 2019.

[21] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47), 2020.

[22] H. Lai, W. Zhang, X. He, C. Yu, Z. Tian, Y. Yu, and J. Wang. Sim-to-real transfer for
quadrupedal locomotion via terrain transformer, 2023.

[23] D. Jain, A. Iscen, and K. Caluwaerts. Hierarchical reinforcement learning for quadruped lo-
comotion. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2019, Macau, SAR, China, November 3-8, 2019, pages 7551–7557. IEEE, 2019. doi:
10.1109/IROS40897.2019.8967913. URL https://doi.org/10.1109/IROS40897.2019.

8967913.

[24] Z. Xie, X. Da, B. Babich, A. Garg, and M. van de Panne. Glide: Generalizable quadrupedal
locomotion in diverse environments with a centroidal model. CoRR, abs/2104.09771, 2021.
URL https://arxiv.org/abs/2104.09771.

[25] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robot.
Robotics: Science and Systems, 2021.

[26] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic terrain mapping for mobile robots
with uncertain localization. IEEE Robotics and Automation Letters, 3(4):3019–3026, 2018.

[27] I.-S. Kweon and T. Kanade. High-resolution terrain map from multiple sensor data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):278–292, 1992.

[28] Y. Pan, X. Xu, Y. Wang, X. Ding, and R. Xiong. Gpu accelerated real-time traversability
mapping. In 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO),
pages 734–740. IEEE, 2019.

[29] P. Fankhauser, M. Bloesch, C. Gehring, M. Hutter, and R. Siegwart. Robot-centric elevation
mapping with uncertainty estimates. In International Conference on Climbing and Walking
Robots (CLAWAR), 2014.

[30] D. Jain, A. Iscen, and K. Caluwaerts. From pixels to legs: Hierarchical learning of quadruped
locomotion. arXiv preprint arXiv:2011.11722, 2020.

10

http://dx.doi.org/10.1109/LRA.2019.2923967
http://dx.doi.org/10.1109/LRA.2019.2923967
http://dx.doi.org/10.15607/RSS.2018.XIV.010
http://dx.doi.org/10.15607/RSS.2018.XIV.010
http://www.roboticsproceedings.org/rss14/p10.html
http://dx.doi.org/10.1109/IROS40897.2019.8967913
http://dx.doi.org/10.1109/IROS40897.2019.8967913
https://doi.org/10.1109/IROS40897.2019.8967913
https://doi.org/10.1109/IROS40897.2019.8967913
https://arxiv.org/abs/2104.09771

[31] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. bae Kim, and P. Agrawal. Learning
to jump from pixels. In 5th Annual Conference on Robot Learning, 2021. URL https:

//openreview.net/forum?id=R4E8wTUtxdl.

[32] M. Seo, R. Gupta, Y. Zhu, A. Skoutnev, L. Sentis, and Y. Zhu. Learning to walk by
steering: Perceptive quadrupedal locomotion in dynamic environments. In arXiv preprint
arXiv:2209.09233, 2022.

[33] M. Sorokin, J. Tan, C. K. Liu, and S. Ha. Learning to navigate sidewalks in outdoor envi-
ronments. IEEE Robotics and Automation Letters, 7(2):3906–3913, 2022. doi:10.1109/LRA.
2022.3145947.

[34] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha, J. Tan, and T. Zhang.
Visual-locomotion: Learning to walk on complex terrains with vision. In A. Faust, D. Hsu,
and G. Neumann, editors, Proceedings of the 5th Conference on Robot Learning, volume 164
of Proceedings of Machine Learning Research, pages 1291–1302. PMLR, 08–11 Nov 2022.
URL https://proceedings.mlr.press/v164/yu22a.html.

[35] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang. Dexpoint: Generalizable point cloud
reinforcement learning for sim-to-real dexterous manipulation. 2022. URL https://

openreview.net/forum?id=tJE1Yyi8fUX.

[36] M. Costanzo, M. De Simone, S. Federico, and C. Natale. Non-prehensile manipulation actions
and visual 6d pose estimation for fruit grasping based on tactile sensing. Robotics, 12(4),
2023. ISSN 2218-6581. doi:10.3390/robotics12040092. URL https://www.mdpi.com/

2218-6581/12/4/92.

[37] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and plan-
ning. The International Journal of Robotics Research, 15(6):533–556, 1996. doi:10.1177/
027836499601500602. URL https://doi.org/10.1177/027836499601500602.

[38] D. Wang, F. Chang, and C. Liu. Multi-stage reinforcement learning for non-prehensile manip-
ulation, 2023. URL https://arxiv.org/abs/2307.12074.

[39] W. Zhou and D. Held. Learning to grasp the ungraspable with emergent extrinsic dexterity,
2022. URL https://arxiv.org/abs/2211.01500.

[40] H. Deng, G. Xin, G. Zhong, and M. Mistry. Object carrying of hexapod robots with integrated
mechanism of leg and arm. Robotics and Computer-Integrated Manufacturing, 54:145–155,
2018. ISSN 0736-5845. doi:https://doi.org/10.1016/j.rcim.2017.11.014. URL https://www.

sciencedirect.com/science/article/pii/S0736584517301126.

[41] B. Leung, P. Billeschou, and P. Manoonpong. Integrated modular neural control for versa-
tile locomotion and object transportation of a dung beetle-like robot. IEEE Transactions on
Cybernetics, 54(4):2062–2075, 2024. doi:10.1109/TCYB.2023.3249467.

[42] J.-P. Sleiman, F. Farshidian, and M. Hutter. Versatile multicontact planning and control for
legged loco-manipulation. Science Robotics, 8(81):eadg5014, 2023. doi:10.1126/scirobotics.
adg5014. URL https://www.science.org/doi/abs/10.1126/scirobotics.adg5014.

[43] C. Lin, X. Liu, Y. Yang, Y. Niu, W. Yu, T. Zhang, J. Tan, B. Boots, and D. Zhao. Locoman:
Advancing versatile quadrupedal dexterity with lightweight loco-manipulators, 2024. URL
https://arxiv.org/abs/2403.18197.

[44] P. Arm, M. Mittal, H. Kolvenbach, and M. Hutter. Pedipulate: Enabling manipulation skills
using a quadruped robot’s leg, 2024. URL https://arxiv.org/abs/2402.10837.

[45] Z. He, K. Lei, Y. Ze, K. Sreenath, Z. Li, and H. Xu. Learning visual quadrupedal loco-
manipulation from demonstrations, 2024. URL https://arxiv.org/abs/2403.20328.

11

https://openreview.net/forum?id=R4E8wTUtxdl
https://openreview.net/forum?id=R4E8wTUtxdl
http://dx.doi.org/10.1109/LRA.2022.3145947
http://dx.doi.org/10.1109/LRA.2022.3145947
https://proceedings.mlr.press/v164/yu22a.html
https://openreview.net/forum?id=tJE1Yyi8fUX
https://openreview.net/forum?id=tJE1Yyi8fUX
http://dx.doi.org/10.3390/robotics12040092
https://www.mdpi.com/2218-6581/12/4/92
https://www.mdpi.com/2218-6581/12/4/92
http://dx.doi.org/10.1177/027836499601500602
http://dx.doi.org/10.1177/027836499601500602
https://doi.org/10.1177/027836499601500602
https://arxiv.org/abs/2307.12074
https://arxiv.org/abs/2211.01500
http://dx.doi.org/https://doi.org/10.1016/j.rcim.2017.11.014
https://www.sciencedirect.com/science/article/pii/S0736584517301126
https://www.sciencedirect.com/science/article/pii/S0736584517301126
http://dx.doi.org/10.1109/TCYB.2023.3249467
http://dx.doi.org/10.1126/scirobotics.adg5014
http://dx.doi.org/10.1126/scirobotics.adg5014
https://www.science.org/doi/abs/10.1126/scirobotics.adg5014
https://arxiv.org/abs/2403.18197
https://arxiv.org/abs/2402.10837
https://arxiv.org/abs/2403.20328

[46] F. Shi, T. Homberger, J. Lee, T. Miki, M. Zhao, F. Farshidian, K. Okada, M. Inaba, and M. Hut-
ter. Circus anymal: A quadruped learning dexterous manipulation with its limbs, 2020.

[47] P. Ni. Pointnet++ grasping: Learning an end-to-end spatial grasp generation algorithm from
sparse point clouds. 03 2020. doi:10.1109/ICRA40945.2020.9196740.

[48] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[49] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. arXiv preprint arXiv:1706.02413, 2017.

[50] Y. Chen and Q. Nguyen. Learning agile locomotion and adaptive behaviors via rl-augmented
mpc. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages
11436–11442, 2024. doi:10.1109/ICRA57147.2024.10610453.

[51] Z. J. Yew and G. H. Lee. Rpm-net: Robust point matching using learned features. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2020.

[52] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes, 2014.

[53] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar. Benchmarking in
manipulation research: Using the yale-cmu-berkeley object and model set. IEEE Robotics &
Automation Magazine, 22(3):36–52, 2015. doi:10.1109/MRA.2015.2448951.

[54] W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton. Structdiffusion: Language-guided
creation of physically-valid structures using unseen objects, 2023.

[55] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu based physics simulation for
robot learning. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2).

[56] Unitree. Go1: Lightweight, take it everywhere, 2018. URL https://www.unitree.com/

go1/.

[57] C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter. Dynamic locomotion through online
nonlinear motion optimization for quadrupedal robots. IEEE Robotics and Automation Letters,
3(3):2261–2268, 2018. doi:10.1109/LRA.2018.2794620.

[58] P. Ewen, A. Li, Y. Chen, S. Hong, and R. Vasudevan. These maps are made for walking: Real-
time terrain property estimation for mobile robots. IEEE Robotics and Automation Letters, 7
(3):7083–7090, 2022. doi:10.1109/LRA.2022.3180439.

[59] D. Noh, H. Nam, M. S. Ahn, H. Chae, S. Lee, K. Gillespie, and D. Hong. Surface mate-
rial dataset for robotics applications (smdra): A dataset with friction coefficient and rgb-d for
surface segmentation, 2021.

[60] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[61] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

[62] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

12

http://dx.doi.org/10.1109/ICRA40945.2020.9196740
http://dx.doi.org/10.1109/ICRA57147.2024.10610453
http://dx.doi.org/10.1109/MRA.2015.2448951
https://www.unitree.com/go1/
https://www.unitree.com/go1/
http://dx.doi.org/10.1109/LRA.2018.2794620
http://dx.doi.org/10.1109/LRA.2022.3180439
http://jmlr.org/papers/v22/20-1364.html

Appendix

A Task: Object Pose Alignment

In this work, we focus on object pose alignment. The objective is to align an object’s 6D pose with
a given target pose, represented as a transformation relative to the current object pose. Using an
observed object point cloud and the target transformation, the quadruped robot interacts with the
object using its front legs to achieve alignment. By default, the left leg is used, except in the leg
selection experiment (Section 4.2)

B Environment Settings

We conducted our training within IsaacGym [60], where certain parameters of our simulator are
detailed in Table 2.

Table 2: Environment Settings
Parameters Values
Environment numbers 80
Simulation dt 0.001
Object point cloud size 400
Background point cloud size 400

C Reward Definition

We first define goal flow first: Suppose that point xi in the initial point cloud corresponds to point
x′i in the goal point cloud. Then the goal flow is given by ∆xi = x′i − xi . Then at each timestep,
we define rewardrt at timestep t as the negative of the average goal flow as below, where ∥.∥ denotes
the L2 distance and N is the number of points in object point cloud:

rt = − 1

N

N∑
i=1

∥∆xi∥,

D Camera Settings

During our training process, it was necessary to utilize the simulator’s depth camera; the parameters
for the depth camera, as utilized in our experiments, are presented in Table 3.

Table 3: Camera Settings
Parameters Values
Camera width 80
Camera height 721
Camera horizontal fov 71.36
Camera offset (0.24, 0, 0.14)
Camera rotation Around Y-axis by 65°
Simulation dt 0.001
Object point cloud size 400
Background point cloud size 400

E MPC Parameters

For robot control, we employed Model Predictive Control (MPC), with the control parameters for
the MPC outlined in Table 4. The ”MPC weights” item corresponds to the weight matrices Qi of the

13

MPC mentioned earlier. The weights in the table, from left to right, are for roll, pitch, yaw, position
(XYZ-Axis), angular velocity (XYZ-Axis), velocity (XYZ-Axis), and gravity place holder.

Table 4: MPC Parameters
Parameters Values

MPC weights [0.25, 0.25, 10, 50, 50, 50,
0, 0, 0.3, 0.2, 0.2, 0.2, 0]

MPC update frequency 1 time / sim dt
MPC force update frequency 1 time / 50 sim dt
MPC Cartesian K p diag(450, 450, 450)
MPC Cartesian K d diag(10, 10, 10)

With the MPC illustrated earlier, The dynamics can be succinctly expressed as:

X = Aqpx0 +BqpU, (1)

where X ∈ R13k represents the vector encompassing all state variables over the prediction horizon,
and U ∈ R3nk denotes the vector of all control inputs within the same period.

The objective function, aiming to minimize the weighted least-squares discrepancy from a reference
trajectory alongside the weighted magnitude of forces, is formulated as:

J(U) = ∥Aqpx0 +BqpU− xref∥L + ∥U∥K, (2)

where L ∈ R13k×13k and K ∈ R3nk×3nk are diagonal matrices containing weights for state de-
viations and force magnitudes, respectively. Here, U and X represent the control input and state
vectors over the prediction horizon. We assign equal weighting to forces with K = α13nk.

More details can be found in Bledt et al. [11].

F RPM-Net Training Details

In terms of our employment of RPM-Net [51], we initiated training with the first 20 categories
of the ModelNet40 [52] dataset employing a pre-trained model provided by the RPM-Net authors.
This model was trained with cropping augmentation to perform registration on the incomplete point
cloud. We opted not to use the normals from ModelNet, instead performing normal estimation on all
objects using Open3D [61]. We then performed further augmentation by introducing visual occlu-
sion through hidden point removal algorithm, increasing the extent of noise and cropping and better
aligning with deployment. Training continued until convergence, which was achieved after roughly
1300 epochs. Subsequently, we fine-tuned the model previously trained in the described process on
the YCB [53] dataset and our own scanned objects, continuing until convergence was once again
attained. The fine-tuning process achieved roughly 8 degrees in rotation mean absolute error (MAE)
and 0.05 in translation MAE. The visual cropping was conducted from random viewpoints, making
it challenging to guarantee the remaining percentage of the object, though it was at most 70%.

This approach leverages the capabilities of RPM-Net for robust feature extraction and point cloud
processing, enabling us to perform object pose estimation with the egocentric camera. The applica-
tion of occlusion, noise augmentation, and fine-tuning on diverse datasets underscores our method’s
effectiveness in improving model generalization and accuracy in real-world scenarios.

14

G Training Hyperparameters

Table 5: Hyperparameters
Hyperparameters Values
Batch size 64
Gradient step 160
Discount factor (γ) 0.99
Location policy temperature(left leg policy) (β) 0.1
Location policy temperature(leg selection policy) (β) 0.05
Initial timesteps 10000
Learning rate 0.0001
Max episode steps 7
Reward scale 1
Critic clamping [-20, 0]
Critic update freq per env step 2
Actor update freq per env step 0.5
Target update freq per env step 0.5
MLP size [128, 128, 128]

Our approach extends the Twin Delayed DDPG (TD3) algorithm [48], utilizing the framework pro-
vided by Stable-Baselines3 [62] as a foundation. For the segmentation-style network, we adopt
PointNet++ segmentation architectures for both actor and critic networks, leveraging PyTorch Geo-
metric’s implementation. Details on hyperparameters can be found in Table 5. Both the actor and
the critic networks are configured with identical architectures and learning rates.

H Training and Testing Object Sets

Below, we showcase the object we used in multi-object training. The blue objects are used for
training, and the coral objects are used for evaluation.

Figure 10: We showcase the objects we used in multi-object tasks; the objects in blue are used for training, and
objects in orange are used for testing.

15

Figure 11: Registration Error: The red point cloud on the right represents the captured object, while the green
point cloud indicates the target object pose. The registration result mistakenly shows the object as flipped.

Figure 12: Noisy Point Cloud Observation: The red point cloud represents the object captured by the camera,
which is highly distorted compared to the target point cloud in green. This distortion leads to poor registration
results and inaccurate policy outputs.

I Failure Case Analysis

One issue we observe is that noisy point cloud observations in the real world often lead to unrea-
sonable outputs from our policy, as shown in Fig.12. This presents challenges for both RPM-net
and our policy. Additionally, in our real robot experiments, a common failure case is registration
error, particularly when objects lack distinct features. As illustrated in Fig.11, the registration result
can incorrectly suggest that the object should be flipped, even during simple planar motions such
as pushing an object forward. This error causes the pushing policy, which is trained on correctly
oriented objects, to produce unexpected behaviors and ultimately fail the task. Control errors also
contribute to failures, particularly in tasks where precise contact point accuracy is critical, such as in
flipping tasks. As shown in Fig.13, the intended contact point (marked by the red dot) differs from
the actual contact location (marked by the blue dot) captured by the camera. This discrepancy be-
tween the planned and executed contact points can lead to ineffective manipulation, resulting in the
task’s failure. These control errors highlight the challenges of achieving high precision in real-world
scenarios, where even small deviations can significantly impact performance.

16

Intended Contact
Actual Contact

Figure 13: Control Error: The point cloud on the left is captured by the camera, with the red dot representing
the intended contact point and the blue dot indicating the actual contact location.

17

	Introduction
	Related Work
	Visual Manipulation with Legs
	Learning Visual Manipulation Policy
	Selecting from left or right legs

	Model-Based Loco-Manipulation Controller
	Point-cloud Registration Module

	Experiments
	Experiment Setup
	Evaluation in Simulation
	Evaluation in the Real World

	Conclusion
	Task: Object Pose Alignment
	Environment Settings
	Reward Definition
	Camera Settings
	MPC Parameters
	RPM-Net Training Details
	Training Hyperparameters
	Training and Testing Object Sets
	Failure Case Analysis

