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ABSTRACT

Invariant Contrastive Learning (ICL) methods have achieved impressive perfor-
mance across various domains. However, the absence of latent space represen-
tation for distortion (augmentation)-related information in the latent space makes
ICL sub-optimal regarding training efficiency and robustness in downstream tasks.
Recent studies suggest that introducing equivariance into Contrastive Learning
(CL) can improve overall performance. In this paper, we revisit the roles of aug-
mentation strategies and equivariance in improving CL’s efficacy. We propose
CLeVER (Contrastive Learning Via Equivariant Representation), a novel equiv-
ariant contrastive learning framework compatible with augmentation strategies of
arbitrary complexity for various mainstream CL backbone models. Experimen-
tal results demonstrate that CLeVER effectively extracts and incorporates equiv-
ariant information from practical natural images, thereby improving the training
efficiency and robustness of baseline models in downstream tasks and achieving
state-of-the-art (SOTA) performance. Moreover, we find that leveraging equivari-
ant information extracted by CLeVER simultaneously enhances rotational invari-
ance and sensitivity across experimental tasks, and helps stabilize the framework
when handling complex augmentations, particularly for models with small-scale
backbones. 1

1 INTRODUCTION

Self-supervised learning (SSL) reveals the relationships between different views or components of
the data to produce labels inherent to the data. These labels serve as supervisors for pretext tasks
in the pre-training process (Gui et al., 2023). As an unsupervised training strategy, SSL eliminates
the reliance on manual labeling, enabling SSL-based methods to achieve superior performance and
promising generalization capabilities across many domains (Caron et al., 2021; Devlin et al., 2018;
Gui et al., 2023; Oquab et al., 2024).

As a critical methodology in the SSL community, Invariant Contrastive Learning (ICL) generates
different views of the same input instance through data augmentation, expecting the backbone
model to extract semantic-invariant representations from the different distorted views. However,
this semantic-invariance-based approach assumes that only semantics unrelated to the distortions
brought by augmentation operations are valuable. In other words, typical ICL methods discard rep-
resentations affected by augmentation operations. This assumption necessitates careful construction
of augmentation strategies to achieve optimal downstream performance (Chen et al., 2020a; Lee
et al., 2021; Chen & He, 2021; Chen et al., 2020b; Caron et al., 2021). Moreover, such exquisite
augmentation strategies make pre-trained models vulnerable to unseen perturbations (Fig. 1(a)).

As the counterpart to the invariant principle, equivariant-based deep learning is well-studied (Sabour
et al., 2017; Batzner et al., 2021; Gerken et al., 2023; Xu et al., 2023; Weiler et al., 2023). Theo-
retically, a model can learn to be invariant or equivariant as required by the task for which it is
trained (Weiler et al., 2023). That is, a model can acquire the invariant or equivariant properties
necessary for a task by sufficiently training on a task-specific dataset. However, a naive model needs
to explicitly learn these properties, i.e., it needs to be presented with as many possible transformed

1The anonymized code has been uploaded as supplementary material and will be made publicly available
following the double-blind review process.
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(a) Comparison of DINO (Caron et al., 2021) performance
in the face of different perturbations: (1) The samples are
in common orientations and states. (2) The samples are in
an uncommon orientation or rotated. (3) The samples are in
unusual orientations and imaging states.
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(b) Comparison of the performance of
various backbone models pre-trained with
CLeVER and DINO on ImageNet-100. All
performances are obtained under rotational
perturbation.

Figure 1: CLeVER can introduce a comprehensive robustness improvement for DINO.

states (e.g., poses or positions) to understand the equivariant relationships among these states. This
naive approach leads to low training efficiency, high data requirements, weak generalization ability,
and non-robustness, which are undesirable. Consequently, many works have emerged that aim to
design structurally constrained models by incorporating equivariance (Weiler et al., 2023). Instead
of repeatedly learning different views of the same sample, these models automatically generalize
their knowledge to all considered transformations. These equivariant-based models typically reduce
the number of parameters, complexity, and data requirements while improving training efficiency,
prediction performance, generalization, and robustness.

However, prior studies on equivariant-based model design primarily focus on supervised learning
and task-specific scenarios. As an unsupervised and general-purpose pre-training strategy, the CL
approach cannot realize the introduction of equivariant properties by changing the structural design
of the backbone model or the prediction head. Moreover, since the training process of CL deals
with pretext tasks, the desired task-specific equivariance in the downstream task remains unknown.
Recent works based on Equivariant Contrastive Learning (ECL) introduce rotational equivariance
by incorporating rotation into augmentation strategies and integrating temporary modules or ar-
chitectures into the CL pre-training process (Xiao et al., 2021; Dangovski et al., 2021; Devillers
& Lefort, 2022; Bai et al., 2023; Garrido et al., 2023; Gupta et al., 2023; Everett et al., 2024).
However, most of these studies assume that equivariance (e.g. rotation) is a generic property of
downstream tasks, complicating the introduction of more complex equivariances. Notably, a re-
cent study, distortion-disentangled contrastive learning (DDCL) (Wang et al., 2024), proposes an
adaptive design that splits output representations and explicitly projects the distortions caused by
augmentation into a latent space, thereby leveraging information from augmentations. Since this
method does not require distortion-specific modules and architectures, it can be readily extended to
more complex augmentation strategies (e.g., rotation and elastic transformation) to introduce more
sophisticated equivariances, and has been evaluated on large-scale natural image datasets. However,
we observe that the orthogonal loss introduced by DDCL makes the training process unstable and
leads to trivial solutions. Therefore, we revisit both the ECL framework and the DDCL method in
detail and propose our novel ECL framework, Contrastive Learning Via Equivariant Representation
(CLeVER).

In summary, our main contributions are as follows:

• We revisit the ECL framework and DDCL, proposing a simple yet effective regulariza-
tion loss on the projection head parameters to prevent collapse and trivial solutions when
extracting equivariant representations using orthogonal loss.
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• We propose a novel ECL framework, CLeVER, based on our regularization loss and an ad-
vanced ICL framework DINO (Caron et al., 2021). By adaptively introducing equivariance
through augmentation strategies of arbitrary complexity, CLeVER enhances backbone per-
formance, leading to improved training efficiency, generalization, and robustness. CLeVER
achieves SOTA results on practical natural images and particularly boosts the performance
of models with small to medium-scale backbones.

• Unlike other studies designed for either augmentation invariance or sensitivity, our exper-
iments demonstrate that the equivariant representation (Equivariant Factor) extracted by
CLeVER simultaneously enhances both across experimental tasks.

• We employ CLeVER for three mainstream backbone models (ResNet (He et al., 2016), ViT
(Dosovitskiy et al., 2020), and VMamba (Liu et al., 2024)) experimentally demonstrating
that various types of backbone models can achieve better performance with CLeVER (Fig.
1(b)). Particularly, we find that VMamba-based contrastive learning has outstanding per-
formance on medium-scale data.

2 REVISIT THE EQUIVARIANT REPRESENTATION IN CL

Although ICL methods are widely used, the assumption or inductive bias of focusing only on seman-
tic information unrelated to augmentations/distortions raises some potential concerns (Chen et al.,
2020a; Chen & He, 2021; Chen et al., 2020b; Caron et al., 2021). To achieve semantic invariant
representation in ICL methods, the backbone model needs to learn as many views of the same sam-
ple as possible to achieve the multi-view-to-unique-feature mapping. The backbone model needs
to memorize as many views as possible for each sample, leading to small-scale models failing to
achieve satisfactory performance. In addition, since typical ICL methods disregard all information
associated with augmentations/distortions, the backbone model may exhibit poor generalization in
downstream tasks that require such semantic information (e.g., color semantics are crucial for clas-
sifying food and plants). Furthermore, since ICL methods often carefully select augmentation op-
erations to achieve the best performance scores in common scenarios, pre-trained backbone models
lack robustness against unknown perturbations. For example, due to the difficulty of achieving rota-
tional invariance, ICL methods typically avoid choosing rotation as an augmentation operation. As
shown in Fig. 1(a), this trade-off results in ICL methods generally struggling to handle rotation as a
common perturbation effectively.

Recent studies (Xiao et al., 2021; Dangovski et al., 2021; Devillers & Lefort, 2022; Park et al.,
2022; Bai et al., 2023; Garrido et al., 2023; Gupta et al., 2023; Everett et al., 2024) have introduced
equivariance into CL methods and proposed several ECL frameworks to address the aforementioned
concerns. Although the principles of these works are diverse, these works have several concerns. (a)
These frameworks usually focus only on realizing contrastive learning with rotational equivariance,
which means they focus on only a sub-problem of ECL, thereby limiting their extensibility and
potential. (b) These studies employ some equivariant-specific architectures or pretext task designs,
such as adding rotation predictor heads during pre-training to achieve rotation sensitivity (Dangovski
et al., 2021; Devillers & Lefort, 2022). Such equivariant-specific designs rely on manual labor and
drag down training efficiency. (c) Some existing frameworks are designed to address only a single
purpose of either augmentation invariance or sensitivity, and have not yet been extended to practical
natural images (Dangovski et al., 2021; Bai et al., 2023; Garrido et al., 2023; Gupta et al., 2023;
Everett et al., 2024). (d) Most works have not validated the performance of different types and
scales of backbone models within their frameworks, which is concerning as a general-purpose pre-
training framework.

DDCL (Wang et al., 2024) differs from the aforementioned ECL frameworks that rely on
equivariant-specific architectures and pretext task designs. It adopts a representation disentangle-
ment approach, explicitly splitting the backbone’s output into distortion-invariant and distortion-
variant representations, and introduces an orthogonal loss function to adaptively disentangle the
distortion-variant representation. By explicitly leveraging both distortion-variant and distortion-
invariant semantic information, DDCL significantly improves training efficiency and robustness.
More importantly, since DDCL adaptively extracts distortion-variant representations, it readily
adapts to augmentation strategies of arbitrary complexity. However, our in-depth study of DDCL
reveals several drawbacks, particularly concerning its use of orthogonal loss. Although utilizing
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Table 1: Order of magnitude of the parameters and output representations of the projection head
during pre-training in ImageNet-1K by the DDCL (w/ and w/o proposed LPReg). hV/I and zV/I

refer to the parameters of the head and representations respectively. All values are scaled by log10(·).

Methods DDCL DDCL w/ LPReg

Epochs hV hI zV zI hV hI zV zI
10 -1.46 2.04 -5.08 -0.32 1.87 1.87 -0.23 -0.45
50 -9.63 2.13 -9.84 -0.38 1.91 1.91 -0.26 -0.53

100 -17.1 2.09 -13.8 -0.53 1.85 1.85 -0.20 -0.71
200 -21.1 1.83 -18.6 -1.46 1.60 1.60 -1.37 -1.87

Status Collapse / Trivial Solution Similar projection

orthogonal loss to disentangle distortion-variant representations from different augmented views is
reasonable, we find that it may lead to trivial solutions. Specifically, the projection head may col-
lapse into a null space, especially when training on large-scale datasets, resulting in zero loss without
achieving the intended mapping of orthogonal vectors in the latent space. This leads to an unstable
training process, making DDCL difficult to employ effectively. Moreover, DDCL’s performance
across different backbone models has not been explored, leaving its generalizability unverified.

3 PROPOSED METHODS

Inspired by DDCL, we follow its methodology and employ an orthogonal loss function to supervise
equivariant representations in the latent space for the ICL framework. In addition, based on the
framework of DDCL, we propose a novel regularization loss for parameters of the projection head
to address the instability of DDCL. Furthermore, we incorporate DINO (Caron et al., 2021) as the
framework because it is not only a widely recognized method but also stable for more mainstream
backbone models (Morningstar et al., 2024). By integrating equivariant representations into DINO
through our stabilized DDCL, we propose a novel equivariant-based contrastive learning method,
CLeVER. Moreover, we validate the training efficiency and robustness of CLeVER across various
mainstream backbone models (ResNet, ViT and VMamba).

3.1 MAKE DDCL STABLE

DDCL (Wang et al., 2024) explicitly splits the output representation of the backbone model into
distortion-invariant and distortion-variant representations. The contrastive and orthogonal losses are
used to supervise the pairwise distortion-invariant and pairwise distortion-variant representations
across different views during the contrastive process, respectively. The formula for this process is
formulated as follows:

z
(1,2)
I , z

(1,2)
V = f(t1,2 ◦ I) (1)

LI = LCL(hI(z
(1)
I ), hI(z

(2)
I )) = −Similarity(hI(z

(1)
I ), hI(z

(2)
I )) (2)

LV = LOrth(hV (z
(1)
V ), hV (z

(2)
V )) = hV (z

(1)
V ) · hV (z

(2)
V ) (3)

LDDCL = αLI + βLV (4)

where f(·) is the backbone model of contrastive learning. The subscripts I and V refer to the vari-
ables or functions used for distortion-invariant and distortion-variant representations, respectively,
and superscripts 1 and 2 represent two views of the same sample. z and h refer to the representation
in the latent space and the projection head in the pretext task, respectively.

Analyzing the loss function of the distortion-variant representation of DDCL (i.e., Eq. 3), we find
that DDCL attempts to de-correlate the projected vectors of pairwise distortion-variant represen-
tations by making them orthogonal to each other. However, the orthogonality of hV (z

(1)
V ) and
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I

t1

t2

v1

v2

Pretext outputs

(a) Overview of the pre-training process for CLeVER.

Down-Stream HeadBackbone

I'

(b) Inference in downstream tasks.

Figure 2: A brief overview of CLeVER. (a) f(·) and g(·) are backbone models. In DINO, they
are EMA-based (Exponential Moving Average) teacher-student relationships. All zEF represent
Equivariant Factors in the latent space corresponding to transformation operations t1 and t2, and
zIR is denotes invariant representation of the invariant semantics in the latent space. h represents
the projection head used in the pretext task. In CLeVER, the loss of contrastive learning (LCL) of the
baseline method, the loss of orthogonality (LOrth), and the projection regularization loss (LPReg)
are used. (b) In downstream tasks, the disentangled invariant representation and equivariant factor
from the pre-trained backbone are incorporated for inference and prediction.

hV (z
(2)
V ) is not sufficiently necessary for LOrth to reach zero. We find that when training DDCL on

large-scale datasets, the parameter values of the projection head (hV (·)) tend to zero, generating zero
values for the projected vectors (hV (z

(1)
V ) and hV (z

(2)
V )). This trivial solution should be considered

as a collapsed projection to a null space rather than achieving orthogonality between representa-
tions. Consequently, the split distortion-variant representations may not be effectively supervised
and disentangled as expected.

To address the issue of trivial solutions, we introduce a novel regularization loss LPReg for parame-
ters of the projection head. This loss function aligns the parameter magnitudes of hV and hI , thereby
preventing the collapse of hV . The proposed loss function is formulated as follows:

LPReg = L1(∥hV ∥, ∥hI∥) = |∥hV ∥ − ∥hI∥| (5)

where L1(·) is the L1 loss function, ∥ · ∥ refers to the L2 norm. As demonstrated in Table 1, LPReg

effectively stabilize DDCL by preventing training collapse and avoiding trivial solutions.

3.2 CLEVER

To introduce equivariant representations into contrastive learning and thereby improve the train-
ing efficiency, robustness, and generalizability of the backbone model, we revisit the definition of
equivariance. Given a transformation group T with group actions t▷X and t▷Y in domain X and
co-domain Y , respectively, we consider a function f : X → Y to be T -equivariance when it satisfies
Eq. 6. We call it T -equivariance when f satisfies Eq. 7. Obviously, T -invariance is a trivial case of
T -equivariance (when t▷Y := idY ).

f(t▷X x) = f(x) ∀t ∈ T, x ∈ X (6)

f(t▷X x) = t▷Y f(x) ∀t ∈ T, x ∈ X (7)

Assuming that the group T has another group operation t▷′
Y = idY (identity operation) in the

co-domain, Eq. 7 can be modified as follows:

5
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f(t▷X x) = t▷Y f(x) = t▷Y (t▷′
Y f(x)) ∀t ∈ T, x ∈ X (8)

This formulation indicates that when the transformation t ∈ T perturbs the input x ∈ X via the
group action t▷X , we can achieve T -equivariance by appropriately defining the group action t▷Y

on Y . This allows us to attribute the effect of t to the representation f(x), which is T -invariant
under the identity action t▷′

Y in the co-domain Y (latent space).

As illustrated in Fig. 2(a), we refer to the framework design of DDCL to explicitly split the represen-
tations extracted from the backbone model into Invariant Representations (zIR) and Equivariant
Factors (zEF ) according to a separation ratio. Furthermore, zIR and zEF are supervised, respec-
tively, using the contrastive loss (LCL, based on DINO) and orthogonal loss (LOrth), with the help
of the projection regularization loss (LPReg). The group action t▷Y of the group T in the co-
domain Y is realized as a concatenation operation, and a trainable neural network that is parallel
to and shares some parameters with the backbone model f . We name the framework CLeVER, an
abbreviation for Contrastive Learning Via Equivariant Representation. The formulas are given as
follows:

(z
(1,2)
IR , z

(1,2)
EF ) = t1,2 ▷Y f(x) = f(t1,2 ▷X x) ∀t ∈ T, x ∈ X (9)

LCL = CE(Softmax(hIR(z
(1)
IR)), Softmax(hIR(z

(2)
IR))) (10)

LOrth = Softmax(hEF (z
(1)
EF )) · Softmax(hEF (z

(2)
EF )) (11)

LPReg = |∥hEF ∥ − ∥hIR∥| (12)

LTotal = αLCL + βLOrth + λLPReg (13)

During training, CLeVER retains the principle of extracting representations invariant to augmenta-
tion operations, as employed in ICL approaches. Moreover, it incrementally extracts representations
that capture the effects of distortions or perturbations (Equivariant Factors) in a learnable manner.
Thus, CLeVER provides information about perturbations without introducing inductive biases or
prior assumptions (e.g., sensitivity or robustness to specific perturbations). CLeVER explicitly splits
the extracted representations into Invariant Representations (zIR) and Equivariant Factors (zEF ).
Consequently, during inference (e.g., for classification tasks), the downstream prediction head per-
forms a joint probabilistic prediction, i.e., Pθ(zIR, zEF ), based on zIR and zEF , as illustrated in
Fig. 2(b). This joint modeling allows downstream tasks to leverage both invariant and equivariant
information, enhancing the model’s robustness and generalization. Furthermore, we utilize Equiv-
ariant Factors to refer to the representations containing perturbation information (zEF ) since, unlike
other CL methods designed to address only a single purpose, our experiments demonstrate that
leveraging zEF achieves better performance on both augmentation invariance and sensitivity across
experimental tasks (Tables 5 and 6 in Section 4.4).

3.3 MAKE ALL BACKBONES CLEVER

To comprehensively validate the generalizability of CLeVER, we select three representative back-
bone models: ResNet (He et al., 2016), ViT (Dosovitskiy et al., 2020), and VMamba (Liu et al.,
2024), based on convolutional operators, self-attention mechanisms, and selective state space mod-
els, respectively. We also employ various sizes of backbone models, pre-training datasets, and
downstream datasets to investigate CLeVER’s training efficiency, performance, and robustness. We
primarily utilize DINO (Caron et al., 2021) as the foundational framework due to its stability and
support for more mainstream backbone models. Notably, CLeVER is fully adaptive and requires no
augmentation-specific modifications based on DINO framework. This suggests that CLeVER can
enrich the equivariance of backbone models by increasing the complexity of augmentation strategies
and incorporating a wider variety of transformations.

6
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Table 2: Comparison of linear performance of models pre-trained on IN-100. Approaches labeled
w/o R. were pre-trained without rotated images and thus cannot handle rotations during inference.
The green numbers represent performance increases over the corresponding baselines.

Methods Epoch Handle R. Backbones #Params GFLOPs Top-1 Top-5
SimCLR w/o R. (Chen et al., 2020a) 200 % ResNet50 23.5M 4.14G 73.6 -

SimCLR (Chen et al., 2020a) 200 ! ResNet50 23.5M 4.14G 72.9 -
Debiased w/o R. (Chuang et al., 2020) 200 % ResNet50 23.5M 4.14G 74.6 92.1

BYOL w/o R. (Grill et al., 2020) 200 % ResNet50 23.5M 4.14G 76.2 93.7
MoCo w/o R. (He et al., 2020) 200 % ResNet50 23.5M 4.14G 73.4 -

MoCo v2 w/o R. (Chen et al., 2020b) 200 % ResNet50 23.5M 4.14G 78.0 -
MoCo v2 (Chen et al., 2020b) 200 ! ResNet50 23.5M 4.14G 72.0 -

RefosNet (Bai et al., 2023) 200 ! ResNet50 23.5M 4.14G 80.5 95.6
200 ! ViT-Tiny 5.5M 1.26G 66.2 89.0
200 ! ResNet18 11.2M 1.83G 71.5 91.8

DINO (Caron et al., 2021) 200 ! ViT-Small 21.7M 4.61G 73.2 92.7
200 ! ResNet50 23.5M 4.14G 78.4 94.9
200 ! VMamba-Tiny 29.5M 4.84G 80.9 95.7
200 ! ViT-Tiny 5.5M 1.26G 68.7+2.5 90.7
200 ! ResNet18 11.2M 1.83G 74.2+2.7 92.9

CLeVER (Ours) 200 ! ViT-Small 21.7M 4.61G 75.7+2.5 93.6
200 ! ResNet50 23.5M 4.14G 79.1+0.7 95.4
200 ! VMamba-Tiny 29.5M 4.84G 83.0+2.1 96.4

Simsiam (Chen & He, 2021) 500 ! ResNet50 23.5M 4.14G 79.7 94.9
DDCL (Wang et al., 2024) 500 ! ResNet50 23.5M 4.14G 80.0 95.0
DDCL w/ LPReg (Ours) 500 ! ResNet50 23.5M 4.14G 80.7+1.0 95.2

500 ! ViT-Tiny 5.5M 1.26G 70.2 91.4
500 ! ResNet18 11.2M 1.83G 75.3 93.6

DINO (Caron et al., 2021) 500 ! ViT-Small 21.7M 4.61G 76.0 93.9
500 ! ResNet50 23.5M 4.14G 79.6 94.8
500 ! VMamba-Tiny 29.5M 4.84G 83.2 96.0

CLeVER w/o LPReg 500 ! ViT-Small 21.7M 4.61G 76.3+0.3 93.4
500 ! ViT-Tiny 5.5M 1.26G 74.1+3.9 93.1
500 ! ResNet18 11.2M 1.83G 78.1+2.8 94.3

CLeVER (Ours) 500 ! ViT-Small 21.7M 4.61G 77.5+1.5 94.1
500 ! ResNet50 23.5M 4.14G 80.0+0.4 95.2
500 ! VMamba-Tiny 29.5M 4.84G 83.9+0.7 96.5

DINO (Caron et al., 2021) 1000 ! ViT-Small 21.7M 4.61G 76.3 93.3
CLeVER (Ours) 1000 ! ViT-Small 21.7M 4.61G 78.3+2.0 94.6

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

For pre-training, we utilize ImageNet-100 (IN-100) and ImageNet-1K (IN-1K). Due to computa-
tional constraints, IN-100 serves as our default dataset for training over 200 and 500 epochs (Sec-
tions 4.2 and 4.3). To further analyze the robustness of CLeVER (Section 4.3) and Equivariant Fac-
tors (Section 4.4), we report results using three data augmentation strategies: Basic Augmentation
(BAug), Complex Augmentation (CAug), and High-Complexity Augmentation (CAug+). BAug
refers to the data augmentation strategies used by DINO, which include color jittering, Gaussian
blur, solarization, and multi-crop. CAug builds upon BAug by adding rotation, while CAug+ fur-
ther extends CAug by incorporating elastic transformations (details are provided in Appendix A.1).

To comprehensively evaluate the generalization and practicality of CLeVER, we conduct down-
stream experiments (Section 4.5) on both in-domain and out-of-domain datasets (more implemen-
tation details are provided in Appendix A.2). To further assess the reliability of CLeVER, Ap-
pendix A.3 presents the performance gains achieved by pre-training on a large-scale dataset (IN-
1k). Additionally, we perform ablation studies to confirm that the default hyperparameters used in
CLeVER yield optimal performance (details are provided in Appendix A.4).

4.2 GENERALIZABILITY OF CLEVER

In Table 2, we use several mainstream backbone models to comprehensively examine the general-
izability of CLeVER and the impact of equivariance across different backbones, comparing it with
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Figure 3: Visualization of self-attention under various augmentation settings.

Table 3: The effect of equivariance on the ro-
bustness of Simsiam.

Methods Orig. CJ CJ+Flip CJ+Ro CJ+Ro+ET
Trained by BAug

Simsiam (Chen & He, 2021) 81.9 81.3 81.4 50.3 27.3
DDCL (Wang et al., 2024) 82.2 81.6 81.6 50.0 26.8
DDCL w/ LPReg (Ours) 82.3 81.8 81.6 51.6 27.3

Trained by CAug (w/ Ro)
Simsiam 79.7 79.0 79.0 77.0 51.9
DDCL 80.0 79.3 79.4 77.2 48.5

DDCL w/ LPReg (Ours) 80.7 80.2 80.0 77.6 48.1
Trained by CAug+ (w/ Ro and ET)

Simsiam 78.6 77.7 77.7 75.1 74.1
DDCL 78.8 78.2 78.2 75.4 74.2

DDCL w/ LPReg (Ours) 79.8 79.0 79.3 77.0 75.5

Table 4: The effect of equivariance on the ro-
bustness of DINO.

Methods Orig. CJ CJ+Flip CJ+Ro CJ+Ro+ET
Trained by BAug

DINO (Caron et al., 2021) 78.2 77.6 77.2 52.7 41.0
CLeVER w/o LPReg 78.4 77.5 77.8 53.2 41.4

CLeVER (Ours) 78.3 77.8 78.1 53.4 41.2
Trained by CAug (w/ Ro)

DINO 76.0 74.7 75.2 73.8 63.4
CLeVER w/o LPReg 76.3 75.7 75.4 74.6 64.5

CLeVER (Ours) 77.5 75.9 76.5 75.7 64.8
Trained by CAug+ (w/ Ro and ET)

DINO 73.9 73.4 73.2 72.3 69.4
CLeVER w/o LPReg 74.3 73.6 74.0 73.1 70.7

CLeVER (Ours) 75.2 74.0 74.5 73.8 71.7

other state-of-the-art ICL and ECL approaches. The results show that our proposed LPReg enhances
DDCL. Moreover, CLeVER improves the performance of the DINO framework across various types
and scales of backbone models, achieving gains of 0.7–2.7% at 200 and 0.4–3.9% at 500 epochs. It
is worth noting that smaller-scale models benefit more significantly from CLeVER. Comparing the
performance between CLeVER and it w/o LPReg further emphasizes the importance of performance
of projection and Equivariant Factor extraction. Furthermore, with the regularization loss, CLeVER
exhibits continuous performance improvements as the training epochs increase from 200 to 1000.
Notably, VMamba (Liu et al., 2024), a recently proposed backbone model, can be effectively in-
tegrated into our framework. Fig. 1(b) and Table 2 further demonstrate that VMamba achieves the
best performance when introducing equivariance within the CLeVER framework. This suggests that
the integration of Equivariant Factors shows superiority in maximizing the potential of innovative
backbone architectures like VMamba.

4.3 ROBUSTNESS OF EQUIVARIANCE

To validate the positive impact of equivariance on the robustness of the backbone model, we use
perturbed test data in the linear evaluation of the backbone model (pre-trained for 500 epoch with
perturbations). In these experiments, in addition to CLeVER and DINO, we also include Simsiam
(Chen & He, 2021), referring to DDCL, as a baseline to validate the effect of our proposed projection
regularization. Orig. denotes no perturbation, CJ represents color jitter, Ro and ET denote rotation
and elastic transformations, respectively.

In Table 3 and 4, the evaluation results suggest that our proposed projection regularization loss
enhances the performance of robustness of ICL framework by preventing training collapse. With
Simsiam as the baseline, introducing equivariance improves the performance of the backbone under
the perturbation of rotation and elastic transformation by about 26.7% and 48.2%, respectively.
Similarly, by incorporating equivariance, CLeVER improves the performance of vanilla DINO under
perturbations of rotation and elastic transformation by about 21.1% and 30.7%, respectively. The
improved performance, especially when training on complex perturbations (i.e., CAug and CAug+),
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Table 5: Experiments of rotational invariance.

Linear Fine-tune
Methods Orig. Ro.(90°) Ro.(180°) Orig. Ro.(90°) Ro.(180°)

DINO 65.3 62.6 61.3 76.9 68.5 65.6
CLeVER w/o LPReg 66.1 63.1 61.6 76.9 69.5 65.8

CLeVER 67.1 63.4 62.3 78.7 69.9 66.9

Table 6: Rotational sensitivity.

Methods Linear Fine-tune
DINO 52.2 75.2

CLeVER w/o LPReg 52.5 75.0
CLeVER 53.2 75.5

Table 7: Semantic analysis of Equivariant Factors (EF) and Invariant Representations (IR).

Methods Representations Orig. CJ CJ+Flip CJ+Ro
DINO Total 76.0 74.7 75.2 73.8

Total 76.3 75.7 75.4 74.6
CLeVER w/o LPReg IR 76.2 75.4 75.3 74.4

EF 25.5 24.7 25.0 23.7
Total 77.5 75.9 76.5 75.7

CLeVER IR 77.3 75.8 76.4 75.2
EF 4.1 4.1 4.0 3.7

indicates the promise of applying CLeVER to natural images and other practical scenarios involving
more sophisticated information. Fig. 3 provides a visualization comparison of self-attention in ViT-
Small. We observe that even when trained with the most complex augmentation setting (Rotation
+ Elastic Transformation), the proposed CLeVER learns more meaningful attention maps. The
focused regions show high similarity across augmentations of different complexity, demonstrating
the evidence of introducing perturbation-related information for outperformance. More detailed
attention map comparisons corresponding to different attention heads are shown in Appendix A.5.

4.4 ANALYSIS OF EQUIVARIANT FACTORS

To explore the role of Equivariant Factors during inference, we employ the backbone pre-trained on
CAug for 500 epochs and perform inference on OxfordPet (Parkhi et al., 2012), for both rotational
invariance and rotational sensitivity testing. We use OxfordPet instead of IN100 because the faces
and bodies of pets in this dataset are vertical, unlike the latter where the images themselves are
tilted at different angles. In the rotational invariance test, the images are randomly rotated between
±90◦ and ±180◦, then used for evaluation in a downstream classification task to assess how well the
model maintains classification performance despite the rotations. For the rotational sensitivity test,
we perform 4-fold rotation predictions/classifications (90°, 180°, 270°, and 360°). We evaluate the
accuracy of the model’s predicted rotation angles as a downstream task. This assessment indicates
the backbone’s ability to recognize and be sensitive to rotational transformations.

The experiments in Tables 5 and 6 demonstrate that the Equivariant Factors extracted by CLeVER do
not introduce inductive biases as vanilla architectures do. Instead, they provide perturbation-related
information. Unlike most existing ECL frameworks designed for a single purpose, the equivariant
information from CLeVER can be utilized in both ways depending on the requirements of down-
stream tasks. This flexibility results in both improved rotational invariance or rotational sensitivity.

Since the representations of Invariant Representation (IR) and Equivariant Factors (EF) are split and
explicitly supervised by projection heads, we further separately use each representation in linear
evaluation on IN-100 to explore the characteristics of each. In Table 7, we observe that the IR of
CLeVER achieves slightly lower performance than the Total, indicating the effect of EF. Notably,
when we use only EF for inference under different levels of perturbations, we find that the predic-
tion accuracies of EF in CLeVER are around 3.7-4.1% (gray), compared to those without LPReg

being around 23.7-25.5% (light gray). Lower EF accuracies and superior overall and IR inference
performance provide evidence that the EF extracted by CLeVER, facilitated by LPReg , contain less
invariant semantic information and encapsulate more perturbation-related information as intended.

4.5 DOWNSTREAM TASKS

We use the pre-trained backbone models to evaluate the generalization ability and practicality of
CLeVER on both in-domain and out-of-domain downstream tasks. The results in Table 8 demon-
strate that CLeVER improves the efficiency of in-domain semi-supervised learning compared to
DINO. In addition, in out-of-domain downstream classification tasks, CLeVER provides more sig-
nificant improvements, especially when pre-trained with complex augmentation strategies.
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Figure 4: Qualitative performance of unsupervised saliency segmentation task.

Table 8: In-domain and out-of-domain downstream classification tasks.

In-domain Semi. Out-of-domain Downstream
Methods 1% 10% CUB200 Flowers102 Food101 OxfordPet

Trained by BAug
DINO 57.9 75.1 62.4 80.6 82.2 79.0

CLeVER 59.5 75.0 61.6 79.4 82.4 79.7
Trained by CAug (w/ Ro)

DINO 53.5 72.7 62.4 80.2 82.9 76.2
CLeVER 56.3 74.9 63.2 80.4 83.0 78.1

Table 9: Unsupervised downstream segmentation tasks.

Video object seg. Unsupervised saliency seg.
Methods DAVIS 2017 ECSSD DUTS DUT OMRON

(J&F )m Jm Fm IoU Acc. IoU Acc. IoU Acc.
Trained by BAug

DINO 0.594 0.582 0.606 0.657 0.866 0.431 0.789 0.427 0.780
CLeVER 0.592 0.577 0.606 0.673 0.877 0.440 0.801 0.443 0.787

Trained by CAug (w/ Ro)
DINO 0.602 0.582 0.623 0.655 0.867 0.426 0.784 0.417 0.766

CLeVER 0.607 0.586 0.628 0.688 0.888 0.446 0.803 0.447 0.789

To validate the performance of pre-trained attention in downstream segmentation tasks, we con-
duct unsupervised video target segmentation tests referring to DINO. We also perform unsupervised
saliency segmentation tests using TokenCut (Wang et al., 2022). The results in Table 9 indicate that
CLeVER significantly improves unsupervised segmentation performance. Moreover, incorporating
complex augmentation strategies and equivariance notably enhances the backbone model’s segmen-
tation capabilities. Fig. 4 qualitatively demonstrates that our proposed CLeVER generates superior
attention-based saliency segmentation results compared to those of DINO.

5 CONCLUSIONS

Summary. This paper introduces a projection regularization loss to mitigate the risk of training col-
lapse and trivial solutions in equivariant contrastive learning. By integrating equivariant representa-
tions into the invariant-based contrastive learning framework, we propose CLeVER, a novel equiv-
ariant contrastive learning method. CLeVER provides perturbation-related information without in-
troducing additional inductive biases, significantly improving the training efficiency, generalization,
and robustness of mainstream backbone models across various types and scales. Limitations and
Future Works. Currently, we observe that the Equivariant Factors extracted by CLeVER contain
less semantic information, and they assist the model in achieving better performance on both aug-
mentation invariance and sensitivity experiments. Despite the promising performance of CLeVER,
the perturbation-related information extracted by the stabilized orthogonal loss and stored in the
Equivariant Factors is not yet fully understood. Therefore, in future research, we plan to investi-
gate methods to extract Equivariant Factors in a more interpretable manner, aiming to gain deeper
insights into their contribution to the model’s performance.
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A APPENDIX

A.1 AUGMENTATION SETTINGS

Compared to default augmentation setting used in DINO (i.e., BAug), the CAug has
an additional “transforms.RandomRotation(degrees=(-90, 90))” for all input images, and
the CAug+ has additional “transforms.RandomRotation(degrees=(-90, 90))” and “trans-
forms.RandomApply([transforms.ElasticTransform(alpha=100.0)], p=0.5)” for all input images.

A.2 DETAILED EXPERIMENTAL SETUPS

For in-domain downstream tasks (1% and 10% semi-supervised learning), we use the same dataset
as in pre-training (IN-100 or IN-1k). For out-of-domain downstream tasks, we use CUB200 (Wah
et al., 2011), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), and Ox-
fordPet (Parkhi et al., 2012) for downstream classification tasks. Additionally, for out-of-domain
segmentation downstream tasks, we use DAVIS 2017 (Shi et al., 2015), ECSSD (Wang et al., 2017),
DUTS (Yang et al., 2013), and DUT OMRON (Wang et al., 2022) as test sets.

All pre-training experiments are conducted on four NVIDIA A100 (80G) GPUs, with experimental
setups identical to those of DINO (Caron et al., 2021) and DDCL (Wang et al., 2024). Referring
to DINO Caron et al. (2021), when pretraining the model, we use SGD with base lr = 0.001, initial
weight decay = 0.04, momentum = 0.9, and a cosine decay schedule on both IN-1k and IN-100
datasets. We conduct all experiments with a batch size of 128 per GPU on four NVIDIA A100 (80G)
GPUs (or a batch size of 256 per GPU on 2 A100 GPUs), following the linear scaling rule Goyal
et al. (2017). For linear evaluation, we use a SGD optimizer with 100 epochs, lr = 0.002, weight
decay = 0, momentum = 0.9, and batch size per GPU = 128. On the linear evaluation experiments,
only the linear layer is trained. In addition, identical to DINO, we use a warm-up strategy for a
more stable training process with 10 warm-up epochs. For fine-tune-based downstream experiments
(semi-supervised learning with 1% and 10% labels and downstream classification tasks on CUB200
Wah et al. (2011), Flowers102 Nilsback & Zisserman (2008), Food101 Bossard et al. (2014) and
OxfordPet Parkhi et al. (2012)), we use a SGD optimizer with 200 epochs, lr of backbone and linear
layer = 0.001, weight decay = 0.0001, momentum = 0.9, with a batch size of 256 per GPU. If the
experiments are conducted with a batch size of 128 per GPU on four NVIDIA GPUs, the memory
is less than 40G per GPU and the training time is around 3.5 hours per 100 epochs for ViT-small on
IN100 datasets (The training time is also related to the type of hard drive.)
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Table 10: Performance comparisons in ImageNet-1k.

Methods Orig. CJ CJ+Flip CJ+Ro CJ+Ro+ET
Trained by BAug

DINO 73.5 72.6 72.8 48.2 32.6
CLeVER 73.5 72.7 72.6 48.0 31.8

Trained by CAug (w/ Ro)
DINO 71.8 70.9 70.9 70.0 55.6

CLeVER 72.0 71.2 71.2 70.1 55.3
Trained by CAug+ (w/ Ro and ET)

DINO 70.2 69.3 69.3 68.3 66.4
CLeVER 70.7 69.9 69.8 69.0 66.8
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Figure 5: Ablation studies on hyperparameters.

A.3 CLEVER IN LARGE-SCALE DATASET

We conduct robustness experiments with CLeVER on the large-scale dataset IN-1K to validate its re-
liability. In this experiment, we use ViT-Small as the backbone model, pre-training it for 100 epochs.
Table 10 shows that on the large dataset, CLeVER still enhances the backbone model’s robustness
by increasing the complexity of the augmentation strategy, although the performance gain is less
pronounced than on the medium-scale dataset IN-100. We attribute this to the substantial semantic
information present in large datasets, which the backbone model can learn, making equivariance
learning more challenging.

Furthermore, the results under the “Trained by CAug+” setting in Table 10 suggest that the gains
from equivariance become increasingly significant as the perturbation complexity increases. This
emphasizes the importance of incorporating complex augmentation strategies to maximize the ro-
bustness improvements offered by equivariance, even in large, information-rich datasets.

A.4 ABLATION STUDY

We perform ablation studies on some critical hyperparameters within CLeVER to ensure optimal
configurations. Fig. 5(a) shows that the optimal separation ratio (i.e., the ratio of the dimensions of
zIR and zEF ) is 0.8. Fig. 5(b) demonstrates that the optimal choice of the output dimension for the
projection head in CLeVER is the default 216 = 65536. Fig. 5(c) shows that the optimal weight λ
for LPReg is 0.001.

A.5 DETAILED SELF-ATTENTION VISUALIZATION

Figures 6, 7, and 8 provide detailed self-attention visualization maps for the six attention heads
of ViT-Small, corresponding to Fig. 3. These figures illustrate that, compared to DINO, CLeVER
learns more meaningful attention patterns across augmentation settings of varying complexity.
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Figure 6: Detailed self-attention visualization maps from six attention heads (Example 1).

Figure 7: Detailed self-attention visualization maps from six attention heads (Example 2).
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Figure 8: Detailed self-attention visualization maps from six attention heads (Example 3).
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