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ABSTRACT

We study the classic problem of prediction with expert advice under the constraint
of differential privacy (DP). In contrast to earlier work in this area, we are in-
terested in distributed settings with no trusted central curator. In this context,
we first show that a classical online learning algorithm naturally satisfies DP and
then design two new algorithms that extend and improve it: (1) RW-AdaBatch,
which provides a novel form of privacy amplification at negligible utility cost,
and (2) RW-Meta, which improves utility on non-adversarial data with zero pri-
vacy cost. Our theoretical analysis is supported by an empirical evaluation using
real-world data reported by hospitals during the COVID-19 pandemic. RW-Meta
outperforms the classical baseline at predicting which hospitals will report a high
density of COVID-19 cases by a factor of more than 2× at realistic privacy levels.

1 INTRODUCTION

Many practical algorithmic and organizational problems, from routing data to allocating scarce re-
sources, involve repeated predictions about the future state of a system. Prediction with expert
advice (Cesa-Bianchi & Lugosi, 2006) is a flexible framework developed in the online learning lit-
erature that can be used to model these problems as an iterative game between a player and nature:
at each time step t = 1, . . . , T , the player receives suggestions from each of n ‘experts’ and must
decide whose advice to follow. Nature then reveals the gain of each expert at that time step, and the
player receives a reward based on their actual choice. The player’s goal is to maximize their total
reward over the course of the entire game.

Over the past several decades, the field of online learning has developed many sophisticated algo-
rithms for this problem with impressive performance guarantees (Adamskiy et al., 2012; Luo &
Schapire, 2015; Korotin et al., 2020). In many applications, however, predictions are either implic-
itly or explicitly about human behavior. Optimizing purely for predictive accuracy in this context is
risky because the algorithm might inadvertently leak sensitive data through its outputs, analogous to
the well-understood privacy risks in batch learning (Shokri et al., 2017; Carlini et al., 2023).

To mitigate this issue, researchers have developed several experts algorithms that provably satisfy
differential privacy (DP), a popular method for controlling the information that a statistical algorithm
leaks about its input (Dwork et al., 2006). But despite strong theoretical results, these algorithms
rely on several common assumptions that limit their practical application. Our goal in this work is to
overcome this limitation by designing algorithms that rely on more general assumptions, allowing
them to be used in contexts where current state-of-the-art methods cannot be easily applied.

1.1 OUR CONTRIBUTIONS

Our main contribution is the design, analysis, and evaluation of two new algorithms for prediction
with expert advice under local DP: RW-AdaBatch and RW-Meta. We describe the specific advan-
tages of our approach below.

More realistic assumptions. Unlike prior work, our algorithms are compatible with the local model
of DP, which does not assume the existence of a trusted central data curator. This makes them appli-
cable to settings like healthcare, transportation, or energy usage where predicting aggregate behavior

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

is socially useful but individual-level records are often too sensitive to share. Also unlike existing
work, our algorithms are anytime (Dean & Boddy, 1988), meaning that they do not require advanced
knowledge of the input size to optimize parameters.

Novel form of privacy amplification. The RW-AdaBatch algorithm offers amplified privacy guar-
antees by adaptively batching incoming data points together as they arrive. This gives each of the
batched points a “crowd” to hide in, improving the final privacy analysis of the algorithm’s outputs in
a manner analogous to the celebrated shuffle model (Erlingsson et al., 2019). Our analysis leverages
the theory of random walks to prove that this batching carries zero utility cost with high probability.

Private learning in dynamic environments. The RW-Meta algorithm leverages meta-learning to
greatly improve performance in dynamic environments at no additional privacy cost. The key chal-
lenge is that in the experts problem, it is possible to leak information through both our choice of
expert and the actual advice the chosen expert gives us. Prior work addresses this issue by implic-
itly assuming that expert advice is independent of any sensitive data, but this is a severe limitation.
To overcome this, we exploit correlated noise and linearity to simultaneously compute advice for
many data-aware experts and the optimal choice of expert, all at a fixed privacy cost. To the best of
our knowledge, the resulting private experts algorithm is the first that is capable of achieving high
absolute performance on inputs where the best action varies dynamically over time.

Empirical validation. We rigorously evaluate our algorithms’ performance using a combination of
synthetic data and real-world data reported by hospitals during the COVID-19 pandemic. On the
privacy side, we show that the the privacy amplification of RW-AdaBatch is substantial and only
grows over time, corresponding e.g. to a nearly 10× improvement in the worst-case value of the
privacy parameter δ when t = 10, 000. On the utility side, we find that RW-Meta outperforms the
classical algorithm by a factor of more than 2× at predicting which hospitals will report the highest
density of COVID-19 patients each week. It would be essentially impossible for any algorithm based
on data-independent experts to match the performance we observe.

2 RELATED WORK

The study of online learning with DP was initiated in 2010 by the papers of Dwork et al. (2010) and
Chan et al. (2011), which examined the problem of privately updating a single counter. Later work
has gone on to apply their framework to more complicated statistics (Perrier et al., 2018; Bolot et al.,
2013; Wang et al., 2021). Jain et al. (2012) formalized the idea of private online learning through
the lens of convex optimization and designed algorithms for optimizing strongly convex functions
while preserving privacy. Subsequently, Thakurta & Smith (2013) extended the study of private
online learning to include the partial information or bandit setting, where the learner only observes
the reward for the specific action they chose, which has also been studied in Hannun et al. (2019)
and Azize & Basu (2024). Recently, considerable interest in private online convex optimization has
been driven by machine learning where it is used to study the properties of DP-SGD and related
algorithms (Kairouz et al., 2021; Choquette-Choo et al., 2023; 2024).

The works studying private prediction with expert advice that are most similar to ours are Asi et al.
(2023) and Agarwal & Singh (2017), which both fall under the central model of DP. We also note
that very recent parallel work by Gao et al. (2024) explores online prediction from experts in the
federated setting, where m clients all attempt to solve a single experts problem simultaneously with
limited communication. Their Fed-DP-OPE-Stoch algorithm is the first experts algorithm that we
are aware to explicitly satisfy local DP, and therefore shares motivation with our work. However,
the federated version of the problem and the stochastic adversaries they consider lead to substantial
technical differences between our results.

Like us, Asi et al. (2023) exploit the infrequent-switching behavior of a classical online learning
algorithm (Shrinking Dartboard, by Geulen et al. (2010)) to develop differentially private algorithms
for prediction from expert advice. Their focus is on the high-dimensional regime, where the gap
between local and central DP is most pronounced (Edmonds et al., 2019; Duchi et al., 2013).

The algorithms in Agarwal & Singh (2017) represent the state-of-the-art in the low-dimensional
regime that we target. All of the algorithms developed in that work rely on the binary tree aggrega-
tion technique (Dwork et al., 2010; Chan et al., 2011), which can be used to simultaneously estimate
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any partial sum of a sequence with O(log1.5 T ) noise scale while satisfying DP. While highly effi-
cient, this technique fundamentally requires the time horizon T to be known in advance, and also
assumes the existence of a central trusted data curator.

Our work overcomes these limitations at the cost of a weaker worst-case dependence on the dimen-
sion of the problem, which is a consequence of satisfying local vs. central DP (Duchi et al., 2013).
We therefore emphasize that our goal is not to directly compete with these state-of-the-art algorithms
in the settings they target (i.e. central DP, static data, known time horizon). Rather, we aim to design
algorithms with weaker starting assumptions that can perform well in settings that the SOTA cannot
be (easily) applied to (i.e. local DP, shifting data distributions, unknown time horizon).

3 PROBLEM SETTING

3.1 NOTATION

Given a vector v ∈ Rn, we denote its kth element with the subscript vk, and its kth smallest element
using parentheses as in v(k). We use the term ‘leader’ to refer to the argmax over the elements of
a vector v, and the term ‘gap’ to refer to the quantity v(n) − v(n−1). For two random variables
X and Y , we say that X is stochastically larger than Y , denoted X ≥st Y , if for all x we have
P[X > x] ≥ P[Y > x]. We use Φ and φ to denote the standard Gaussian CDF and PDF respectively.

3.2 PREDICTION WITH EXPERT ADVICE

Prediction with Expert Advice can be thought of as a special case of online linear optimization
(Abernethy et al., 2014). At each time step t ∈ [T ], we choose an action xt from the action set
X , which in our case is the n-dimensional probability simplex. We then observe the gain vector
gt ∈ [0, 1]n and receive reward ⟨xt, gt⟩. A typical goal is to minimize static regret, which is defined
as the difference between the reward we actually receive and the reward of the best single action in
hindsight, i.e. maxx∈X

∑T
t=1⟨x, gt⟩ −

∑T
t=1⟨xt, gt⟩.

Many algorithms are known which can achieve optimal static regret bounds of O(
√
T log n) (Cesa-

Bianchi & Lugosi, 2006). Unlike statistical learning, these guarantees do not rest on any distribu-
tional assumptions and still hold even when the data is adversarially generated. In the oblivious
adversary model, the gain vectors are fixed in advance (with full knowledge of the algorithm), while
in the adaptive adversary model, incoming gain vectors are allowed to depend on our earlier deci-
sions. These models turn out to be equivalent in the non-private setting, but recent work has shown
that very private algorithms can be forced to incur O(T ) regret by adaptive adversaries (Asi et al.,
2023). We focus exclusively on oblivious adversaries in this work.

3.3 STATIC VS. DYNAMIC ENVIRONMENTS

The definition of static regret makes the most sense in contexts where sequential data points are
roughly independent, e.g. because they are drawn i.i.d. from some fixed distribution or because they
are truly adversarial. In practice, however, it is often the case that the best action can vary systemati-
cally over time, in which case tight bounds on static regret do not imply strong absolute performance.
To address this issue, the online learning community has developed many algorithms that achieve
tight bounds with respect to stronger notions of regret (Zinkevich, 2003; Hazan & Seshadhri, 2009;
Herbster & Warmuth, 1998), but no comparable line of work yet exists in the private online learning
literature. We will design (private) algorithms for both settings.

3.4 LOCAL DIFFERENTIAL PRIVACY

We consider a distributed setting with a single server and multiple clients c ∈ C. Each client repre-
sents a set of users which can potentially vary over time; we represent the data held by client c at
time t as Dc,t. The goal of the analyst controlling the server is to solve an experts problem where
gain is defined in terms of local statistics of these datasets, i.e. gt = f(g(D1,t), . . . , g(D|C|,t)). We
assume that clients are mutually untrusting of one another as well as the server, however, and are not
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willing to share their data directly. To resolve this tension, we would like to devise a method whereby
each client can share only a noisy approximation g̃(Dc,t) ≈ g(Dc,t), simultaneously protecting the
privacy of the individual data subject(s) and enabling the server to make accurate predictions.

Our results are mostly agnostic to the exact way that gain vectors are defined in terms of the clients
— the only requirement is that at each time step, the server receives (information equivalent to) a
Gaussian approximation of the true gain vector g̃t ∼ N (gt, η

2In). In the simplest case, only one
client ct reports data at each time step and the server receives g̃(Dct,t) = g(Dct,t) + z, where
z ∼ N (0, η2In). In section 5, we also consider a more complicated setting where each client com-
putes a single noisy coordinate of gt and the server concatenates their reports. We focus on the
non-interactive setting where clients send a single report per time step and do not collaborate.

To formally define the privacy property we want to satisfy, we use the popular framework of local
differential privacy (LDP) (Dwork et al., 2014; Yang et al., 2023). At a given time step, we say
that two sequences of databases are adjacent, denoted {Dc,t} ≃ {D′

c,t}, if they differ only in one
individual’s data — the exact meaning of this depends on contextual details, like whether it makes
sense for individuals to switch between clients. In the local model of DP that we use, the goal is to
make it difficult for the analyst to distinguish adjacent sequences given the clients’ reports. In the
weaker central model of DP, the analyst is instead given unrestricted access to the data and the goal
is to make it difficult to distinguish adjacent sequences given our algorithm’s outputs.

Most of our technical results are expressed in the language of f -DP (Dong et al., 2019), a modern
DP variant based on hypothesis testing. Given two distributions P,Q, we define the tradeoff function
T (P,Q) : [0, 1]→ [0, 1] so that T (P,Q)(α) is the minimum false negative rate achievable at false
positive rate α when distinguishing P from Q. With slight abuse of notation, we say that our pro-
tocol satisfies event-level, local f -DP if T ((g̃(D1,t), . . . , g̃(D|C|,t)), (g̃(D

′
1,t), . . . , g̃(D

′
|C|,t))) ≥ f

for all pairs of adjacent sequences. As a special case, we define the Gaussian tradeoff functions
Gµ := T (N (0, 1), N (µ, 1)) and say that a mechanism satisfies µ-Gaussian DP (µ-GDP) if it satis-
fies Gµ-DP. This definition can be naturally satisfied by locally injecting Gaussian noise with scale
calibrated to the sensitivity of our gain vectors, defined as ∆ = max{D}≃{D′}∥gt − g′t∥.

To facilitate comparison of our privacy guarantees with earlier work, we will also make some use of
the older, more traditional definition of approximate DP: we say that our protocol satisfies (event-
level, local) (ε, δ)-DP if for all adjacent sequences and all measureable events S, we have that
P[(g̃(D1,t), . . . , g̃(D|C|,t)) ∈ S] ≤ eεP[(g̃(D′

1,t), . . . , g̃(D
′
|C|,t)) ∈ S] + δ.

4 PREDICTION WITH EXPERT ADVICE UNDER LOCAL DP

Our goal is to design experts algorithms for both static and dynamic environments which satisfy
local differential privacy. We will begin by presenting the main ideas behind our results for static
settings — full proofs of all results can be found in the appendix.

4.1 CLASSICAL ALGORITHM

The classic algorithm that inspired our approach was introduced in Devroye et al. (2013) under the
name ‘Prediction by random-walk perturbations.’ We will refer to it as RW-FTPL for brevity. Given
a symmetric distribution D, the algorithm first samples random variables z0, . . . , zT

iid∼ D. At each
time step, it chooses xt = argmaxi∈[n](Gt−1 + St−1)i, where St :=

∑t
s=0 zt is an element of a

symmetric random walk and Gt =
∑t

s=0 gs. We are interested in the case where D = N (0, η2In)
and the St ∼ N (0, (t+ 1)η2In) are elements of a symmetric Gaussian random walk.

Using tools from convex analysis, it can be shown that this simple algorithm has expected static
regret at most

(
η + 2

η

)√
2T log n (see e.g. Section 3.5.2 of Lee (2018)). These bounds are optimal

up to a constant factor when η is independent of the dimension. In the worst case, they can be weaker
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Algorithm 1 RW-AdaBatch

Require: Noise scale η, dimension n, tolerance α
G̃ ∼ N (0, η2In)
Set initial delay to 0
for t = 1, . . . , T do

Server chooses xt = argmaxx∈X ⟨x, G̃⟩
Clients send noisy vectors g̃(Dc,t) to server
Server computes g̃t ∼ N (gt, η

2In) from the noisy vectors and adds it to the buffer
if delay is 0 then

Server moves data from buffer to G̃

Server computes new delay using Theorem 4.1, α, n, η and G̃ ▷ See subsection A.3
end if

end for

than the non-private baseline by a factor of
√
n, matching known lower bounds for mean estimation

in high dimensions under local DP Duchi et al. (2013).

When analyzing the privacy guarantees of the algorithm, it is helpful to view the decision rule from
a different perspective. Define g̃t := gt + zt, with g0 = 0. RW-FTPL can be reformulated as a
post-processing of these noisy gain vectors, which by our assumptions about the problem setting
satisfy local GDP with privacy parameter µ = ∆/η. It follows by parallel composition (McSherry,
2009) that RW-FTPL as a whole satisfies local GDP with the same value of µ.

4.2 STATIC ENVIRONMENTS: ADAPTIVE BATCHING

The RW-FTPL algorithm was not originally designed with privacy in mind. The authors’ primary
goal was to create a low-regret algorithm which changes its prediction only a small number of
times in expectation. Variations on this goal have been explored extensively in the online learning
literature (Kalai & Vempala, 2005; Geulen et al., 2010; Altschuler & Talwar, 2018), and Asi et al.
(2023) observe that there is a conceptual connection between privacy and limited switching, as both
constraints limit the ways data can be used.

In this section, we develop this intuition by connecting the limited switching of RF-FTPL with the
idea of permutation-invariance, which is a critical tool in amplifying the central DP guarantees of lo-
cal DP algorithms (Erlingsson et al., 2019). The high level idea is that in some cases, we can reliably
predict that our algorithm will not switch predictions in the near future no matter what data it sees.
When this happens, we can safely batch together all incoming data for some time before updating
the algorithm’s internal state with all of the points simultaneously. This makes the algorithm fully
invariant to permutations within each batch, amplifying its central DP guarantee.

Utility Analysis. We show that the expected regret of RW-AdaBatch is at most (1 +
√
2α) times

greater than the expected regret of RW-FTPL, where α is a small constant given to the algorithm as
a parameter. Our main tool for proving this result is the following, which establishes the conditions
under which RW-FTPL is very unlikely to change its prediction in the near future:

Theorem 4.1. Let x0, x1, . . . , xB ∈ Rn be a Gaussian random walk with x0 = v and xt+1 − xt ∼
N (0, η2In). If v(n) − v(n−1) = k, then the probability that the leader changes at any point during
the random walk is at most 2Φ(−

√
2β) + 2

√
πφ(−β)

[
Φ(β) − Φ(−β)

]
, where β = k/(η

√
2B) −√

log(2n− 2). The same is true if v(n)− v(n−1) = k+x and we wish to bound the probability that
the gap ever dips below x.

To see how this helps us, suppose that we are at time step t and must decide how many new points to
batch together. RW-AdaBatch works by computing the largest batch size Bt such that the probability
of RW-FTPL changing its prediction in the next Bt time-steps is at most δt = α

√
log n/(t+Bt).

This guarantees that the extra expected regret incurred by RW-AdaBatch at any time step τ is at
most α

√
log n/τ , and so the extra expected regret over the entire input is at most 2α

√
T log n.
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Privacy Analysis.We show that RW-AdaBatch offers a stronger central DP guarantee than RW-
FTPL at a fixed local privacy level. This is because it is designed to be fully invariant to permu-
tations of data points within a single batch, which is a fundamental tool for amplifying the central
DP guaranteed of locally private algorithms (Erlingsson et al., 2019). Although the exact degree of
amplification lacks a closed form, we derive numerically-computable lower bounds on the resulting
tradeoff function and empirically validate their tightness in section 5. We note that it is also possible
to amplify the privacy guarantee against the analyst to match the central DP guarantee if we have
access to a trusted third party to shuffle each batch before sending it to the server.

With or without a trusted third party, quantifying the exact degree of amplification requires char-
acterizing the distribution of the size of the batch containing a given individual’s data. The main
challenge here is that subsequent batch sizes are neither independent nor identically distributed. We
circumvent this issue by reducing to the simpler problem of characterizing the distribution of the
gap size at a given time step, regardless of whether that time step is the first in a new batch:

At each time step t, there is a minimum threshold k∗t,B such that our algorithm will select a batch
size of at least B + 1 at time t iff the gap kt ≥ k∗t,B . For a fixed B, this threshold is monotonically
increasing in t because δt is monotonically decreasing. So, the time t can fall in a batch of size B+1
or less only if there exists a time step s ∈ [t − B, . . . , t] such that ks < k∗t,B . Therefore, it suffices
to first characterize the the distribution of kt−B , and then use Theorem 4.1 to bound the probability
that the gap dips below k∗t,B at any point prior to time step t given that it starts out larger.

The following theorem shows that worst case distribution of kt−B occurs when the gains of all
experts are equal:

Theorem 4.2. Let Sε = {v ∈ Rn : v(n) − v(n−1) ≤ ε} and let γ denote the standard Gaussian
measure on R. Then for any vector µ ∈ Rn, γn(Sε) ≥ γn(Sε − µ)

Theorem 4.2 enables us to reduce all questions about the size of the gap at a given time step to the
distribution of the gap of a unit variance multivariate Gaussian random variable, with CDF and PDF:

Fk(ε) = 1− n

∫ ∞

−∞
φ(x)Φ(x− ε)n−1 dx (1)

fk(ε) = n(n− 1)

∫ ∞

−∞
φ(x)φ(x− ε)Φ(x− ε)n−2 dx (2)

Additionally, we have the following lemma which allows us to translate an upper bound on the CDF
of batch sizes into a lower bound on tradeoff functions:

Lemma 4.2.1. Let s1 ∼ P and s2 ∼ Q for some distributions P ≥st Q over the non-negative real
numbers. Then T

(
(s1,N (0, s21), (s1,N (1, s21)

)
≥ T

(
(s2,N (0, s22), (s2,N (1, s22)

)
.

We can therefore bound the probability that a point falls in a batch of size B+1 or less by integrating
the upper bound from Theorem 4.1 and translating the resulting bound on the CDF into a bound on
the actual tradeoff function. All that remains is to directly evaluate this tradeoff function, for which
we require the following lemma from Wang et al. (2024):

Lemma 4.2.2 (Joint Concavity of Tradeoff Functions). Let Pw, Qw be two mixture distri-
butions, each with m components and shared weights w. Then: T (Pw, Qw)(α(t, c)) ≥∑m

b=1 wbT (Pb, Qb)(αb(t, c)) =: β(t, c) , where αb(t, c) = PX∼Pb

[
qb
pb
(X) > t

]
+cPX∼Pb

[
qb
pb

= t
]

is the type 1 error of the log likelihood ratio test between Pb and Qb with parameters t and c, and
α(t, c) =

∑m
b=1 wbαb(t, c).

In our case, all of the components correspond to continuous distributions and so we can ignore the c
parameter. This characterization is sufficient to compute and visualize the amplified tradeoff curves
using our upper bound on the CDF of B (Figure 1). For comparison with other DP variants, it can
also be losslessly translated into a curve of (ε, δ) guarantees using Proposition 2.13 from Dong et al.
(2019), from which we obtain the following corollary for our particular mixture distribution:

Corollary 4.2.1. For all ε > 0, RW-AdaBatch satisfies (ε, 1 − eεα(ε) − β(ε))-DP, with α and β
defined as in Lemma 4.2.2.
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Algorithm 2 RW-Meta

Require: Noise scale η, learners f1, . . . , fm
Server samples G̃(m) ∼ N (0, η2Im)

Σ← η2Im
for t = 1, . . . , T do

Σ∗ ← Σ− 1
m2 (⃗1

TΣ1⃗)⃗1⃗1T

σ2 ← max(2t, λmax(Σ
∗))

Server samples yt ∼ N (0, σ2I − Σ∗)

jt ← argmaxj(G̃
(m) + yt)j

for i ∈ [m] do
xi,t ← fi(g̃0, . . . , g̃t−1) ∈ Rn

end for
Clients send noisy vectors g̃(Dc,t) to server
Server computes g̃t ∼ N (gt, η

2In) from the noisy vectors
Xt ← [x1,t, . . . , xm,t]

T ∈ Rm×n

g̃t ← gt + zt
G̃(m) ← G̃(m) +Xtg̃t
Σ← Σ+ η2XtX

T
t

end for

Complexity Analysis. In the worst case, RW-AdaBatch requires us to find the root of a smooth
monotonic function at each time step. Crucially, however, the size of the problem is constant and
does not depend on n or T , and so the asymptotic complexity of RW-AdaBatch is only O(nT ). We
describe some of our practical techniques for improving the efficiency of this step in the appendix.

4.3 DYNAMIC ENVIRONMENTS: META-LEARNING

Recall that algorithms which minimize static regret, including RW-FTPL, often struggle in settings
where the best action changes systematically over time. The RW-Meta algorithm we present in this
section partially addresses this issue by showing how a key design pattern in many non-private,
adaptive online learning algorithms can be efficiently made to satisfy DP. Specifically, RW-Meta
uses a multilayer structure with many candidate algorithms (learners) along with a central meta-
learner whose job is to select the best learner to use at each time step. The selected learner then
determines our final action as a function of the (noisy) data seen so far. Our main technical inno-
vation lies in the careful use of correlated noise and linearity, which allows us deploy much more
powerful learners than prior work at no additional privacy cost.

Utility Analysis. We formalize our learners as a set of functions f1, . . . , fm : Rn,∞ → X . At
time step t, each learner makes a prediction xt,i = fi(g̃1, . . . , g̃t−1), and the meta-learner chooses
jt ∈ [m]. The meta-learner then receives the same gain as the chosen learner, i.e. ⟨xt,jt , gt⟩. Our
goal is to minimize the regret of the meta-learner with respect to the best single learner in hindsight.

The starting observation for our method is that the value ⟨xt,i, g̃t⟩ is an unbiased estimate for the
gain of expert i at time t. Specifically, let Xt ∈ Rm×n be the matrix whose ith row is xt,i. Then we
have that

∑t
s=1 Xtg̃t ∼ N (G

(m)
t ,Σt), where G

(m)
t =

∑t
s=1 Xtgt and Σt = η2

∑t
s=1 XtX

T
t . So,

like in RW-FTPL, our algorithm is able to maintain a Gaussian vector centered on the true gain of
each learner, but with the inconvenient wrinkle that the covariance matrix is now data-dependent.

To dissolve this issue, we introduce a decorrelation step to the algorithm by defining a new matrix
Σ∗

t = Σt− 1
m2 (⃗1

TΣt1⃗)⃗1⃗1
T . At each time step, we then sample a new Gaussian vector yt with mean

zero and covariance matrix max(2t, λmax(Σ
∗
t−1))I −Σ∗

t−1 and choose jt = argmaxj(G̃
(m)
t−1 + yt)j .

Since our algorithm is invariant to additive noise with covariance 1⃗⃗1T , this is equivalent to the
decision rule which simply adds Gaussian noise with covariance max(2t, λmax(Σ

∗
t−1)I at each step.

In this way we can reduce to the scaled identity matrix covariance case, which is much easier to
analyze. Using the convex analysis framework of Lee (2018), we arrive at a total regret bound of:
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[
max

(
√
2, η · λmax

( Σ∗
T

η2T

)1/2)
+
√
2

]√
2T logm (3)

The best case scenario here is when all learners suggest different actions at each time step, in
which case we enjoy an O(η

√
T logm) regret bound, which is nearly optimal when η is constant.

The worst case occurs when the learners are divided into two cliques of size m/2, in which case
λmax(Σ

∗
T /(η

2T )) = m/2 and we get a bound of O(η
√
Tm logm). In both cases the regret bound

is with respect to the best learner, which may be substantially better than the best action.

Privacy Analysis. The entire meta-learning algorithm accesses the data only through the g̃t vectors,
and therefore satisfies local GDP with the same parameters as the base RW-FTPL algorithm.

Complexity Analysis. The RW-Meta algorithm requires O(m2 +mn) memory to store the pre-
dictions of the learners at each round as well as the Σ matrix. Similarly, we require O(m2 +mn)
operations per iteration to compute Σ∗ and Xtg̃t. It is also necessary to choose a specific technique
to compute λmax(Σ

∗): in our implementation, we use the LOBPCG algorithm, which enjoys linear
convergence and requires solving a 3× 3 eigenproblem at each iteration (Knyazev, 2001). We can
control the total number of iterations by warm-starting with the leading eigenvector of the previous
iteration, which is guaranteed to be within O(m) of the new maximum eigenvalue.

5 EXPERIMENTS

In this section, we empirically investigate the tightness of our analytic bounds on the privacy loss
of RW-AdaBatch as well as the performance improvement of RW-Meta relative to prior work. The
technical details of our experimental environment and implementation are described in the appendix,
and we will release our data and scripts as open-source software prior to publication.

5.1 PRIVACY GUARANTEES OF RW-ADABATCH
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(a) Tradeoff curves representing the privacy amplifica-
tion enjoyed by a point arriving at a given time step.
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(b) Equivalent visualization in terms of ε, δ guarantees
using Corollary 4.2.1.

Figure 1: Visualization of the privacy amplification provided by RW-AdaBatch with parameters
µ = 1, n = 25, ∆ =

√
n, α = 0.01. The baseline corresponds to the Gµ tradeoff curve, solid lines

correspond to the Analytic upper bound from subsection 4.2, and dash-dotted lines correspond to
Empirical Monte Carlo simulations on zero-mean data with 1000 iterations.

On the basis of Theorem 4.2, we expect that the worst case for privacy occurs when all means are
equal. To evaluate the privacy loss in this case, we simulate 1000 runs of RW-AdaBatch on a stream
of all-zero data with T = 10, 000. We then use the empirical PMF of containing batch sizes for each
point to estimate its true tradeoff function. We plot these empirical tradeoff functions alongside
those derived from our analytic bounds in Figure 1.
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Figure 2: Results of empirical evaluation on COVID-19 hospitalization data, averaged over 100
iterations. The shaded orange regions enclose the maximum and minimum gain of the 12 rolling
regression learners, and the dotted black lines represent the maximum cumulative COVID density
of any single hospital in the given state. Static regret can be interpreted as the distance between a
learner’s total gain and the dotted line. Note that all plots share the same x and y axis.

Our results indicate that the analytic bounds are reasonably but not perfectly tight. The looseness
primarily arises in the large δ/moderate FPR regime. This is because in bounding the probability
that the leader changes, we assume that the deterministic part of the gap will shrink at the fastest
possible rate. In the oblivious adversary model, this is overly conservative because the adversary
cannot predict in advance exactly when a new batch will begin. As a result, we underestimate the
probability of selecting very large batch sizes. However, the low FPR behavior of the algorithm is
primarily driven by the probability of seeing small batch sizes, where our bound is much tighter.

5.2 PERFORMANCE OF RW-META

Methodology and Dataset. While prior work on prediction with expert advice has largely relied on
synthetic data alone (Erven et al., 2011; Korotin et al., 2020; Jun et al., 2017; Gao et al., 2024), we
evaluate the performance of RW-Meta with real-world data from the COVID-19 pandemic. Specifi-
cally, we use data from the United States Department of Health and Human Services (DHHS, 2024)
containing weekly reports from thousands of hospitals from mid-2020 through 2023. Our goal is to
predict which hospitals will report the highest density of COVID patients each week.

Following Altieri et al. (2021), we consider models that first forecast the exact proportion of COVID
cases in each hospital and then make a final prediction by taking the argmax of their forecast. The
gain of a learner is the true proportion of COVID patients in the hospital they select. Our evalu-
ation uses 13 learners consisting of rolling Gaussian regression algorithms with window sizes of
8/16/32/64 and weak/medium/strong regularization, as well as the basic RW-FTPL algorithm. We
focus solely on Gaussian regression models because they are a popular choice for medical forecast-
ing and their theoretical assumptions are a good match for the additive Gaussian noise we use to
protect privacy. The specific range of hyperparameters we consider was chosen manually through
exploratory analysis with a disjoint slice of the dataset, guided by the goal of maximizing variety
while excluding non-functional or redundant learners. We evaluate our algorithm on data from three
states (New Mexico, Pennsylvania, and California), which were chosen to cover a diverse range of
population sizes while being geographically large enough to decorrelate different hospitals.
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We remove any hospitals that did not appear to participate in the DHHS’s data sharing program,
defined as reporting fewer than 100 suspected cases over the 3 year period. This left us with data
from 24, 146, and 293 hospitals in each state respectively, covering the 148 weeks between August
9th, 2020, and June 4th, 2023. We define adjacency to cover both whether an individual goes to
the hospital and the specific hospital they choose, and compute the sensitivity of the gain vectors
based on the minimum non-zero number of beds reported by any hospital at the given time step
(minimum 4.3, maximum 14.6). We evaluate our algorithm under four different privacy levels: no
privacy (µ =∞), low privacy (µ = 1), medium privacy (µ = 0.5) and high privacy (µ = 0.25).

Finally, we compare RW-FTPL and RW-Meta against the state-of-the-art private FTPL algorithm of
Agarwal & Singh (2017). This comparison must be heavily caveated because their algorithm only
offers central DP guarantees and was not designed to operate in dynamic environments at all; we
include these results not to demonstrate the superiority of one algorithm over the other, but to better
contextualize the costs of satisfying local vs. central DP and the potential benefits of moving beyond
the paradigm of data-independent experts. For fair comparison, we consider two possible strategies
for setting the parameters of their algorithm: a greedy strategy that injects the minimum amount
of noise required to still satisfy (central) µ-GDP, and a cautious strategy that optimizes worst-case
bounds on regret (and therefore might add more noise than required at the given privacy level).

Results. We repeat our evaluation 100 times and report average results, which are visualized in
Figure 2 and summarized numerically in Table 1. Averages are reported alongside 95% confidence
intervals based on the central limit theorem with Bonferroni correction. Across all settings, we find
that RW-Meta significantly outperforms both RW-FTPL and the Min Regret variant. The Min Noise
variant performs substantially better on this dataset despite weaker theoretical bounds, which is facil-
itated by the fact that, as a central DP algorithm, it can more easily control the amount of noise used.
Nonetheless, it lags behind RW-Meta in all settings. This is because RW-Meta is able to consistently
achieve negative static regret at low and moderate privacy levels, which is essentially impossible to
match using the data-independent experts that are assumed in prior work. Meanwhile, when privacy
is high, binary tree aggregation is able to offer only modest improvements in noise scale at the time
horizon we consider. This is why why we see all three static experts algorithms clustering together
when µ = 0.25.

Separately, we find that RW-Meta performs around 90% as well as the best linear model in each
setting on average. Which exact linear model performs best varies considerably across settings,
however. For instance, the learner with window size 8 and strong regularization is the best perform-
ing learner in the high privacy setting for the Pennsylvania dataset, but only middle of the pack for
New Mexico (where the best learner instead has a window size of 64). Across different privacy lev-
els the variation is even larger, with the best learners in the low/no privacy settings performing the
worst in the high privacy setting. This heterogeneity highlights the appeal of using meta-learning,
as it eliminates the need to risk committing to a single set of parameters in advance.

6 CONCLUSION

We have presented two algorithms for the fundamental problem of prediction with expert advice,
both of which satisfy local DP. In static environments, our RW-AdaBatch algorithm is a costless
upgrade over the classical algorithm we build off of, improving the privacy of its outputs with prov-
ably insignificant impact on utility. In dynamic environments, our RW-Meta algorithm uses a novel,
privacy-preserving variant of a classic online learning technique to quickly adapt to shifts in the
input data, and we show that the resulting performance gains can be won at no additional privacy
cost. Our analysis is supported by robust empirical evaluation, demonstrating that our algorithms
are practical and can achieve high performance in a real-world, privacy-critical prediction task.
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Sascha Geulen, Berthold Vöcking, and Melanie Winkler. Regret minimization for online buffering
problems using the weighted majority algorithm. In COLT, pp. 132–143. Citeseer, 2010.

Awni Hannun, Brian Knott, Shubho Sengupta, and Laurens van der Maaten. Privacy-preserving
multi-party contextual bandits. arXiv preprint arXiv:1910.05299, 2019.

12

https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u/about_data
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u/about_data
https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u/about_data
https://arxiv.org/abs/1911.08339
https://arxiv.org/abs/1911.08339
https://arxiv.org/pdf/2409.19092
https://arxiv.org/pdf/2409.19092


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025
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A APPENDIX

A.1 LIMITATIONS AND FUTURE WORK

A.1.1 APPLICABILITY OF LOCAL DP

The primary limitation of our work is that satisfying local DP sometimes requires adding unreason-
ably large amounts of noise, particularly when gain vectors are high-dimensional. To guarantee low
regret, our approach requires gain vectors with sensitivity smaller than their literal dimension, or
else a silo-like setting where several sensitive values can be averaged locally before being sent to the
algorithm, but this may not always be achievable in practice.

A.1.2 EXTENSION TO MORE COMPLEX LEARNING PROBLEMS

While the experts problem is flexible enough to represent many real world tasks, it is also interesting
from a theoretical perspective because it is one of the most fundamental problems in online learning.
This naturally raises the question of whether the methods developed in this work can be extended to
more complicated learning problems.

With respect to metalearning, RW-Meta fundamentally requires a linear gain function to compute
unbiased estimates for the gain of each learner. So, while it can be extended to online linear opti-
mization problems beyond prediction with expert advice, it is not clear that the same method could
be generalized to the larger class of online convex optimization. On the other hand, it may be possi-
ble to extend RW-Meta to partial information settings such as linear bandits where it is possible to
derive unbiased estimates of (linear functions of) the expected reward at each time step.
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Meanwhile, RW-AdaBatch relies on the fundamental property that the maximum of a linear function
over the convex hull of a small number of extreme points is always attained at one of those points.
It would therefore be difficult to extend it to settings like online linear optimization over the sphere
where the action set lacks this structure. On the other hand, the same property holds for maximums
of convex functions over convex hulls, and so it is possible that the ideas behind RW-AdaBatch
could be extended to some instances of online convex optimization.

A.2 PROOF OF THEOREM 4.1

The proof of the theorem requires the following fundamental results about the extrema of Gaussian
processes:

Lemma A.0.1. Let z1, . . . , zB ∼ N (0, η2), and let St =
∑t

i=1 zi. Then:

max
t

St ≤st |SB | (4)

Proof. Instead of considering the discrete random walk, we consider the continuous analogue in
one-dimensional Brownian motion over [0, B] with scale η. The maximum value attained by the
discrete random walk is at most as large as the maximum value attained by the Brownian motion.
The latter is known to follow a half-normal distribution with scale η

√
B (see e.g. Section 3 of

Majumdar et al. (2020)), which is also the distribution of |SB |.

We additionally need the well-known Borell-TIS inequality, which states that the maximum of Gaus-
sians concentrates closely around its expected value (Adler & Taylor, 2007):
Lemma A.0.2 (Borell-TIS). Let {ft} be a centered Gaussian process on T . Denote ∥f∥ =
supt∈T ft and σT = supt∈T σt. Then for any u ≥ 0,

P(∥f∥ > E[∥f∥] + u) ≤ exp
(−u2

2σ2
T

)
(5)

Finally, we have the following standard upper-bound on the expected maximum of Gaussians based
on moment-generating functions:
Lemma A.0.3. Let z1, . . . , zn be (not-necessarily independent) random variables such that zi ∼
N (0, σ2

i ). Let Z = maxi zi. Then:

E[Z] ≤ max
i

σi

√
2 log n (6)

Proof. We have that:

exp(tE[Z]) ≤ E[etZ ]

≤
∑
i∈[n]

E[etzi ]

=
∑
i∈[n]

exp(σ2
i t

2/2)

≤ n exp(max
i

σ2
i t

2/2)

Taking log of both sides and choosing t to minimize the upper bound gives the desired result.

Now: suppose that at a given time step, the gap of G̃ is k. Our goal is to bound the probability that
our algorithm’s output will change in the next B time steps. Because the algorithm is maximizing a
linear objective function, it will always output one of the vertices of the probability simplex. Without
loss of generality, assume that the current time step is 0 and that the current leader has index 1, and
write St,i =

∑t
s=1(g̃t)i. Then the following is a necessary condition for our algorithm’s prediction

to change:
max
j>1

max
t∈[B]

St,j > k + min
t∈[B]

St,1 (7)
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Lemma A.0.1 tells us that each maximum over t is stochastically smaller than a half-normal dis-
tribution with scale η

√
B, and by symmetry the minimum on the right hand side is stochastically

larger than a negative half-normal. We can write a half-normal random variable as the maximum
of a Gaussian random variable and its negation, and so Lemma A.0.3 lets us bound the expecta-
tion of the left-hand side with η

√
2B log(2n− 2). Denote this quantity as E. Then, assuming that

k > E, we can use Lemma A.0.2 along with the independence of each coordinate to upper bound
the probability of our event with:∫ 0

−∞
p(min

t
St,1 = z)P(max

t,j>1
St,j > k + z) dz

= 2Φ
(E − k

η
√
B

)
+ 2

∫ k−E

0

1

η
√
B
φ
(E − k + u

η
√
B

)
exp

( −u2

2Bη2

)
du

Here, the first term represents the probability that the current leader dips below the expected maxi-
mum value of the n − 1 remaining actions, and the second term represents the probability that one
of those n− 1 actions manages to overtake the current leader regardless. Using the definition of the
Gaussian PDF, we can rewrite the second term as:

exp
(−(E − k)2

4Bη2

)∫ k−E

0

1

η
√
B
φ
(2u+ (E − k)

η
√
2B

)
du

=
1√
2
exp

(−(E − k)2

4Bη2

)∫ (k−E)/(η
√
2B)

(E−k)/(η
√
2B)

φ(y) dy

=
1√
2
exp

(−(E − k)2

4Bη2

)[
Φ
( k − E

η
√
2B

)
− Φ

(E − k

η
√
2B

)]
Write β = (k − E)/(η

√
2B). Then the entire upper bound can be simplified as:

2Φ(−
√
2β) + 2

√
πφ(−β)

[
Φ(β)− Φ(−β)

]
(8)

which proves the theorem.

A.3 COMPUTEDELAY SUBROUTINE

This appendix contains the explicit computation used by RW-AdaBatch to compute the size of the
next batch:

Subroutine ComputeDelay
Require: Noise scale η, gap k, dimension n, tolerance α

E ←
√
log(2n− 2)

U1(B) := 2Φ
(

B−k
η
√
B
+
√
2E
)

U2(B) := 2
√
πφ
(

k−B
η
√
2B
− E

)
U3(B) := Φ

(
k−B
η
√
2B
− E

)
− Φ

(
B−k
η
√
2B

+ E
)

δt(B) := α
√

logn
t+B

B ← FindRoot
(
U1(B) + U2(B)U3(B)− δt(B)

)
return max(0,Floor(B))

A.4 PROOF OF THEOREM 4.2

The set Sε is invariant under permutations and shifts in the 1⃗ direction, and so we can assume without
loss of generality that µ1 ≥ µ2 ≥ . . . ≥ µn = 0. It is easiest to begin by finding the measure of the

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

complement of our set, which is a union of disjoint sets where one element is the leader and the gap
is greater than ε. This measure is given by:

f(µ) = γn((Sε − µ)C)

=

n∑
i=1

∫ ∞

−∞
φ(x− µi)

∏
j ̸=i

Φ(x− ε− µj) dx

Our strategy is to show that the partial derivative of f with respect to µ1 is non-negative. To do so,
we can use the fact that each of our disjoint sets is invariant under shifts in the 1⃗ direction, and so the
gradient of each summand with respect to µ must be orthogonal to 1⃗. So, we can write our partial
derivative as:

n∑
i=2

∫ ∞

−∞
φ(x− µ1)φ(x− ε− µi)

∏
j ̸=1,i

Φ(x− ε− µj) dx

−
n∑

i=2

∫ ∞

−∞
φ(x− ε− µ1)φ(x− µi)

∏
j ̸=1,i

Φ(x− ε− µj) dx

Combining like terms, this gives us:
n∑

i=2

∫ ∞

−∞
φ(x− µ1)φ(x− µi) exp

(
εx− 1

2
ε2
)

· [exp(−εµi)− exp(−εµ1)]
∏
j ̸=1,i

Φ(x− ε− µj) dx

Then, since µ1 ≥ µi and ε > 0, the term inside the brackets is non-negative. Therefore, as a sum of
integrals of products of non-negative values, the whole expression is non-negative.

From here, the fact that Sε is closed under permutations means that, if µ1 = µi for some i, then they
have the same partial derivative. So, we can explicitly construct a path from any arbitrary µ to the
origin along which f(µ) is non-increasing: first reduce µ1 until it equals µ2, then reduce both until
they equal µ3, and so on. This construction shows that the function is globally optimized at µ = 0,
as desired.
Remark A.1. In the special case where n = 2, Sε is a convex set and the statement can be proved
directly using Anderson’s theorem (Anderson, 1955) or its extension by Marshall and Olkin for
Schur-concave sets (Marshall & Olkin, 1974). When n > 2, however, the set is neither convex nor
Schur-concave, necessitating the more explicit analysis here.

A.5 PROOF OF LEMMA 4.2.1

The proof follows from a theorem by Blackwell (1951), reproduced as Theorem 2.10 in Dong et al.
(2019), which states that T (P,Q) ≤ T (P ′, Q′) iff there exists a randomized algorithm proc such
that proc(P ) = P ′ and proc(Q) = Q′. We will construct such an algorithm.

Suppose we receive the random input (s2, x) ∼ Q × N (b, s22) for some a priori unknown b. We
first choose s1 = F−1

P (FQ(s2)). Since s2 ∼ Q, we have that FQ(s2) ∼ Unif(0, 1) and therefore
s1 ∼ P . Then, since P ≥st Q, we have that F−1

P ≥ F−1
Q and therefore s1 ≥ s2. So, we can sample

z ∼ N (0, s21−s22) and release the tuple (s1, x+z) ∼ P ×N (b, s21), which completes the proof.

A.6 PROOF OF COROLLARY 4.2.1

The proof relies on the Proposition 2.13 from Dong et al. (2019), which we reproduce here:
Lemma A.0.4 (Primal to Dual). Let f be a symmetric trade-off function. A mechanism is f -DP if
and only if it is (ε, δ(ε))-DP for all ε ≥ 0 with δ(ε) = 1 + f∗(−eε), where:

f∗(y) = sup
−∞<x<∞

yx− f(x) (9)

is the convex conjugate of f .
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In our case, f is only defined on [0, 1], so we let f(x) = ∞ for x ̸∈ [0, 1] and the supremum is
effectively taken over 0 ≤ x ≤ 1.

To find the convex conjugate, we need to find the specific value α(t) that optimizes yα(t) − β(t)
for a given y. To that end, define hy(α) = yα− T (A(D),A(D′))(α). Then we have that f∗(y) =
hy(α

∗), where α∗ = inf{α ∈ [0, 1] : 0 ∈ ∂hy(α)}.
We have that α(t) is differentiable with respect to t, so we can compute that:

d

dt
hy(α(t)) =

d

dt

(
yα(t)−

m∑
b=1

wbβb(t)
)

= y

m∑
b=1

wb
d

dt
αb(t)−

m∑
b=1

wb
d

dt
βb(t)

= y

m∑
b=1

wb

(−1√b
µ

φ
( t√b

µ
+

µ

2
√
b

))
−

m∑
b=1

wb

√
b

µ
φ
( t√b

µ
− µ

2
√
b

)

Define:

zb =
t
√
b

µ
− µ

2
√
b

Then the expression simplifies to:

−1
µ

( m∑
b=1

√
bwbyφ(zb + µ/

√
b) +

m∑
b=1

φ(zb)
)

=
−1
µ

m∑
b=1

√
bwbφ(zb)

[
1 + y exp

(−µ√
b
zb −

µ2

2b

)]
=
−1
µ

m∑
b=1

√
bwbφ(zb)

(
1 + y exp(−t)

)
Setting this equal to 0 and using the fact that φ,w, b > 0, we obtain that:

y exp(−t) + 1 = 0

t = ln(−y)

Denote this last quantity as ty . From this it follows that f∗(y) = hy(α(ty)), and therefore that our
mechanism satisfies ε, δ(ε)-DP for all ε > 0 and:

δ(ε) = 1− eεα(t−eε)− β(t−eε) = 1− eεα(ε)− β(ε)

as desired.

A.7 PROOF OF RW-META UTILITY BOUND

We formally analyze the regret of RW-Meta using the convex analysis framework of Lee (2018). Let
M(G) = maxx∈X ⟨x,G⟩ be the baseline potential function, and for any set of distributions {Dt},
define the smoothed potential function M̃t(G) = Ez∼DtM(G + z). Finding the expected regret
of any randomized FTPL-style algorithm can be reduced to finding the regret of the deterministic
algorithm which plays Ez∼Dt [argmaxx∈X M(G+z)] = ∇M̃t at each time step t, which by Lemma
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3.4 in Lee (2018) satisfies the following equality:

Regret =
T∑

t=1

( (
M̃t(Gt−1)− M̃t−1(Gt−1)

)︸ ︷︷ ︸
overestimation penalty

+DM̃t
(Gt, Gt−1)︸ ︷︷ ︸

divergence penalty

)
+M(GT )− M̃T (GT )︸ ︷︷ ︸

underestimation penalty

Where Df (y, x) = f(y) − f(x) − ⟨∇f(x), y − x⟩ is the Bregman divergence, which is a measure
of how quickly the gradient of f changes. Intuitively, the overestimation penalty represents the error
that results when we fool ourselves into believing an action is better than it really is by adding too
much noise, and the divergence penalty represents the error that comes from always playing one step
behind the real objective function. Because we add zero-mean noise, the underestimation penalty is
always negative by Jensen’s inequality, and so to prove low regret it suffices to upper bound the first
two terms.

For the overestimation penalty, we can use the convexity of M to bound:

M̃t(Gt−1)− M̃t−1(Gt−1)

= Ez∼N (0,1)[M(Gt−1 +Σ
1/2
t z)−M(Gt−1 +Σ

1/2
t−1z)]

≤ Ez∼N (0,1)[M((Σ
1/2
t − Σ

1/2
t−1)z)]

From which it follows by telescoping that the entire sum is upper bounded by:

Ez∼N (0,1)[Σ
1/2
T z]

≤
√
2 log(m)max(η2T, λmax(Σ∗

T ))

Where the last step follows from Lemma A.0.3. For the divergence penalty, we use Lemma 3.14 in
Lee (2018) to bound:

DM̃t
(Gt, Gt−1) ≤

√
2 logm

ηt

From which it follows that the sum can be upper bounded by
√
2 logm ·

∑T
t=1

1√
2t
≤ 2
√
T logm,

giving us our final regret bound of:[
max

(
√
2, η · λmax

( Σ∗
T

η2T

)1/2)
+
√
2

]√
2T logm (10)

A.8 IMPORTANCE OF DECORRELATION IN RW-META

We know that the vectors Xtg̃t are unbiased Gaussian estimates of the true gain of each learner with
covariance matrix XtX

T
t . A natural question is whether it is possible to use these vectors directly in

a FTPL-style algorithm and achieve low regret. In other words, is the decorrelation step in RW-Meta
actually needed? There is reason to suppose that the induced correlation could actually be beneficial
in certain contexts — for instance, if two learners always made the same prediction in all cases,
then it would ensure that the meta-learner isn’t ‘distracted’ by the redundancy. In this appendix,
we describe some representative challenges that we encountered in attempting to prove non-trivial
regret bounds for this computationally-simpler version of the algorithm.

The first difficulty is that to bound the overestimation penalty, we need to bound a sum of the form:

T∑
t=1

M̃t(Gt−1)− M̃t−1(Gt−1) ≤
T∑

t=1

Ez∼N (0,1)[M((Σ
1/2
t − Σ

1/2
t−1)z)] (11)
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The right-hand-side is the expected maximum of a zero-mean Gaussian, and so we can use
Lemma A.0.3 to upper bound it in terms of the maximum diagonal entry of the matrix (Σ

1/2
t −

Σ
1/2
t−1)

2. In the case where each Σt = η2tΣ for some fixed Σ and non-decreasing sequence η1, . . . , ηT
(which includes the base RW-FTPL algorithm as a special case with Σ = I), this gives us a tele-
scoping series and we can bound the overestimation penalty as a whole with ηT

√
2 logmmaxi Σi,i.

Without constraints on the Σt, however, the telescoping behavior disappears and it is possible for
the sum of maximal diagonal entries to be significantly larger than the maximal diagonal entry of
the sum. We could force the series to telescope by upper-bounding the maximum diagonal entry of
each matrix with its trace, but this is loose by a factor of

√
m in the worst-case.

Continuing on, the divergence penalty describes how quickly the gradient of M̃ changes, and so the
standard method for bounding it uses the Hessian ∇2M̃(G). Specifically, by Lemma 3.14 in Lee
(2018), if there exists a constant β such that Tr(∇2M̃(G)) ≤ β/η for all G, then:

DM̃ (G, g +G) ≤ β∥g∥2∞/η (12)

If our noise is drawn from a Gaussian with covariance η2I then this term can be upper bounded
neatly by 1

η

√
2 logm (Lee, 2018). With arbitrary covariance matrices, however, the trace may end

up being lower bounded by a constant (e.g. if the rows of the Xt matrices all live in some m − 1
dimensional subspace), and the resulting bound isn’t even sublinear! While we were able to derive
stronger bounds with more detailed probabilistic analysis, the central problem is that the correlations
cause the algorithm’s behavior to be very unstable. Even late in the input, a previously-unseen
pattern of agreement could dramatically change the algorithm’s predictions. Based on this intuition
and the central importance of stability in the design of low-regret algorithms, we believe that the
decorrelation step in RW-Meta is genuinely necessary to guarantee strong worst-case performance
and not merely an artifact of our analysis.

A.9 EXPERIMENTAL METHODOLOGY

All experiments are carried out on a laptop running Ubuntu 22.04 with an intel i5-1135G7 CPU and
16GB of RAM. We implement our algorithms using Python 3.10, numpy 2.0.0 (Harris et al., 2020),
scipy 1.14.0 (Virtanen et al., 2020), and mpmath 1.3.0 (mpmath development team, 2023).

Although RW-FTPL is very straightforward, Both RW-Meta and RW-AdaBatch include non-trivial
computations as subroutines which must be implemented efficiently. We briefly describe our imple-
mentation choices here.

In the case of RW-Meta, we use the LOBPCG algorithm as implemented in scipy to find the leading
eigenvalue of Σ∗

t at each iteration, with the leading eigenvector from the previous round as an initial
guess. We find that at the problem sizes we consider, this step is not a significant bottleneck (taking
about 2ms per iteration), and we therefore do not pursue any further optimizations.

In the case of RW-AdaBatch, we take advantage of the fact that the bound from Theorem 4.1 is a
monotonic function of β by pre-computing many input/output pairs. To avoid issues with floating
point precision when computing extreme values of the Gaussian PDF/CDF, we use the mpmath
library for this task, which supports arbitrary precision arithmetic and numerical integration. We
then interpolate the result with a monotonic cubic spline, which can be used to closely approximate
the required value of β necessary to achieve a given failure probability δ. In practice, the discrete
nature of the choice of batch size means that the small differences between the true inverse function
and the interpolated approximation are insignificant, while the corresponding speed-up is dramatic.

Finally, prior work has shown that straightforward DP implementations are often vulnerable to at-
tacks that take advantage of the idiosyncrasies of floating point numbers, leading to catastrophic
privacy failures (Mironov, 2012). We therefore employ the secure random sampling method of
Holohan & Braghin (2021) which renders these attacks computationally prohibitive.

20


	Introduction
	Our Contributions

	Related Work
	Problem Setting
	Notation
	Prediction with Expert Advice
	Static vs. Dynamic Environments
	Local Differential Privacy

	Prediction with Expert Advice Under Local DP
	Classical Algorithm
	Static Environments: Adaptive Batching
	Dynamic Environments: Meta-learning

	Experiments
	Privacy Guarantees of RW-AdaBatch
	Performance of RW-Meta

	Conclusion
	Appendix
	Limitations and Future Work
	Applicability of Local DP
	Extension to More Complex Learning Problems

	Proof of Theorem 4.1
	ComputeDelay Subroutine
	Proof of Theorem 4.2
	Proof of Lemma 4.2.1
	Proof of Corollary 4.2.1
	Proof of RW-Meta Utility Bound
	Importance of Decorrelation in RW-Meta
	Experimental Methodology


