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ABSTRACT

While task-specific finetuning of deep networks pretrained with self-supervision
has led to significant empirical advances in NLP, their large size makes the stan-
dard finetuning approach difficult to apply to multi-task, memory-constrained set-
tings, as storing the full model parameters for each task become prohibitively
expensive. We propose diff pruning as a simple approach to enable parameter-
efficient transfer learning within the pretrain-finetune framework. This approach
views finetuning as learning a task-specific “diff”” vector that is applied on top of
the pretrained parameter vector, which remains fixed and is shared across different
tasks. The diff vector is adaptively pruned during training with a differentiable ap-
proximation to the Ly-norm penalty to encourage sparsity. Diff pruning becomes
parameter-efficient as the number of tasks increases, as it requires storing only the
nonzero positions and weights of the diff vector for each task, while the cost of
storing the shared pretrained model remains constant. We find that models fine-
tuned with diff pruning can match the performance of fully finetuned baselines
on the GLUE benchmark while only modifying 0.5% of the pretrained model’s
parameters per task.

1 INTRODUCTION

Task-specific finetuning of pretrained deep networks has become the dominant paradigm in contem-
porary NLP, achieving state-of-the-art results across a suite of natural language understanding tasks
(Devlin et al., 2019} Liu et al., | 2019¢} | Yang et al.,|2019; |Lan et al., 2020). While straightforward and
empirically effective, this approach is difficult to scale to multi-task, memory-constrained settings
(e.g. for on-device applications), as it requires shipping and storing a full set of model parameters for
each task. Inasmuch as these models are learning generalizable, task-agnostic language representa-
tions through self-supervised pretraining, finetuning the entire model for each task is an especially
inefficient use of model parameters.

A popular approach to parameter-efficiency is to learn sparse models for each task where a subset
of the final model parameters are exactly zero (Gordon et al., [2020; |Sajjad et al., [2020; Zhao et al.,
2020; [Sanh et al., 2020). Such approaches often face a steep sparsity/performance tradeoff, and a
substantial portion of nonzero parameters (e.g. 10%-30%) are still typically required to match the
performance of the dense counterparts. An alternative is to use multi-task learning or feature-based
transfer for more parameter-efficient transfer learning with pretrained models (Liu et al., [2019b;
Clark et al.} 2019; |Stickland & Murray}, 2019} Reimers & Gurevych, 2019; |Feng et al.l[2020). These
methods learn only a small number of additional parameters (e.g. a linear layer) on top of a shared
model. However, multi-task learning generally requires access to all tasks during training to prevent
catastrophic forgetting (Frenchl [1999)), while feature-based transfer learning (e.g. based on task-
agnostic sentence representations) is typically outperformed by full finetuning (Howard & Ruder,
2018).

Adapters (Rebuffi et al.l 2018)) have recently emerged as a promising approach to parameter-
efficient transfer learning within the pretrain-finetune paradigm (Houlsby et al.|[2019; [Pfeiffer et al.,
2020aibzc). Adapter layers are smaller, task-specific modules that are inserted between layers of a
pretrained model, which remains fixed and is shared across tasks. These approaches do not require
access to all tasks during training making them attractive in settings where one hopes to obtain and
share performant models as new tasks arrive in stream. [Houlsby et al.| (2019) find that adapter lay-
ers trained on BERT can match the performance of fully finetuned BERT on the GLUE benchmark
(Wang et al.l2019a) while only requiring 3.6% additional parameters (on average) per task.
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In this work, we consider a similar setting as adapters but propose a new diff pruning approach with
the goal of even more parameter-efficient transfer learning. Diff pruning views finetuning as learning
a task-specific difference vector that is applied on top of the pretrained parameter vector, which
remains fixed and is shared across different tasks. In order to learn this vector, we reparameterize
the task-specific model parameters as Ok = Opreirained + Otask, Where the pretrained parameter vector
Opretrained 18 fixed and the task-specific diff vector Ok 18 finetuned. The diff vector is regularized
with a differentiable approximation to the Ly-norm penalty (Louizos et al.| 2018)) to encourage
sparsity. This approach can become parameter-efficient as the number of tasks increases as it only
requires storing the nonzero positions and weights of the diff vector for each task. The cost of
storing the shared pretrained model remains constant and is amortized across multiple tasks. On
the GLUE benchmark (Wang et al., |2019a)), diff pruning can match the performance of the fully
finetuned BERT baselines while finetuning only 0.5% of the pretrained parameters per task, making
it a potential alternative to adapters for parameter-efficient transfer learning.

2 BACKGROUND: TRANSFER LEARNING FOR NLP

The field of NLP has recently seen remarkable progress through transfer learning with a pretrain-
and-finetune paradigm, which initializes a subset of the model parameters for all tasks from a pre-
trained model and then finetunes on a task specific objective. Pretraining objectives include context
prediction (Mikolov et al., 2013), autoencoding (Dai & Le} |2015), machine translation (McCann
et al., [2017), and more recently, variants of language modeling (Peters et al., [2018}; Radford et al.,
2018 |Devlin et al., 2019) objectives.

Here we consider applying transfer learning to multiple tasks. We consider a setting with a poten-

tially unknown set of tasks, where each 7 € T has an associated training set {ac(T"), y&"’) }7];7:1 For

all tasks, the goal is to produce (possibly tied) model parameters 6.- to minimize the empirical risk,

= o). .
min N;‘ (£($7:00),087) + AR(6:)

where f(-;8) is a parameterized function over the input (e.g. a neural network), £(,-) is a loss
function (e.g. cross-entropy), and R(-) is an optional regularizer with hyperparameter \.

This multi-task setting can use the pretrain-then-finetune approach by simply learning indepen-
dent parameters for each task; however the large size of pretrained models makes this approach
exceedingly parameter inefficient. For example, widely-adopted models such as BERTgAsg and
BERT arge have 110M and 340M parameters respectively, while their contemporaries such as
T5 (Raffel et al.| 2020), Megatron-LM (Shoeybi et al.| 2019), and Turing-NLG (Rajbhandari
et al.l 2019) have parameter counts in the billions. Storing the fully finetuned models becomes
difficult even for a moderate number of tasksE] A classic approach to tackling this parameter-
inefficiency (Caruana, [1997) is to train a single shared model (along with a task-specific output
layer) against multiple tasks through joint training. However, the usual formulation of multi-task
learning requires the set of tasks 7 to be known in advance in order to prevent catastrophic forget-
ting (French, 1999) making it unsuitable for applications in which the set of tasks is unknown (e.g.
when tasks arrive in stream).

3 DIFF PRUNING

Diff pruning formulates task-specific finetuning as learning a diff vector .- that is added to the
pretrained model parameters Opreirained. We first reparameterize the task-specific model parameters,

07‘ = epretrained + (S'r»

!Therefore our setup is different from the classic multitask setting which usually assumes that set of tasks
is known

2An intriguing line of work suggests that large-scale language models can be used without finetuning for a
variety of tasks if given the appropriate context (Radford et al., 2019; Brown et al.} [2020). While interesting,
these models generally underperform task-specific models and require billions of parameters, though recent
work suggests that they can be made substantially smaller (Schick & Schutzel |[2020).

3However, work on continual learning mitigates these issues to an extent (Shin et al.| 2017; |Lopez-Paz &
Ranzato, 2017} |Lee et al.| 2017 |Kirkpatrick et al.| 2017} |Paris1 et al.| [2018).
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which results in the following empirical risk minimization problem,

HllIl -— Z L ( ipa prelramed + 6 ) ) + /\R( pretrained + 6 )

nl

This trivial reparameterization is equivalent to the original formulation. Its benefit comes in the
multi-task setting where the cost of storing the pretrained parameters @preirained 1S amortized across
tasks, and the only marginal cost for new tasks is the diff vector. If we can regularize d.- to be sparse
such that [|6-|lo < ||@pretrained|0, then this approach can become more parameter-efficient as the
number of tasks increases. We can specify this goal with an Ly-norm penalty on the diff vector,
d
R(Gpretrained + 67’) = ||57'||0 = Z ]1{67',1’ 7é 0}

i=1

3.1 DIFFERENTIABLE APPROXIMATION TO THE Lj-NORM

This regularizer is difficult to directly optimize as it is non-differentiable. In order to approximate
this Lo objective, we follow the standard approach for gradient-based learning with Ly sparsity
using a relaxed mask vector (Louizos et al.,|2018). This approach involves relaxing a binary vector
into continuous space, and then multiplying it with a dense weight vector to determine how much
of the weight vector is applied during training. After training, the mask is deterministic and a large
portion of the diff vector is true zero.

To apply this method we first decompose J.- into a binary mask vector multiplied with a dense
vector,

0, =2, O W, z, € {0, l}d,wT e R?

We can now instead optimize an expectation with respect to z., whose distribution p(z,; ) is
initially Bernoulli with parameters o,

ar,wr

i By paria) l S (£ Opcminea + 2 © w7, ).y ) + A1, 01 |
n=1

This objective is still difficult in practice due to z,’s being discrete (which requires the score func-
tion gradient estimator), but the expectation provides some guidance for empirically effective relax-
ations. We follow prior work (Louizos et al., 2018} [Wang et al., 2019b)) and relax z, into continuous
space [0, l]d with a stretched Hard-Concrete distribution (Jang et al., |2017; Maddison et al.,|2017),
which allows for the use of pathwise gradient estimators. Specifically, z, is now defined to be a
deterministic and (sub)differentiable function of a sample u from a uniform distribution,

u~U(0,1), s; = o (logu —log(l —u) + ),
Sr=s; x(r=10)+1, z, = min(1, max(0,s,)).

Here ! < Oand 7 > 1 are two constants used to stretch s, into the interval (1, ) before it is clamped
to [0, 1]¢ with the min(1, max(0,-)) operation. In this case we have a differentiable closed-form
expression for the expected Lo-norm

d
=l
Efl|d-],] Z]E [1{z,; > 0}] = Za(a” logr).

Thus the final optimization problem is given by,

min ]EuNU[O 1] [N Z L ( (n) opretramed + 2z O W, )7 )

oW

+>\Z <am 10g7f>7

and we can now utilize pathw1se gradient estimators to optimize the ﬁrst term with respect to o,
since the expectation no longer depends on itE] After training we obtain the final diff vector §, by
sampling u once to obtain z. (which is not necessarily a binary vector but has a significant number
of dimensions equal to exactly zero due to the clamping function), then setting 8, = z, © W,

“To reduce notation clutter we subsume the parameters of the task-specific output layer, which is not pre-
trained, into Opreirained. We do not apply the Lo-norm penalty on these parameters during training.
>We found sampling once to work as well as more complicated alternatives (e.g. based on multiple samples).
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3.2 Lg-BALL PROJECTION WITH MAGNITUDE PRUNING FOR SPARSITY CONTROL

Differentiable L regularization provides a strong way to achieve high sparsity rate. However, it
would be ideal to have more fine-grained control into the exact sparsity rate in the diff vector, espe-
cially considering applications which require specific parameter budgets. As A is just the Lagrangian
multiplier for the constraint E [||d,||,] < 7 for some 7, this could be achieved in principle by search-
ing over different values of \. However we found it more efficient and empirically effective to
achieve an exact sparsity rate by simply projecting onto the Ly-ball after training.

Specifically we use magnitude pruning on the diff vector §, and target a sparsity rate t% by only
keeping the top t% x d values in §.{°| Note that unlike standard magnitude pruning, this is based
on the magnitude of the diff vector values and not the model parameters. As is usual in magnitude
pruning, we found it important to further finetune §.- with the nonzero masks fixed to maintain good
performance (Han et al.,|2016). Since this type of parameter-efficiency through projection onto the
Lp-ball can be applied without adaptive diff pruningm such an approach will serve as one of our
baselines in the empirical study.

3.3 STRUCTURED DIFF PRUNING

Diff pruning, as presented above, is architecture-agnostic and does not exploit the underlying model
structure—each dimension of z; is independent from one another. While this makes the approach
potentially more flexible, we might expect to achieve better sparsity/performance tradeoff through
a structured formulation which encourages active parameters to group together and other areas to
be fully sparse. Motivated by this intuition, we first partition the parameter indices into G groups
{9(1),...,9(G)} where g(j) is a subset of parameter indices governed by group g(j) We then
introduce a scalar zJ (with the associated parameter a?) for each group g(j), and decompose the

task-specific parameter for index i € g(j) as 6J ;= Zr X 7l X w ;. The expected Lg-norm is then
given by,

G
H(STH Z Z ]l{zrz Z > 0} Z Z <a7'7i —log _Tl) X O (ag_ _log _rl) ,

J=1l1i€g(j) J=1li€g(j)

and we can train with gradient-based optimization as before.

4 EXPERIMENTS
4.1 MODEL AND DATASETS

For evaluation we use the GLUE benchmark (Wang et al, [2019b)), a popular finetuning dataset.
Following adapters (Houlsby et al.,2019)), we test our approach on the following subset of the GLUE
tasks: Multi-Genre Natural Language Inference (MNLI), where the goal is two predict whether the
relationship between two sentences is entailment, contradiction, or neutral (we test on both MNLI,,,
and MNLI,,,, which respectively tests on matched/mismatched domains); Quora Question Pairs
(QQP), a classification task to predict whether two question are semantically equivalent; Question
Natural Language Inference (QNLI), which must predict whether a sentence is a correct answer
to the question; Stanford Sentiment Treebank (SST-2), a sentence classification task to predict the
sentiment of movie reviews; Corpus of Linguistic Acceptability (CoLA), where the goal is predict
whether a sentence is linguistically acceptable or not; Semantic Textual Similarity Benchmark (STS-
B), which must predict a similarity rating between two sentences; Microsoft Research Paraphrase
Corpus (MRPC), where the goal is to predict whether two sentences are semantically equivalent;
Recognizing Textual Entailment (RTE), which must predict whether a second sentence is entailed
by the first. For evaluation, the benchmark uses Matthew’s correlation for CoLA, Spearman for
STS-B, F; score for MRPC/QQC, and accuracy for MNLI/QNLI/SST-2/RTE.

SWang et al,| (2019b) show that it also is possible to inject such a constraint softly into the training objec-
tive by regularizing the expected model size towards a certain rate. However, since the constraint is soft this
approach also makes it difficult to target an exact sparsity rate.

7Concretely, one can obtain @, through usual finetuning, set 8- = 0~ — Opreirained, and then apply magnitude
pruning followed by additional finetuning on 4.

8While groups can be defined in various ways, we found that defining groups based on each matrix/bias
vector of the pretrained model was simple and worked well enough.
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Total New params

params  pertask | QVLA" SST2 MNLL, MNLL,, CoLA MRPC STS-B RTE QQP  Avg

Full finetuning 9.00x 100% 91.1 949  86.7 859 60.5 893 87.6 70.1 72.1 80.9
Adapters (8-256) 1.32x 3.6% 90.7 940 849 85.1 595 895 869 715 71.8 80.4
Adapters (64) 1.19x 2.1% 914 942 853 84.6 569 89.6 873 686 71.8 798
Full finetuning 9.00x 100% 934 941 86.7 86.0 59.6 889 86.6 712 71.7 80.6
Last layer 1.34x 3.8% 798 916 714 72.9 402 80.1 673 58.6 633 68.2
Non-adap. diff pruning 1.05x 0.5% 89.7 936 849 84.8 512 815 782 615 68.6 755
Diff pruning 1.05x 0.5% 929 938 85.7 85.6 60.5 87.0 835 68.1 70.6 79.4
Diff pruning (struct.) 1.05x 0.5% 933 941 86.4 86.0 61.1 89.7 86.0 70.6 71.1 80.6

Table 1: GLUE benchmark test server results with BERT arge models. (Top) Results with adapter bottleneck
layers (brackets indicate the size of bottlenecks), taken from from [Houlsby et al.| (2019). (Bottom) Results
from this work. *QNLI results are not directly comparable across the two works as the GLUE benchmark has
updated the test set since then. To make our results comparable the average column is calculated without QNLI.

For all experiments, we use the BERT orgg model from |Devlin et al.| (2019), which has 24 layers,
1024 hidden size, 16 attention heads, and 340M parameters. We use the Huggingface Transformer
library (Wolf et al.,|2019) to conduct our experiments.

4.2 BASELINES

We compare both structured and non-structured variants of diff pruning against the following base-
lines: Full finetuning, which fully finetunes BERT srgg as usual; Last layer finetuning, which
only finetunes the penultimate layer (along with the final output layerﬂ Adapters from Houlsby
et al.[(2019), which train task-specific bottleneck layers between between each layer of a pretrained
model, where parameter-efficiency can be controlled by varying the size of the bottleneck layers;
and Non-adaptive diff pruning, which performs diff pruning just based on magnitude pruning (i.e.,
we obtain 6, through usual finetuning, set 6 = 6 — Oprerrained, and then apply magnitude pruning
followed by additional finetuning on 8, ). For diff pruning we set our target sparsity rate to 0.5% and
investigate the effect of different target sparsity rates in section[5.1]

4.3 IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Diff pruning introduces additional hyperparameters [, r (for stretching the Hard-Concrete distribu-
tion) and A (for weighting the approximate Lg-norm penalty). We found [ = —1.5,r = 1.5, \ =
1.25 x 10~ 7 to work well across all tasks. We also initialize the weight vector w, to 0, and o to a
positive vector (we use 5) to encourage z, to be close to 1 at the start of training. While we mainly
experiment with BERT argg to compare against prior work with adapters (Houlsby et al., |2019),
in preliminary experiments we found these hyperparameters to work for finetuning RoOBERTa (Liu
et al.| 2019¢c) and XLNet (Yang et al.l 2019) models as well.

For all tasks we use a learning rate of 1 x 10~° and perform a hyperparameter search over batch size
€ {4,6,8,10} and the number of epochs € {2, 3,4, 5} However we found the default settings
used for regular finetuning as suggested in the original BERT paper to work well for most tasks.
Finetuning with the fixed mask after projecting onto the Ly-ball with magnitude pruning is done
with a learning rate of 5 X 105 for3or5 epochs (3 epochs for QNLI, SST-2, MNLI-m, MNLI-mm,
CoLA, QQP, 5 epochs for MRPC, STS-B, RTE). Grouping for the structured version of diff pruning
is based on the matrix/bias vectors (i.e. parameters that belong to the same matrix or bias vector are
assumed to be in the same group), which results in 393 groups

5 RESULTS AND ANALYSIS

Our main results on the GLUE benchmark are shown in Table[I] Structured diff pruning can match
the performance of a fully finetuned BERT; srgg model while only requiring 0.5% additional pa-

“Wau et al | (2020) observe that finetuning later layers generally performs better than finetuning earlier layers

YFor the larger QNLI, SST-2, MNLI-m, MNLI-mm, CoLA, QQP datasets, we use batch size of 8 over 3
epochs. For the smaller MRPC, STS-B, RTE datasets, we use batch size of 8 over 3 epochs.

"'This definition of groups is implementation-specific since it depends on how one concatenates the
input vector before each affine layer. Our grouping is based on Huggingface’s BERT implementation at
commit 656e1386a296d696327a9db37de2ccccc79e2cc (available at https://github.com/
huggingface/transformers/blob/656e1386a296d696327a9db37de2ccccc79e2cc7/
src/transformers/modeling_bert.py). In preliminary experiments we found this simple definition
to work well compared to alternative group definitions (e.g. based on individual neurons).


https://github.com/huggingface/transformers/blob/656e1386a296d696327a9db37de2ccccc79e2cc7/src/transformers/modeling_bert.py
https://github.com/huggingface/transformers/blob/656e1386a296d696327a9db37de2ccccc79e2cc7/src/transformers/modeling_bert.py
https://github.com/huggingface/transformers/blob/656e1386a296d696327a9db37de2ccccc79e2cc7/src/transformers/modeling_bert.py
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Figure 1: (Left) Average performance on the GLUE validation set across different target sparsity rates for
the different methods. (Right) Number of groups where all of the parameters in the group are fully zero for
structured vs. non-structured diff pruning at 0.5% target sparsity. We group based on each matrix/bias vector,
resulting in 393 groups in total.

Diff vector
{arget sparsity QNLI SST-2 MNLI,, MNLL,, CoLA MRPC STS-B RTE QQP Avg
0.10% 92.7 93.3 85.6 85.9 58.0 87.4 86.3 68.6 852 82.5
0.25% 93.2 94.2 86.2 86.5 63.3 90.9 88.4 71.5  86.1 84.5
0.50% 93.4 94.2 86.4 86.9 63.5 91.3 89.5 71.5  86.6 84.8
1.00% 93.3 94.2 86.4 87.0 66.3 91.4 89.9 71.1  86.6 85.1
100% 93.5 94.1 86.5 87.1 62.8 91.9 89.8 71.8 876 85.0

Table 2: Structured diff pruning results on the validation set with different target sparsity rates. Average
performance includes all 9 tasks.

rameters per task. Diff pruning without structured sparsity also performs well, though slightly worse
than the structured approach. Non-adaptive diff pruning, which magnitude prunes the diff vector
without learning the binary mask z,, performs significantly worse, indicating the importance of
learning the masking vector. Compared to adapters, diff pruning obtains similar performance while
requiring fewer parameters per task, making it a potential alternative for parameter-efficient transfer
learning{'“| We now perform a series of analysis experiments on the validation set.

5.1 VARYING THE TARGET SPARSITY

In Figure (1] (Ieft), we plot results on the GLUE validation set averaged across all tasks at target
sparsity rates of 0.1%, 0.25%, 0.5%, 1.0% for the different baselines. Structured diff pruning con-
sistently outperforms non-structured and and non-adaptive variants across different sparsity rates.
The advantage of adaptive methods becomes more pronounced at extreme sparsity rates. In Table[2]
we report the breakdown of accuracy of structured diff pruning across different tasks and sparsity
rates, where we observe that different tasks have different sensitivity to target sparsity rates. This
suggests that we can obtain even greater parameter-efficiency through targeting task-specific sparsity
rates in the diff vector.

5.2 STRUCTURED VS. NON-STRUCTURED DIFF PRUNING

Structured diff pruning introduces an additional mask per group, which encourages pruning of entire
groups. This is less restrictive than traditional group sparsity techniques that have been used with
Ly-norm relaxations which force all parameters in a group to share the same mask (Louizos et al.,
2018; [Wang et al., 2019b). However we still expect entire groups to be pruned out more often in
the structured case, which might bias the learning process towards either eliminating completely or
clustering together nonzero diffs. In Figure 1| (right), we indeed find that structured diff pruning
leads to finetuned models that are much more likely to leave entire groups unchanged from their
pretrained values (zero diffs).

5.3 TASK-SPECIFIC SPARSITY

Different layers of pretrained models have argued to encode different information (Liu et al.,|2019aj
Tenney et al.l 2019). Given that each task will likely recruit different kinds of language phenomena
embedded in the hidden layers, we hypothesize that diff pruning will modify different parts of the

However diff pruning incurs additional storage cost due to storing the nonzero positions of the diff vector.
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Figure 2: Percentage of modified parameters attributable to each layer for different tasks at 0.5% target sparsity.
The layers are ordered from earlier to later (i.e. the embedding layer is shown at the top). The x-axis for each
plot goes from 0% to 20%.

ONLI SST2 MNLIL, MNLI,, CoLA MRPC STS-B RTE QQP Avg

Sparsity 1.5% 0.6% 0.8% 0.8% 1.6%  2.4% 33% 0.7% 0.6% 1.4%
Performance 93.8 94.0 86.2 86.8 63.1 91.9 89.7 71.8  86.5 84.9
With 0.5% sparsity 93.4 94.2 86.4 86.9 63.5 91.3 89.5 715  86.6 84.8

Table 3: (Top) Sparsity and performance before magnitude pruning on the validation set with structured diff
pruning. (Bottom) Performance with 0.5% target sparsity.

pretrained model through task-specific finetuning. Figure [2] shows the percentage of nonzero diff
parameters attributable to the different layers for each task. We find that different tasks indeed
modify different parts of the network, although there are some qualitative similarities between some
tasks, for example between QNLI & QQP (both must encode questions), and MRPC & STS-B (both
must predict similarity between sentences). The embedding layer is very sparsely modified for all
tasks. While some of the variations in the sparsity distributions is due to simple randomness, we do
observe some level of consistency over multiple runs of the same task, as shown in Figure [3| of the
appendix.

The ability to modify different parts of the pretrained model for each task could explain the improved
parameter-efficiency of our approach compared to|Houlsby et al.|(2019)’s adapter layers, which can
only read/write to the pretrained model at certain points of the computational graphﬁ This poten-
tially suggests that adapter layers with more fine-grained access into model internals (e.g. adapters
for key/value/query transformations) might result in even greater parameter-efficiency. While left as
future work, we also note that diff pruning can be applied in conjunction with adapters, which might
further improve results.

5.4 EFFECT OF Ly-BALL PROJECTION VIA MAGNITUDE PRUNING

Applying magnitude pruning to project onto the Ly-ball was crucial in achieving exact sparsity
targets. As shown in Table[3] we observed little loss in performance through magnitude pruning. We
re-iterate that it was crucial to finetune with the fixed mask in order to maintain good performance

5.5 SQUAD EXTRACTIVE QUESTION ANSWERING

To demonstrate the effectiveness of our approach beyond classification, we additionally experiment
on the extractive question answering task SQuAD, which asks model to select the answer span to a
question given a Wikipedia paragraph. To make direct comparisons with [Houlsby et al|(2019), we
run all experiments on SQuUAD v1.1. For diff pruning, we use the same general hyper-parameters as
our full finetuning baselineﬁ Results are shown in Table Diff pruning is able achieve comparable
or better performance with only 1% additional parameters. Notably, we see that our method can
improve the F1 score of full finetuning baseline by a significant margin (e.g. 90.8% = 93.2%)

B3To simulate this restricted setting, we tried applying diff pruning only on the dense transformations just
before the output of each layer (i.e. after self-attention layers), and observed much worse performance.

'“Even for the approach that does not apply magnitude pruning, we found it helpful to fix the mask z, after
an initial training phase and finetune just w.

https://huggingface.co/transformers/v2.5.1/examples.html
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Sparsity F1
Full finetuning 100%  90.7%
Adapters 2% 90.4%
Full finetuning 100%  90.8%
Diff pruning 1% 92.1%

Diff pruning (struct.) 1% 93.2%
Table 4: SQuAD validation results with BERT_arce model.

while modifying many fewer parameters (e.g., 100% = 1%), which potentially implies that diff
pruning can have a useful regularization effect.

6 DISCUSSION

6.1 MEMORY REQUIREMENTS

For training, our approach requires more memory than usual finetuning due to additionally opti-
mizing o, and w,. This did not present a significant challenge for pretrained models that we
experimented with in this study, since majority of GPU memory was utilized by the minibatch’s
activation layers. However, this could present an issue as model sizes get larger and larger. While
training efficiency was not a primary concern of this work, diff pruning takes approxiamtely 1.5X%
to 2x more time per batch, which results in slower training.

After training, storing the task-specific diff vector requires storing a compressed version with both
the nonzero positions and weights, which incurs additional storage requirements.

6.2 INFORMATION-EFFICIENT TRANSFER LEARNING

Efficiently representing pretrained models adapted to new tasks is becoming an increasingly impor-
tant problem in contemporary NLP. This paper focuses on a rather narrow definition of efficiency—
parameter-efficiency. An interesting direction might be to target generalizations of parameter-
efficiency, for example, information-efficiency, which aims to minimize the number of bits required
to represent the task-specific model when given the pretrained model for free. This view can suggest
other avenues for achieving information-efficient transfer learning: for example, “what is the min-
imum number of (potentially synthetic) datapoints that we can finetune BERT on to obtain a good
task-specific model?”E] or “what is the shortest prefix string that we can condition GPT3 on for it
to become a good task-specific model”?

7 RELATED WORK

Multi-task learning Multi-task learning (Caruana,|1997)), broadly construed, aims to learn models
and representations that can be utilized across a diverse range of tasks, and offers a natural approach
to training parameter-efficient deep models. Several works have shown that a single BERT model
can obtain good performance across multiple tasks when jointly trained (Liu et all 2019b} (Clark
et al., 2019; Stickland & Murray, 2019). Adapter layers, which are task-specific layers that read and
write to layers of a shared model (Rebutffi et al., 2018)), offer an alternative approach to multi-task
learning that does not require access to all tasks during training, and have also been applied to obtain
parameter-efficient BERT models (Houlsby et al., [2019; |Pfeiffer et al.,|2020ajbic). A related line of
work targets extreme parameter-efficiency through task-agnostic sentence representations that can be
used without finetuning for downstream tasks (Le & Mikolovl, 2014} Kiros et al., 2015} Wieting et al.,
2016; Hill et al., 2016; |Arora et al.,|2017; |Conneau et al., [2017;|Cer et al., 2018; Zhang et al., 2018}
Subramanian et al., 2018; Zhang et al., 2020). [Reimers & Gurevych/|(2019), building on the earlier
work of (Conneau et al.| (2017), show that BERT finetuned on natural language inference obtains
sentence representations that perform well across multiple sentence-level tasks. These feature-based
transfer learning methods are however generally outperformed by fully finetuned models (Howard
& Ruder} 2018).

Dataset distillation (Wang et al., |2018) tackles this question in the context of vision models.
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Model compression There has been much recent work on compressing pretrained trained with
self-supervision (see |Ganesh et al.| (2020) for a recent survey). A particularly promising line of
work focuses on obtaining smaller pretrained models (for subsequent finetuning) through weight
pruning (Gordon et al.l [2020; |Sajjad et al., [2020; |Chen et al., |2020) and/or knowledge distillation
(Sanh et al.,[2019; [Sun et al.,[2019; Turc et al., 2019} Jiao et al.,[2019; [Sun et al., [2020)). It would be
interesting to see whether our approach can be applied on top of these smaller pretrained models to
for even greater parameter-efficiency.

Learning to prune Our work is closely related to the line of work on learning to prune pretrained
models with differentiable relaxations of binary masks (Wang et al., | 2019b; [Zhao et al.| [2020; |Sanh
et al.||[2020;|Radiya-Dixit & Wang}|2020). While these works also enable parameter-efficient transfer
learning, they generally apply the masks directly on the pretrained parameters instead of on the
difference vector as in the present work.

Regularization towards pretrained models Finally, diff pruning is also related to works which
regularize the learning process towards pretrained models for continual learning (Kirkpatrick et al.|
2017; Schwarz et al., [2018), domain adaptation (Wiese et al., [2017; Miceli Barone et al., [2017),
and stable finetuning (Lee et al., 2020). These works typically do not utilize sparse regularizers and
target a different goal than parameter-efficiency.

8 CONCLUSION

We propose diff pruning as a simple approach for parameter-efficient transfer learning with pre-
trained models. Experiments on standard NLP benchmarks and models show that diff pruning can
match the performance of fully finetuned baselines while requiring only a few additional parameters
per task. We also propose a structured variant of diff pruning which provides further improvements.
Future work will consider (i) applying this approach to other architectures (e.g. ConvNets for vi-
sion applications), (ii) injecting parameter-efficiency objectives directly into the pretraining process
(to pretrain models that are better suited towards sparse transfer learning), and (iii) combining diff
pruning with other techniques (e.g. adapters) to achieve even greater parameter-efficiency.
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Figure 3: Percentage of modified parameters attributable to each layer for 5 different runs of SST-2 at 0.5%
target sparsity. The layers are ordered from earlier to later (i.e. the embedding layer is shown at the top). The
x-axis for each plot goes from 0% to 20%.
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A APPENDIX

A.1 CONSISTENCY OF NONZERO PARAMETERS
Figure[3|shows the percentage of modified parameters attributable to each layer across 5 runs of SST-

2. We find that there is nonotrivial variation in sparsity across runs, but also a degree of consistency.
For example, the first layer is modified considerably more than other layers across all runs.
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