Under review as a conference paper at ICLR 2026

COMBA: CROSS BATCH AGGREGATION FOR LEARN-
ING LARGE GRAPHS WITH CONTEXT GATING STATE
SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

State space models (SSMs) have recently emerged for modeling long-range de-
pendency in sequence data, with much simplified computational costs than mod-
ern alternatives, such as transformers. Advancing SMMs to graph structured data,
especially for large graphs, is a significant challenge because SSMs are sequence
models and the shear graph volumes make it very expensive to convert graphs
as sequences for effective learning. In this paper, we propose COMBA to tackle
large graph learning using state space models, with two key innovations: graph
context gating and cross batch aggregation. Graph context refers to different hops
of neighborhood for each node, and graph context gating allows COMBA to use
such context to learn best control of neighbor aggregation. For each graph con-
text, COMBA samples nodes as batches, and train a graph neural network (GNN),
with information being aggregated cross batches, allowing COMBA to scale to
large graphs. Our theoretical study asserts that cross-batch aggregation guaran-
tees lower error than training GNN without aggregation. Experiments on bench-
mark networks demonstrate significant performance gains compared to baseline
approaches. Code and benchmark datasets will be released for public access.

1 INTRODUCTION

Graph learning has become popular to handle data structures for representing entities and their
relationships in a wide range of domains, including social networks (Fan et al.l 2019), citation
networks (Yang et al., [2016), and molecular structures (Wu et al., |2018). Graph neural networks
(GNNs5) have achieved great success in learning from graph-structured data by propagating neigh-
borhood information. However, scaling GNNS to large graphs remains challenging due to the high
memory and computational cost of neighborhood expansion and the difficulty of preserving long-
range dependencies (Dwivedi et al., 2022]).

Transformers, by contrast, excel at modeling long-range dependencies through global attention,
which directly relates every node to every other node in the graph (Yun et al.| 2019). While global
attention enables Transformers to capture arbitrary dependencies, graphs lack the inherent sequential
ordering. To address this, graph Transformers incorporate structural encodings (SEs) or positional
encodings (PEs) to provide nodes with contextual information about their position and role within
the graph (Kim et al.,|2022). However, the quadratic cost of attention makes Transformers difficult
to apply at scale, particularly for massive graphs with millions of nodes and edges. To mitigate this,
some works have proposed linear-time attention approximations, such as sparse attention (Zaheer
et al., |2020) and low-rank factorization (Wang et al., 2020), which reduce memory and computa-
tional costs compared to full graph attention.

Recently, state space models (SSMs) have emerged as efficient alternatives for sequence modeling,
combining structured recurrence with linear-time complexity while still capturing long-range depen-
dencies (Gu et al., [2021). Mamba is a state space model (SSM) architecture designed to efficiently
model long-range dependencies in sequential data. Unlike traditional models that rely on attention
mechanisms, Mamba employs a selective state space framework, enabling it to process sequences in
linear time while maintaining high performance across various modalities (Gu & Dao, 2024).

Under review as a conference paper at ICLR 2026

Yet, applying SSMs to graph data poses unique challenges. First, graphs are inherently irregu-
lar and lack a natural sequential ordering, making it difficult to directly feed them into sequence
models. Second, traditional SMMs process sequences by updating the current hidden state, which
is sufficient for sequential data but inadequate for graphs where each node depends on multi-hop
neighborhoods. Since the sheer size of graphs demand scalable and efficient learning, we adopt a
batch-based sampling strategy, which introduces additional challenges such as sampling bias and
variance (Balaji et al., 2025)).

To tackle these challenges, our COMBA framework incorporates three key components: (1) hop-
aware graph context construction, which leverages adjacency matrices at multiple hops to capture
local and multi-hop neighborhood information; (2) cross-batch aggregation, which updates node
embeddings across overlapping batches to mitigate sampling variance and preserve global graph
information; and (3) graph context gating, which selectively controls the contribution of each hop to
anode’s representation. Together, they allow COMBA to efficiently model long-range dependencies
in large graphs. By combining local hop-aware context with cross-batch updates, the framework
balances scalability with expressive power, enabling robust learning on large homogeneous graphs.

Specific contributions of this paper are as follows:

* We develop a cross-batch aggregation mechanism to mitigate variance from batch-based
sampling and preserve global information.

* We introduce graph context gating, which selectively controls the contribution of multi-hop
neighborhoods to each node’s representation.

* We propose COMBA, a state-space model framework for learning from large-scale homo-
geneous graphs, with validation on benchmark datasets demonstrating significant perfor-
mance gains over baselines.

* Our theoretical study asserts that cross-batch aggregation reduces error compared to tradi-
tional batch-wise GNN training without cross-batch aggregation.

2 RELATED WORK

2.1 HOMOGENEOUS GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) have emerged as a powerful tool for learning on graph-structured
data. Pioneer works such as Graph Convolutional Networks (GCNs) (Kipf & Welling| [2017), ex-
tended convolutional operations to graphs by aggregating information from a node’s neighbors.
Other works, including GAT (Velickovic et al., [2017), incorporate attention mechanisms to assign
different weights to different neighbors, and GatedGCN (Bresson & Laurent,[2017) extends standard
GCNs by using learnable edge-wise gates to control neighbors’ influence during message passing.

2.2 GRAPH TRANSFORMERS

Graph Transformers extend the standard Transformer architecture to handle graph-structured data
by integrating both node features and graph topology into the attention mechanism. The first gen-
eralized graph transformer (Dwivedi & Bresson, 2020) incorporates neighborhood connectivity as
their attention mechanism, and introduces Laplacian-based positional encodings. Graphormer (Ying
et al.,[2021)) encodes both node features and graph structure, using spatial encodings and centrality-
aware attention to capture relationships between nodes. NAGPhormer (Chen et al.|[2022) uses node-
adaptive gating and hierarchical attention over multi-hop neighborhoods to better capture long-range
dependencies in graphs. Although graph transformers are highly expressive and capable of captur-
ing long-range dependencies, their quadratic complexity with respect to the number of nodes limits
scalability to large graphs.

2.3 STATE SPACE MODELS WITH GRAPHS

State space models (SSMs) have emerged as a powerful alternative to traditional recurrent archi-
tectures for sequence modeling. Structured State Space Models (S4) are a class of state space

Under review as a conference paper at ICLR 2026

models designed to efficiently model long-range dependencies in sequential data using reparam-
eterization (Gu et al., 2021). Recently, Mamba (Gu & Daol 2024) demonstrated fast inference
and linear-time complexity in long sequence modeling with improved performance compared with
Transformers. In the context of graphs, Mamba has been adapted to propagate information along
nodes and edges, allowing a expressive node representation across multi-hop neighborhoods. A
recent example is Graph Mamba (Wang et al., |2024)) which integrates a Mamba block with graph-
specific node prioritization and permutation strategies to efficiently capture long-range dependen-
cies. Another Graph Mamba (Behrouz & Hashemi, [2024)) considers nodes’ induced subgraphs as
tokens and generates input sequences for Mamba by applying MPNNSs to these subgraphs. While
effective, its reliance on computing MPNNSs over all node subgraphs can be computationally expen-
sive, motivating our batched variant and modifications such as the context gating mechanism for
improved efficiency and performance.

2.4 HOMOGENEOUS GRAPH SCALING

Scaling GNNs to large graphs remains a challenge, primarily due to the neighborhood explosion
problem, where the number of nodes involved in computation grows exponentially with the number
of layers. To mitigate this problem, GraphSAGE [Hamilton et al.| (2017) generates node embed-
dings by sampling and aggregating features from a fixed-size neighborhood, enabling generalization
to unseen nodes while reducing computational cost compared to full-graph methods. Similarly,
Clustering-based strategies offer another solution by partitioning the graph into smaller, more man-
ageable subgraphs. Cluster-GNN Chiang et al.|(2019) divides the graph using a clustering algorithm
(such as Metis) and trains a GNN with mini-batch updates on these clusters, which significantly
reduces memory usage. FastGCN |Chen et al.| (2018) further improves efficiency by using impor-
tance sampling to train on large graphs and treats the convolutions as integral transforms, thereby
approximating the feature propagation through Monte Carlo sampling.

Our approach utilizes adjacency matrices from different hops to construct hop-aware graph context
for each batch. For each hop, we apply a graph neural network (GNN) to the corresponding ad-
jacency matrix, enabling the model to capture structural information from multiple neighborhood
ranges. To prevent isolated batch training from losing global information, we propose a cross-
batch aggregation mechanism to help all batches to update their node embeddings, through shared
multi-hop neighbors between batches. To adaptively balance the contributions of hop-aware graph
contexts, we use a learnable gating function that selectively weights hop embeddings, allowing the
model to emphasize more informative hops. Together, adjacency-driven hop contexts, cross-batch
aggregation, and gating for adaptive control enable our model to effectively scale state space models
to large graphs, while preserving both local and long-range dependencies.

3 PROBLEM DEFINITION

Let G = (V,E, X) be a homogeneous graph, where the node set is V' = {vy,vq,...,v,}, the
edgesetis E CV x V,and X € RR™*? ig the node feature matrix, with each row z; denoting the
d-dimensional feature of node i € V. We denote A € {0, 1}™*" as the binary adjacency matrix of

G, defined as
{1 if (vi,v;) € E,

Aij = .
0 otherwise,

A;; =0 forall .
Below we also define the hop-k adjacency matrices which indicate whether two nodes are connected
by a path of exactly length k.
Gen(G, A) = A*, where
{ if (A%);; > 0and (A");; =0Vr=1,...,k—1, 0
otherwise,
=0, Vi

Structured State Space Model (S4) The Structured State Space (S4) model is a sequence model
designed to capture long-range dependencies efficiently. For a sequence of inputs z; € RY, we can

Under review as a conference paper at ICLR 2026

map the sequence to output sequence y(t) € RY by the latent state h(t) € R” . The continuous-time
linear state space formulation is:

h'(t) = Ah(t) + Bx(t),)
y(t) = Ch(t), 3)

where A € RV*N B € RV C € RY are the system matrices representing the state transition,
input projection, and output projection, respectively. Since the real-world data is usually discrete, we
can discretize the continuous system using the zero-order hold (ZOH) discretization rule, yielding:

ht+1 = Aht + Bl’t, (4)
yr = Chy, (&)

where A = exp(AA),B = (AA)~!(exp(AA — I)AB, are the discretized matrices, and A is the
discretization step size.

S4 has demonstrated strong performance on long sequences due to its ability to model global de-
pendencies, while remaining computationally efficient (Gu et al.| |2021). Our goal is to design an
effective state space model-based learning framework for large graphs with maximum node classifi-
cation accuracy.

4 PROPOSED FRAMEWORK

Our model is primarily motivated by Graph Mamba (Behrouz & Hashemi, |2024)), which extends
state space models (SSMs) to the graph domain by converting graph neighborhoods into sequential
structures. Each node’s representation is updated by applying an message-passing neural network
(MPNN) to subgraphs generated from random walks starting from that node, followed by Mamba-
style sequence modeling to capture long-range dependencies. This design introduces sequential in-
ductive bias into graph representation learning, allowing the model to better combine local structural
information and sequential dependencies. However, Graph Mamba also suffers several limitations:
(1) it performs MPNN computations on every node’s random-walk subgraphs, which becomes com-
putational expensive on large-scale graphs, and (2) it uses only the current input to compute the
gating signal, potentially missing richer contextual dependencies from adjacent graph contexts.

In contrast, our framework employs a batch-based hop-aware adjacency construction, where each
batch directly encodes multi-hop neighborhoods through MPNN, avoiding redundant per-node sub-
graph processing. Specifically, COMBA integrates two core components to overcome the limita-
tions of prior approaches: (1) a cross-batch aggregation promotes interactions between batches, (2)
a graph context gating to selectively control multi-hop information flow.

4.1 LocAL GRAPH CONTEXT

Let B = {b1,ba,...,bs} denote a set of batches of nodes. For each batch b,,, € B we extract
the induced subgraph G, to enable localized and scalable computation. Based on G, _, we then
generate the sequence of hop-based adjacency matrices:

Ay, ={AL A2 . AF Y ={Gen(Gy,, As,,),Gen(Gy,., A7),...,Gen(Gy, , A)},

where G, and A, are the subgraph and adjacency matrix restricted to nodes in batch b,,, and
Gen(+) is the hop-matrix generation function defined in Eq.|l| These matrices capture multi-hop
connectivity patterns within each batch, and A = {A4;,,..., A, } contains sequences of the hop
matrices for all batches.

For each each batch b,,, a graph learner is trained, using the hop-based adjacency matrices

{A’lfm}’,:zl together with the corresponding node features X; . This produces hop-aware node
representations for each batch:

me = {meJ, me-,27 ey Zb E}’ me,k = O'(Allmebm Wbm)

ms

allowing the models to capture structural information at different hop distances within the batch.

Concatenating over all batches yields the global representation set Z = {24, Zp,, ..., Zp,,, }-

Under review as a conference paper at ICLR 2026

To capture local structural context, we utilize the hop dimension in Z. For each node n, its sequence
of hop-aware embeddings is {Zn,l, Zn2, s 2% }, which encodes information aggregated from

neighborhoods of different ranges.

We then define a local hop-context window around hop k with window size w as CF =
{Zm k—ws - - 2 2o, k+w}, ensuring that each node representation at hop & incorporates information
from both its own embedding and its neighboring hops.

@ @ €) @ &)

42,2334 a587 413,333,435 a
31 1 [1] a, 1
a

Batch 1

oo Ba @O sink it
@ @ — ” *.-:»
QRO

(29 —’ —’

a,a7a3a4a,a(a,a7a;a4a5a6
“ @ @ 1 az 2
A as 1 A a; 1 1
Batch 2 b ay[(12 [T b2 ay[T 1
as 1] 1 as i[1
ag 1 g 1

Figure 1: Cross batch aggregation process. From left to right, given a graph in (I), the nodes are
partitioned into batches (only two batches are shown in (2)). For each batch, COMBA first finds

each nodes’ /%-hop neighbors and forms a subgraph shown in 3) (k = 2 in this case). A GNN is
trained for each 1-hope, 2-hop, and k-hop based adjacency matrix. When training each hop’s GNN,
information from other batches are used to help learn current batch node’s embedding. E.g., in @),
node ay in Batch 1 aggregates information from a4 from Batch 2. Cross batch aggregation allows
all GNNs being trained to collectively help each others.

4.2 CROSS BATCH AGGREGATION

To compute node representations for each batch, we first apply Dropout to the input feature matrix
for all nodes in the batch and perform a linear transformation:

X;, = Dropout(X, ,p) (6)
Zyy) = o (X, W))
where, Dropout(X}, ,p) randomly zeroes elements of X, ~with probability p. Wb(,?b) is a learnable
weight matrix, and o () is a nonlinear activation function.
For nodes in batch b,,, the message passing at layer 1 and hop & is computed as
2y = o (A5, ZW,)), ®

(3

where A’bC is the hop-based adjacency matrix. I, “ is the learnable weight for batch b, with hop

k atlayer 1 and o(+) is a non-linear activation functlon such as ReLU. The resulting Z ém) ;; contains
the embeddings for all nodes in batch b,,, under hop k. The updated hop-k representations of each
node n in batch b,,, across all batches that contain that node are then explicitly updated as

20 () ZV (), Vn€bnNbigm, k=1,....k 9)

For deeper layers (I + 1), the embedding is computed recursively by the cross-batch updated node

embeddings ZIESL)’ K

200 = a(af 20 Wi t), (10)
Zy)) Z{T (), Yn € by Ny, (11)

Under review as a conference paper at ICLR 2026

Fig. [T]shows an example of information aggregation across two batches, where node a, from Batch
1 leverages information from a,4, which is in Batch 2, to learn embeddings.

Finally, for each batch b,,,, we obtain a sequence of k embeddings corresponding to the k hop-based
adjacency matrices:

Zo =125 2t 20 (12)

where Zlgi) « denotes the embedding obtained after L message passing layers.

To form the global representation for all nodes in all batches, we stack the sequences across all
batches:
Z = [[nesZons X = [y X 2" = X112 (13)

m 7 m)

where Z contains the final hop-aware embeddings for all nodes in all batches, and X contains the
original feature for all nodes after Dropout. Z’ thus forms the global sequence input to our COMBA.
Algorithm [2]in Appendix lists the pseudo-code of the cross batch aggregation process.

By
) hy .—{Linear]
2 eNxkxd

Ye
iz} B Ak L Ck
— Zx—|Linear]| Linear|— Yx&enet

(RRRY)

R | mms

Liwkew

Figure 2: Illustration of the COMBA block with context gating. From left to right. The input se-
quence Z’ is first processed by the S4 module to produce hop-wise representations. A context gating
mechanism C is then applied over the local hop window zj_ x4 to refine each hop embedding
yr.. The gated outputs are concatenated with the original node features, forming a new sequence Y.
Pooling along the hop dimension aggregates the sequence into embedding X’ for downstream tasks.

4.3 CONTEXT GATING

The COMBA framework follows the state space model (SSM) formulation in Eq. [3| but in our
approach, we replace ¢ with the hop index k and the input x(¢) with the hop-aware node embedding
21, Thus, the zero-order hold discrete recurrence following Eq. [5]becomes

hi = Ahj—1 + Bz, yr = Chy. (14)

In the standard Mamba formulation, the output is obtained by applying a fixed projection to the
hidden state. In our approach, the output projection is hop-varing and is computed from a local
context window. For example, at hop step k& we may form a context window of inputs Z'x_1.511 =
[zk,l, Zks Zk+1:| , which captures the graph context around z;. More generally, as shown in Fig.

for a window size w the input segmentis Z', ., 1w = [zk,u” Zh—kdly - - zk+w].
We then compute a context-dependent output matrix
Cr=P(Z k—wiktw), (15)

where ® is a learnable mapping. The model output at hop & is obtained by applying this context-
dependent projection to the current hidden state:

yr = Crhy. (16)
Algorithm [3]in Appendix lists the pseudo-code of the context gating mechanism.

4.4 COMBA FRAMEWORK

Given node features X, a set of sampled batches 3, and their corresponding adjacency matrices
A, the COMBA framework first utilizes the CrossBatch module in @) of Fig. [3] which aggregates
information across batches to construct contextual sequences Z'.

Z' = CrossBatch(X, B, A)

Under review as a conference paper at ICLR 2026

@ @ &) @ @ ©®

Batch 1 @ e Al
by

A2 2
e @e Cross-Entropy Loss
e @ 2 ~>{ Comba Block m@—»LCE == Z y; log (i)
Batch 2 T T : 7
GREle @ — 0 o4 B
e e b by

Batchm

kxd

Figure 3: The proposed COMBA framework on large homogeneous graph. From left to right. Nodes
of a homogeneous graph in (I) are partitioned into /7 batches in @). @): for each batch, COMBA

identifies the k-hop neighbors of target nodes and constructs a corresponding subgraph. @: Node
embeddings will be updated across batches via cross batch aggregation as illustrated in Fig{l| The
resulting sequence will pass into COMBA block with context gating Q) as illustrated in Fig2] 6):
the final predictions Y for all nodes are obtained and optimized using the cross-entropy loss

Then, these sequences are passed to the COMBA Block in () of Fig. [3| which applies context gating
over different neighborhood hops to control aggregation adaptively.

X' = CombaBlock(Z', B, A)

Finally, model training is guided by the cross-entropy loss over the predicted labels. Algorithm|I]in
Appendix lists the pseudo-code of the main COMBA framework.

4.5 THEORETICAL ANALYSIS

We justify that cross-batch aggregation guarantees lower error than training GNN without interac-
tions between batches through following theorem:

Theorem 1. Denote the number of batches per group as d, with the set of batches B =
{Bi,...,B4}. Let BT be the set of all node indices appearing in BB, and define the set of all
seed node indices as .,
S = U Si,
i=1

where s; are the seed node indices in batch B;. The complement of S with respect to BT is then
S =BI\S.

For each batch B; at layer l: - Let A; be the sampled subgraph, - Let X! be the node features for all
nodes in B;, - Let Xf = Xf [s;] denote features of seed nodes s;, - Let Xf denote features of other

seed nodes from different batches that appear in B;, - Let sf be the indices of such seed nodes from
batch Bj, and let k be the set of all available batches.

Define a gated GNN layer as a function f(A;, Xf) Then, the cross-batch aggregation update at
layer 1 + 1 is given by:

X! = f(Ai, XD[si] (1)
X = s e (A5, XD)s]))
X[[si] = X 3)
XM s]] = X!)

We can express the cross-batch aggregation as an approximate gated GNN layer in the following
form in terms of batch B;:

X n] = Lin) - f(Ai, X])n] + (1 = Li(n)) - X{[n] (7)
where the indicator function 1;(n) € {0, 1} is treated as a hard gate defined as:
1, ifnes;
I; =<7 1
i(n) {o, ifn € S¢ (18)

Under review as a conference paper at ICLR 2026

Define the ideal aggregation update when trained over full batched graph for the set of batch B:
X" n] = f(45, X)) (19)

Define the aggregation update without cross-batch update for the set of batch BB as X f *1. Define the
approximation error between the cross-batch aggregation update and the ideal aggregation update
when trained over full graph as:

d
1
gl+1(Xl+1 Xl+1 EZ Z ||Xl+1 Xl+1||§ (20)

jGB
We can show thar EF1 (X1 X+ < ght(x+t XL,

The proof of Theorem|[I]is presented in Appendix due to space limit.

5 EXPERIMENTS

5.1 BENCHMARK DATASETS

Six real-world homogeneous graphs are used as our benchmark datasets. We used four heterophilic
datasets from the work (Platonov et al., [2023) and two large datasets from Open Graph Bench-
mark (Hu et al.;|2020). Additional details about the datasets are shown in Appendix.

5.2 BASELINES

We compare our COMBA with (1) GNN, e.g., GCN (Kipf & Welling, |2017) and GatedGCN (Bres-
son & Laurent, [2017), (2) a transformer architecture: NAGphormer (Chen et al.,[2022), (3) a scalable
GNN: ClusterGCN (Chiang et al., [2019)), and two recent variants of Graph Mamba: Graph Mamba-
1 |Behrouz & Hashemi| (2024) and Graph Mamba-2 |Wang et al.| (2024). Additional details of the
baseline models are in Appendix.

5.3 RESULTS AND ANALYSIS

Baseline Comparison Table [T] summarizes the performance of various models on six homoge-
neous graph datasets. COMBA consistently achieves the highest accuracy across all datasets, out-
performing baseline models. Under the same message passing scheme, COMBA shows statistically
significant improvements on five datasets, including Roman-empire, Ogbn-arxiv, Ogbn-product,
Minesweeper, and Tolokers. On the Amazon-ratings dataset, COMBA achieves the highest ac-
curacy while Nagphormer performs comparably but requires more memory, highlighting COMBA’s
robustness across various graph structures.

Notably, COMBA consistently outperforms Graph Mamba-1 across five benchmark datasets. While
Graph Mamba-1 constructs multiple graphs for each node, which can introduce redundancy and
increase computational complexity, COMBA efficiently aggregates hop-aware node embeddings
within a single unified graph. This design allows COMBA to capture structural information effec-
tively, resulting in higher accuracy and more reliable performance compared to Graph Mamba-1.

Abalation Study Table 2] presents the ablation results of COMBA, showing that each component
plays an important role in its overall performance. When the cross-batch aggregation is removed,
the model consistently underperforms, underscoring the necessity of aggregating information across
batches to capture richer global structural patterns. Likewise, removing the context gating mecha-
nism leads to a further drop in accuracy, which demonstrates its effectiveness in filtering and em-
phasizing relevant hop-level information. These results confirm that both cross-batch aggregation
and context gating are integral to COMBA’s strong performance. In particular, Amazon-ratings and
Tolokers exhibit substantial gains when both the cross batch aggregation and context gating mech-
anism are applied, underscoring their effectiveness in settings with dense connectivity and feature
noise.

Under review as a conference paper at ICLR 2026

Table 1: Performance comparisons between baselines and our proposed method across five homo-
geneous datasets. Over 5 different initialization status, accuracies are reported for Roman-empire,
Amazon-ratings, Ogbn-arxiv, and Ogbn-products and roc auc scores are reported for Minesweeper
and Tolokers. Superscript * indicates that COMBA is statistically significantly better than this
method at 95% confidence level using the performance metrics.

Model Roman-empire ~Amazon-ratings Ogbn-arxiv. ~ Ogbn-product Minesweeper Tolokers

Accuracy Accuracy Accuracy Accuracy ROC AUC ROC AUC
GCN 0.795% goss 0.462..9.0080 0.680% 0044 OOM 0.884%) g4 0-838%¢ 9034
Gated-GCN 083379079 0481%0gery 07015006 OOM 0.905%0 0016 0832Z9.0090
Nagphormer 0.800%¢ 43 0.5040.0070 0.696% 9023 OOM 0.903% 0 9006 0-834% 0045
Cluster-GCN 0.815% 0 0042 0.476% 9 0047 0678400076 0717500055 0.886%0.0024 0.758%¢ 0056
Graph Mamba-1 0.677% 9909 A15%0 0016 604% 5020 OM 806%0 0050 0.734% 00113
Graph Mamba-2 0.869% g2 0.490% 0036 0.686% gos9 OOM 0.927% 0 0021 0.803%¢ 199
COMBA 0.895+0.0038 0.5070.0025 0.71610.0037 0.735:0.0100 0.942+0.0039 0.84510.0009

Table 2: Ablation study results w.r.z. cross batch aggregation and context gating mechanism

Model Roman-empire Amazon-ratings Ogbn-arxiv ~ Minesweeper Tolokers
Accuracy Accuracy Accuracy ROC AUC ROC AUC
COMBA 0.895_0.0038 0.507-0.0025 0.71610.0037 0.94210.0030 0.84510.0009
w/o cross batch 0.881:|:0<0040 0~492:t0.0062 O~703:t0.0009 0.940:‘:0‘0051 0.832:&()‘0022
w/0 context gating 0.878i0,0005 0.472i0'0007 0.705i0,0014 0.939i0,0050 0.805i()‘0039
Complexity Analysis We evaluate the O T Datasets phoduct

wall-clock runtime across six benchmark
datasets to assess the scalability of our ap-
proach. As illustrated in Figure the
average training time per epoch consis-
tently increases with the total number of
nodes and edges. Importantly, this rela-
tionship follows an approximately linear
trend on a log-log scale, indicating that our
method maintains efficient scalability even
on large homogeneous graphs. This trend R
suggests that our proposed framework

avoids the neighborhood explosion prob- * * Ao Time per Epoch ”
lem often encountered in GNN. More-

over, this observed linear behavior dempn— Figure 4: Log average runtime per epoch (y-axis) using
strates that our Cross batc.h aggregatl.on fixed batch sizes vs. the sum of number of nodes and number
and context-gating mechanism do not in- of edges in log scale (z-axis).

troduce computational overhead. This
scalability is especially important for real-world applications, where graphs with millions of nodes
and edges are common, underscoring the utility of our approach in large-scale graph scenarios.

Regression Line
354

ogb-arxiv
L]

Number of Nodes and Edges

6 CONCLUSION

This paper introduces COMBA, a state space model-based framework for large graph learning. Un-
like prior methods that inefficiently obtain subgraphs for each node, COMBA uses multi-hop neigh-
bors of each batch to construct a subgraph for scalable GNN learning. In contrast to approaches that
only consider the current step during gating, our context gating mechanism captures richer graph
contexts from a window of neighborhoods. To mitigate the bias introduced by batch sampling and
capture global structural information, we employ cross-batch aggregation that promotes information
switch between batches with theoretical guarantees for error reduction. Together, these innovations
enable COMBA to scale to large graphs while achieving robustness and superior performance. Ex-
tensive experiments on benchmark datasets confirm that COMBA consistently outperforms baseline
methods, highlighting its effectiveness in capturing long-range dependencies with improved accu-
racy, efficiency, and robustness.

Under review as a conference paper at ICLR 2026

REFERENCES

Vignesh Balaji, Christos Kozyrakis, Gal Chechik, and Haggai Maron. Efficient gnn training through
structure-aware randomized mini-batching, 04 2025.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’24, pp. 119-130, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3672044. URL https://doi.
org/10.1145/3637528.3672044|

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. ArXiv, abs/1711.07553, 2017.
URL https://api.semanticscholar.org/CorpusID:13761978.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. 01 2018. doi: 10.48550/arXiv.1801.10247.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In International Conference on Learning Representations,
2022. URL https://api.semanticscholar.org/CorpusID:252846362.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proc. SIGKDD
Conference, pp. 257-266, 2019. ISBN 9781450362016. doi: 10.1145/3292500.3330925. URL
https://doi.org/10.1145/3292500.3330925.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. ArXiv, abs/2012.09699, 2020. URL https://api.semanticscholar.org/
CorpusID:2292980109.

Vijay Prakash Dwivedi, Ladislav Rampasek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS *22, Red Hook, NY, USA, 2022.
Curran Associates Inc. ISBN 9781713871088.

Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural net-
works for social recommendation. In The World Wide Web Conference, WWW 19, pp. 417-426,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366748. doi:
10.1145/3308558.3313488. URL https://doi.org/10.1145/3308558.3313488.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URLhttps://openreview.net/forum?id=AL1fgq0507H.

Albert Gu, Karan Goel, and Christopher R’e. Efficiently modeling long sequences with structured
state spaces. ArXiv, abs/2111.00396, 2021. URL|https://api.semanticscholar.org/
CorpusID:240354066.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proc. NIPS Conference, NIPS’ 17, pp. 1025-1035, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In Pro-
ceedings of the 34th International Conference on Neural Information Processing Systems, NIPS
’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, NIPS "22, Red Hook, NY,
USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR Conference,
12 2014.

10

https://doi.org/10.1145/3637528.3672044
https://doi.org/10.1145/3637528.3672044
https://api.semanticscholar.org/CorpusID:13761978
https://api.semanticscholar.org/CorpusID:252846362
https://doi.org/10.1145/3292500.3330925
https://api.semanticscholar.org/CorpusID:229298019
https://api.semanticscholar.org/CorpusID:229298019
https://doi.org/10.1145/3308558.3313488
https://openreview.net/forum?id=AL1fq05o7H
https://api.semanticscholar.org/CorpusID:240354066
https://api.semanticscholar.org/CorpusID:240354066

Under review as a conference paper at ICLR 2026

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017. URL https://arxiv.org/abs/1609.02907.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tJbbQfw—-5wv.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio’, and Yoshua
Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2017. URL https://api.
semanticscholar.org/CorpusID:3292002.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph se-
quence modeling with selective state spaces, 2024. URL https://arxiv.org/abs/2402.
00789.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-
attention with linear complexity. ArXiv, abs/2006.04768, 2020. URL fhttps://api.
semanticscholar.org/CorpusID:219530577.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine learn-
ing, 2018. URL https://arxiv.org/abs/1703.00564,

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’ 16, pp. 40—48. JMLR.org, 2016.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform bad for graph representation? In Proceedings of the
35th International Conference on Neural Information Processing Systems, NIPS *21, Red Hook,
NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Seongjun Yun, Minbyul Jeong, Rachyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph trans-
former networks. Curran Associates Inc., Red Hook, NY, USA, 2019.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: transformers
for longer sequences. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS *20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

A APPENDIX

A.1 THEOREM PROOF

Theorem. Denote the number of batches per group as d, with the set of batches B = {By, ..., Bq}.
Let BT be the set of all node indices appearing in B, and define the set of all seed node indices as

d
S= U Si,
i=1
where s; are the seed node indices in batch B;. The complement of S with respect to BL is
S =BI\S.

For each batch B; at layer l: - Let A; be the sampled subgraph, - Let X! be the node features for all
nodes in B;, - Let X! = X![s;] denote features of seed nodes s;, - Let X! denote features of other

seed nodes from different batches that appear in B;, - Let sf be the indices of such seed nodes from
batch Bj, and let k be the set of all available batches.

11

https://arxiv.org/abs/1609.02907
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=tJbbQfw-5wv
https://api.semanticscholar.org/CorpusID:3292002
https://api.semanticscholar.org/CorpusID:3292002
https://arxiv.org/abs/2402.00789
https://arxiv.org/abs/2402.00789
https://api.semanticscholar.org/CorpusID:219530577
https://api.semanticscholar.org/CorpusID:219530577
https://arxiv.org/abs/1703.00564

Under review as a conference paper at ICLR 2026

Define a gated GNN layer as a function f(A;, X}).
Then, the cross-batch aggregation update at layer | 4 1 is given by:

X = f(As, XDsi] ()
Xl =1l jend (A5, XS]])
XH—I[S} X! 3)
Xt sl = Xl)

We can express the cross-batch aggregation as an approximate gated GNN layer in the following
form in terms of batch B;:

XM 0] =Li(n) - f(As, XHn] + (1 = Li(n)) - X/[n] 1)

where the indicator function 1;(n) € {0, 1} is treated as a hard gate defined as:

_J1, ifnes;
H’(")_{o, ifn € ¢

Define the ideal aggregation update when trained over full batched graph for the set of batch B:
X n] = f(Ai, XD)n] (23)

(22)

Define the aggregation update without cross-batch update for the set of batch B as X ll L. Define the
approximation error between the cross-batch aggregation update and the ideal aggregation update
when trained over full graph as:

Z X — X3 (24)

d
1
L R
gt xiHt X! &Z
i=1 JEB
We can show that ET1(X!T1 Xy < ght(xH+1 XL,

Proof 1. Fix a batch i and a seed node n € B;. Define the per-node squared errors relative to the
ideal update:

Ex(n) = |X{"'n] = XM W]ll3, Ex(n) = |1X;"] — X" [n]]3-
Case 1. n € s; (local seed nodes). For local seed nodes, the cross-batch update and the ideal update

coincide: -
X n) = X[n).

Hence Ex(n) =0 < E¢(n).

Case 2. n € s¢ (cross-batch nodes). Let a(n) = X' n] = f(A;, X})[n] be the ideal update,
b(n) = X'1[n] the cross-batch update, and c(n) = X' [n] the no cross-batch value.

The squared errors relative to the ideal update are
Bx(n) =b(n) —a(m)[3, Ex(n) = lle(n) - a(n)]3.
Substituting b(n) gives

b(n) — a(n) = (Li(n) — Da(n) + (1 = Li(n)) X{[n] = (1 — Li(n))(X{[n] — a(n)),
so that
Ex(n) = (1 -1{"**(n)) || X{[n] — a(n)]l3.

Similarly, for the no-cross-batch update,

Eg(n) = (1—I7""(n) | X{[n] — a(n)]3.

12

2

3
4

5

—

Under review as a conference paper at ICLR 2026

Since 15 (n) > 1% (n), Vn € B, it follows that

Ex(n) = (1= (n)) [IX[n] — a(n) |3 < (1 =T} (n)) || X{[n] — a(n)[|3 = Ex (n).

Conclusion. For every node n, we have Ex (n) < E ¢ (n). Averaging over all nodes and batches,

d
1
+1 +1 l+1
gl xH X EE:

Z Ex(n) < dz ‘B‘ Z Eg(n) = EFH(XH X1,

nGB neB;

Thus the inequality holds.

A.2 DETAILED IMPLEMENTATIONS

We

provide the pseudo code in Algorithm to show the full pipeline of COMBA

Alg

orithm 1: Comba

Inp

ut : Node features { X },
Batch set B = {b1,...,bs},
All batches’ sequences of matrices A = {Ayp,,..., Ay }

Output: Y for downstream prediction tasks
1 2/ + CrossBatch(X, B, A)

X/

+ CombaBlock(Z’, B, A)

Y « Projection(X’)
L =% yilog(9) s /I Calculate cross-entropy loss

return Y

Alg

orithm 2: Cross batch aggregation

Inp

ut : Node features { X},
Batch set B = {b1,..., by},
All batches’ sequences of matrices A = {Ay,,..., Ay, }

Output: Sequence 2’ € N x (k + 1) x d for nodes in all batches

for

end

Z HZ:le
X HZ:leT

each batch by, in {by,...,bs} do
Xbm < Dropout(Xy, ,p)

ZZEO) « Projection(Xy,)

for each A} in A, do

[* Cross batch update for each node n in batch b,,, */
20 (n) + GNN(zgfj,A'gm)(n), Vn € by, N by,
for [=0,. -1 do

Z(ZH <—GNN(0 AE)

ZZS?:)M,k(n) - ngj?(n), ¥ € by, N b,
end

end
Zy,, (Zéi),l, Zéi)z, NN ZZEL)k) ; // Obtain sequence for batch b,,,

// Obtain sequences for all batches

m

n

Z « X|z
return Z’

13

1

BN T N B N I N

9
10
11

12
13
14
15
16

17

18

19

20
21
22

23

24

25

26
27

Under review as a conference paper at ICLR 2026

Algorithm 3: COMBA Block for Node Embeddings

Input : Node embeddings sequences Z € RV*kxd,
Batch set {b1,...,bm},
All batches’ sequences of matrices { Ay, , ..., Ay, }

Output: Updated node embeddings X’ € RV x4
for each batch by, in {b1,..., bz}t andl =0,...,Ldo
Z Layernorm(Zéfj)
A < Lineary(2')
B < Linearp(Z’)
C+ Linearc(Z'k—wiktw)(Fq. 15); /I Compute context-dependent output matrix
A + softplus(Lineara(Zs,,))
A <« discretize(A, A)(Eq. 11)
B « discretize(A, A, B)(Eq. 12)
/* Use context gating mechanism to produce output at each hop k */
forn =1t N do

(1, 2p) «— 2

ho < 0

for k = 1t0 k do

hi < Aghg—1 + By
Yk < Crhy

end

end

Y : (|bl, k, d) < szﬂk ; // Output sequence for all nodes in batch b,
Y’ + LayerNorm(Y + 2,)
Xp i 22:1 Y s /1 Pooling across hop dimension
for each A} in A, do

| Y, < GNN(X;, A5)
end
Yy, — (YL Y2 .., YbiC) // Rebuild sequence

m

Zlgfjl) — Xp Y, /I Concatenate node representations X; ~with sequence Y},
end

X'« ||Z:1X lg ; /I Concatenate node representations for nodes in all batches
return X’

A.3 DETAILS OF DATASETS

Table 3: Dataset Statistics
Roman-empire ~ Amazon-ratings Minesweeper Tolokers Ogbn-arxiv Ogbn-products

Nodes 22,662 24,492 10,000 11,758 169,343 2,449,029
Edges 32,927 93,050 39,402 51,900 1,166,243 61,859,140
Features 300 300 7 10 128 100

Classes 18 5 2 2 40 47

Roman-empire(Platonov et al., [2023): This dataset is based on the Roman Empire article from
Wikipedia. Each node in the graph represents one word in the text, and edges exist if two words are
connected. For semi-supervised learning, the nodes are split into training, validation, and test sets
with 11,331 (50%), 5,665 (25%), and 5,666 (25%) nodes, respectively.

Amazon-ratings(Platonov et al., 2023): This dataset is based on the Amazon product co-
purchasing network. Each node in the graph represents products, and edges exist if products are
bought together. For semi-supervised learning, the nodes are split into training, validation, and test
sets with 12,246 (50%), 6,123 (25%), and 6,123 (25%) nodes, respectively.

14

Under review as a conference paper at ICLR 2026

Minesweeper(Platonov et al., 2023): This dataset inspired by the Minesweeper game, a synthetic
dataset. Each node in the graph represents one cell in the grid, and edges exist for neighboring cells.
For semi-supervised learning, the nodes are split into training, validation, and test sets with 5,000
(50%), 2,500 (25%), and 2,500 (25%) nodes, respectively.

Tolokers(Platonov et al., 2023): This dataset is based on data from the Toloka crowdsourcing
platform. Each node in the graph represents tolokers (workers), and edges exist if two tolokers work
on the same task. For semi-supervised learning, the nodes are split into training, validation, and test
sets with 5,879 (50%), 2,939 (25%), and 2,940 (25%) nodes, respectively.

Ogbn-arxiv(Hu et al.)|[2020): This dataset is from Open Graph Benchmark, representing the ci-
tation network for computer science papers. Each node in the graph represents a paper, and edges
exist if one paper cites another one. For semi-supervised learning, the nodes are split into training,
validation, and test sets with 90,941 (53.7%), 29,799 (17.6%), and 48,603 (28.7%) nodes, respec-
tively.

Ogbn-products(Hu et al., 2020): This dataset is also from Open Graph Benchmark, representing
an Amazon product co-purchasing network. Each node in the graph represents products sold in
Amazon, and edges exist if two products are purchased together. For semi-supervised learning,
the nodes are split into training, validation, and test sets with 196,615 (8.0%), 39,323 (1.6%), and
2,213,091 (90.4%) nodes, respectively.

A.4 DETAILS OF BASELINE MODELS

We compare our COMBA with some state-of-art baselines.

GCN (Kipf & Welling|[2017) is a homogeneous graph neural network. It learns node representations
by aggregating and transforming features from each node’s neighbors.

Gated-GCN (Bresson & Laurent,[2017) extends standard GCN by incorporating gating mechanisms
to control the flow of information from neighboring nodes, allowing more flexible and selective
feature aggregation. Our COMBA employs the Gated-GCN model as default for GNN.

Nagphormer (Chen et al.,|2022) is a graph transformer model. It introduces the Hop2Token module,
which aggregates neighborhood features from multiple hops into distinct token representations.

Cluster-GCN (Chiang et al., [2019) partitions the graph into clusters and performing mini-batch
training within these clusters. By reducing the neighborhood size per batch, it preserves graph
structure while lowering memory and computational costs.

Graph Mamba-1 (Behrouz & Hashemil 2024)) treats each node’s induced subgraphs as tokens and
constructs input sequences by processing these subgraphs with MPNNSs. Since it is not reproducible
due to the high time complexity of the full model, we adopt a simplified version for efficiency.

Graph Mamba-2 (Wang et al.|[2024])) leverages SSM to efficiently capture long-range dependencies
in graphs. By permutation and node prioritization techniques, it achieves strong predictive perfor-
mance with reduced computational and memory costs.

A.5 IMPLEMENTATION DETAILS

We conduct a grid search over a selected range of hyperparameters, including hidden dimension:
[64,128], number of layers: [2,3], feature dropout rate: [0,0.3,0.5], hop length: [2,3,5,10] and batch
size: [5,10,50,100]. Adam (Kingma & Bal 2014) is used as the optimizer. The learning rate, weight
decay, and number of training epochs are fixed, with early stopping applied. For each method, we
report the average accuracy over five different random seeds. All experiments are performed on
desktop workstations equipped with NVIDIA RTX A6000 Ada Generation GPUs.

A.6 THE USE OF LLMS

LLMs are used to generate initial code skeletons in the research process. These drafts are later
refined, debugged, and adapted to the specific requirements of our COMBA framework.

15

	Introduction
	Related Work
	Homogeneous Graph Neural Networks
	Graph Transformers
	State Space Models with graphs
	Homogeneous Graph Scaling

	Problem Definition
	Proposed Framework
	Local Graph Context
	Cross Batch Aggregation
	Context Gating
	COMBA Framework
	Theoretical Analysis

	Experiments
	Benchmark Datasets
	Baselines
	Results and Analysis

	Conclusion
	Appendix
	Theorem Proof
	Detailed Implementations
	Details of Datasets
	Details of Baseline Models
	Implementation Details
	The use of LLMs

