
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMBA: CROSS BATCH AGGREGATION FOR LEARN-
ING LARGE GRAPHS WITH CONTEXT GATING STATE
SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

State space models (SSMs) have recently emerged for modeling long-range de-
pendency in sequence data, with much simplified computational costs than mod-
ern alternatives, such as transformers. Advancing SMMs to graph structured data,
especially for large graphs, is a significant challenge because SSMs are sequence
models and the shear graph volumes make it very expensive to convert graphs
as sequences for effective learning. In this paper, we propose COMBA to tackle
large graph learning using state space models, with two key innovations: graph
context gating and cross batch aggregation. Graph context refers to different hops
of neighborhood for each node, and graph context gating allows COMBA to use
such context to learn best control of neighbor aggregation. For each graph con-
text, COMBA samples nodes as batches, and train a graph neural network (GNN),
with information being aggregated cross batches, allowing COMBA to scale to
large graphs. Our theoretical study asserts that cross-batch aggregation guaran-
tees lower error than training GNN without aggregation. Experiments on bench-
mark networks demonstrate significant performance gains compared to baseline
approaches. Code and benchmark datasets will be released for public access.

1 INTRODUCTION

Graph learning has become popular to handle data structures for representing entities and their
relationships in a wide range of domains, including social networks (Fan et al., 2019), citation
networks (Yang et al., 2016), and molecular structures (Wu et al., 2018). Graph neural networks
(GNNs) have achieved great success in learning from graph-structured data by propagating neigh-
borhood information. However, scaling GNNs to large graphs remains challenging due to the high
memory and computational cost of neighborhood expansion and the difficulty of preserving long-
range dependencies (Dwivedi et al., 2022).

Transformers, by contrast, excel at modeling long-range dependencies through global attention,
which directly relates every node to every other node in the graph (Yun et al., 2019). While global
attention enables Transformers to capture arbitrary dependencies, graphs lack the inherent sequential
ordering. To address this, graph Transformers incorporate structural encodings (SEs) or positional
encodings (PEs) to provide nodes with contextual information about their position and role within
the graph (Kim et al., 2022). However, the quadratic cost of attention makes Transformers difficult
to apply at scale, particularly for massive graphs with millions of nodes and edges. To mitigate this,
some works have proposed linear-time attention approximations, such as sparse attention (Zaheer
et al., 2020) and low-rank factorization (Wang et al., 2020), which reduce memory and computa-
tional costs compared to full graph attention.

Recently, state space models (SSMs) have emerged as efficient alternatives for sequence modeling,
combining structured recurrence with linear-time complexity while still capturing long-range depen-
dencies (Gu et al., 2021). Mamba is a state space model (SSM) architecture designed to efficiently
model long-range dependencies in sequential data. Unlike traditional models that rely on attention
mechanisms, Mamba employs a selective state space framework, enabling it to process sequences in
linear time while maintaining high performance across various modalities (Gu & Dao, 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Yet, applying SSMs to graph data poses unique challenges. First, graphs are inherently irregu-
lar and lack a natural sequential ordering, making it difficult to directly feed them into sequence
models. Second, traditional SMMs process sequences by updating the current hidden state, which
is sufficient for sequential data but inadequate for graphs where each node depends on multi-hop
neighborhoods. Since the sheer size of graphs demand scalable and efficient learning, we adopt a
batch-based sampling strategy, which introduces additional challenges such as sampling bias and
variance (Balaji et al., 2025).

To tackle these challenges, our COMBA framework incorporates three key components: (1) hop-
aware graph context construction, which leverages adjacency matrices at multiple hops to capture
local and multi-hop neighborhood information; (2) cross-batch aggregation, which updates node
embeddings across overlapping batches to mitigate sampling variance and preserve global graph
information; and (3) graph context gating, which selectively controls the contribution of each hop to
a node’s representation. Together, they allow COMBA to efficiently model long-range dependencies
in large graphs. By combining local hop-aware context with cross-batch updates, the framework
balances scalability with expressive power, enabling robust learning on large homogeneous graphs.

Specific contributions of this paper are as follows:

• We develop a cross-batch aggregation mechanism to mitigate variance from batch-based
sampling and preserve global information.

• We introduce graph context gating, which selectively controls the contribution of multi-hop
neighborhoods to each node’s representation.

• We propose COMBA, a state-space model framework for learning from large-scale homo-
geneous graphs, with validation on benchmark datasets demonstrating significant perfor-
mance gains over baselines.

• Our theoretical study asserts that cross-batch aggregation reduces error compared to tradi-
tional batch-wise GNN training without cross-batch aggregation.

2 RELATED WORK

2.1 HOMOGENEOUS GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) have emerged as a powerful tool for learning on graph-structured
data. Pioneer works such as Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), ex-
tended convolutional operations to graphs by aggregating information from a node’s neighbors.
Other works, including GAT (Velickovic et al., 2017), incorporate attention mechanisms to assign
different weights to different neighbors, and GatedGCN (Bresson & Laurent, 2017) extends standard
GCNs by using learnable edge-wise gates to control neighbors’ influence during message passing.

2.2 GRAPH TRANSFORMERS

Graph Transformers extend the standard Transformer architecture to handle graph-structured data
by integrating both node features and graph topology into the attention mechanism. The first gen-
eralized graph transformer (Dwivedi & Bresson, 2020) incorporates neighborhood connectivity as
their attention mechanism, and introduces Laplacian-based positional encodings. Graphormer (Ying
et al., 2021) encodes both node features and graph structure, using spatial encodings and centrality-
aware attention to capture relationships between nodes. NAGPhormer (Chen et al., 2022) uses node-
adaptive gating and hierarchical attention over multi-hop neighborhoods to better capture long-range
dependencies in graphs. Although graph transformers are highly expressive and capable of captur-
ing long-range dependencies, their quadratic complexity with respect to the number of nodes limits
scalability to large graphs.

2.3 STATE SPACE MODELS WITH GRAPHS

State space models (SSMs) have emerged as a powerful alternative to traditional recurrent archi-
tectures for sequence modeling. Structured State Space Models (S4) are a class of state space

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

models designed to efficiently model long-range dependencies in sequential data using reparam-
eterization (Gu et al., 2021). Recently, Mamba (Gu & Dao, 2024) demonstrated fast inference
and linear-time complexity in long sequence modeling with improved performance compared with
Transformers. In the context of graphs, Mamba has been adapted to propagate information along
nodes and edges, allowing a expressive node representation across multi-hop neighborhoods. A
recent example is Graph Mamba (Wang et al., 2024) which integrates a Mamba block with graph-
specific node prioritization and permutation strategies to efficiently capture long-range dependen-
cies. Another Graph Mamba (Behrouz & Hashemi, 2024) considers nodes’ induced subgraphs as
tokens and generates input sequences for Mamba by applying MPNNs to these subgraphs. While
effective, its reliance on computing MPNNs over all node subgraphs can be computationally expen-
sive, motivating our batched variant and modifications such as the context gating mechanism for
improved efficiency and performance.

2.4 HOMOGENEOUS GRAPH SCALING

Scaling GNNs to large graphs remains a challenge, primarily due to the neighborhood explosion
problem, where the number of nodes involved in computation grows exponentially with the number
of layers. To mitigate this problem, GraphSAGE Hamilton et al. (2017) generates node embed-
dings by sampling and aggregating features from a fixed-size neighborhood, enabling generalization
to unseen nodes while reducing computational cost compared to full-graph methods. Similarly,
Clustering-based strategies offer another solution by partitioning the graph into smaller, more man-
ageable subgraphs. Cluster-GNN Chiang et al. (2019) divides the graph using a clustering algorithm
(such as Metis) and trains a GNN with mini-batch updates on these clusters, which significantly
reduces memory usage. FastGCN Chen et al. (2018) further improves efficiency by using impor-
tance sampling to train on large graphs and treats the convolutions as integral transforms, thereby
approximating the feature propagation through Monte Carlo sampling.

Our approach utilizes adjacency matrices from different hops to construct hop-aware graph context
for each batch. For each hop, we apply a graph neural network (GNN) to the corresponding ad-
jacency matrix, enabling the model to capture structural information from multiple neighborhood
ranges. To prevent isolated batch training from losing global information, we propose a cross-
batch aggregation mechanism to help all batches to update their node embeddings, through shared
multi-hop neighbors between batches. To adaptively balance the contributions of hop-aware graph
contexts, we use a learnable gating function that selectively weights hop embeddings, allowing the
model to emphasize more informative hops. Together, adjacency-driven hop contexts, cross-batch
aggregation, and gating for adaptive control enable our model to effectively scale state space models
to large graphs, while preserving both local and long-range dependencies.

3 PROBLEM DEFINITION

Let G = (V,E,X) be a homogeneous graph, where the node set is V = {v1, v2, . . . , vn}, the
edge set is E ⊆ V × V , and X ∈ Rn×d is the node feature matrix, with each row xi denoting the
d-dimensional feature of node i ∈ V . We denote A ∈ {0, 1}n×n as the binary adjacency matrix of
G, defined as

Aij =

{
1 if (vi, vj) ∈ E,

0 otherwise,
Aii = 0 for all i.

Below we also define the hop-k adjacency matrices which indicate whether two nodes are connected
by a path of exactly length k.

Gen(G,A) = Ak, where

Ak
ij =

{
1, if (Ak)ij > 0 and (Ar)ij = 0 ∀r = 1, . . . , k − 1,

0, otherwise,
(1)

Ak
ii = 0, ∀i.

Structured State Space Model (S4) The Structured State Space (S4) model is a sequence model
designed to capture long-range dependencies efficiently. For a sequence of inputs xt ∈ RN , we can

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

map the sequence to output sequence y(t) ∈ RN by the latent state h(t) ∈ RN . The continuous-time
linear state space formulation is:

h′(t) = Ah(t) +Bx(t), (2)
y(t) = Ch(t), (3)

where A ∈ RN×N ,B ∈ RN ,C ∈ RN are the system matrices representing the state transition,
input projection, and output projection, respectively. Since the real-world data is usually discrete, we
can discretize the continuous system using the zero-order hold (ZOH) discretization rule, yielding:

ht+1 = Āht + B̄xt, (4)
yt = Cht, (5)

where Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A− I)∆B, are the discretized matrices, and ∆ is the
discretization step size.

S4 has demonstrated strong performance on long sequences due to its ability to model global de-
pendencies, while remaining computationally efficient (Gu et al., 2021). Our goal is to design an
effective state space model-based learning framework for large graphs with maximum node classifi-
cation accuracy.

4 PROPOSED FRAMEWORK

Our model is primarily motivated by Graph Mamba (Behrouz & Hashemi, 2024), which extends
state space models (SSMs) to the graph domain by converting graph neighborhoods into sequential
structures. Each node’s representation is updated by applying an message-passing neural network
(MPNN) to subgraphs generated from random walks starting from that node, followed by Mamba-
style sequence modeling to capture long-range dependencies. This design introduces sequential in-
ductive bias into graph representation learning, allowing the model to better combine local structural
information and sequential dependencies. However, Graph Mamba also suffers several limitations:
(1) it performs MPNN computations on every node’s random-walk subgraphs, which becomes com-
putational expensive on large-scale graphs, and (2) it uses only the current input to compute the
gating signal, potentially missing richer contextual dependencies from adjacent graph contexts.

In contrast, our framework employs a batch-based hop-aware adjacency construction, where each
batch directly encodes multi-hop neighborhoods through MPNN, avoiding redundant per-node sub-
graph processing. Specifically, COMBA integrates two core components to overcome the limita-
tions of prior approaches: (1) a cross-batch aggregation promotes interactions between batches, (2)
a graph context gating to selectively control multi-hop information flow.

4.1 LOCAL GRAPH CONTEXT

Let B = {b1, b2, . . . , bm̂} denote a set of batches of nodes. For each batch bm ∈ B we extract
the induced subgraph Gbm to enable localized and scalable computation. Based on Gbm , we then
generate the sequence of hop-based adjacency matrices:

Abm = {A1
bm , A2

bm , . . . , Ak̂
bm} = {Gen(Gbm , Abm),Gen(Gbm , A2

bm), . . . ,Gen(Gbm , Ak̂
bm)},

where Gbm and Abm are the subgraph and adjacency matrix restricted to nodes in batch bm, and
Gen(·) is the hop-matrix generation function defined in Eq. 1. These matrices capture multi-hop
connectivity patterns within each batch, and A = {Ab1 , . . . , Abm̂} contains sequences of the hop
matrices for all batches.

For each each batch bm, a graph learner is trained, using the hop-based adjacency matrices
{Ak

bm
}k̂k=1 together with the corresponding node features Xbm . This produces hop-aware node

representations for each batch:

Zbm = {Zbm,1, Zbm,2, . . . , Zbm,k̂}, Zbm,k = σ
(
Ak

bmXbmWbm

)
allowing the models to capture structural information at different hop distances within the batch.

Concatenating over all batches yields the global representation set Z = {Zb1 ,Zb2 , . . . ,Zbm̂}.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To capture local structural context, we utilize the hop dimension in Z . For each node n, its sequence
of hop-aware embeddings is

{
Zn,1, Zn,2, . . . , Zn,k̂

}
, which encodes information aggregated from

neighborhoods of different ranges.

We then define a local hop-context window around hop k with window size w as Ckn ={
Zn, k−w, . . . ,Zn, k+w

}
, ensuring that each node representation at hop k incorporates information

from both its own embedding and its neighboring hops.

a1

a2

a4

a3

a5

a6

a7

a1

a2
a3

a3

a6

a4

a3

a5

a7a1

a2

a2

a1

2
a2 a3 a4a1

a4
a3
a2

a5

a5

a7

a7 a7

a7a1

1

1
1

1
1

1
1
1

a2 a3 a4a1

a4
a3
a2

a5

a5

a1

1
1

1
1
1

1

1

Batch 2

Batch 1

1

a2 a3 a4a1

a4
a3
a2

a5

a5a6

a6a1

1

1
1

1
1

1
1
1
1

1

1

1
1

a2 a3 a4a1

a4
a3
a2

a5

a5a6

a6a1

1

1
1

1
1

1 1

1
1

1

a6

a7

a2

a6

a1

a3

a3 a7

a2

3 4 51

a4 a5

a4 a4a5

1

a5

a5a4

a1

a4

a2

a4 a5

a1 a2

a2 a1

a5 a4

Figure 1: Cross batch aggregation process. From left to right, given a graph in 1⃝, the nodes are
partitioned into batches (only two batches are shown in 2⃝). For each batch, COMBA first finds
each nodes’ k̂-hop neighbors and forms a subgraph shown in 3⃝ (k̂ = 2 in this case). A GNN is
trained for each 1-hope, 2-hop, and k-hop based adjacency matrix. When training each hop’s GNN,
information from other batches are used to help learn current batch node’s embedding. E.g., in 4⃝,
node a2 in Batch 1 aggregates information from a4 from Batch 2. Cross batch aggregation allows
all GNNs being trained to collectively help each others.

4.2 CROSS BATCH AGGREGATION

To compute node representations for each batch, we first apply Dropout to the input feature matrix
for all nodes in the batch and perform a linear transformation:

X̃bm = Dropout(Xbm , p) (6)

Z
(0)
bm

= σ(X̃bmW
(0)
bm

) (7)

where, Dropout(Xbm , p) randomly zeroes elements of Xbm with probability p. W (0)
bm

is a learnable
weight matrix, and σ(·) is a nonlinear activation function.

For nodes in batch bm, the message passing at layer 1 and hop k is computed as

Z
(1)
bm,k = σ

(
Ak

bmZ
(0)
bm

W
(1)
bm

)
, (8)

where Ak
bm

is the hop-based adjacency matrix. W (1)
bm

is the learnable weight for batch bm with hop

k at layer 1 and σ(·) is a non-linear activation function such as ReLU. The resulting Z
(1)
bm,k contains

the embeddings for all nodes in batch bm under hop k. The updated hop-k representations of each
node n in batch bm across all batches that contain that node are then explicitly updated as

Z
(0)
b1:m̂,k(n) ← Z

(1)
bm,k(n), ∀n ∈ bm ∩ b1:m̂, k = 1, . . . , k̂ (9)

For deeper layers (l + 1), the embedding is computed recursively by the cross-batch updated node
embeddings Z(0)

bm,k:

Z
(l+1)
bm,k = σ

(
Ak

bmZ
(0)
bm,kW

(l+1)
bm

)
, (10)

Z
(0)
b1:M ,k(n) ← Z

(l+1)
bm,k (n), ∀n ∈ bm ∩ b1:m̂ (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Fig. 1 shows an example of information aggregation across two batches, where node a2 from Batch
1 leverages information from a4, which is in Batch 2, to learn embeddings.

Finally, for each batch bm, we obtain a sequence of k̂ embeddings corresponding to the k̂ hop-based
adjacency matrices:

Zbm = {Z(L)
bm,1, Z

(L)
bm,2, . . . , Z

(L)

bm,k̂
} (12)

where Z
(L)
bm,k denotes the embedding obtained after L message passing layers.

To form the global representation for all nodes in all batches, we stack the sequences across all
batches:

Z =
∥∥m̂
m=1

Zbm , X̃ =
∥∥m̂
m=1

X̃bm ,Z ′ = X̃∥Z (13)

where Z contains the final hop-aware embeddings for all nodes in all batches, and X̃ contains the
original feature for all nodes after Dropout. Z ′ thus forms the global sequence input to our COMBA.
Algorithm 2 in Appendix lists the pseudo-code of the cross batch aggregation process.

Linear

Linear

Linearzk
Ak

Bk

Ck

zk-w:k+w

yk

hk-1

PoolingConcat

Figure 2: Illustration of the COMBA block with context gating. From left to right. The input se-
quenceZ ′ is first processed by the S4 module to produce hop-wise representations. A context gating
mechanism C is then applied over the local hop window zk−w:k+w to refine each hop embedding
yk. The gated outputs are concatenated with the original node features, forming a new sequence Y .
Pooling along the hop dimension aggregates the sequence into embedding X ′ for downstream tasks.

4.3 CONTEXT GATING

The COMBA framework follows the state space model (SSM) formulation in Eq. 3, but in our
approach, we replace t with the hop index k and the input x(t) with the hop-aware node embedding
zk. Thus, the zero-order hold discrete recurrence following Eq. 5 becomes

hk = Āhk−1 + B̄zk, yk = Chk. (14)

In the standard Mamba formulation, the output is obtained by applying a fixed projection to the
hidden state. In our approach, the output projection is hop-varing and is computed from a local
context window. For example, at hop step k we may form a context window of inputs Z ′

k−1:k+1 =[
zk−1, zk, zk+1

]
, which captures the graph context around zk. More generally, as shown in Fig. 2

for a window size w the input segment is Z ′
z−w:z+w =

[
zk−w, zk−k+1, . . . , zk+w

]
.

We then compute a context-dependent output matrix
Ck = Φ

(
Z ′

k−w:k+w

)
, (15)

where Φ is a learnable mapping. The model output at hop k is obtained by applying this context-
dependent projection to the current hidden state:

yk = Ckhk. (16)
Algorithm 3 in Appendix lists the pseudo-code of the context gating mechanism.

4.4 COMBA FRAMEWORK

Given node features X , a set of sampled batches B, and their corresponding adjacency matrices
A, the COMBA framework first utilizes the CrossBatch module in 4⃝ of Fig. 3 which aggregates
information across batches to construct contextual sequences Z ′.

Z ′ = CrossBatch(X,B,A)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Comba Block

Y

Cross-Entropy Loss
Proj

5 6

Cross Batch Cross Batch

4

a1

a2

a4

a3

a5

a6

a7

a1

a2 a3

a6

a4

a3

a5

a7

a1

a1

a2 a2

2 31

a4 a5

a5a4

Batch m

ai aj

Batch 2

Batch 1

Figure 3: The proposed COMBA framework on large homogeneous graph. From left to right. Nodes
of a homogeneous graph in 1⃝ are partitioned into m̂ batches in 2⃝. 3⃝: for each batch, COMBA
identifies the k̂-hop neighbors of target nodes and constructs a corresponding subgraph. 4⃝: Node
embeddings will be updated across batches via cross batch aggregation as illustrated in Fig.1. The
resulting sequence will pass into COMBA block with context gating 5⃝ as illustrated in Fig.2. 6⃝:
the final predictions Ŷ for all nodes are obtained and optimized using the cross-entropy loss

Then, these sequences are passed to the COMBA Block in 5⃝ of Fig. 3 which applies context gating
over different neighborhood hops to control aggregation adaptively.

X ′ = CombaBlock(Z ′,B,A)
Finally, model training is guided by the cross-entropy loss over the predicted labels. Algorithm 1 in
Appendix lists the pseudo-code of the main COMBA framework.

4.5 THEORETICAL ANALYSIS

We justify that cross-batch aggregation guarantees lower error than training GNN without interac-
tions between batches through following theorem:
Theorem 1. Denote the number of batches per group as d, with the set of batches B =
{B1, . . . , Bd}. Let BI be the set of all node indices appearing in B, and define the set of all
seed node indices as

S =

d⋃
i=1

si,

where si are the seed node indices in batch Bi. The complement of S with respect to BI is then
Sc = BI \ S.

For each batch Bi at layer l: - Let Ai be the sampled subgraph, - Let X l
i be the node features for all

nodes in Bi, - Let X̃ l
i = X l

i [si] denote features of seed nodes si, - Let X̄ l
i denote features of other

seed nodes from different batches that appear in Bi, - Let sji be the indices of such seed nodes from
batch Bj , and let κ be the set of all available batches.

Define a gated GNN layer as a function f(Ai, X
l
i). Then, the cross-batch aggregation update at

layer l + 1 is given by:

X̃ l
i = f(Ai, X

l
i)[si] (1)

X̄ l
i =

∥∥
j ̸=i, j∈κ

f(Aj , X
l
j)[s

j
i] (2)

X l+1
i [si] = X̃ l

i (3)

X l+1
i [sji] = X̄ l

i (4)

We can express the cross-batch aggregation as an approximate gated GNN layer in the following
form in terms of batch Bi:

X l+1
i [n] = Ii(n) · f(Ai, X

l
i)[n] + (1− Ii(n)) ·X l

i [n] (17)

where the indicator function Ii(n) ∈ {0, 1} is treated as a hard gate defined as:

Ii(n) =
{
1, if n ∈ Si
0, if n ∈ Sci

(18)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Define the ideal aggregation update when trained over full batched graph for the set of batch B:

X̄ l+1
i [n] = f(Ai, X

l
i)[n] (19)

Define the aggregation update without cross-batch update for the set of batch B as X̂ l+1
i . Define the

approximation error between the cross-batch aggregation update and the ideal aggregation update
when trained over full graph as:

E l+1(X l+1
i , X̄ l+1

i) =
1

d

d∑
i=1

1

|Bi|
∑
j∈Bi

∥X l+1
i − X̄ l+1

i ∥22 (20)

We can show that E l+1(X l+1
i , X̄ l+1

i) ≤ E l+1(X̂ l+1
i , X̄ l+1

i).

The proof of Theorem 1 is presented in Appendix due to space limit.

5 EXPERIMENTS

5.1 BENCHMARK DATASETS

Six real-world homogeneous graphs are used as our benchmark datasets. We used four heterophilic
datasets from the work (Platonov et al., 2023) and two large datasets from Open Graph Bench-
mark (Hu et al., 2020). Additional details about the datasets are shown in Appendix.

5.2 BASELINES

We compare our COMBA with (1) GNN, e.g., GCN (Kipf & Welling, 2017) and GatedGCN (Bres-
son & Laurent, 2017), (2) a transformer architecture: NAGphormer (Chen et al., 2022), (3) a scalable
GNN: ClusterGCN (Chiang et al., 2019), and two recent variants of Graph Mamba: Graph Mamba-
1 Behrouz & Hashemi (2024) and Graph Mamba-2 Wang et al. (2024). Additional details of the
baseline models are in Appendix.

5.3 RESULTS AND ANALYSIS

Baseline Comparison Table 1 summarizes the performance of various models on six homoge-
neous graph datasets. COMBA consistently achieves the highest accuracy across all datasets, out-
performing baseline models. Under the same message passing scheme, COMBA shows statistically
significant improvements on five datasets, including Roman-empire, Ogbn-arxiv, Ogbn-product,
Minesweeper, and Tolokers. On the Amazon-ratings dataset, COMBA achieves the highest ac-
curacy while Nagphormer performs comparably but requires more memory, highlighting COMBA’s
robustness across various graph structures.

Notably, COMBA consistently outperforms Graph Mamba-1 across five benchmark datasets. While
Graph Mamba-1 constructs multiple graphs for each node, which can introduce redundancy and
increase computational complexity, COMBA efficiently aggregates hop-aware node embeddings
within a single unified graph. This design allows COMBA to capture structural information effec-
tively, resulting in higher accuracy and more reliable performance compared to Graph Mamba-1.

Abalation Study Table 2 presents the ablation results of COMBA, showing that each component
plays an important role in its overall performance. When the cross-batch aggregation is removed,
the model consistently underperforms, underscoring the necessity of aggregating information across
batches to capture richer global structural patterns. Likewise, removing the context gating mecha-
nism leads to a further drop in accuracy, which demonstrates its effectiveness in filtering and em-
phasizing relevant hop-level information. These results confirm that both cross-batch aggregation
and context gating are integral to COMBA’s strong performance. In particular, Amazon-ratings and
Tolokers exhibit substantial gains when both the cross batch aggregation and context gating mech-
anism are applied, underscoring their effectiveness in settings with dense connectivity and feature
noise.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Performance comparisons between baselines and our proposed method across five homo-
geneous datasets. Over 5 different initialization status, accuracies are reported for Roman-empire,
Amazon-ratings, Ogbn-arxiv, and Ogbn-products and roc auc scores are reported for Minesweeper
and Tolokers. Superscript * indicates that COMBA is statistically significantly better than this
method at 95% confidence level using the performance metrics.

Model Roman-empire
Accuracy

Amazon-ratings
Accuracy

Ogbn-arxiv
Accuracy

Ogbn-product
Accuracy

Minesweeper
ROC AUC

Tolokers
ROC AUC

GCN 0.795∗±0.0088 0.462±0.0080 0.680∗±0.0044 OOM 0.884∗±0.0046 0.838∗
±0.0034

Gated-GCN 0.833∗±0.0079 0.481∗
±0.0071 0.701∗±0.0065 OOM 0.905∗±0.0016 0.832∗

±0.0090
Nagphormer 0.800∗±0.0043 0.504±0.0070 0.696∗±0.0023 OOM 0.903∗±0.0006 0.834∗

±0.0045
Cluster-GCN 0.815∗±0.0042 0.476∗

±0.0047 0.678∗±0.0076 0.717∗
±0.0053 0.886∗

±0.0024 0.758∗
±0.0056

Graph Mamba-1 0.677∗±0.0009 0.415∗
±0.0016 0.604∗±0.0020 OOM 0.806∗±0.0059 0.734∗

±0.0113
Graph Mamba-2 0.869∗±0.0092 0.490∗

±0.0036 0.686∗±0.0089 OOM 0.927∗±0.0021 0.803∗
±0.0199

COMBA 0.895±0.0038 0.507±0.0025 0.716±0.0037 0.735±0.0100 0.942±0.0039 0.845±0.0009

Table 2: Ablation study results w.r.t. cross batch aggregation and context gating mechanism

Model Roman-empire
Accuracy

Amazon-ratings
Accuracy

Ogbn-arxiv
Accuracy

Minesweeper
ROC AUC

Tolokers
ROC AUC

COMBA 0.895±0.0038 0.507±0.0025 0.716±0.0037 0.942±0.0039 0.845±0.0009

w/o cross batch 0.881±0.0040 0.492±0.0062 0.703±0.0009 0.940±0.0051 0.832±0.0022

w/o context gating 0.878±0.0005 0.472±0.0007 0.705±0.0014 0.939±0.0050 0.805±0.0039

Figure 4: Log average runtime per epoch (y-axis) using
fixed batch sizes vs. the sum of number of nodes and number
of edges in log scale (x-axis).

Complexity Analysis We evaluate the
wall-clock runtime across six benchmark
datasets to assess the scalability of our ap-
proach. As illustrated in Figure 4, the
average training time per epoch consis-
tently increases with the total number of
nodes and edges. Importantly, this rela-
tionship follows an approximately linear
trend on a log-log scale, indicating that our
method maintains efficient scalability even
on large homogeneous graphs. This trend
suggests that our proposed framework
avoids the neighborhood explosion prob-
lem often encountered in GNN. More-
over, this observed linear behavior demon-
strates that our cross batch aggregation
and context-gating mechanism do not in-
troduce computational overhead. This
scalability is especially important for real-world applications, where graphs with millions of nodes
and edges are common, underscoring the utility of our approach in large-scale graph scenarios.

6 CONCLUSION

This paper introduces COMBA, a state space model–based framework for large graph learning. Un-
like prior methods that inefficiently obtain subgraphs for each node, COMBA uses multi-hop neigh-
bors of each batch to construct a subgraph for scalable GNN learning. In contrast to approaches that
only consider the current step during gating, our context gating mechanism captures richer graph
contexts from a window of neighborhoods. To mitigate the bias introduced by batch sampling and
capture global structural information, we employ cross-batch aggregation that promotes information
switch between batches with theoretical guarantees for error reduction. Together, these innovations
enable COMBA to scale to large graphs while achieving robustness and superior performance. Ex-
tensive experiments on benchmark datasets confirm that COMBA consistently outperforms baseline
methods, highlighting its effectiveness in capturing long-range dependencies with improved accu-
racy, efficiency, and robustness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Vignesh Balaji, Christos Kozyrakis, Gal Chechik, and Haggai Maron. Efficient gnn training through
structure-aware randomized mini-batching, 04 2025.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space
models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD ’24, pp. 119–130, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3672044. URL https://doi.
org/10.1145/3637528.3672044.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. ArXiv, abs/1711.07553, 2017.
URL https://api.semanticscholar.org/CorpusID:13761978.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. 01 2018. doi: 10.48550/arXiv.1801.10247.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In International Conference on Learning Representations,
2022. URL https://api.semanticscholar.org/CorpusID:252846362.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proc. SIGKDD
Conference, pp. 257–266, 2019. ISBN 9781450362016. doi: 10.1145/3292500.3330925. URL
https://doi.org/10.1145/3292500.3330925.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. ArXiv, abs/2012.09699, 2020. URL https://api.semanticscholar.org/
CorpusID:229298019.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022.
Curran Associates Inc. ISBN 9781713871088.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural net-
works for social recommendation. In The World Wide Web Conference, WWW ’19, pp. 417–426,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366748. doi:
10.1145/3308558.3313488. URL https://doi.org/10.1145/3308558.3313488.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://openreview.net/forum?id=AL1fq05o7H.

Albert Gu, Karan Goel, and Christopher R’e. Efficiently modeling long sequences with structured
state spaces. ArXiv, abs/2111.00396, 2021. URL https://api.semanticscholar.org/
CorpusID:240354066.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proc. NIPS Conference, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In Pro-
ceedings of the 34th International Conference on Neural Information Processing Systems, NIPS
’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY,
USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR Conference,
12 2014.

10

https://doi.org/10.1145/3637528.3672044
https://doi.org/10.1145/3637528.3672044
https://api.semanticscholar.org/CorpusID:13761978
https://api.semanticscholar.org/CorpusID:252846362
https://doi.org/10.1145/3292500.3330925
https://api.semanticscholar.org/CorpusID:229298019
https://api.semanticscholar.org/CorpusID:229298019
https://doi.org/10.1145/3308558.3313488
https://openreview.net/forum?id=AL1fq05o7H
https://api.semanticscholar.org/CorpusID:240354066
https://api.semanticscholar.org/CorpusID:240354066

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2017. URL https://arxiv.org/abs/1609.02907.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tJbbQfw-5wv.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio’, and Yoshua
Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2017. URL https://api.
semanticscholar.org/CorpusID:3292002.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph se-
quence modeling with selective state spaces, 2024. URL https://arxiv.org/abs/2402.
00789.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-
attention with linear complexity. ArXiv, abs/2006.04768, 2020. URL https://api.
semanticscholar.org/CorpusID:219530577.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine learn-
ing, 2018. URL https://arxiv.org/abs/1703.00564.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pp. 40–48. JMLR.org, 2016.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform bad for graph representation? In Proceedings of the
35th International Conference on Neural Information Processing Systems, NIPS ’21, Red Hook,
NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph trans-
former networks. Curran Associates Inc., Red Hook, NY, USA, 2019.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: transformers
for longer sequences. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

A APPENDIX

A.1 THEOREM PROOF

Theorem. Denote the number of batches per group as d, with the set of batches B = {B1, . . . , Bd}.
Let BI be the set of all node indices appearing in B, and define the set of all seed node indices as

S =

d⋃
i=1

si,

where si are the seed node indices in batch Bi. The complement of S with respect to BI is

Sc = BI \ S.

For each batch Bi at layer l: - Let Ai be the sampled subgraph, - Let X l
i be the node features for all

nodes in Bi, - Let X̃ l
i = X l

i [si] denote features of seed nodes si, - Let X̄ l
i denote features of other

seed nodes from different batches that appear in Bi, - Let sji be the indices of such seed nodes from
batch Bj , and let κ be the set of all available batches.

11

https://arxiv.org/abs/1609.02907
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=tJbbQfw-5wv
https://api.semanticscholar.org/CorpusID:3292002
https://api.semanticscholar.org/CorpusID:3292002
https://arxiv.org/abs/2402.00789
https://arxiv.org/abs/2402.00789
https://api.semanticscholar.org/CorpusID:219530577
https://api.semanticscholar.org/CorpusID:219530577
https://arxiv.org/abs/1703.00564

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Define a gated GNN layer as a function f(Ai, X
l
i).

Then, the cross-batch aggregation update at layer l + 1 is given by:

X̃ l
i = f(Ai, X

l
i)[si] (1)

X̄ l
i =

∥∥
j ̸=i, j∈κ

f(Aj , X
l
j)[s

j
i] (2)

X l+1
i [si] = X̃ l

i (3)

X l+1
i [sji] = X̄ l

i (4)

We can express the cross-batch aggregation as an approximate gated GNN layer in the following
form in terms of batch Bi:

X l+1
i [n] = Ii(n) · f(Ai, X

l
i)[n] + (1− Ii(n)) ·X l

i [n] (21)

where the indicator function Ii(n) ∈ {0, 1} is treated as a hard gate defined as:

Ii(n) =
{
1, if n ∈ Si
0, if n ∈ Sci

(22)

Define the ideal aggregation update when trained over full batched graph for the set of batch B:

X̄ l+1
i [n] = f(Ai, X

l
i)[n] (23)

Define the aggregation update without cross-batch update for the set of batch B as X̂ l+1
i . Define the

approximation error between the cross-batch aggregation update and the ideal aggregation update
when trained over full graph as:

E l+1(X l+1
i , X̄ l+1

i) =
1

d

d∑
i=1

1

|Bi|
∑
j∈Bi

∥X l+1
i − X̄ l+1

i ∥22 (24)

We can show that E l+1(X l+1
i , X̄ l+1

i) ≤ E l+1(X̂ l+1
i , X̄ l+1

i).

Proof 1. Fix a batch i and a seed node n ∈ Bi. Define the per-node squared errors relative to the
ideal update:

EX(n) = ∥X l+1
i [n]− X̄ l+1

i [n]∥22, EX̂(n) = ∥X̂ l+1
i [n]− X̄ l+1

i [n]∥22.

Case 1. n ∈ si (local seed nodes). For local seed nodes, the cross-batch update and the ideal update
coincide:

X l+1
i [n] = X̄ l+1

i [n].

Hence EX(n) = 0 ≤ EX̂(n).

Case 2. n ∈ sci (cross-batch nodes). Let a(n) = X̄ l+1
i [n] = f(Ai, X

l
i)[n] be the ideal update,

b(n) = X l+1
i [n] the cross-batch update, and c(n) = X̂ l+1

i [n] the no cross-batch value.

The squared errors relative to the ideal update are

EX(n) = ∥b(n)− a(n)∥22, EX̂(n) = ∥c(n)− a(n)∥22.

Substituting b(n) gives

b(n)− a(n) = (Ii(n)− 1)a(n) + (1− Ii(n))X l
i [n] = (1− Ii(n))

(
X l

i [n]− a(n)
)
,

so that
EX(n) = (1− Icrossi (n)) ∥X l

i [n]− a(n)∥22.

Similarly, for the no-cross-batch update,

EX̂(n) = (1− Ino−cross
i (n)) ∥X l

i [n]− a(n)∥22.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Since Icross
i (n) ≥ Ino-cross

i (n), ∀n ∈ Bi, it follows that

EX(n) = (1− Icrossi (n)) ∥X l
i [n]− a(n)∥22 ≤ (1− Ino−cross

i (n)) ∥X l
i [n]− a(n)∥22 = EX̂(n).

Conclusion. For every node n, we have EX(n) ≤ EX̂(n). Averaging over all nodes and batches,

E l+1(X l+1, X̄ l+1) =
1

d

d∑
i=1

1

|Bi|
∑
n∈Bi

EX(n) ≤ 1

d

d∑
i=1

1

|Bi|
∑
n∈Bi

EX̂(n) = E l+1(X̂ l+1, X̄ l+1).

Thus the inequality holds.

A.2 DETAILED IMPLEMENTATIONS

We provide the pseudo code in Algorithm 1 to show the full pipeline of COMBA

Algorithm 1: Comba
Input : Node features {X},

Batch set B = {b1, . . . , bm̂},
All batches’ sequences of matrices A = {Ab1 , . . . , Abm̂}

Output: Ŷ for downstream prediction tasks
1 Z ′ ← CrossBatch(X,B,A)
2 X ′ ← CombaBlock(Z ′,B,A)
3 Ŷ ← Projection(X ′)
4 L ← −

∑
i yi log(ŷi) ; // Calculate cross-entropy loss

5 return Ŷ

Algorithm 2: Cross batch aggregation
Input : Node features {X},

Batch set B = {b1, . . . , bm̂},
All batches’ sequences of matrices A = {Ab1 , . . . , Abm̂}

Output: Sequence Z ′ ∈ N × (k̂ + 1)× d for nodes in all batches
1 for each batch bm in {b1, . . . , bm̂} do
2 X̃bm ← Dropout(Xbm , p)

3 Z
(0)
bm
← Projection(X̃bm)

4 for each Ak
bm

in Abm do
/* Cross-batch update for each node n in batch bm */

5 Z
(0)
b1:m̂,k(n)← GNN(Z

(0)
bm

, Ak
bm

)(n), ∀n ∈ bm ∩ b1:m̂
6 for l = 0, . . . , L− 1 do
7 Z

(l+1)
bm,k ← GNN(Z

(0)
bm,k, A

k
bm

)

8 Z
(0)
b1:M ,k(n) ← Z

(l+1)
bm,k (n), ∀n ∈ bm ∩ b1:m̂

9 end
10 end
11 Zbm ← (Z

(L)
bm,1, Z

(L)
bm,2, . . . , Z

(L)

bm,k̂
) ; // Obtain sequence for batch bm

12 end
13 Z ←

∥∥m̂
m=1

Zbm ; // Obtain sequences for all batches

14 X̃ ←
∥∥m̂
m=1

X̃bm

15 Z ′ ← X̃∥Z
16 return Z ′

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 3: COMBA Block for Node Embeddings

Input : Node embeddings sequences Z ∈ RN×k̂×d,
Batch set {b1, . . . , bm̂},
All batches’ sequences of matrices {Ab1 , . . . , Abm̂}

Output: Updated node embeddings X ′ ∈ RN×d

1 for each batch bm in {b1, . . . , bm̂} and l = 0, . . . , L do
2 Z ′ ← Layernorm(Z(l)

bm
)

3 A← LinearA(Z ′)
4 B← LinearB(Z ′)
5 C← LinearC(Z ′

k−w:k+w)(Eq. 15) ; // Compute context-dependent output matrix
6 ∆← softplus(Linear∆(Zbm))

7 Ā← discretize(∆, A)(Eq. 11)

8 B̄← discretize(∆, A,B)(Eq. 12)
/* Use context gating mechanism to produce output at each hop k */

9 for n = 1 to N do
10 (x1, . . . , xk̂)← Z

′
n,:,:

11 h0 ← 0

12 for k = 1 to k̂ do
13 hk ← Ākhk−1 + B̄kxk

14 yk ← Ckhk

15 end
16 end

17 Y : (|bm|, k̂, d)←
∥∥k̂
k=1

yk ; // Output sequence for all nodes in batch bm
18 Y ′ ← LayerNorm

(
Y + Zbm)

19 X ′
bm
← 1

k̂

∑k̂
k=1 Y

′
:,k,: ; // Pooling across hop dimension

20 for each Ak
bm

in Abm do
21 Y k

bm
← GNN(X ′

bm
, Ak

bm
)

22 end
23 Ybm ← (Y 1

bm
, Y 2

bm
, . . . , Y k̂

bm
) ; // Rebuild sequence

24 Z(l+1)
bm

← X ′
bm
∥Ybm ; // Concatenate node representations X ′

bm
with sequence Ybm

25 end
26 X ′ ←

∥∥m̂
m=1

X ′
bm

; // Concatenate node representations for nodes in all batches
27 return X ′

A.3 DETAILS OF DATASETS

Table 3: Dataset Statistics
Roman-empire Amazon-ratings Minesweeper Tolokers Ogbn-arxiv Ogbn-products

Nodes 22,662 24,492 10,000 11,758 169,343 2,449,029
Edges 32,927 93,050 39,402 51,900 1,166,243 61,859,140
Features 300 300 7 10 128 100
Classes 18 5 2 2 40 47

Roman-empire(Platonov et al., 2023): This dataset is based on the Roman Empire article from
Wikipedia. Each node in the graph represents one word in the text, and edges exist if two words are
connected. For semi-supervised learning, the nodes are split into training, validation, and test sets
with 11,331 (50%), 5,665 (25%), and 5,666 (25%) nodes, respectively.

Amazon-ratings(Platonov et al., 2023): This dataset is based on the Amazon product co-
purchasing network. Each node in the graph represents products, and edges exist if products are
bought together. For semi-supervised learning, the nodes are split into training, validation, and test
sets with 12,246 (50%), 6,123 (25%), and 6,123 (25%) nodes, respectively.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Minesweeper(Platonov et al., 2023): This dataset inspired by the Minesweeper game, a synthetic
dataset. Each node in the graph represents one cell in the grid, and edges exist for neighboring cells.
For semi-supervised learning, the nodes are split into training, validation, and test sets with 5,000
(50%), 2,500 (25%), and 2,500 (25%) nodes, respectively.

Tolokers(Platonov et al., 2023): This dataset is based on data from the Toloka crowdsourcing
platform. Each node in the graph represents tolokers (workers), and edges exist if two tolokers work
on the same task. For semi-supervised learning, the nodes are split into training, validation, and test
sets with 5,879 (50%), 2,939 (25%), and 2,940 (25%) nodes, respectively.

Ogbn-arxiv(Hu et al., 2020): This dataset is from Open Graph Benchmark, representing the ci-
tation network for computer science papers. Each node in the graph represents a paper, and edges
exist if one paper cites another one. For semi-supervised learning, the nodes are split into training,
validation, and test sets with 90,941 (53.7%), 29,799 (17.6%), and 48,603 (28.7%) nodes, respec-
tively.

Ogbn-products(Hu et al., 2020): This dataset is also from Open Graph Benchmark, representing
an Amazon product co-purchasing network. Each node in the graph represents products sold in
Amazon, and edges exist if two products are purchased together. For semi-supervised learning,
the nodes are split into training, validation, and test sets with 196,615 (8.0%), 39,323 (1.6%), and
2,213,091 (90.4%) nodes, respectively.

A.4 DETAILS OF BASELINE MODELS

We compare our COMBA with some state-of-art baselines.

GCN (Kipf & Welling, 2017) is a homogeneous graph neural network. It learns node representations
by aggregating and transforming features from each node’s neighbors.

Gated-GCN (Bresson & Laurent, 2017) extends standard GCN by incorporating gating mechanisms
to control the flow of information from neighboring nodes, allowing more flexible and selective
feature aggregation. Our COMBA employs the Gated-GCN model as default for GNN.

Nagphormer (Chen et al., 2022) is a graph transformer model. It introduces the Hop2Token module,
which aggregates neighborhood features from multiple hops into distinct token representations.

Cluster-GCN (Chiang et al., 2019) partitions the graph into clusters and performing mini-batch
training within these clusters. By reducing the neighborhood size per batch, it preserves graph
structure while lowering memory and computational costs.

Graph Mamba-1 (Behrouz & Hashemi, 2024) treats each node’s induced subgraphs as tokens and
constructs input sequences by processing these subgraphs with MPNNs. Since it is not reproducible
due to the high time complexity of the full model, we adopt a simplified version for efficiency.

Graph Mamba-2 (Wang et al., 2024) leverages SSM to efficiently capture long-range dependencies
in graphs. By permutation and node prioritization techniques, it achieves strong predictive perfor-
mance with reduced computational and memory costs.

A.5 IMPLEMENTATION DETAILS

We conduct a grid search over a selected range of hyperparameters, including hidden dimension:
[64,128], number of layers: [2,3], feature dropout rate: [0,0.3,0.5], hop length: [2,3,5,10] and batch
size: [5,10,50,100]. Adam (Kingma & Ba, 2014) is used as the optimizer. The learning rate, weight
decay, and number of training epochs are fixed, with early stopping applied. For each method, we
report the average accuracy over five different random seeds. All experiments are performed on
desktop workstations equipped with NVIDIA RTX A6000 Ada Generation GPUs.

A.6 THE USE OF LLMS

LLMs are used to generate initial code skeletons in the research process. These drafts are later
refined, debugged, and adapted to the specific requirements of our COMBA framework.

15

	Introduction
	Related Work
	Homogeneous Graph Neural Networks
	Graph Transformers
	State Space Models with graphs
	Homogeneous Graph Scaling

	Problem Definition
	Proposed Framework
	Local Graph Context
	Cross Batch Aggregation
	Context Gating
	COMBA Framework
	Theoretical Analysis

	Experiments
	Benchmark Datasets
	Baselines
	Results and Analysis

	Conclusion
	Appendix
	Theorem Proof
	Detailed Implementations
	Details of Datasets
	Details of Baseline Models
	Implementation Details
	The use of LLMs

