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ABSTRACT

Large Language Models (LLMs) demonstrate strong capabilities in general coding
tasks but encounter two key challenges when optimizing code: (i) the complexity
of writing optimized code (such as performant CUDA kernels and competition-
level CPU code) requires expertise in systems, algorithms and specific languages
and (ii) requires interpretation of performance metrics like timing and device uti-
lization beyond binary correctness. In this work we explore inference-time search
algorithms that guide the LLM to discover better solutions through iterative re-
finement based on execution feedback. Our approach called MaxCode unifies
existing search methods under a max-reward reinforcement learning framework,
making the observation and action-value functions modular for modification. To
enhance the observation space, we integrate a natural language critique model that
converts raw execution feedback into diagnostic insights about errors and perfor-
mance bottlenecks, and the best-discounted reward seen so far. Together, these
provide richer input to the code proposal function. To improve exploration during
search, we train a generative reward-to-go model using action values from rollouts
to rerank potential solutions. Testing on the KernelBench (CUDA) and PIE (C++)
optimization benchmarks shows that MaxCode improves optimized code perfor-
mance compared to baselines, achieving 20.3% and 10.1% relative improvements
in absolute speedup value and relative speedup ranking, respectively.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have revolutionized automatic code gen-
eration, driving the development of specialized coding tools such as Claude Code (Cla, b), Qwen3-
Coder (Yang et al., 2025), and Code Llama (Rozière et al., 2023). The verifiable nature of code
through execution testing has enabled researchers to leverage execution feedback for improving
LLM-based code generation systems. This approach has proven particularly valuable for code opti-
mization (Ouyang et al., 2025; Madaan et al., 2023), where LLM-based optimization methods must
satisfy dual objectives: ensuring correctness while maximizing performance metrics such as exe-
cution time and resource utilization. The practical impact of code optimization extends far beyond
academic benchmarks—optimizing CUDA kernels for fundamental operations can yield substantial
computational savings, potentially reducing GPU hours by orders of magnitude when deployed at
scale Dao (2023); Shah et al. (2024); Wang et al. (2024).

Code optimization presents two fundamental challenges that distinguish it from general coding
tasks: 1) the intrinsic complexity of generating optimized code demands sophisticated reasoning
about algorithmic trade-offs, memory access patterns, and hardware-specific optimizations that
make it more difficult for LLMs to produce correct solutions, and 2) the need to interpret mul-
tifaceted performance feedback (timing, hardware utilization, and resource consumption metrics)
beyond binary compilation and execution correctness. For example, Figure 1 shows two code sam-
ples generated by Deepseek-R1 (DeepSeek-AI et al., 2025) that optimize a CUDA kernel imple-
menting a chain of PyTorch operators using drastically different approaches. The left sample fuses
operator subsets sequentially before chaining sub-kernels, while the right sample fuses all opera-
tors simultaneously—yet both achieve nearly identical wall-clock performance, illustrating the non-
obvious relationship between implementation strategy and performance outcomes that complicates
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Figure 1: Example optimization code generated by DeepSeek-R1 on a KernelBench problem

optimization decisions. This demonstrates that viable optimization solutions exhibit high diver-
sity in structure and semantics, requiring deep understanding of the problem domain, programming
language semantics, and underlying hardware architecture. Moreover, raw performance feedback
provides insufficient diagnostic information: knowing that code runs 20% slower offers no insight
into specific bottlenecks (memory bandwidth, compute utilization, or algorithmic inefficiency) or
actionable remediation strategies. Consequently, even state-of-the-art LLMs with advanced coding
capabilities struggle significantly with kernel optimization tasks (Ouyang et al., 2025).

To address these challenges, we first cast the problem of performance improving code optimization
as max-reward reinforcement learning, which captures the notion of attaining best performance as
opposed to cumulatively rewarded performance Veviurko et al. (2024). This formulation warrants
inclusion of best-discounted reward in the observation space, for both learning and inference. In-
spired by recent work on LLM self-refinement through natural language critique (Xie et al., 2025),
we enrich the observation space with feedback from a critique model that analyzes optimized code
and raw execution feedback to generate diagnostic insights and actionable refinement suggestions
(Figure 2). We then define a max-reward inference operator to perform inference with a fixed policy,
and instantiate the inference operator using multiple search algorithms to guide off-the-shelf LLMs
in exploring and iteratively refining solutions. We call our approach MaxCode - a formulation that
combines critique-augmented observation space with best-discounted reward to guide inference time
search, enabling more effective exploration of the optimization solution space.

In code optimization, the evaluation of generated solutions demands computational resources and
often becomes the limiting factor to effectively scale the search under a given computation and time
budget. So, we additionally explore use of a trained generative Value/Reward-to-go model (Mahan
et al., 2024) which predicts the V-value of any search trajectory prefix, i.e., the expected maximum
future performance on that search branch given a proposed action (code revision). We train the
reward-to-go model with roll-outs sampled from our tree searches. The learned reward model can
be integrated at each search step by oversampling candidate refinements, filtering with predicted
reward, and retaining only the most promising samples for evaluation and continuation. As a result,
we enable search process to effectively explore more candidates under a certain evaluation budget.

We evaluate MaxCode formulation on two code optimization tasks: kernel code optimization
(Ouyang et al., 2025) and competitive C++ code optimization (Madaan et al., 2023). With extensive
experiments, we demonstrate that by integrating with our proposed max-reward RL formulation,
the performance of existing methods can be significantly boosted. In particular, combining the best-
performing search method (CUDA LLM (Chen et al., 2025)) with MaxCode yields relative speedup
improvements of 27.3%, 11.0% and 22.5% on KernelBench level 1, level 2 and PIE, respectively.

In summary, our main contributions are as follows:
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• We formalize code optimization as a max-reward reinforcement learning problem and aug-
ment the observation space with two key components: (i) the best-discounted reward seen
so far, and (ii) a natural language critique generated by a dedicated critique model that
provides performance diagnosis and optimization suggestions based on code analysis and
execution results. This enables more targeted search and provides actionable optimization
suggestions based on code analysis and execution results.

• We define a max-reward inference operator and implement it through various search al-
gorithms for fixed-policy inference. Our framework leverages the augmented observation
space to enable effective exploration of the optimization solution space. Through empirical
evaluation on kernel code optimization and competitive C++ optimization tasks, we demon-
strate significant performance improvements over existing methods when integrating with
our proposed framework.

• We propose a categorical Value/Reward-to-go model that predicts the expected maximum
future performance of search trajectories, enabling efficient candidate filtering and resource
optimization through informed trajectory selection.

2 MAXCODE: MAX-REWARD RL FRAMEWORK FOR CODE OPTIMIZATION

The Markov Decision Process We formulate the performance improving code optimization pro-
cess as a Markov Decision Process (MDP) with an expanded state space that incorporates initial
code, current code, execution feedback, and language model critiques. We illustrate in Figure 2
the MDP process with max-reward formulation. Formally, we define our MDP with the tuple
(S,A, P,R, γ, ρ0), where the state space S is defined as the product space X0 ×X × E × C, where
X0 represents the problem description along with the initial code state, X represents the space of
possible current code states, E represents execution feedback, and C represents language model cri-
tiques Each state st = (x0, xt−1, et−1, ct−1) provides a representation of the initial code, current
code, its execution results, and associated natural language critique. The initial state distribution
ρ0 : X0 → [0, 1] defines the probability distribution over starting code states, which is assumed
uniform over the code samples present in the considered benchmarks, and γ ∈ (0, 1] is the discount
factor, which we set to 1 because of finite horizon rollouts. The reward function R : S×A×S → R
defined as R(st, at, st+1) = f(et+1), where f evaluates code performance based on execution feed-
back et+1, returning higher values for improved performance.

The action space A = X corresponds to the space of possible code modifications. Unlike standard
RL, the policy πθ is a large language model (LLM) with frozen parameters θ that operates autore-
gressively on states. Given st, the policy implicitly applies a sequence of token-level edits and
produces a distribution over complete code candidates: πθ(x | st) : X → ∆(X ). Due to stochastic
token sampling, the same state st may yield multiple distinct candidates {x(1)

t+1, . . . , x
(M)
t+1 }.

The transition function P captures two sources of stochasticity: policy stochasticity from autore-
gressive token sampling in πθ, and the environment stochasticity from πθ - the LLM-based critique
generator. Formally, after the policy outputs xt+1, the environment produces the next state by aug-
menting the trajectory with execution results and critique: P (st+1 | st, xt+1) = P (et+1, ct+1 |
xt+1), δ[st+1 = (x0, xt+1, et+1, ct+1)], where et+1 is obtained from running xt+1 on the target
hardware, ct+1 is generated by a separate LLM that produces a natural-language critique condi-
tioned on (xt+1, et+1), and δ[·] enforces deterministic update of the state components.

Following the max-reward RL formulation Veviurko et al. (2024), we define the return from time t

as Ĝt = max k ≥ 1γk−1rt+k, which captures the best performance eventually achieved from time
t. With u ∈ R as an auxiliary real variable representing the best discounted reward obtained so far,
max-reward value functions under policy π are given by

V π(s, u) = Eπ

[
max(u, Ĝt) | st = s

]
, (1)

Qπ(s, a, u) = Eπ

[
max(u, Ĝt) | st = s, at = a

]
. (2)

Remark In max-reward RL, the optimal policy maximizing expected return from the initial state
should depend not only on the current state, but also on the rewards obtained so far. The auxiliary
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variable u ∈ R≥0 representing the best discounted reward achieved so far is crucial for maintaining
the Markov property under the max-reward objective.

Execution and Critique In our setup, the Executor EX evaluates input x against test cases Y ,
producing feedback e = {e1a, e1b, e2a, e2b}, where e1a indicates binary correctness, e1b provides
contrastive correctness details (e.g. difference in the output of the current and previous code for some
test cases), e2a is a numerical performance indicator (e.g., running time and / or relative speed-up
against the previous code, and e2b contains contrastive performance details. For standard coding
tasks, feedback is limited to correctness components (e = e1a, e1b) and serves purely as an evalu-
ation metric. In optimization tasks, where initial solutions are typically correct, the focus shifts to
performance metrics e2, as the initial solution remains a fallback option if optimization fails. Given
that raw execution feedback can often prove to be less informative (Xie et al., 2025), we introduce
a critic model (πc) to generate natural language critiques that provide both diagnostic insights into
potential bugs and performance bottlenecks, as well as actionable refinement suggestions.

Figure 2: Illustration of the MaxCode search method

2.1 MAX-REWARD INFERENCE OPERATOR

One can obtain an optimized code with a budget K by sampling trajectories {τ1, . . . , τK} and se-
lecting:

τ∗ = argmax
τi

Ĝ(τi) = argmax
τi

max
t∈[1,T ]

γt−1fr(e
(i)
t ) (3)

Here, τi = (s0, si1 , . . . , siT−1
, sT ) represents a trajectory run for T time steps. Instead, we propose

searching for the best optimized code under an extended MDP with state space (s, u). To do so, we
define a max-reward inference operator T ∗ applied to a fixed policy πθ as:

T ∗(πθ)(s, u) ≈ argmax
a

Qπθ (s, a, u) (4)

where Qπθ (s, a, u) = Eπθ
[max(u, Ĝt) | st = s, at = a] is the max-reward Q-function with

auxiliary variable u representing the best discounted reward achieved so far. The operator performs
one step of greedy policy improvement in an extended MDP with state space (s, u). Unlike standard
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policy improvement that operates on states s alone, our operator considers both the current state and
the reward history encoded in u, enabling decisions that depend on the quality of solutions found so
far.

2.2 MAX-REWARD SEARCH

We now show how to approximately implement T ∗ with inference time search by adopting and
repurposing various prior work under the proposed max-reward RL formulation. Given a code
optimization problem with test cases Y , generator LLM πθ, and critic LLM πc, we define initial
state s0 = (x0, ∅, ∅, ∅) ∈ X0 ×X × E × C, where x0 is the problem statement with the initial code,
and search states as si = (x0, xi, ei, ci) ∈ S represent the current optimization candidate with its
execution feedback and critique. For each state si, we maintain ui = maxj≤i γ

djf(ej) tracking the
best discounted reward achieved along the trajectory to si, where dj is the depth of state j. With this
setting, we reformulate the following methods for max-reward search:

Effi-Learner Given s0 (Huang et al., 2024) proposed to 1) first sample an initial action x1 from
πθ(s0) and obtain its execution feedback e1 = EX(x1, Y ); 2) generate a refinement action x2 from
πθ(x0, x1, e1) as the final solution.

Max-Reward Reformulation: Under Max-Reward formulation, we reformulate Effi-learner to 1)
additionally obtain the critique c1 ∼ πc(x1, e1) and form the successor state s1 = (x0, x1, e1, c1)
via transition function P (s1 | s0, x0); and 2) generate the final solution x2 from πθ(s1). Noting that
we are not adding the we leverage the maintained best discounted reward ui = maxj≤i γ

djf(ej)
since Effi-Learner performs only 2 rounds of optimization thus ui is already encoded in e1.

CUDA-LLM Chen et al. (2025) proposes a beam-search based method that given a state
s′i = (x0, xi, ei), sampling k candidate actions xi1 . . . xik, obtaining execution feedback eij =
EX(xij , Y ) and 1) if any of the candidates is correct, i.e. the speedup f(eij) > 1, select the
best-performing candidate to proceed with, i.e. xm with m = argmaxx(f(ex)), and form the new
state s′i+1 = (x0, xm, em); 2) if none of the candidates are correct, formulate intermediate states
s′ij = (x0, xij , eij) and iteratively refine them by sampling and executing (in parallel) single refine-
ment candidates for each intermediate state until at least one of the refinement is correct. Then it
discard all intermediate states and obtain si+1 as in 1).

Max-Reward Reformulation: Under Max-Reward formulation, we 1) enhance each state s′i =
(x0, xi, ei) with natural language critiques obtained by πc to obtain complete states si =
(x0, xi, ei, ci); 2) when sampling the next action at each state si, we leverage the maintained best
discounted reward ui = maxj≤i γ

djf(ej) to enhance the action sampling, i.e. xij ∼ πθ(si, ui).

2.3 GENERATIVE VALUE FUNCTION GUIDED SEARCH

To further improve the search process, we learn a generative value function approximator Ṽϕ that
guides state selection by estimating the max-reward values. This enables a two-stage approach: first
collecting search data with breadth-first expansion, then using the learned value function to guide
more efficient search. Our value function approximator Ṽϕ(st, ut) is implemented as a language
model that takes as input the current state representation st = (x0, xt, et, ct) and the auxiliary
variable ut representing the best discounted reward achieved so far along the trajectory.

For each code optimization problem, we collect training data D from the search trajectory as fol-
lows: 1) sample K parallel trajectories {τ1, . . . , τK} by iteratively expanding each state st =
(x0, xt, et, ct) with st+1 = (x0, xt+1, et+1, ct+1), where xt+1 ∼ πθ(st, ut), et+1 = E(xt+1, Y ),
and ct+1 = πc(st, xt+1, ut).2) For each trajectory τ = (s0, s1, . . . , sT ), at each timestep t,
we have state st, auxiliary variable ut = maxk≤t γ

k−1fr(ek). We compute the target value as
v∗t = max

(
ut/γ,maxk≥t γ

k−tfr(ek)
)
, where the maximum is taken over all future rewards in the

following trajectory starting at the state st. This formulation correctly implements the max-reward
objective: the value represents the maximum between the discounted best reward achieved so far
and the best future reward obtainable from the current state.
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Categorical Reward Formulation Given the high variance in potential speedup distributions, we
discretize continuous speedup values into categorical rewards using the binning strategy:

fr(e) =



0 if speedup ≤ 100% or correctness = 0

1 if speedup ∈ (100%, s1%]

2 if speedup ∈ (s1%, s2%]

3 if speedup ∈ (s2%, s3%]

4 if speedup > s3%

The value function approximator predicts a categorical distribution over these reward categories:

Ṽϕ(q | st, ut) = softmax(Wv · hϕ(st, ut))

where hϕ is the language model’s hidden representation and Wv is a classification head. We train
the value function using standard cross-entropy loss:

L(Ṽϕ) = E(st,ut,v∗)∼D

[
− log Ṽϕ(v

∗ | st, ut)
]
, (5)

where v∗ = fr(maxk≥t γ
k−trk) is the categorical label corresponding to the maximum discounted

future reward.

Generative Value Function Guided Search In the second stage, we use Ṽϕ to guide expansion.
After evaluating a set of candidate states, we compute Ṽϕ(st, ut) for each candidate st, and select
the state with the highest expected estimated value for subsequent expansion. This allows us to
incorporate a notion of potential future improvement into state selection: two states with identical
current reward may differ in how close they are to further performance improvement. Imagine
two functions that achieve zero reward: one which is a no-op, and the other which contains all
the logic required to compute a correct output but also contains a minor syntax issue. These two
functions would be equally likely to be selected for expansion without the use of a value estimator
to distinguish their differing levels of promise.

2.4 ENVIRONMENT STOCHASTICITY

At any given step, the environment feedback (critique) doesn’t necessarily provide a complete pic-
ture of the performance characteristics of the most recent action (code revision) or what further
revisions are needed, only a lossy subset. In our environment, this critique function is also stochas-
tic. By including previous critique observations in the trajectory history, the policy can aggregate
these lossy observations to get more complete information on what the best next action might be.
Here the trajectory information τi provides the extended state representation necessary to deal with
environment stochasticity. At each refinement step, the LLM generates new optimizations condi-
tioned on trajectory information (previously generated optimizations and execution feedback) from
all ancestor steps.

3 EXPERIMENTS AND RESULTS

3.1 EXPERIMENTS

Datasets We evaluate our proposed searching and reward modeling methods on two code opti-
mization benchmarks: (i) KernelBench (Ouyang et al., 2025) and (ii) PIE (Madaan et al., 2023)
focused on optimizing CUDA kernels and competitive C++ codes, respectively. KernelBench is
for evaluating LLMs on generating and optimizing for efficient GPU kernels for optimizing neural
network performance. The dataset is constructed with 250 well-defined neural network tasks span-
ning four levels of difficulties from single kernel optimization (level 1), fusion patterns (level 2),
to complete ML architectures (level 3) and complete Huggingface architectures (level 4). For each
of the tasks, the LLM is provided with the PyTorch implementation and asked to replace it with
custom kernels that are correct and performance optimized. The execution feedback consists of 1)
compilation success/failure; 2) correctness of the generated CUDA kernel based on a set of test-case
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KerneBench L1 KerneBench L2 PIE

Rank ↓ Median ↑ Rank ↓ Median ↑ Rank ↓ Median ↑
Best@64 2.85 1.00x 2.15 1.02x 2.29 1.32x

Effi-Learner 3.02 1.00x 2.98 1.00x 3.72 1.00x
+ MaxCode 2.98 1.00x 2.95 1.00x 3.55 1.03x

CUDA LLM 1.54 2.49x 1.64 1.45x 2.05 1.42x
+ MaxCode 1.43 3.17x 1.51 1.61x 1.74 1.74x

Table 1: Average ranking and median of maximum speedup on KernelBench and PIE.

input-output; 3) the relative speedup of the CUDA compared with the default PyTorch implementa-
tion. We use level 1 and level 2 problems for our experiments. PIE is a benchmark for optimizing
the running time for competitive level C++ coding problems, consists of 77K pairs of submissions
(original vs. optimized). The execution feedback consists of 1) correctness of code based on exten-
sive unit tests and, 2) the relative speedup of the optimization compared to the original solution. We
sample 100 problems from the test set (detailed in Appendix B) for our experiments.

Experimental Setup As introduced in subsection 2.2, we use the reformulation of Effi-Learner
Huang et al. (2024) and CUDA-LLM Chen et al. (2025) to implement the proposed max-reward
search on both benchmarks. We use Claude-3.7-Sonnet (Cla, a) as πθ for both the policy and
critique generation. We further enable the extended thinking mode of Claude-3.7-Sonnet for
the critique generation to enhance the reasoning capabilities. We set temperature=0.6 for both
code and critique generation. On KernelBench, we used all of the level 1 and level 2 problems (100
each) for evaluations.On PIE, we use a subset of 68 problems from the test set. For each of the
problem, we generate a single-path refinement with depth=2 for Effi-Learner, we set the depth = 8
and K = 8 for CUDA-LLM.

To collect training data for the reward model, we perform MaxCode search with K = 8 single-path
refinement with critique and trajectory information as input on on KernelBench level 1 level 2 and
PIE. We train the reward model on all the generated search trajectories with all prefixes length ≤ 2.
We split the trajectory prefix data by problem with a 80/20 splits of train/val sets for each dataset.
For reward function fr(e), we set (s1, s2, s3) as (140, 320, 475), (120, 170, 215), (125, 180, 260)
for each dataset, repectively. We use Qwen2.5-7B-Instruct (Yang et al., 2024) as the base
model for reward-to-go model training. For hyperparameters, we train the reward model with
epoch=1, batch size=8, optimizer=AdamW using LoRA with rank=8. For inference, we
set temperature=0.7. We provide all the prompts for search and reward model in Appendix C.

Baselines We compare our proposed methods to 3 baselines: 1. Effi-Learner (Huang et al., 2024):
as described in subsection 2.2, we implement the original Effi-Learner as baseline 2. CUDA-LLM
(Chen et al., 2025): similar to Effi-learner, we implement the original CUDA-LLM with the same
hyper-parameters 3. Flat Sampling: directly sampling n multiple candidates from the LLM where
n = 64 matches the compute budget of MaxCode on CUDA-LLM.

Evaluation Metrics We evaluate the generated search trajectories correctness and performance
with the following metrics: 1. Correctness: the average binary correctness of all the generations
per problem 2. Fast1: the average binary value of the solution is correct and faster than the PyTorch
implementation across all the generations per problem. 3. Max Speedup: the maximum speedup of
all solutions across the generations per problem. Note that depending on the nature of the problems,
there is a small subset of problems where the optimization speedups are much larger than the others,
thus biasing the average maximum speedup to be less faithful in measuring the overall performance
of evaluated methods. We thus evaluate the overall max speedup on 1) the median of max speedup
across problems; 2) the average ranking of the individual max speedup of different methods on each
problem; since these two measurements are less prone to outliers and more faithfully represent the
absolute and comparable level of max speedup.
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(a) KernelBench Level 1 (b) KernelBench Level 2 (c) PIE test

Figure 3: Ablated evaluation results of correct, fast1, and max speed-up of different components of
MaxCode on KernelBench and PIE

3.2 RESULTS

RQ1: Can MaxCode improve the performance of different search methods?

We present the performance of baseline methods and their MaxCode reformulation on KernelBench
and PIE in Table 1. We observe improvements across all baselines in terms of level and ranking
of max speedup when incorporated with MaxCode (+ MaxCode) across all of level 1 and level
2 of KernelBench and PIE problems. The results showcase that existing search methods can be
effectively reformulated under the proposed max-reward RL formulation, with performance gains
compared with their original implementation. Overall, when integrated with CUDA LLM (CUDA
LLM + MaxCode), MaxCode yields the best max speedup performance.

RQ2: What is most crucial to MaxCode’s performance gain? To better investigate the effects of
each component in MaxCode framework, we evaluate the following ablations to study the perfor-
mance of the MaxCode. Specifically, in addition to the optimization + raw execution feedback from
the last round, we ablate on these additional input to the prompt

• Best Perf: the best reward so far and corresponding code and execution feedback.
• Critique: the natural language critiques
• Traj: optimization + execution feedback (+ Best Perf) (+ Critique) from the full trajectory.

We ablate every combinations of these components using CUDA LLM + MaxCode with comparison
to the original CUDA LLM. Note that for all Traj variations, the information of best-performing
optimization is already presented in the trajectory, the addition of Best Perf on top of it thus add the
best-performing information again to highlight the max-reward information.

The results for ablation study are presented in Figure 3. As illustrated, compared with the CUDA-
LLM baseline, all variations attains comparable or better level of correctness, fast1 and maximum
speedup, showcasing the effectiveness of MaxCode variations in searching for correct and faster
solutions. For max speedup, the best performances are achieved by different variations on different
subset/dataset. Specifically, having the full trajectory information with critiques (Traj Critique)
yields the highest median of max speedup of KernelBench level 1 and PIE, where as further adding
the best discounted reward (best-performing optimization) so far yield the best median for max
speedup on KernelBench Level 2. On the other hand, including only one of the components yield
less improvements and might sometimes lead to slight degradation of the performance. The results
demonstrate that the combination of trajectory information with natural language critique, as well
as the best reward so-far (either encoded in the trajectory or explicitly provided) is crucial to the
success of MaxCode.

RQ3. How does MaxCode scale with inference-time budget? To investigate the inference-time
properties of MaxCode, we plot the median max speedup attained by different variations of CUDA
LLM + MaxCode against the vanilla CUDA-LLM under different depths in Figure 4. As shown
in the figure, compared with CUDA-LLM, the reformulation with MaxCode could more quickly
attain higher level of speedup than CUDA-LLM under the same depth (therefore the same # of gen-
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(a) KernelBench l1 Max Speedup
Under Different Search Depth

(b) KernelBench l2 Max Speedup
Under Different Search Depth

(c) PIE Test Max Speedup
Under Different Search Depth

Figure 4: Inference time scaling of max speed-up on KernelBench and PIE.

erated candidates), across KernelBench level 1, level 2, and PIE. The scaling results showcase that
MaxCode can boost the test-time scaling of existing search methods - under MaxCode reformula-
tion, search methods can more efficiently leverage the inference budget and scales better than their
original counterparts for code optimization.

KerneBench L1 KerneBench L2 PIE

Rank ↓ Median ↑ Rank ↓ Median ↓ Rank ↓ Median ↑
MaxCode 1.40 3.24x 1.57 1.22x 1.55 1.72x
MaxCode + Reward 1.53 2.44x 1.33 1.24x 1.43 1.62x

Table 2: Results of reward-guided search on KernelBench and PIE

RQ4. Can we learn a coarse verification signal as the V model to improve search performance?
To evaluate the effectiveness of the learned reward model in guiding search, we apply the reward
model to CUDA LLM + MaxCode with the Traj Critique variance and compared it with the no-
guidance search. We report the evaluation results of reward-guided search on a random subset of
KernelBench and PIE in Table 2. While the reward-guided search demonstrates comparable/better
results on KernelBench level 1 and PIE, it underperforms the no-guidance baseline on KernelBench
level 1. Given the results, we posit that the potential causes that hinder the reward model to provide
better guidance for search are 1) the intrinsic difficulties of accurately estimating the expected reward
in terms of maximum speedup for complex code optimization problems even for small LLMs, and
2) the distribution shift between the collected trajectories for training the reward model and the
trajectories obtained with CUDA LLM + MaxCode. In particular, whereas the collected trajectories
are single-path refinements with no candidate selection, CUDA LLM + MaxCode always sample
and select the best-performing candidate of the current round to continue with. Our results and
findings highlight both the usefulness and challenges of leveraging learned reward/value function
for search in code optimization.

4 CONCLUSION

In this paper, we investigate inference-time search algorithms for LLM on code optimization prob-
lems. We unify prior search approaches under a max-reward reinforcement learning (RL) problem
formulation, exposing the observation and action-value functions for plug-and-play modification.
We improve the observation space by integrating a critique model that transforms the raw execution
feedback provided by the environment to natural language critiques of error/performance, providing
stronger guiding signal for the policy (code proposal) function. Moreover, we use sampled action
values from rollouts to train a generative reward-to-go model, which can then be applied at inference
time to rerank actions (search states) for exploration. Results on the KernelBench (CUDA) and PIE
(C++) optimization benchmarks demonstrate that applying our proposed framework to reformulate
existing search methods yields significant improvements in performance of optimized code.
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A RELATED WORK

Given the impressive capabilities that LLMs have demonstrated in code-related tasks, there has been
a recent upsurge of interest in applying LLMs for code optimization (Ouyang et al., 2025; Madaan
et al., 2023), the task of optimizing performance (e.g. running time, memory usage, etc.) of input
code without altering the functional semantics. Prior work can be categorized into two types of
approaches: (i) inference-time and (ii) learning-based. Inference time search methods typically in-
volve multi-turn prompting of LLMs with iterative refinement with generated intermediate solutions
and execution feedback obtained from compilation, and executing the code. For instance, Huang
et al. (2024) adopts a single-path refinement strategy that iteratively generates optimization code,
appends the generation and execution trajectory into the prompt for subsequent optimization, and
Chen et al. (2025) samples multiple candidate kernels per iteration, selecting the best-performing
one for continuation. Other approaches enhance the search process by retrieving similar slow-fast
program pairs from training data (Anupam et al., 2025), and incorporating a planning stage cou-
pled with beam search for strategic exploration (Hong et al., 2025). On the other hand, another line
of work finetunes LLM for code optimization by injecting the notion of performance through RL
reward (Duan et al., 2023; Baronio et al., 2025), adaptively updating the training data with more
performant code Du et al. (2025), and contrastive training of slow-fast code pairs (Li et al., 2025).

B DATASET CONSTRUCTION DETAILS FOR PIE

We source our evaluation data on PIE from its original test set. While the test set contains 978 pairs
of slow-fast C++ programs, they are originated from a set of only 41 distinct input problems. To
ensure the diversity of our evaluation set, we rank all the slow solutions for each input problem and
select the slowest solution for each problem, followed by the second slowest solution, then the third
slowest solutions until obtaining 100 solutions to form our evluation set.

C PROMPTS

C.1 GENERATOR PROMPTS

Base (Refinement with Optimization + Execution Feedback from Only the Previous
State)

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom CUDA kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
You are provided with the pytorch architecture to optimize, as long as your previous opti-
mization solution attempt and the execution feedback. Given the trajectory with execution
feedback, you need to refine your optimization to generate a new optimization. Specifically,
if your optimization failed to compile (i.e. ’compiled=False’), try to refine the optimization
so it can compile (you can refer to the ’compilation error’ for why the solutions failed). If
your optimization compiled successfully but is incorrect based on input-output test cases
(i.e. ’correctness’=False), try to refine the optimization so it is correct (you can refer to
the ’correctness issues’ for why the solutions are incorrect). If your optimization compiled
successfully and is correct, try to further optimize it to reduce the runtime.

C.2 CRITIC MODEL PROMPTS

C.3 REWARD MODEL PROMPT
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Best Perf

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You
may make the decision to replace some operators with custom CUDA kernels and leave
others unchanged. You may replace multiple operators with custom implementations,
consider operator fusion opportunities (combining multiple operators into a single kernel,
for example, combining matmul+relu), or algorithmic changes (such as online softmax).
You are only limited by your imagination.
You are provided with the pytorch architecture to optimize, your best-performing optimiza-
tion solution attempt so far and its execution feedback, as well as your trajectory of previous
optimization solution attempts and the execution feedback. Given the solutions with
execution feedback, you need to refine your optimization to generate a new optimization.
Specifically, if your optimization failed to compile (i.e. ’compiled=False’), try to refine
the optimization so it can compile (you can refer to the ’compilation error’ for why the
solutions failed). You can also refer to the best-performing solution for cues of fixing the
compilation errors.
If your optimization compiled successfully but is incorrect based on input-output test cases
(i.e. ’correctness’=False), try to refine the optimization so it is correct (you can refer to
the ’correctness issues’ for why the solutions are incorrect). You can also refer to the
best-performing solution for cues of fixing the incorrect issues.
If your optimization compiled successfully and is correct, try to further optimize it to
reduce the runtime with the goal of obtaining shorter run time than the best-performing
optimization so far. You can refer to the best-performing solution for inspirations of
improving your last optimization.
Make sure youre refinement IMPLEMENT CUDA OPERATORS by ’from
torch.utils.cpp extension import load inline’, INSTEAD OF PURE PyTorch.
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Traj Best Perf

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You
may make the decision to replace some operators with custom CUDA kernels and leave
others unchanged. You may replace multiple operators with custom implementations,
consider operator fusion opportunities (combining multiple operators into a single kernel,
for example, combining matmul+relu), or algorithmic changes (such as online softmax).
You are only limited by your imagination.
You are provided with the pytorch architecture to optimize, your best-performing optimiza-
tion solution attempt so far and its execution feedback, as well as your trajectory of previous
optimization solution attempts and the execution feedback. Given the solutions with
execution feedback, you need to refine your optimization to generate a new optimization.
Specifically, if your optimization failed to compile (i.e. ’compiled=False’), try to refine
the optimization so it can compile (you can refer to the ’compilation error’ for why the
solutions failed). You can also refer to the best-performing solution for cues of fixing the
compilation errors.
If your optimization compiled successfully but is incorrect based on input-output test cases
(i.e. ’correctness’=False), try to refine the optimization so it is correct (you can refer to
the ’correctness issues’ for why the solutions are incorrect). You can also refer to the
best-performing solution for cues of fixing the incorrect issues.
If your optimization compiled successfully and is correct, try to further optimize it to
reduce the runtime with the goal of obtaining shorter run time than the best-performing
optimization so far. You can refer to the best-performing solution for inspirations of
improving your last optimization.
Make sure youre refinement IMPLEMENT CUDA OPERATORS by ’from
torch.utils.cpp extension import load inline’, INSTEAD OF PURE PyTorch.

Critique

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom CUDA kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
You are provided with the pytorch architecture to optimize, as long as your previous opti-
mization solution attempt and the execution feedback, and natural language critique. Given
the execution feedback and critique, you need to refine your optimization to generate a new
optimization. Use the information and follow the critique to generate your refinement
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Critique Best Perf

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom CUDA kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
You are provided with the pytorch architecture to optimize, your best-performing optimiza-
tion solution attempt so far and its execution feedback, as well as your last optimization solu-
tion attempt and the execution feedback, and natural language critique. Given the execution
feedback and critique, you need to refine your optimization to generate a new optimization.
Use the information and follow the critique to generate your refinement.

Traj

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom CUDA kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
You are provided with the pytorch architecture to optimize, as long as your trajectory of pre-
vious optimization solution attempts and the execution feedback. Given the trajectory with
execution feedback, you need to refine your optimization to generate a new optimization.
Specifically, if your optimization failed to compile (i.e. ’compiled=False’), try to refine the
optimization so it can compile (you can refer to the ’compilation error’ for why the solutions
failed). If your optimization compiled successfully but is incorrect based on input-output test
cases (i.e. ’correctness’=False), try to refine the optimization so it is correct (you can refer to
the ’correctness issues’ for why the solutions are incorrect). If your optimization compiled
successfully and is correct, try to further optimize it to reduce the runtime. Make sure youre
refinement IMPLEMENT CUDA OPERATORS by ’from torch.utils.cpp extension import
load inline’, INSTEAD OF PURE PyTorch.
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Traj Best Perf

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You
may make the decision to replace some operators with custom CUDA kernels and leave
others unchanged. You may replace multiple operators with custom implementations,
consider operator fusion opportunities (combining multiple operators into a single kernel,
for example, combining matmul+relu), or algorithmic changes (such as online softmax).
You are only limited by your imagination.
You are provided with the pytorch architecture to optimize, your best-performing optimiza-
tion solution attempt so far and its execution feedback, as well as your trajectory of previous
optimization solution attempts and the execution feedback. Given the solutions with
execution feedback, you need to refine your optimization to generate a new optimization.
Specifically, if your optimization failed to compile (i.e. ’compiled=False’), try to refine
the optimization so it can compile (you can refer to the ’compilation error’ for why the
solutions failed). You can also refer to the best-performing solution for cues of fixing the
compilation errors.
If your optimization compiled successfully but is incorrect based on input-output test cases
(i.e. ’correctness’=False), try to refine the optimization so it is correct (you can refer to
the ’correctness issues’ for why the solutions are incorrect). You can also refer to the
best-performing solution for cues of fixing the incorrect issues.
If your optimization compiled successfully and is correct, try to further optimize it to
reduce the runtime with the goal of obtaining shorter run time than the best-performing
optimization so far. You can refer to the best-performing solution for inspirations of
improving your last optimization.
Make sure youre refinement IMPLEMENT CUDA OPERATORS by ’from
torch.utils.cpp extension import load inline’, INSTEAD OF PURE PyTorch.

Traj Critique

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom CUDA kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
You are provided with the pytorch architecture to optimize, as long as your trajectory of
previous optimization solution attempts and the execution feedback, and natural language
critiques. Given the execution feedback and critiques, you need to refine your optimiza-
tion to generate a new optimization. Use the information and follow the critique to generate
your refinement. Make sure youre refinement IMPLEMENT CUDA OPERATORS by ’from
torch.utils.cpp extension import load inline’, INSTEAD OF PURE PyTorch.
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Traj Critique Best Perf

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom CUDA kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
You are provided with the pytorch architecture to optimize, your best-performing optimiza-
tion solution attempt so far and its execution feedback, as well as your trajectory of previous
optimization solution attempts and the execution feedback, and natural language critiques.
Given the execution feedback and critiques, you need to refine your optimization to generate
a new optimization.
Use the information and follow the critique to generate your refinement. Make sure youre
refinement IMPLEMENT CUDA OPERATORS by ’from torch.utils.cpp extension import
load inline’, INSTEAD OF PURE PyTorch.

Critique

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom CUDA kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
You are provided with the pytorch architecture to optimize, your previous optimization so-
lution attempt and the execution feedback. Given the trajectory with execution feedback
and critiques, you need to provide critique for the previous solution attempt that can guide
the refinement of the optimization to generate a new optimization that aims to overcome
the pitfalls in the solution. Specifically, if the optimization failed to compile (i.e. ’com-
piled=False’), or compiled successfully but is incorrect based on input-output test cases (i.e.
’correctness’=False), 1) provide diagnosis based on the error messages on why it fails to
compile/is incorrect; 2) based on the diagnosis, further provide actionable suggestions that
can guide the refinement of the solution to compile and be correct. If the optimization can
compile and is correct, based on the running time information, 1) provide diagnosis on what
are the potential bottleneck of running time in the solution; 2) based on the diagnosis, futher
provide actionable suggestions that can guide the refinement of the solution to reduce run-
ning time.
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Critique Best Perf

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You
may make the decision to replace some operators with custom CUDA kernels and leave
others unchanged. You may replace multiple operators with custom implementations,
consider operator fusion opportunities (combining multiple operators into a single kernel,
for example, combining matmul+relu), or algorithmic changes (such as online softmax).
You are only limited by your imagination.
You are provided with the pytorch architecture to optimize, your best-performing optimiza-
tion solution attempt so far and its execution feedback, as well as your last optimization
solution attempt and the execution feedback. Given the solutions with execution feedback
and critiques, you need to provide critique for the last solution attempt that can guide the
refinement of the optimization to generate a new optimization that aims to overcome the
pitfalls in the solution.
Specifically, if the optimization failed to compile (i.e. ’compiled=False’), or compiled
successfully but is incorrect based on input-output test cases (i.e. ’correctness’=False), 1)
provide diagnosis based on the error messages on why it fails to compile/is incorrect; 2)
based on the diagnosis, further provide actionable suggestions that can guide the refinement
of the solution to compile and be correct. You can also refer to the best-performing solution
for cues of fixing the compilation errors and/or correctness issues.
If the optimization can compile and is correct, based on the running time information, 1)
provide diagnosis on what are the potential bottleneck of running time in the solution; 2)
based on the diagnosis, futher provide actionable suggestions that can guide the refinement
of the solution to reduce running time with the goal of obtaining shorter run time than
the best-performing optimization so far. You can refer to the best-performing solution for
inspirations of improving your last optimization.

Traj Critique

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You may
make the decision to replace some operators with custom CUDA kernels and leave others
unchanged. You may replace multiple operators with custom implementations, consider op-
erator fusion opportunities (combining multiple operators into a single kernel, for example,
combining matmul+relu), or algorithmic changes (such as online softmax). You are only
limited by your imagination.
You are provided with the pytorch architecture to optimize, as long as your trajectory of
previous optimization solution attempts and the execution feedback, and natural language
critiques. Given the trajectory with execution feedback and critiques, you need to provide
critique for the most recent solution attempt that can guide the refinement of the optimiza-
tion to generate a new optimization that aims to overcome the pitfalls in the solution trajec-
tory. Specifically, if the optimization failed to compile (i.e. ’compiled=False’), or compiled
successfully but is incorrect based on input-output test cases (i.e. ’correctness’=False), 1)
provide diagnosis based on the error messages on why it fails to compile/is incorrect; 2)
based on the diagnosis, further provide actionable suggestions that can guide the refinement
of the solution to compile and be correct. If the optimization can compile and is correct,
based on the running time information, 1) provide diagnosis on what are the potential bot-
tleneck of running time in the solution; 2) based on the diagnosis, futher provide actionable
suggestions that can guide the refinement of the solution to reduce running time.
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Traj Critique Best Perf

You write custom CUDA kernels to replace the pytorch operators in the given architecture
to get speedups.
You have complete freedom to choose the set of operators you want to replace. You
may make the decision to replace some operators with custom CUDA kernels and leave
others unchanged. You may replace multiple operators with custom implementations,
consider operator fusion opportunities (combining multiple operators into a single kernel,
for example, combining matmul+relu), or algorithmic changes (such as online softmax).
You are only limited by your imagination.
You are provided with the pytorch architecture to optimize, your best-performing optimiza-
tion solution attempt so far and its execution feedback, as well as your trajectory of previous
optimization solution attempts and the execution feedback, and natural language critiques.
Given the solutions with execution feedback and critiques, you need to provide critique
for the most recent solution attempt that can guide the refinement of the optimization to
generate a new optimization that aims to overcome the pitfalls in the solution trajectory.
Specifically, if the optimization failed to compile (i.e. ’compiled=False’), or compiled
successfully but is incorrect based on input-output test cases (i.e. ’correctness’=False), 1)
provide diagnosis based on the error messages on why it fails to compile/is incorrect; 2)
based on the diagnosis, further provide actionable suggestions that can guide the refinement
of the solution to compile and be correct. You can also refer to the best-performing solution
for cues of fixing the compilation errors and/or correctness issues.
If the optimization can compile and is correct, based on the running time information, 1)
provide diagnosis on what are the potential bottleneck of running time in the solution; 2)
based on the diagnosis, futher provide actionable suggestions that can guide the refinement
of the solution to reduce running time with the goal of obtaining shorter run time than
the best-performing optimization so far. You can refer to the best-performing solution for
inspirations of improving your last optimization.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Traj Critique

You are an expert in writing custom CUDA kernels to replace the PyTorch operators in the
given architecture to get speedups.
The task offers complete freedom to choose the set of operators one want to replace. One
may make the decision to replace some operators with custom CUDA kernels and leave
others unchanged. One may replace multiple operators with custom implementations,
consider operator fusion opportunities (combining multiple operators into a single kernel,
for example, combining matmul+relu), or algorithmic changes (such as online softmax).
You are only limited by your imagination.
The task provides
1) The target PyTorch architecture to optimize, with its running time.
2) The trajectory of previous optimization refinement attempts. The trajectory contains
(multiple) rounds of optimization refinement attemps, the corresponding execution feedback
& relative speedup to the target PyTorch implementation, and the natural language critique
that diagnoses the potential issues of the refinement with actionable suggestions.
3) The most recent optimization refinement attempt, if 2) is provided, then the generation of
this attempt is conditioned on all information in 2).
Given the trajectory, you need to predict the EXPECTED OVERALL MAXIMUM RELA-
TIVE SPEEDUP of this trajectory if the refinement iteration of solution-execution feedback
(-critique) WILL BE CONTINUED FOR A FEW MORE ROUNDS IN THE SAME
MANNER (you will be provided with how many remaining future rounds of refinment are
allowed).
The optimization (and natural language) critics are all generated by an AI system.
The EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP of a to be continued
trajectory is defined with five-way labels:
0: NONE of the solutions in the current trajectory or the EXPECTED solutions in your
estimated future rounds of refinement is/will be faster than the original PyTorch implemen-
tation. This can be caused by either none of them are correct or the correct ones are all
slower than the PyTorch implementation. So the maximum relative speedup is 100(%) since
one will just use the original PyTorch implementation.
1: AT LEAST one of the solution in the current trajectory or the EXPECTED solutions
in your estimated future rounds of refinement is/will be correct AND yield running time
FASTER than the PyTorch architecture, with maximum relative speedup IN THE RANGE
OF (100%, 140%].
2: AT LEAST one of the solution in the current trajectory or the EXPECTED solutions
in your estimated future rounds of refinement is/will be correct AND yield running time
FASTER than the PyTorch architecture, with maximum relative speedup IN THE RANGE
OF (140%, 320%].
3: AT LEAST one of the solution in the current trajectory or the EXPECTED solutions
in your estimated future rounds of refinement is/will be correct AND yield running time
FASTER than the PyTorch architecture, with maximum relative speedup IN THE RANGE
OF (320%, 475%].
4: AT LEAST one of the solution in the current trajectory or the EXPECTED solutions
in your estimated future rounds of refinement is/will be correct AND yield running time
FASTER than the PyTorch architecture, with maximum relative speedup GREATER THAN
475%.
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Traj Critique (Continue)

Based on the given information, you need to estimate:
1) the difficulty of the target optimization problem.
2) the AI system’s capability of generating optimization solutions that accurately incoporates
the feedback (and critiques) to fix bugs/improve performance. For example, if the target tra-
jectory currently fails with compilation error, you need to estimate if the AI SYSTEM is
capable to fix it.
3) The AI system’s capability to provide accurate diagnosis of errors/performance bottle-
necks and the quality and actionabiliy of provided refinement suggestions. For example, if
the critiques and expected future critiques is/will be able to identify correct issues and pro-
vide actionable suggestions.
4) Base on 1) 2), and 3), the MOST LIKELY outcome of the EXPECTED OVERALL
MAXIMUM RELATIVE SPEEDUP the current attempt (+ target trajectory) can lead to, if
the refinement will be continued by THE SAME AI SYSTEM for a given number of rounds.
BE CAUSIOUS in your estimation, which need to faithfully reflect the difficulties and ca-
pabilities of the AI SYSTEM, WITHOUT OVERESITMATIONS OR UNDERESTIMA-
TIONS. Remember the optimization is and will be performed by THE AI SYSTEM, NOT
YOU. So use your expertise only to predict the capabilities of the AI system, and the EX-
PECTED OVERALL MAXIMUM RELATIVE SPEEDUP based on the AI’s capabilities.
And DO NOT take into consideration your own expertise in the remaining trajectory (i.e.
do not think that you are going to further refine it, it is the system’s job). Finally, based on
your estimations, provide the EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP
prediction as a numerical label of 0/1/2/3/4. DO NOT ouput your estimations, just output
the final predicted EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP score as a
single number and NOTING ELSE.
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