

000 001 002 003 004 005 006 007 008 009 010 011 012 MAXCODE: A MAX-REWARD REINFORCEMENT 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 LEARNING FRAMEWORK FOR AUTOMATED CODE OP- 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TIMIZATION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
Anonymous authors
032
033
Paper under double-blind review

034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ABSTRACT

034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Large Language Models (LLMs) demonstrate strong capabilities in general coding
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
tasks but encounter two key challenges when optimizing code: (i) the complexity
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
of writing optimized code (such as performant CUDA kernels and competition-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
level CPU code) requires expertise in systems, algorithms and specific languages
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
and (ii) requires interpretation of performance metrics like timing and device util-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
ization beyond binary correctness. In this work we explore inference-time search
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
algorithms that guide the LLM to discover better solutions through iterative re-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
finement based on execution feedback. Our approach called **MaxCode** unifies
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
existing search methods under a max-reward reinforcement learning framework,
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
making the observation and action-value functions modular for modification. To
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
enhance the observation space, we integrate a natural language critique model that
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
converts raw execution feedback into diagnostic insights about errors and perfor-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
mance bottlenecks, and the best-discounted reward seen so far. Together, these
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
provide richer input to the code proposal function. To improve exploration during
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
search, we train a generative reward-to-go model using action values from rollouts
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
to rerank potential solutions. Testing on the KernelBench (CUDA) and PIE (C++)
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
optimization benchmarks shows that **MaxCode** improves optimized code perfor-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
mance compared to baselines, achieving 20.3% and 10.1% relative improvements
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
in absolute speedup value and relative speedup ranking, respectively.

034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 1 INTRODUCTION

034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Recent advancements in Large Language Models (LLMs) have revolutionized automatic code gen-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
eration, driving the development of specialized coding tools such as Claude Code (Cla, b), Qwen3-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Coder (Yang et al., 2025), and Code Llama (Rozière et al., 2023). The verifiable nature of code
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
through execution testing has enabled researchers to leverage execution feedback for improving
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
LLM-based code generation systems. This approach has proven particularly valuable for **code optimi-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
zation** (Ouyang et al., 2025; Madaan et al., 2023), where LLM-based optimization methods must
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
satisfy dual objectives: ensuring correctness while maximizing *performance* metrics such as exe-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
cution time and resource utilization. The practical impact of code optimization extends far beyond
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
academic benchmarks—optimizing CUDA kernels for fundamental operations can yield substantial
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
computational savings, potentially reducing GPU hours by orders of magnitude when deployed at
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
scale Dao (2023); Shah et al. (2024); Wang et al. (2024).

034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Code optimization presents two fundamental challenges that distinguish it from general coding
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
tasks: 1) the intrinsic complexity of generating optimized code demands sophisticated reasoning
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
about algorithmic trade-offs, memory access patterns, and hardware-specific optimizations that
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
make it more difficult for LLMs to produce correct solutions, and 2) the need to interpret multi-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
faceted performance feedback (timing, hardware utilization, and resource consumption metrics)
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
beyond binary compilation and execution correctness. For example, Figure 1 shows two code sam-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
ples generated by Deepseek-R1 (DeepSeek-AI et al., 2025) that optimize a CUDA kernel imple-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
menting a chain of PyTorch operators using drastically different approaches. The left sample fuses
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
operator subsets sequentially before chaining sub-kernels, while the right sample fuses all oper-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
ators simultaneously—yet both achieve nearly identical wall-clock performance, illustrating the non-
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
obvious relationship between implementation strategy and performance outcomes that complicates

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069

Problem Input: Generate a kernel for Matrix Multiplication -> Scaling -> Add Residual Connection -> LogSumExp -> Mish Activation

Solution 1, Speed-up: 58.4%

Kernel that fuses Mish and MatMul

Solution 2, Speed-up: 63.4%

```

    float clamp_min, float clamp_max, float scale_factor) {
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    extern __shared__ float shared_exp[1];
    float sum_exp = 0.0f;
    float shared_exp[1] = 1.0f;
    float scaled_factor = scale_factor * 2.0f;

    for (int t = 1; t < hidden_size - 1; ++t) {
        float val = input[row * hidden_size + t] * scaled_factor;
        val = fexpf(val, clamp_min, clamp_max);
        shared_exp[t] = expf(val);
    }
}

Kernel that fuses all ops
shared_exp[t] = sum_exp;
__syncthreads();

for (int t = 1; t < hidden_size/2; t >> 1) {
    if (t < 1) shared_exp[t] = shared_exp[t] * t;
    __syncthreads();

    if (t == 0) {
        float sum_exp = logf(shared_exp[0]) * 1.0f;
        float softplus = logf(softplus * sum_exp);
        float min = logf(sum_exp) + tanhf(softplus);
        softplus = logf(softplus * min);
    }
}

torch::Tensor fused_exp_cuda(torch::Tensor input, float clamp_min, float clamp_max, float
batch_size = input.size(0);
int hidden_size = input.size(1);
auto output = torch::empty({batch_size, 1}, input.options());
int threads = 256;
dim3 threads(256, 1, 1);
dim3 warps(16, 1, 1);
float* input_data_ptr = (float*)input.data();
float* output_data_ptr = (float*)output.data();
batch_size,
hidden_size,
clamp_min,
clamp_max,
scale_factor
);
}

return output;
}

```

Figure 1: Example optimization code generated by DeepSeek-R1 on a KernelBench problem

optimization decisions. This demonstrates that viable optimization solutions exhibit high diversity in structure and semantics, requiring deep understanding of the problem domain, programming language semantics, and underlying hardware architecture. Moreover, raw performance feedback provides insufficient diagnostic information: knowing that code runs 20% slower offers no insight into specific bottlenecks (memory bandwidth, compute utilization, or algorithmic inefficiency) or actionable remediation strategies. Consequently, even state-of-the-art LLMs with advanced coding capabilities struggle significantly with kernel optimization tasks (Ouyang et al., 2025).

To address these challenges, we first cast the problem of performance improving code optimization as *max-reward reinforcement learning*, which captures the notion of attaining best performance as opposed to cumulatively rewarded performance Veviurko et al. (2024). This formulation warrants inclusion of best-discounted reward in the observation space, for both learning and inference. Inspired by recent work on LLM self-refinement through natural language critique (Xie et al., 2025), we enrich the observation space with feedback from a critique model that analyzes optimized code and raw execution feedback to generate diagnostic insights and actionable refinement suggestions (Figure 2). We then define a *max-reward inference operator* to perform inference with a fixed policy, and instantiate the inference operator using multiple search algorithms to guide off-the-shelf LLMs in exploring and iteratively refining solutions. We call our approach **MaxCode** - a formulation that combines critique-augmented observation space with best-discounted reward to guide inference time search, enabling more effective exploration of the optimization solution space.

In code optimization, the evaluation of generated solutions demands computational resources and often becomes the limiting factor to effectively scale the search under a given computation and time budget. So, we additionally explore use of a trained generative Value/Reward-to-go model (Mahan et al., 2024) which predicts the V-value of any search trajectory prefix, i.e., the expected maximum future performance on that search branch given a proposed action (code revision). We train the reward-to-go model with roll-outs sampled from our tree searches. The learned reward model can be integrated at each search step by oversampling candidate refinements, filtering with predicted reward, and retaining only the most promising samples for evaluation and continuation. As a result, we enable search process to effectively explore more candidates under a certain evaluation budget.

We evaluate **MaxCode** formulation on two code optimization tasks: kernel code optimization (Ouyang et al., 2025) and competitive C++ code optimization (Madaan et al., 2023). With extensive experiments, we demonstrate that by integrating with our proposed max-reward RL formulation, the performance of existing methods can be significantly boosted. In particular, combining the best-performing search method (CUDA LLM (Chen et al., 2025)) with **MaxCode** yields relative speedup improvements of 27.3%, 11.0% and 22.5% on KernelBench level 1, level 2 and PIE, respectively.

In summary, our main contributions are as follows:

- 108 • We formalize code optimization as a max-reward reinforcement learning problem and aug-
109 ment the observation space with two key components: (i) the best-discounted reward seen
110 so far, and (ii) a natural language critique generated by a dedicated critique model that
111 provides performance diagnosis and optimization suggestions based on code analysis and
112 execution results. This enables more targeted search and provides actionable optimization
113 suggestions based on code analysis and execution results.
- 114 • We define a max-reward inference operator and implement it through various search al-
115 gorithms for fixed-policy inference. Our framework leverages the augmented observation
116 space to enable effective exploration of the optimization solution space. Through empirical
117 evaluation on kernel code optimization and competitive C++ optimization tasks, we demon-
118 strate significant performance improvements over existing methods when integrating with
119 our proposed framework.
- 120 • We propose a categorical Value/Reward-to-go model that predicts the expected maximum
121 future performance of search trajectories, enabling efficient candidate filtering and resource
122 optimization through informed trajectory selection.

124 2 MAXCODE: MAX-REWARD RL FRAMEWORK FOR CODE OPTIMIZATION

125
126 **The Markov Decision Process** We formulate the performance improving code optimization pro-
127 cess as a Markov Decision Process (MDP) with an expanded state space that incorporates initial
128 code, current code, execution feedback, and language model critiques. We illustrate in Figure 2
129 the MDP process with max-reward formulation. Formally, we define our MDP with the tuple
130 $(\mathcal{S}, \mathcal{A}, P, R, \gamma, \rho_0)$, where the state space \mathcal{S} is defined as the product space $\mathcal{X}_0 \times \mathcal{X} \times \mathcal{E} \times \mathcal{C}$, where
131 \mathcal{X}_0 represents the problem description along with the initial code state, \mathcal{X} represents the space of
132 possible current code states, \mathcal{E} represents execution feedback, and \mathcal{C} represents language model cri-
133 tiques. Each state $s_t = (x_0, x_{t-1}, e_{t-1}, c_{t-1})$ provides a representation of the initial code, current
134 code, its execution results, and associated natural language critique. The initial state distribution
135 $\rho_0 : \mathcal{X}_0 \rightarrow [0, 1]$ defines the probability distribution over starting code states, which is assumed
136 uniform over the code samples present in the considered benchmarks, and $\gamma \in (0, 1]$ is the discount
137 factor, which we set to 1 because of finite horizon rollouts. The reward function $R : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$
138 defined as $R(s_t, a_t, s_{t+1}) = f(e_{t+1})$, where f evaluates code performance based on execution feed-
139 back e_{t+1} , returning higher values for improved performance.

140 The action space $\mathcal{A} = \mathcal{X}$ corresponds to the space of possible code modifications. Unlike standard
141 RL, the policy π_θ is a large language model (LLM) with frozen parameters θ that operates autore-
142 gressively on states. Given s_t , the policy implicitly applies a sequence of token-level edits and
143 produces a distribution over complete code candidates: $\pi_\theta(x | s_t) : \mathcal{X} \rightarrow \Delta(\mathcal{X})$. Due to stochastic
144 token sampling, the same state s_t may yield multiple distinct candidates $\{x_{t+1}^{(1)}, \dots, x_{t+1}^{(M)}\}$.

145 The transition function P captures two sources of stochasticity: policy stochasticity from autore-
146 gressive token sampling in π_θ , and the environment stochasticity from π_θ - the LLM-based critique
147 generator. Formally, after the policy outputs x_{t+1} , the environment produces the next state by aug-
148 menting the trajectory with execution results and critique: $P(s_{t+1} | s_t, x_{t+1}) = P(e_{t+1}, c_{t+1} |$
149 $x_{t+1}), \delta[s_{t+1} = (x_0, x_{t+1}, e_{t+1}, c_{t+1})]$, where e_{t+1} is obtained from running x_{t+1} on the target
150 hardware, c_{t+1} is generated by a separate LLM that produces a natural-language critique condi-
151 tioned on (x_{t+1}, e_{t+1}) , and $\delta[\cdot]$ enforces deterministic update of the state components.

152 Following the max-reward RL formulation Veviurko et al. (2024), we define the return from time t
153 as $\hat{G}_t = \max k \geq 1 \gamma^{k-1} r_{t+k}$, which captures the best performance eventually achieved from time
154 t . With $u \in \mathbb{R}$ as an auxiliary real variable representing the best discounted reward obtained so far,
155 max-reward value functions under policy π are given by

$$156 \quad V^\pi(s, u) = \mathbb{E}_\pi \left[\max(u, \hat{G}_t) \mid s_t = s \right], \quad (1)$$

$$158 \quad Q^\pi(s, a, u) = \mathbb{E}_\pi \left[\max(u, \hat{G}_t) \mid s_t = s, a_t = a \right]. \quad (2)$$

160 **Remark** In max-reward RL, the optimal policy maximizing expected return from the initial state
161 should depend not only on the current state, but also on the rewards obtained so far. The auxiliary

variable $u \in \mathbb{R}_{\geq 0}$ representing the best discounted reward achieved so far is crucial for maintaining the Markov property under the max-reward objective.

Execution and Critique In our setup, the Executor EX evaluates input x against test cases Y , producing feedback $e = \{e_{1a}, e_{1b}, e_{2a}, e_{2b}\}$, where e_{1a} indicates binary correctness, e_{1b} provides contrastive correctness details (e.g. difference in the output of the current and previous code for some test cases), e_{2a} is a numerical performance indicator (e.g., running time and / or relative speed-up against the previous code), and e_{2b} contains contrastive performance details. For standard coding tasks, feedback is limited to correctness components ($e = e_{1a}, e_{1b}$) and serves purely as an evaluation metric. In optimization tasks, where initial solutions are typically correct, the focus shifts to performance metrics e_2 , as the initial solution remains a fallback option if optimization fails. Given that raw execution feedback can often prove to be less informative (Xie et al., 2025), we introduce a critic model (π_c) to generate natural language critiques that provide both diagnostic insights into potential bugs and performance bottlenecks, as well as actionable refinement suggestions.

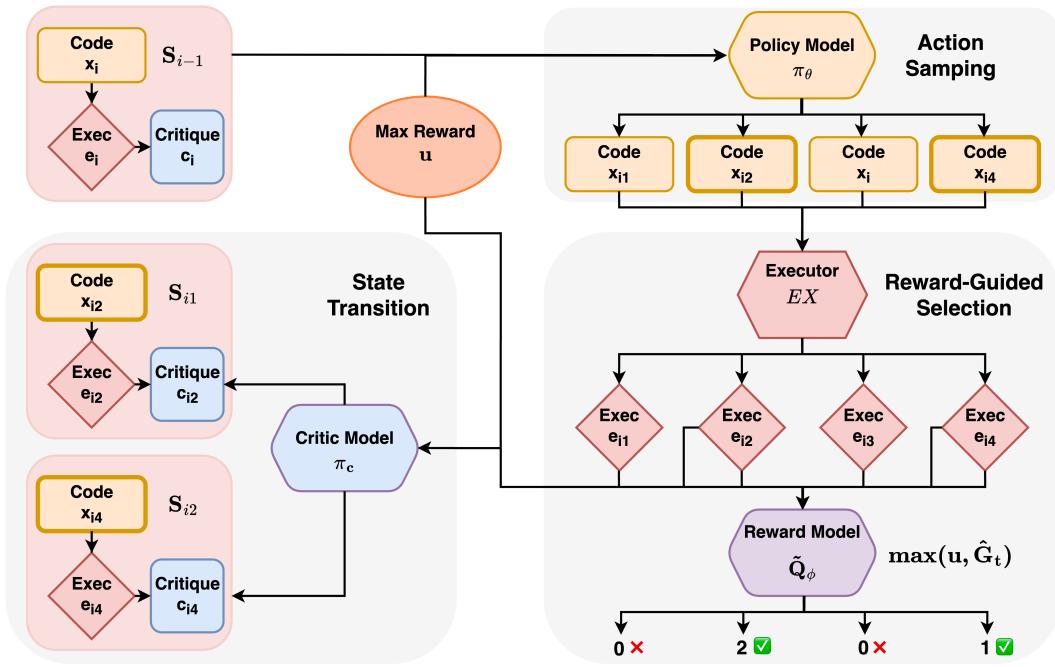


Figure 2: Illustration of the MaxCode search method

2.1 MAX-REWARD INFERENCE OPERATOR

One can obtain an optimized code with a budget K by sampling trajectories $\{\tau_1, \dots, \tau_K\}$ and selecting:

$$\tau^* = \arg \max_{\tau_i} \hat{G}(\tau_i) = \arg \max_{\tau_i} \max_{t \in [1, T]} \gamma^{t-1} f_r(e_t^{(i)}) \quad (3)$$

Here, $\tau_i = (s_0, s_{i1}, \dots, s_{iT-1}, s_T)$ represents a trajectory run for T time steps. Instead, we propose searching for the best optimized code under an extended MDP with state space (s, u) . To do so, we define a *max-reward inference operator* \mathcal{T}^* applied to a fixed policy π_θ as:

$$\mathcal{T}^*(\pi_\theta)(s, u) \approx \arg \max_a Q^{\pi_\theta}(s, a, u) \quad (4)$$

where $Q^{\pi_\theta}(s, a, u) = \mathbb{E}_{\pi_\theta}[\max(u, \hat{G}_t) \mid s_t = s, a_t = a]$ is the max-reward Q-function with auxiliary variable u representing the best discounted reward achieved so far. The operator performs one step of greedy policy improvement in an extended MDP with state space (s, u) . Unlike standard

216 policy improvement that operates on states s alone, our operator considers both the current state and
 217 the reward history encoded in u , enabling decisions that depend on the quality of solutions found so
 218 far.

219

220

221

2.2 MAX-REWARD SEARCH

222

223 We now show how to approximately implement \mathcal{T}^* with inference time search by adopting and
 224 repurposing various prior work under the proposed max-reward RL formulation. Given a code
 225 optimization problem with test cases Y , generator LLM π_θ , and critic LLM π_c , we define initial
 226 state $s_0 = (x_0, \emptyset, \emptyset, \emptyset) \in \mathcal{X}_0 \times \mathcal{X} \times \mathcal{E} \times \mathcal{C}$, where x_0 is the problem statement with the initial code,
 227 and search states as $s_i = (x_0, x_i, e_i, c_i) \in \mathcal{S}$ represent the current optimization candidate with its
 228 execution feedback and critique. For each state s_i , we maintain $u_i = \max_{j \leq i} \gamma^{d_j} f(e_j)$ tracking the
 229 best discounted reward achieved along the trajectory to s_i , where d_j is the depth of state j . With this
 230 setting, we reformulate the following methods for max-reward search:

231

232

233 **Effi-Learner** Given s_0 (Huang et al., 2024) proposed to 1) first sample an initial action x_1 from
 234 $\pi_\theta(s_0)$ and obtain its execution feedback $e_1 = EX(x_1, Y)$; 2) generate a refinement action x_2 from
 235 $\pi_\theta(x_0, x_1, e_1)$ as the final solution.

236

237

238 *Max-Reward Reformulation:* Under Max-Reward formulation, we reformulate Effi-learner to 1)
 239 additionally obtain the critique $c_1 \sim \pi_c(x_1, e_1)$ and form the successor state $s_1 = (x_0, x_1, e_1, c_1)$
 240 via transition function $P(s_1 | s_0, x_0)$; and 2) generate the final solution x_2 from $\pi_\theta(s_1)$. Noting that
 241 we are not adding the we leverage the maintained best discounted reward $u_i = \max_{j \leq i} \gamma^{d_j} f(e_j)$
 242 since Effi-Learner performs only 2 rounds of optimization thus u_i is already encoded in e_1 .

243

244

245 **CUDA-LLM** Chen et al. (2025) proposes a beam-search based method that given a state
 246 $s'_i = (x_0, x_i, e_i)$, sampling k candidate actions $x_{i1} \dots x_{ik}$, obtaining execution feedback $e_{ij} =$
 247 $EX(x_{ij}, Y)$ and 1) if any of the candidates is correct, i.e. the speedup $f(e_{ij}) > 1$, select the
 248 best-performing candidate to proceed with, i.e. x_m with $m = \arg \max_x (f(e_x))$, and form the new
 249 state $s'_{i+1} = (x_0, x_m, e_m)$; 2) if none of the candidates are correct, formulate intermediate states
 250 $s'_{ij} = (x_0, x_{ij}, e_{ij})$ and iteratively refine them by sampling and executing (in parallel) single refine-
 251 ment candidates for each intermediate state until at least one of the refinement is correct. Then it
 252 discard all intermediate states and obtain s_{i+1} as in 1).

253

254

255 *Max-Reward Reformulation:* Under Max-Reward formulation, we 1) enhance each state $s'_i =$
 256 (x_0, x_i, e_i) with natural language critiques obtained by π_c to obtain complete states $s_i =$
 257 (x_0, x_i, e_i, c_i) ; 2) when sampling the next action at each state s_i , we leverage the maintained best
 258 discounted reward $u_i = \max_{j \leq i} \gamma^{d_j} f(e_j)$ to enhance the action sampling, i.e. $x_{ij} \sim \pi_\theta(s_i, u_i)$.

259

260

261

262

2.3 GENERATIVE VALUE FUNCTION GUIDED SEARCH

263

264

265 To further improve the search process, we learn a generative value function approximator \tilde{V}_ϕ that
 266 guides state selection by estimating the max-reward values. This enables a two-stage approach: first
 267 collecting search data with breadth-first expansion, then using the learned value function to guide
 268 more efficient search. Our value function approximator $\tilde{V}_\phi(s_t, u_t)$ is implemented as a language
 269 model that takes as input the current state representation $s_t = (x_0, x_t, e_t, c_t)$ and the auxiliary
 270 variable u_t representing the best discounted reward achieved so far along the trajectory.

271

272

273 For each code optimization problem, we collect training data \mathcal{D} from the search trajectory as fol-
 274 lows: 1) sample K parallel trajectories $\{\tau_1, \dots, \tau_K\}$ by iteratively expanding each state $s_t =$
 275 (x_0, x_t, e_t, c_t) with $s_{t+1} = (x_0, x_{t+1}, e_{t+1}, c_{t+1})$, where $x_{t+1} \sim \pi_\theta(s_t, u_t)$, $e_{t+1} = E(x_{t+1}, Y)$,
 276 and $c_{t+1} = \pi_c(s_t, x_{t+1}, u_t)$. 2) For each trajectory $\tau = (s_0, s_1, \dots, s_T)$, at each timestep t ,
 277 we have state s_t , auxiliary variable $u_t = \max_{k \leq t} \gamma^{k-t} f_r(e_k)$. We compute the target value as
 278 $v_t^* = \max(u_t / \gamma, \max_{k \geq t} \gamma^{k-t} f_r(e_k))$, where the maximum is taken over all future rewards in the
 279 following trajectory starting at the state s_t . This formulation correctly implements the max-reward
 280 objective: the value represents the maximum between the discounted best reward achieved so far
 281 and the best future reward obtainable from the current state.

270 **Categorical Reward Formulation** Given the high variance in potential speedup distributions, we
 271 discretize continuous speedup values into categorical rewards using the binning strategy:
 272

$$273 \quad 274 \quad 275 \quad 276 \quad 277 \quad 278 \quad f_r(e) = \begin{cases} 0 & \text{if speedup} \leq 100\% \text{ or correctness} = 0 \\ 1 & \text{if speedup} \in (100\%, s_1\%] \\ 2 & \text{if speedup} \in (s_1\%, s_2\%] \\ 3 & \text{if speedup} \in (s_2\%, s_3\%] \\ 4 & \text{if speedup} > s_3\% \end{cases}$$

279 The value function approximator predicts a categorical distribution over these reward categories:
 280

$$281 \quad \tilde{V}_\phi(q \mid s_t, u_t) = \text{softmax}(W_v \cdot h_\phi(s_t, u_t))$$

283 where h_ϕ is the language model’s hidden representation and W_v is a classification head. We train
 284 the value function using standard cross-entropy loss:
 285

$$286 \quad \mathcal{L}(\tilde{V}_\phi) = \mathbb{E}_{(s_t, u_t, v^*) \sim \mathcal{D}} \left[-\log \tilde{V}_\phi(v^* \mid s_t, u_t) \right], \quad (5)$$

288 where $v^* = f_r(\max_{k \geq t} \gamma^{k-t} r_k)$ is the categorical label corresponding to the maximum discounted
 289 future reward.

290 **Generative Value Function Guided Search** In the second stage, we use \tilde{V}_ϕ to guide expansion.
 291 After evaluating a set of candidate states, we compute $\tilde{V}_\phi(s_t, u_t)$ for each candidate s_t , and select
 292 the state with the highest expected estimated value for subsequent expansion. This allows us to
 293 incorporate a notion of potential future improvement into state selection: two states with identical
 294 current reward may differ in how close they are to further performance improvement. Imagine
 295 two functions that achieve zero reward: one which is a no-op, and the other which contains all
 296 the logic required to compute a correct output but also contains a minor syntax issue. These two
 297 functions would be equally likely to be selected for expansion without the use of a value estimator
 298 to distinguish their differing levels of promise.
 299

300 2.4 ENVIRONMENT STOCHASTICITY

302 At any given step, the environment feedback (critique) doesn’t necessarily provide a complete pic-
 303 ture of the performance characteristics of the most recent action (code revision) or what further
 304 revisions are needed, only a lossy subset. In our environment, this critique function is also stochas-
 305 tic. By including previous critique observations in the trajectory history, the policy can aggregate
 306 these lossy observations to get more complete information on what the best next action might be.
 307 Here the trajectory information τ_i provides the extended state representation necessary to deal with
 308 environment stochasticity. At each refinement step, the LLM generates new optimizations condi-
 309 tioned on trajectory information (previously generated optimizations and execution feedback) from
 310 all ancestor steps.

311 3 EXPERIMENTS AND RESULTS

312 3.1 EXPERIMENTS

315 **Datasets** We evaluate our proposed searching and reward modeling methods on two code opti-
 316 mization benchmarks: (i) KernelBench (Ouyang et al., 2025) and (ii) PIE (Madaan et al., 2023)
 317 focused on optimizing CUDA kernels and competitive C++ codes, respectively. **KernelBench** is
 318 for evaluating LLMs on generating and optimizing for efficient GPU kernels for optimizing neural
 319 network performance. The dataset is constructed with 250 well-defined neural network tasks span-
 320 ning four levels of difficulties from single kernel optimization (level 1), fusion patterns (level 2),
 321 to complete ML architectures (level 3) and complete Huggingface architectures (level 4). For each
 322 of the tasks, the LLM is provided with the PyTorch implementation and asked to replace it with
 323 custom kernels that are correct and performance optimized. The execution feedback consists of 1)
 324 compilation success/failure; 2) correctness of the generated CUDA kernel based on a set of test-case

	KerneBench L1		KerneBench L2		PIE	
	Rank ↓	Median ↑	Rank ↓	Median ↑	Rank ↓	Median ↑
Best@64	2.85	1.00x	2.15	1.02x	2.29	1.32x
Effi-Learner + MaxCode	3.02 2.98	1.00x 1.00x	2.98 2.95	1.00x 1.00x	3.72 3.55	1.00x 1.03x
CUDA LLM + MaxCode	1.54 1.43	2.49x 3.17x	1.64 1.51	1.45x 1.61x	2.05 1.74	1.42x 1.74x

Table 1: Average ranking and median of maximum speedup on KernelBench and PIE.

input-output; 3) the relative speedup of the CUDA compared with the default PyTorch implementation. We use level 1 and level 2 problems for our experiments. **PIE** is a benchmark for optimizing the running time for competitive level C++ coding problems, consists of 77K pairs of submissions (original vs. optimized). The execution feedback consists of 1) correctness of code based on extensive unit tests and, 2) the relative speedup of the optimization compared to the original solution. We sample 100 problems from the test set (detailed in Appendix B) for our experiments.

Experimental Setup As introduced in subsection 2.2, we use the reformulation of Effi-Learner Huang et al. (2024) and CUDA-LLM Chen et al. (2025) to implement the proposed max-reward search on both benchmarks. We use Claude-3.7-Sonnet (Cla, a) as π_θ for both the policy and critique generation. We further enable the extended thinking mode of Claude-3.7-Sonnet for the critique generation to enhance the reasoning capabilities. We set `temperature=0.6` for both code and critique generation. On KernelBench, we used all of the level 1 and level 2 problems (100 each) for evaluations. On PIE, we use a subset of 68 problems from the test set. For each of the problem, we generate a single-path refinement with `depth=2` for Effi-Learner, we set the `depth = 8` and $K = 8$ for CUDA-LLM.

To collect training data for the reward model, we perform **MaxCode** search with $K = 8$ single-path refinement with critique and trajectory information as input on KernelBench level 1 level 2 and PIE. We train the reward model on all the generated search trajectories with all prefixes length ≤ 2 . We split the trajectory prefix data by problem with a 80/20 splits of train/val sets for each dataset. For reward function $f_r(e)$, we set (s_1, s_2, s_3) as $(140, 320, 475), (120, 170, 215), (125, 180, 260)$ for each dataset, respectively. We use Qwen2.5-7B-Instruct (Yang et al., 2024) as the base model for reward-to-go model training. For hyperparameters, we train the reward model with `epoch=1, batch_size=8, optimizer=AdamW` using LoRA with `rank=8`. For inference, we set `temperature=0.7`. We provide all the prompts for search and reward model in Appendix C.

Baselines We compare our proposed methods to 3 baselines: 1. **Effi-Learner** (Huang et al., 2024): as described in subsection 2.2, we implement the original Effi-Learner as baseline 2. **CUDA-LLM** (Chen et al., 2025): similar to Effi-learner, we implement the original CUDA-LLM with the same hyper-parameters 3. **Flat Sampling**: directly sampling n multiple candidates from the LLM where $n = 64$ matches the compute budget of **MaxCode** on CUDA-LLM.

Evaluation Metrics We evaluate the generated search trajectories correctness and performance with the following metrics: 1. **Correctness**: the average binary correctness of all the generations per problem 2. **Fast1**: the average binary value of the solution is correct and faster than the PyTorch implementation across all the generations per problem. 3. **Max Speedup**: the maximum speedup of all solutions across the generations per problem. Note that depending on the nature of the problems, there is a small subset of problems where the optimization speedups are much larger than the others, thus biasing the average maximum speedup to be less faithful in measuring the overall performance of evaluated methods. We thus evaluate the overall max speedup on 1) the *median* of max speedup across problems; 2) the *average ranking* of the individual max speedup of different methods on each problem; since these two measurements are less prone to outliers and more faithfully represent the absolute and comparable level of max speedup.

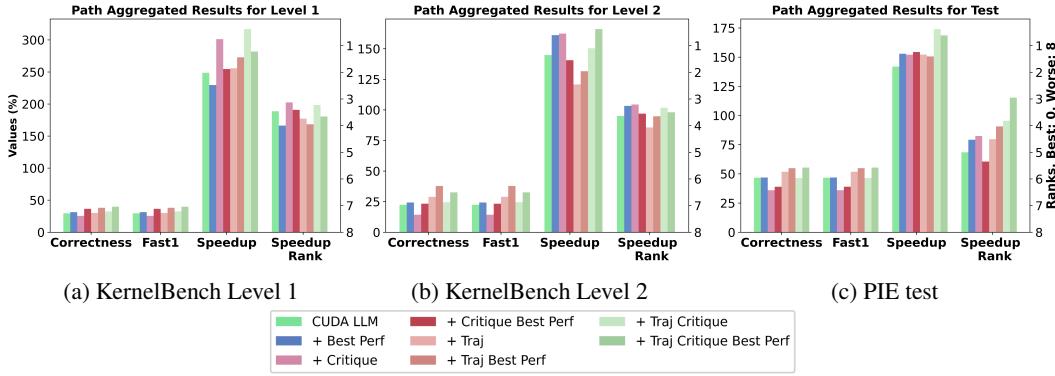


Figure 3: Ablated evaluation results of correct, fast1, and max speed-up of different components of **MaxCode** on KernelBench and PIE

3.2 RESULTS

RQ1: Can MaxCode improve the performance of different search methods?

We present the performance of baseline methods and their **MaxCode** reformulation on KernelBench and PIE in Table 1. We observe improvements across all baselines in terms of level and ranking of max speedup when incorporated with **MaxCode** (+ **MaxCode**) across all of level 1 and level 2 of KernelBench and PIE problems. The results showcase that existing search methods can be effectively reformulated under the proposed max-reward RL formulation, with performance gains compared with their original implementation. Overall, when integrated with CUDA LLM (CUDA LLM + **MaxCode**), **MaxCode** yields the best max speedup performance.

RQ2: What is most crucial to MaxCode’s performance gain? To better investigate the effects of each component in **MaxCode** framework, we evaluate the following ablations to study the performance of the **MaxCode**. Specifically, in addition to the optimization + raw execution feedback from the last round, we ablate on these additional input to the prompt

- **Best Perf**: the best reward so far and corresponding code and execution feedback.
- **Critique**: the natural language critiques
- **Traj**: optimization + execution feedback (+ Best Perf) (+ Critique) from the full trajectory.

We ablate every combinations of these components using CUDA LLM + **MaxCode** with comparison to the original CUDA LLM. Note that for all **Traj** variations, the information of best-performing optimization is already presented in the trajectory, the addition of **Best Perf** on top of it thus add the best-performing information again to highlight the max-reward information.

The results for ablation study are presented in Figure 3. As illustrated, compared with the CUDA-LLM baseline, all variations attains comparable or better level of correctness, fast1 and maximum speedup, showcasing the effectiveness of **MaxCode** variations in searching for correct and faster solutions. For max speedup, the best performances are achieved by different variations on different subset/dataset. Specifically, having the full trajectory information with critiques (**Traj Critique**) yields the highest median of max speedup of KernelBench level 1 and PIE, where as further adding the best discounted reward (best-performing optimization) so far yield the best median for max speedup on KernelBench Level 2. On the other hand, including only one of the components yield less improvements and might sometimes lead to slight degradation of the performance. The results demonstrate that the combination of trajectory information with natural language critique, as well as the best reward so-far (either encoded in the trajectory or explicitly provided) is crucial to the success of **MaxCode**.

RQ3. How does MaxCode scale with inference-time budget? To investigate the inference-time properties of **MaxCode**, we plot the median max speedup attained by different variations of CUDA LLM + **MaxCode** against the vanilla CUDA-LLM under different depths in Figure 4. As shown in the figure, compared with CUDA-LLM, the reformulation with **MaxCode** could more quickly attain higher level of speedup than CUDA-LLM under the same depth (therefore the same # of gen-

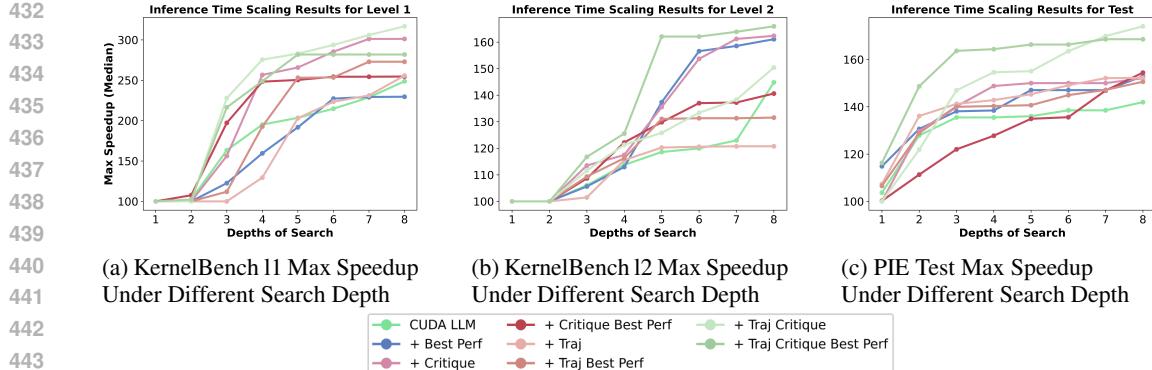


Figure 4: Inference time scaling of max speed-up on KernelBench and PIE.

erated candidates), across KernelBench level 1, level 2, and PIE. The scaling results showcase that **MaxCode** can boost the test-time scaling of existing search methods - under **MaxCode** reformulation, search methods can more efficiently leverage the inference budget and scales better than their original counterparts for code optimization.

	KernelBench L1		KernelBench L2		PIE	
	Rank ↓	Median ↑	Rank ↓	Median ↓	Rank ↓	Median ↑
MaxCode	1.40	3.24x	1.57	1.22x	1.55	1.72x
MaxCode + Reward	1.53	2.44x	1.33	1.24x	1.43	1.62x

Table 2: Results of reward-guided search on KernelBench and PIE

RQ4. Can we learn a coarse verification signal as the V model to improve search performance? To evaluate the effectiveness of the learned reward model in guiding search, we apply the reward model to CUDA LLM + **MaxCode** with the **Traj Critique** variance and compared it with the no-guidance search. We report the evaluation results of reward-guided search on a random subset of KernelBench and PIE in Table 2. While the reward-guided search demonstrates comparable/better results on KernelBench level 1 and PIE, it underperforms the no-guidance baseline on KernelBench level 1. Given the results, we posit that the potential causes that hinder the reward model to provide better guidance for search are 1) the intrinsic difficulties of accurately estimating the expected reward in terms of maximum speedup for complex code optimization problems even for small LLMs, and 2) the distribution shift between the collected trajectories for training the reward model and the trajectories obtained with CUDA LLM + **MaxCode**. In particular, whereas the collected trajectories are single-path refinements with no candidate selection, CUDA LLM + **MaxCode** always sample and select the best-performing candidate of the current round to continue with. Our results and findings highlight both the usefulness and challenges of leveraging learned reward/value function for search in code optimization.

4 CONCLUSION

In this paper, we investigate inference-time search algorithms for LLM on code optimization problems. We unify prior search approaches under a max-reward reinforcement learning (RL) problem formulation, exposing the observation and action-value functions for plug-and-play modification. We improve the observation space by integrating a critique model that transforms the raw execution feedback provided by the environment to natural language critiques of error/performance, providing stronger guiding signal for the policy (code proposal) function. Moreover, we use sampled action values from rollouts to train a generative reward-to-go model, which can then be applied at inference time to rerank actions (search states) for exploration. Results on the KernelBench (CUDA) and PIE (C++) optimization benchmarks demonstrate that applying our proposed framework to reformulate existing search methods yields significant improvements in performance of optimized code.

486 REFERENCES
487

488 Claude 3.7 sonnet and claude code. <https://www.anthropic.com/news/claude-3-7-sonnet>, a.

489 Claude code: Deep coding at terminal velocity. <https://www.anthropic.com/claude-code>, b.

490 Sagnik Anupam, Alexander Shypula, and Osbert Bastani. Llm program optimization via retrieval
491 augmented search. *ArXiv*, abs/2501.18916, 2025. URL <https://api.semanticscholar.org/CorpusID:276079732>.

492 Carlo Baronio, Pietro Marsella, Ben Pan, Simon Guo, and Silas Alberti. Kevin: Multi-
493 turn rl for generating cuda kernels. *ArXiv*, abs/2507.11948, 2025. URL <https://api.semanticscholar.org/CorpusID:280232580>.

494 Wentao Chen, Jiace Zhu, Qi Fan, Yehan Ma, and An Zou. Cuda-llm: Llms can write efficient cuda
495 kernels. *ArXiv*, abs/2506.09092, 2025. URL <https://api.semanticscholar.org/CorpusID:279305780>.

496 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv
497 preprint arXiv:2307.08691*, 2023.

498 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin
499 Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
500 Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bing-Li
501 Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
502 Chong Ruan, Damai Dai, Deli Chen, Dong-Li Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
503 Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
504 Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Ji-
505 awei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Jiong Cai, Jiaqi Ni, Jian
506 Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
507 Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
508 Zhang, Minghua Zhang, M. Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan
509 Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang,
510 Ruizhe Pan, Runji Wang, R. J. Chen, Ruiqi Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou,
511 Shanhua Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S.
512 Li, Shuang Zhou, Shao-Kang Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng,
513 Wanja Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wen-Xia Yu, Wentao Zhang, Wangding
514 Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xi aokang Chen, Xiaotao Nie, Xin Cheng, Xin
515 Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li,
516 Xiangyu Jin, Xi-Cheng Shen, Xiaosha Chen, Xiaowen Sun, Xiaozi Wang, Xinnan Song,
517 Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yan-
518 hong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
519 Yi Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang
520 Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yu-Jing Zou, Yujia He, Yunfan Xiong, Yu-Wei Luo,
521 Yu mei You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yao Li, Yi Zheng, Yuchen
522 Zhu, Yunxiang Ma, Ying Tang, Yukun Zha, Yuting Yan, Zehui Ren, Zehui Ren, Zhangli Sha,
523 Zhe Fu, Zhean Xu, Zhenda Xie, Zhen guo Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan,
524 Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zi-An Li, Ziwei Xie, Ziyang Song, Zizheng Pan,
525 Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing rea-
526 soning capability in llms via reinforcement learning. *ArXiv*, abs/2501.12948, 2025. URL
527 <https://api.semanticscholar.org/CorpusID:275789950>.

528 Mingzhe Du, Luu Tuan Tuan, Yue Liu, Yuhao Qing, Dong Huang, Xinyi He, Qian Liu, Zejun Ma,
529 and See kiong Ng. Afterburner: Reinforcement learning facilitates self-improving code efficiency
530 optimization. *ArXiv*, abs/2505.23387, 2025. URL <https://api.semanticscholar.org/CorpusID:278995727>.

531 Shukai Duan, Nikos Kanakaris, Xiongye Xiao, Heng Ping, Chenyu Zhou, Nesreen K. Ahmed,
532 Guixiang Ma, Mihai Capotă, Theodore L. Willke, Shahin Nazarian, and Paul Bogdan. Per-
533 frl: A small language model framework for efficient code optimization. 2023. URL <https://api.semanticscholar.org/CorpusID:266163427>.

540 Charles Hong, Sahil Bhatia, Alvin Cheung, and Yakun Sophia Shao. Autocomp: Llm-driven code
 541 optimization for tensor accelerators. *ArXiv*, abs/2505.18574, 2025. URL <https://api.semanticscholar.org/CorpusID:278905227>.

542

543 Dong Huang, Jianbo Dai, Han Weng, Puzhen Wu, Yuhao Qing, Jie M.Zhang, Heming Cui, and
 544 Zhijiang Guo. Effilearner: Enhancing efficiency of generated code via self-optimization. In
 545 *Neural Information Processing Systems*, 2024. URL <https://api.semanticscholar.org/CorpusID:270045278>.

546

547 Xiaoya Li, Xiaofei Sun, Albert Wang, Jiwei Li, and Chris Shum. Cuda-l1: Improving cuda optimiza-
 548 tion via contrastive reinforcement learning. 2025. URL <https://api.semanticscholar.org/CorpusID:280048846>.

549

550

551 Aman Madaan, Alex Shypula, Uri Alon, Milad Hashemi, Parthasarathy Ranganathan, Yim-
 552 ing Yang, Graham Neubig, and Amir Yazdanbakhsh. Learning performance-improving code
 553 edits. *ArXiv*, abs/2302.07867, 2023. URL <https://api.semanticscholar.org/CorpusID:256868633>.

554

555 Dakota Mahan, Duy Phung, Rafael Rafailov, Chase Blagden, nathan lile, Louis Castricato,
 556 Jan-Philipp Franken, Chelsea Finn, and Alon Albalak. Generative reward models. *ArXiv*,
 557 abs/2410.12832, 2024. URL <https://api.semanticscholar.org/CorpusID:273404003>.

558

559

560 Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher R'e, and Azalia
 561 Mirhoseini. Kernelbench: Can llms write efficient gpu kernels? *ArXiv*, abs/2502.10517, 2025.
 562 URL <https://api.semanticscholar.org/CorpusID:276408165>.

563

564 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
 565 Jingyu Liu, Tal Remez, Jérémie Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P
 566 Bhatt, Cris tian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre D'efossez, Jade
 567 Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
 568 Synnaeve. Code llama: Open foundation models for code. *ArXiv*, abs/2308.12950, 2023. URL
 569 <https://api.semanticscholar.org/CorpusID:261100919>.

570

571 Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
 572 Flashattention-3: Fast and accurate attention with asynchrony and low-precision. *Advances in
 573 Neural Information Processing Systems*, 37:68658–68685, 2024.

574

575 Grigorii Veviurko, Wendelin Böhmer, and Mathijs De Weerdt. To the max: Reinventing reward in
 576 reinforcement learning. *arXiv preprint arXiv:2402.01361*, 2024.

577

578 Guoxia Wang, Jinle Zeng, Xiyuan Xiao, Siming Wu, Jiabin Yang, Lujing Zheng, Zeyu Chen, Jiang
 579 Bian, Dianhai Yu, and Haifeng Wang. Flashmask: Efficient and rich mask extension of flashat-
 580 tention. *arXiv preprint arXiv:2410.01359*, 2024.

581

582 Zhihui Xie, Jie chen, Liyu Chen, Weichao Mao, Jingjing Xu, and Lingpeng Kong. Teaching
 583 language models to critique via reinforcement learning. *ArXiv*, abs/2502.03492, 2025. URL
 584 <https://api.semanticscholar.org/CorpusID:276161646>.

585

586 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 587 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
 588 Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
 589 Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jingren Zhou, Junyan Lin, Kai Dang, Keqin Bao,
 590 Ke-Pei Yang, Le Yu, Li-Chun Deng, Mei Li, Min Xue, Mingze Li, Pei Zhang, Peng Wang,
 591 Qin Zhu, Rui Men, Ruize Gao, Shi-Qiang Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wen-
 592 biao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su,
 593 Yi-Chao Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang,
 594 Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report. *ArXiv*, abs/2505.09388, 2025. URL
 595 <https://api.semanticscholar.org/CorpusID:278602855>.

596

597 Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 598 Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,

594 Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
595 Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
596 Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao
597 Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and
598 Zekun Wang. Qwen2.5 technical report. *ArXiv*, abs/2412.15115, 2024. URL <https://api.semanticscholar.org/CorpusID:274859421>.
599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

A RELATED WORK

649
 650 Given the impressive capabilities that LLMs have demonstrated in code-related tasks, there has been
 651 a recent upsurge of interest in applying LLMs for code optimization (Ouyang et al., 2025; Madaan
 652 et al., 2023), the task of optimizing performance (e.g. running time, memory usage, etc.) of input
 653 code without altering the functional semantics. Prior work can be categorized into two types of
 654 approaches: (i) inference-time and (ii) learning-based. Inference time search methods typically in-
 655 volve multi-turn prompting of LLMs with iterative refinement with generated intermediate solutions
 656 and execution feedback obtained from compilation, and executing the code. For instance, Huang
 657 et al. (2024) adopts a single-path refinement strategy that iteratively generates optimization code,
 658 appends the generation and execution trajectory into the prompt for subsequent optimization, and
 659 Chen et al. (2025) samples multiple candidate kernels per iteration, selecting the best-performing
 660 one for continuation. Other approaches enhance the search process by retrieving similar slow-fast
 661 program pairs from training data (Anupam et al., 2025), and incorporating a planning stage cou-
 662 pled with beam search for strategic exploration (Hong et al., 2025). On the other hand, another line
 663 of work finetunes LLM for code optimization by injecting the notion of performance through RL
 664 reward (Duan et al., 2023; Baronio et al., 2025), adaptively updating the training data with more
 665 performant code Du et al. (2025), and contrastive training of slow-fast code pairs (Li et al., 2025).
 666

667

B DATASET CONSTRUCTION DETAILS FOR PIE

668 We source our evaluation data on PIE from its original test set. While the test set contains 978 pairs
 669 of slow-fast C++ programs, they are originated from a set of only 41 distinct input problems. To
 670 ensure the diversity of our evaluation set, we rank all the slow solutions for each input problem and
 671 select the slowest solution for each problem, followed by the second slowest solution, then the third
 672 slowest solutions until obtaining 100 solutions to form our evluation set.
 673

674

C PROMPTS

675

C.1 GENERATOR PROMPTS

676 **Base (Refinement with Optimization + Execution Feedback from Only the Previous
 677 State)**

678 You write custom CUDA kernels to replace the pytorch operators in the given architecture
 679 to get speedups.
 680

681 You have complete freedom to choose the set of operators you want to replace. You may
 682 make the decision to replace some operators with custom CUDA kernels and leave others
 683 unchanged. You may replace multiple operators with custom implementations, consider op-
 684 erator fusion opportunities (combining multiple operators into a single kernel, for example,
 685 combining matmul+relu), or algorithmic changes (such as online softmax). You are only
 686 limited by your imagination.
 687

688 You are provided with the pytorch architecture to optimize, as long as your previous opti-
 689 mization solution attempt and the execution feedback. Given the trajectory with execution
 690 feedback, you need to refine your optimization to generate a new optimization. Specifically,
 691 if your optimization failed to compile (i.e. 'compiled=False'), try to refine the optimization
 692 so it can compile (you can refer to the 'compilation error' for why the solutions failed). If
 693 your optimization compiled successfully but is incorrect based on input-output test cases
 694 (i.e. 'correctness'=False), try to refine the optimization so it is correct (you can refer to
 695 the 'correctness_issues' for why the solutions are incorrect). If your optimization compiled
 696 successfully and is correct, try to further optimize it to reduce the runtime.
 697

698

C.2 CRITIC MODEL PROMPTS

699

C.3 REWARD MODEL PROMPT

702
703
704
705
706
707
708
709
710
711
712
713
714
715

716 **Best Perf**

717
718 You write custom CUDA kernels to replace the pytorch operators in the given architecture
719 to get speedups.

720 You have complete freedom to choose the set of operators you want to replace. You
721 may make the decision to replace some operators with custom CUDA kernels and leave
722 others unchanged. You may replace multiple operators with custom implementations,
723 consider operator fusion opportunities (combining multiple operators into a single kernel,
724 for example, combining matmul+relu), or algorithmic changes (such as online softmax).
725 You are only limited by your imagination.

726 You are provided with the pytorch architecture to optimize, your best-performing optimiza-
727 tion solution attempt so far and its execution feedback, as well as your trajectory of previous
728 optimization solution attempts and the execution feedback. Given the solutions with
729 execution feedback, you need to refine your optimization to generate a new optimization.
730 Specifically, if your optimization failed to compile (i.e. 'compiled=False'), try to refine
731 the optimization so it can compile (you can refer to the 'compilation error' for why the
732 solutions failed). You can also refer to the best-performing solution for cues of fixing the
733 compilation errors.

734 If your optimization compiled successfully but is incorrect based on input-output test cases
735 (i.e. 'correctness=False'), try to refine the optimization so it is correct (you can refer to
736 the 'correctness_issues' for why the solutions are incorrect). You can also refer to the
737 best-performing solution for cues of fixing the incorrect issues.

738 If your optimization compiled successfully and is correct, try to further optimize it to
739 reduce the runtime with the goal of obtaining shorter run time than the best-performing
740 optimization so far. You can refer to the best-performing solution for inspirations of
741 improving your last optimization.

742 Make sure you're refinement **IMPLEMENT CUDA OPERATORS** by 'from
743 torch.utils.cpp_extension import load_inline', **INSTEAD OF PURE PyTorch**.

744
745
746
747
748
749
750
751
752
753
754
755

756

757

758

759

760

Traj Best Perf

761

762

You write custom CUDA kernels to replace the pytorch operators in the given architecture to get speedups.

763

764

765

766

767

768

You have complete freedom to choose the set of operators you want to replace. You may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. You may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

769

770

771

772

773

774

775

You are provided with the pytorch architecture to optimize, your best-performing optimization solution attempt so far and its execution feedback, as well as your trajectory of previous optimization solution attempts and the execution feedback. Given the solutions with execution feedback, you need to refine your optimization to generate a new optimization.

Specifically, if your optimization failed to compile (i.e. 'compiled=False'), try to refine the optimization so it can compile (you can refer to the 'compilation error' for why the solutions failed). You can also refer to the best-performing solution for cues of fixing the compilation errors.

776

777

778

779

If your optimization compiled successfully but is incorrect based on input-output test cases (i.e. 'correctness'=False), try to refine the optimization so it is correct (you can refer to the 'correctness_issues' for why the solutions are incorrect). You can also refer to the best-performing solution for cues of fixing the incorrect issues.

780

781

782

If your optimization compiled successfully and is correct, try to further optimize it to reduce the runtime with the goal of obtaining shorter run time than the best-performing optimization so far. You can refer to the best-performing solution for inspirations of improving your last optimization.

783

784

Make sure you're refinement **IMPLEMENT CUDA OPERATORS** by 'from torch.utils.cpp_extension import load_inline', INSTEAD OF PURE PyTorch.

785

786

787

788

789

790

791

792

Critique

793

794

You write custom CUDA kernels to replace the pytorch operators in the given architecture to get speedups.

795

796

You have complete freedom to choose the set of operators you want to replace. You may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. You may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

802

803

804

805

You are provided with the pytorch architecture to optimize, as long as your previous optimization solution attempt and the execution feedback, and natural language critique. Given the execution feedback and critique, you need to refine your optimization to generate a new optimization. Use the information and follow the critique to generate your refinement

806

807

808

809

810
811
812
813
814**Critique Best Perf**815
816
817
818
819
820
821
822
823
824
825
826
827
828

You write custom CUDA kernels to replace the pytorch operators in the given architecture to get speedups.

You have complete freedom to choose the set of operators you want to replace. You may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. You may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

You are provided with the pytorch architecture to optimize, your best-performing optimization solution attempt so far and its execution feedback, as well as your last optimization solution attempt and the execution feedback, and natural language critique. Given the execution feedback and critique, you need to refine your optimization to generate a new optimization. Use the information and follow the critique to generate your refinement.

829
830
831
832
833
834
835
836
837
838**Traj**839
840

You write custom CUDA kernels to replace the pytorch operators in the given architecture to get speedups.

You have complete freedom to choose the set of operators you want to replace. You may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. You may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

You are provided with the pytorch architecture to optimize, as long as your trajectory of previous optimization solution attempts and the execution feedback. Given the trajectory with execution feedback, you need to refine your optimization to generate a new optimization. Specifically, if your optimization failed to compile (i.e. 'compiled=False'), try to refine the optimization so it can compile (you can refer to the 'compilation error' for why the solutions failed). If your optimization compiled successfully but is incorrect based on input-output test cases (i.e. 'correctness'=False), try to refine the optimization so it is correct (you can refer to the 'correctness_issues' for why the solutions are incorrect). If your optimization compiled successfully and is correct, try to further optimize it to reduce the runtime. Make sure you're refinement **IMPLEMENT CUDA OPERATORS** by 'from torch.utils.cpp_extension import load_inline', **INSTEAD OF PURE PyTorch**.

859
860
861
862
863

864

865

866

867

Traj Best Perf

868

869

870

871

872

873

874

875

You write custom CUDA kernels to replace the pytorch operators in the given architecture to get speedups.

You have complete freedom to choose the set of operators you want to replace. You may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. You may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

You are provided with the pytorch architecture to optimize, your best-performing optimization solution attempt so far and its execution feedback, as well as your trajectory of previous optimization solution attempts and the execution feedback. Given the solutions with execution feedback, you need to refine your optimization to generate a new optimization.

Specifically, if your optimization failed to compile (i.e. 'compiled=False'), try to refine the optimization so it can compile (you can refer to the 'compilation error' for why the solutions failed). You can also refer to the best-performing solution for cues of fixing the compilation errors.

If your optimization compiled successfully but is incorrect based on input-output test cases (i.e. 'correctness'=False), try to refine the optimization so it is correct (you can refer to the 'correctness_issues' for why the solutions are incorrect). You can also refer to the best-performing solution for cues of fixing the incorrect issues.

If your optimization compiled successfully and is correct, try to further optimize it to reduce the runtime with the goal of obtaining shorter run time than the best-performing optimization so far. You can refer to the best-performing solution for inspirations of improving your last optimization.

Make sure you're refinement **IMPLEMENT CUDA OPERATORS** by 'from `torch.utils.cpp_extension import load_inline`', INSTEAD OF PURE PyTorch.

893

894

895

896

897

898

899

900

Traj Critique

901

You write custom CUDA kernels to replace the pytorch operators in the given architecture to get speedups.

You have complete freedom to choose the set of operators you want to replace. You may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. You may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

You are provided with the pytorch architecture to optimize, as long as your trajectory of previous optimization solution attempts and the execution feedback, and natural language critiques. Given the execution feedback and critiques, you need to refine your optimization to generate a new optimization. Use the information and follow the critique to generate your refinement. Make sure you're refinement **IMPLEMENT CUDA OPERATORS** by 'from `torch.utils.cpp_extension import load_inline`', INSTEAD OF PURE PyTorch.

915

916

917

918
919
920
921
922**Traj Critique Best Perf**

923 You write custom CUDA kernels to replace the pytorch operators in the given architecture
 924 to get speedups.

925 You have complete freedom to choose the set of operators you want to replace. You may
 926 make the decision to replace some operators with custom CUDA kernels and leave others
 927 unchanged. You may replace multiple operators with custom implementations, consider op-
 928 erator fusion opportunities (combining multiple operators into a single kernel, for example,
 929 combining matmul+relu), or algorithmic changes (such as online softmax). You are only
 930 limited by your imagination.

931 You are provided with the pytorch architecture to optimize, your best-performing optimiza-
 932 tion solution attempt so far and its execution feedback, as well as your trajectory of previous
 933 optimization solution attempts and the execution feedback, and natural language critiques.
 934 Given the execution feedback and critiques, you need to refine your optimization to generate
 935 a new optimization.

936 Use the information and follow the critique to generate your refinement. Make sure you're
 937 refinement **IMPLEMENT CUDA OPERATORS** by 'from torch.utils.cpp_extension import
 938 load_inline', INSTEAD OF PURE PyTorch.

939
940
941
942
943
944
945
946**Critique**

948 You write custom CUDA kernels to replace the pytorch operators in the given architecture
 949 to get speedups.

950 You have complete freedom to choose the set of operators you want to replace. You may
 951 make the decision to replace some operators with custom CUDA kernels and leave others
 952 unchanged. You may replace multiple operators with custom implementations, consider op-
 953 erator fusion opportunities (combining multiple operators into a single kernel, for example,
 954 combining matmul+relu), or algorithmic changes (such as online softmax). You are only
 955 limited by your imagination.

956 You are provided with the pytorch architecture to optimize, your previous optimization so-
 957 lution attempt and the execution feedback. Given the trajectory with execution feedback
 958 and critiques, you need to provide critique for the previous solution attempt that can guide
 959 the refinement of the optimization to generate a new optimization that aims to overcome
 960 the pitfalls in the solution. Specifically, if the optimization failed to compile (i.e. 'com-
 961 piled=False'), or compiled successfully but is incorrect based on input-output test cases (i.e.
 962 'correctness'=False), 1) provide diagnosis based on the error messages on why it fails to
 963 compile/is incorrect; 2) based on the diagnosis, further provide actionable suggestions that
 964 can guide the refinement of the solution to compile and be correct. If the optimization can
 965 compile and is correct, based on the running time information, 1) provide diagnosis on what
 966 are the potential bottleneck of running time in the solution; 2) based on the diagnosis, futher
 967 provide actionable suggestions that can guide the refinement of the solution to reduce run-
 968 ning time.

969
970
971

972

973

974

975

Critique Best Perf

976

You write custom CUDA kernels to replace the pytorch operators in the given architecture to get speedups.

977

You have complete freedom to choose the set of operators you want to replace. You may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. You may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

978

You are provided with the pytorch architecture to optimize, your best-performing optimization solution attempt so far and its execution feedback, as well as your last optimization solution attempt and the execution feedback. Given the solutions with execution feedback and critiques, you need to provide critique for the last solution attempt that can guide the refinement of the optimization to generate a new optimization that aims to overcome the pitfalls in the solution.

979

Specifically, if the optimization failed to compile (i.e. 'compiled=False'), or compiled successfully but is incorrect based on input-output test cases (i.e. 'correctness'=False), 1) provide diagnosis based on the error messages on why it fails to compile/is incorrect; 2) based on the diagnosis, further provide actionable suggestions that can guide the refinement of the solution to compile and be correct. You can also refer to the best-performing solution for cues of fixing the compilation errors and/or correctness issues.

980

If the optimization can compile and is correct, based on the running time information, 1) provide diagnosis on what are the potential bottleneck of running time in the solution; 2) based on the diagnosis, futher provide actionable suggestions that can guide the refinement of the solution to reduce running time with the goal of obtaining shorter run time than the best-performing optimization so far. You can refer to the best-performing solution for inspirations of improving your last optimization.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

Traj Critique

1004

1005

1006

You write custom CUDA kernels to replace the pytorch operators in the given architecture to get speedups.

1007

You have complete freedom to choose the set of operators you want to replace. You may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. You may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

1008

You are provided with the pytorch architecture to optimize, as long as your trajectory of previous optimization solution attempts and the execution feedback, and natural language critiques. Given the trajectory with execution feedback and critiques, you need to provide critique for the most recent solution attempt that can guide the refinement of the optimization to generate a new optimization that aims to overcome the pitfalls in the solution trajectory. Specifically, if the optimization failed to compile (i.e. 'compiled=False'), or compiled successfully but is incorrect based on input-output test cases (i.e. 'correctness'=False), 1) provide diagnosis based on the error messages on why it fails to compile/is incorrect; 2) based on the diagnosis, further provide actionable suggestions that can guide the refinement of the solution to compile and be correct. If the optimization can compile and is correct, based on the running time information, 1) provide diagnosis on what are the potential bottleneck of running time in the solution; 2) based on the diagnosis, futher provide actionable suggestions that can guide the refinement of the solution to reduce running time.

1023

1024

1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

Traj Critique Best Perf

1040
1041 You write custom CUDA kernels to replace the pytorch operators in the given architecture
1042 to get speedups.
1043 You have complete freedom to choose the set of operators you want to replace. You
1044 may make the decision to replace some operators with custom CUDA kernels and leave
1045 others unchanged. You may replace multiple operators with custom implementations,
1046 consider operator fusion opportunities (combining multiple operators into a single kernel,
1047 for example, combining matmul+relu), or algorithmic changes (such as online softmax).
1048 You are only limited by your imagination.
1049 You are provided with the pytorch architecture to optimize, your best-performing optimiza-
1050 tion solution attempt so far and its execution feedback, as well as your trajectory of previous
1051 optimization solution attempts and the execution feedback, and natural language critiques.
1052 Given the solutions with execution feedback and critiques, you need to provide critique
1053 for the most recent solution attempt that can guide the refinement of the optimization to
1054 generate a new optimization that aims to overcome the pitfalls in the solution trajectory.
1055 Specifically, if the optimization failed to compile (i.e. 'compiled=False'), or compiled
1056 successfully but is incorrect based on input-output test cases (i.e. 'correctness=False'), 1)
1057 provide diagnosis based on the error messages on why it fails to compile/is incorrect; 2)
1058 based on the diagnosis, further provide actionable suggestions that can guide the refinement
1059 of the solution to compile and be correct. You can also refer to the best-performing solution
1060 for cues of fixing the compilation errors and/or correctness issues.
1061 If the optimization can compile and is correct, based on the running time information, 1)
1062 provide diagnosis on what are the potential bottleneck of running time in the solution; 2)
1063 based on the diagnosis, futher provide actionable suggestions that can guide the refinement
1064 of the solution to reduce running time with the goal of obtaining shorter run time than
1065 the best-performing optimization so far. You can refer to the best-performing solution for
1066 inspirations of improving your last optimization.
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083
1084

1085 **Traj Critique**

1086
1087
1088
1089
1090
1091
1092
1093

You are an expert in writing custom CUDA kernels to replace the PyTorch operators in the given architecture to get speedups.

The task offers complete freedom to choose the set of operators one want to replace. One may make the decision to replace some operators with custom CUDA kernels and leave others unchanged. One may replace multiple operators with custom implementations, consider operator fusion opportunities (combining multiple operators into a single kernel, for example, combining matmul+relu), or algorithmic changes (such as online softmax). You are only limited by your imagination.

The task provides

- 1) The target PyTorch architecture to optimize, with its running time.
- 2) The trajectory of previous optimization refinement attempts. The trajectory contains (multiple) rounds of optimization refinement attempts, the corresponding execution feedback & relative speedup to the target PyTorch implementation, and the natural language critique that diagnoses the potential issues of the refinement with actionable suggestions.
- 3) The most recent optimization refinement attempt, if 2) is provided, then the generation of this attempt is conditioned on all information in 2).

Given the trajectory, you need to predict the EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP of this trajectory if the refinement iteration of solution-execution feedback (-critique) WILL BE CONTINUED FOR A FEW MORE ROUNDS IN THE SAME MANNER (you will be provided with how many remaining future rounds of refinement are allowed).

The optimization (and natural language) critics are all generated by an AI system.

The EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP of a to be continued trajectory is defined with five-way labels:

0: NONE of the solutions in the current trajectory or the EXPECTED solutions in your estimated future rounds of refinement is/will be faster than the original PyTorch implementation. This can be caused by either none of them are correct or the correct ones are all slower than the PyTorch implementation. So the maximum relative speedup is 100(%) since one will just use the original PyTorch implementation.

1: AT LEAST one of the solution in the current trajectory or the EXPECTED solutions in your estimated future rounds of refinement is/will be correct AND yield running time FASTER than the PyTorch architecture, with maximum relative speedup IN THE RANGE OF (100%, 140%].

2: AT LEAST one of the solution in the current trajectory or the EXPECTED solutions in your estimated future rounds of refinement is/will be correct AND yield running time FASTER than the PyTorch architecture, with maximum relative speedup IN THE RANGE OF (140%, 320%].

3: AT LEAST one of the solution in the current trajectory or the EXPECTED solutions in your estimated future rounds of refinement is/will be correct AND yield running time FASTER than the PyTorch architecture, with maximum relative speedup IN THE RANGE OF (320%, 475%].

4: AT LEAST one of the solution in the current trajectory or the EXPECTED solutions in your estimated future rounds of refinement is/will be correct AND yield running time FASTER than the PyTorch architecture, with maximum relative speedup GREATER THAN 475%.

1128
1129
1130
1131
1132
1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148

1149 **Traj Critique (Continue)**

1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172

Based on the given information, you need to estimate:
 1) the difficulty of the target optimization problem.
 2) the AI system's capability of generating optimization solutions that accurately incorporates the feedback (and critiques) to fix bugs/improve performance. For example, if the target trajectory currently fails with compilation error, you need to estimate if the AI SYSTEM is capable to fix it.
 3) The AI system's capability to provide accurate diagnosis of errors/performance bottlenecks and the quality and actionability of provided refinement suggestions. For example, if the critiques and expected future critiques is/will be able to identify correct issues and provide actionable suggestions.
 4) Base on 1) 2), and 3), the MOST LIKELY outcome of the EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP the current attempt (+ target trajectory) can lead to, if the refinement will be continued by THE SAME AI SYSTEM for a given number of rounds. BE CAUSIOUS in your estimation, which need to faithfully reflect the difficulties and capabilities of the AI SYSTEM, WITHOUT OVERESTIMATIONS OR UNDERESTIMATIONS. Remember the optimization is and will be performed by THE AI SYSTEM, NOT YOU. So use your expertise only to predict the capabilities of the AI system, and the EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP based on the AI's capabilities. And DO NOT take into consideration your own expertise in the remaining trajectory (i.e. do not think that you are going to further refine it, it is the system's job). Finally, based on your estimations, provide the EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP prediction as a numerical label of 0/1/2/3/4. DO NOT output your estimations, just output the final predicted EXPECTED OVERALL MAXIMUM RELATIVE SPEEDUP score as a single number and NOTING ELSE.

1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187