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Abstract

Accurately modeling idiomatic or non-001
compositional language has been a longstand-002
ing challenge in Natural Language Processing003
(NLP). This is partly because these expressions004
do not derive their meanings solely from their005
constituent words, but also due to the scarcity006
of relevant data resources, and their impact007
on the performance of downstream tasks such008
as machine translation and simplification. In009
this paper we propose an approach to model010
idiomaticity effectively using a triplet loss that011
incorporates the asymmetric contribution of012
components words to an idiomatic meaning for013
training language models by using adaptive014
contrastive learning and resampling miners to015
build an idiomatic-aware learning objective.016
Our proposed method is evaluated on a017
SemEval challenge and outperforms previous018
alternatives significantly in many metrics. Our019
code is available at anonymous1.020

1 Introduction021

Among multiword expressions (MWEs), idiomatic022

expressions (IEs) are difficult to model as their023

meaning is often not straightforwardly related to024

the meaning of the component words (Sag et al.,025

2002). These expressions, which are also com-026

monly referred to as non-compositional expres-027

sions, often take on figurative meanings. For exam-028

ple, eager beaver has a figurative meaning of an029

enthusiastic person who works very hard different030

from the literal meanings of its component words031

like impatient rodent (Sag et al., 2002; Villavicen-032

cio and Idiart, 2019). They are a common occur-033

rence across various genres (Haagsma et al., 2020).034

Accurately understanding idiomatic expressions035

has posed a significant challenge, as word and036

phrase representations may favor inherently compo-037

sitional usages at the levels of both words and sub-038

words to minimize their vocabulary (Gow-Smith039

1The code will be available after acceptance.

et al., 2022). Indeed recent models are mainly 040

driven by compositionality, which is at the core 041

of tokenization (Sennrich et al., 2016) and self- 042

attention mechanism (Vaswani et al., 2017). Pre- 043

trained language models including static and con- 044

textualised embeddings do not seem to be well- 045

equipped to capture the meanings of IEs, as IEs 046

with similar meanings are not close in the embed- 047

ding space (Garcia et al., 2021b). This reveals 048

a need for models that can accurately capture id- 049

iomatic language. Ensuring precise representation 050

of IEs is crucial for their precise handling in various 051

downstream applications, such as sentiment anal- 052

ysis (Liu et al., 2017; Biddle et al., 2020), dialog 053

models (Jhamtani et al., 2021) and text simplifica- 054

tion (He et al., 2023). 055

To address this issue, previous methods often 056

rely on new datasets with human annotations or 057

on data augmentation (Liu et al., 2023; Dankers 058

and Lucas, 2023). However, the use of alternative 059

training processes has also been effective, includ- 060

ing regression objective functions with a siamese 061

network (Tayyar Madabushi et al., 2021) or sub- 062

stitute objectives (Liu et al., 2022) to break the 063

compositionality of idiomatic phrases, as finding 064

an objective to stand for idiomatic representation 065

is difficult. 066

Our work focuses on the development of 067

idiomatic-aware language models, which are de- 068

signed to better represent MWEs of various de- 069

grees of idiomaticity in natural language text. To 070

achieve this, we adopt the definition of idiomatic- 071

aware models from SemEval 2022 task 2 (Tay- 072

yar Madabushi et al., 2022) that when using the 073

model, the semantic similarity between an IE and 074

its incorrect paraphrase equals the semantic similar- 075

ity between a correct and an incorrect paraphrase. 076

Our approach involves fine-tuning a pre-trained 077

model using a bespoke triplet loss function that 078

is specifically designed for capturing the asymme- 079

try between the surface forms of the component 080
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Figure 1: Triplet Resampling by using a specifically
designed miner. For a triplet, it can generate 2 samples
by treating the sentence containing IEs (IEs) and a cor-
rect (Cor) paraphrase sentence as positive and anchor
(and vice-versa) interchangeably and the Incorrect (InC)
sentence as a negative sample.

words and their semantic contribution to the mean-081

ing of the expression. To build this idiomatic-aware082

language model, we use in-batch positive-anchor-083

negative triplets (Balntas et al., 2016). Our model084

is trained on extracted triplets, where sentences085

with the idiomatic expressions and their synonyms086

correspond to positive and anchor respectively, and087

vice-versa, Figure 1. The aim of this training is to088

enable the model to learn the difference between089

the literal meanings of the component words of an090

MWE when used in isolation and their idiomatic091

meanings as part of the MWE. We use the "learn-092

to-compare" paradigm of contrastive learning (CL),093

which has been successfully adopted for obtaining094

better text embeddings (Ni et al., 2022b,a; Wang095

et al., 2022) including for polysemous words (Liu096

et al., 2019a). This framework fits well with our097

objective of distinguishing between the figurative098

and literal meanings of MWEs.099

To evaluate the approach, a set of models with100

varying sizes and pre-training strategies is trained101

using this novel training method that we proposed.102

The best models achieved new state-of-the-art re-103

sults in the dataset containing expressions of vary-104

ing levels of idiomaticity, and our best model105

demonstrated a substantial improvements in both106

idiom-only performance and overall performance107

compared to the previous best results. Our contri-108

butions are:109

An efficient approach for creating language mod-110

els that can represent MWEs of varying lev-111

els of idiomaticity. This is achieved through112

a specialized training process using a triplet113

loss function and in-batch positive-anchor-114

negative triplets.115

An idiomatic-aware loss function tailored to di- 116

rectly optimize the representation of idiomatic 117

language and the potentially asymmetric and 118

non-compositional contributions of the com- 119

ponent words. This function plays a crucial 120

role in training to discern the nuanced differ- 121

ences between idiomatic and literal meanings 122

of MWEs. 123

New state-of-the-art performance models that 124

enable the understanding of idiomatic lan- 125

guage. This advancement represents a major 126

leap forward opening up new possibilities for 127

more nuanced and accurate language under- 128

standing. 129

The paper starts with an overview of previous 130

work on idiomaticity representation in Section 2. It 131

also introduces contrastive learning in NLP and IE 132

evaluation methods. Section 3 presents our method 133

using a triplet loss and data mining to do efficient 134

training. Section 4 describes our experiments, and 135

Section 5 analyzes the results. 136

2 Related Work 137

Idiomaticity representation can be challenging even 138

for large language models (King and Cook, 2018; 139

Nandakumar et al., 2019; Cordeiro et al., 2019a; 140

Hashempour and Villavicencio, 2020; Garcia et al., 141

2021b; Klubička et al., 2023). For instance, GPT- 142

3 (Brown et al., 2020) reaches only 50.7% ac- 143

curacy in idiom comprehension (Zeng and Bhat, 144

2022a). This may be possibly due to idiomatic ex- 145

pressions being non-compositional and having figu- 146

rative meanings that go beyond its individual words 147

(Baldwin and Kim, 2010). Methods that have been 148

used for representing idiomaticity include com- 149

bining compositional components with adaptive 150

weights (Hashimoto and Tsuruoka, 2016; Li et al., 151

2018a), representing MWEs with single tokens 152

(Yin and Schütze, 2015; Li et al., 2018b; Cordeiro 153

et al., 2019b; Phelps, 2022) and creating phrase 154

embeddings that effectively capture both composi- 155

tional and idiomatic expressions (Hashimoto and 156

Tsuruoka, 2016). The latter involves an adaptive 157

learning process that adjusts to the nature of the 158

phrases to generate accurate representation. An 159

adapter-based approach is proposed that augment- 160

ing the BART model with an "idiomatic adapter" 161

trained on dedicated idiom datasets (Zeng and Bhat, 162

2022b). This adapter acts as a lightweight ex- 163

pert, enhancing BART’s ability to capture figu- 164

rative meanings alongside literal interpretations. 165
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PIER (Zeng and Bhat, 2023), a language model166

based on BART, specifically addresses the chal-167

lenge of representing non-compositional expres-168

sions, such as idioms, in natural language. Tradi-169

tional compositionality-based models often strug-170

gle with these expressions, as their meaning cannot171

be simply derived from the sum of their parts. PIER172

overcomes this by incorporating an "idiomatic173

adapter" which learns to represent figurative mean-174

ings alongside literal ones.175

Contrastive Learning Contrastive learning is a176

method in machine learning that trains a model to177

distinguish between similar and dissimilar pairs of178

data. In recent times, significant progress has been179

made in sentence embeddings through contrastive180

learning (Gao et al., 2021; Giorgi et al., 2021a;181

Kim et al., 2021; Wu et al., 2022; Zhang et al.,182

2022; Xu et al., 2023). It also has been widely183

applied in other NLP research fields, such as text184

classification (Fang et al., 2020), machine transla-185

tion (Pan et al., 2021), information extraction (Qin186

et al., 2021), question answering (Karpukhin et al.,187

2020) and text retrieval (Xiong et al., 2020). De-188

spite their shared goal of acquiring high-quality text189

representations (Reimers and Gurevych, 2019; Gao190

et al., 2021; Neelakantan et al., 2022; Giorgi et al.,191

2021b), the exploration of idiomatic representation192

and related research through contrastive learning193

is still yet to be fully explored. Contrastive learn-194

ing with triplet loss involves training the model195

on triplets: an anchor sample, a positive sample196

(similar to the anchor), and a negative sample (dis-197

similar to the anchor). The goal is to minimize198

the distance between anchors and positive samples199

while maximizing the distance between anchors200

and negative samples. This approach has recently201

been applied to tasks such as idiom usage recogni-202

tion and metaphor detection (Zhou et al., 2023).203

Idiomaticity Representation Evaluation As-204

sessing idiomatic representation in language mod-205

els has included both extrinsic and intrinsic eval-206

uations. Extrinsic methods evaluate how well the207

model’s idiomaticity representation impacts down-208

stream tasks, such as machine translation (Dankers209

et al., 2022), sentence generation (Zhou et al., 2021)210

or conversational systems (Adewumi et al., 2022).211

Intrinsic methods evaluate the model’s understand-212

ing of idiomaticity itself, using approaches like213

probing to investigate and understand the linguistic214

information encoded in the representation (Garcia215

et al., 2021a). Datasets like AStitchInLanguage-216

Models (Tayyar Madabushi et al., 2021) and Noun 217

Compound Type and Token Idiomaticity (NCTTI) 218

dataset (Garcia et al., 2021a) offer labelled exam- 219

ples for intrinsically testing how much the simi- 220

larities perceived by a model are compatible with 221

human judgements about similarity. More broadly, 222

SemEval-2022 task 2B (Tayyar Madabushi et al., 223

2022), evaluates idiomaticity representation in mul- 224

tilingual text while also requiring models to predict 225

the semantic text similarity (STS) scores between 226

sentence pairs, regardless of whether or not either 227

sentence contains an idiomatic expression. The 228

main objective of this task is to address the short- 229

comings of existing state-of-the-art models, which 230

often struggle to handle idiomaticity. We use this 231

dataset to evaluate our methods. 232

3 Idiomaticity-aware Objective 233

Our strategy for improving IE representation in 234

language models utilizes a contrastive triplet loss 235

adapted to prioritize idiomaticity and employs a 236

miner to generate positive-anchor-negative triplets 237

for training the model. 238

3.1 Triplet Loss 239

Triplet loss is a powerful tool for training language 240

models to learn representations of data that are 241

useful for a variety of NLP tasks (Neculoiu et al., 242

2016). It has also been widely used in training mod- 243

els for tasks such as image retrieval, and face recog- 244

nition (Schroff et al., 2015; Khosla et al., 2020). 245

Triplet loss is a distance-based loss function de- 246

fined as 247

La,p,n = max(d(ai, pi)− d(ai, ni) +m, 0),
(1)

248

where the triplets (ai, pi, ni), i = 1 · · ·N , corre- 249

spond to anchor, positive and negative exam- 250

ples, where ai and pi are semantically identical and 251

ni is semantically dissimilar from them. d(x, y) 252

is a distance measure and in our method we use 253

cosine similarity (denoted here by sim) 254

d(x, y) = sim(x, y). (2) 255

Finally, the margin m controls the minimum dis- 256

tance between anchor-positive pairs and anchor- 257

negative pairs. 258

Selecting the right margin is crucial for our 259

method. If it is too small, the task becomes too easy, 260

lacking meaningful distinctions. Conversely, if it 261

is too large, it can slow down convergence or yield 262
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suboptimal solutions (Schroff et al., 2015). The263

margin is a hyperparameter and its tuning requires264

experimentation based on the specific dataset and265

application.266

In this paper we use a miner to build triplets for267

learning idiomaticity more efficiently.268

3.2 Modelling IEs with Adaptive Contrastive269

Tripet Loss270

This section explains how to improve the language271

model’s ability to understand IEs in text without272

STS scores by adapting triplet loss to the IE-aware273

training strategy. We will describe the process step-274

by-step and discuss its benefits.275

3.2.1 Task Definition276

One widely used approach for measuring idiomatic-277

ity is by calculating the distance between a dedi-278

cated representation for the MWE as a single to-279

ken and a compositional representation of its com-280

ponents using operations like sum or multiplica-281

tion (Mitchell and Lapata, 2008; Cordeiro et al.,282

2019b). A good idiomatic expression representa-283

tion, as framed by Madabushi et al. (2022), should284

have the following property:285

sim(SMWE , S→c) = 1

sim(SMWE , S→i) = sim(S→c, S→i)
(3)286

where SMWE denotes a sentence containing the287

idiomatic expression and S→c and S→i represent288

sentences with the idiomatic expression replaced by289

its correct and incorrect paraphrases, respectively.290

Ensuring these properties hold for all MWEs dur-291

ing training using standard loss functions can be292

challenging.293

Previous studies need annotated similarity scores294

of pairs as labels for building the training set (Tay-295

yar Madabushi et al., 2021; Phelps, 2022). Their296

objective functions are as follows:297

sim(SMWE , S→c) = 1

sim(SMWE , S→i) = score1

sim(S→c, S→i) = score2

(4)298

where score1 and score2 are STS scores used to299

measure the similarity between two pieces of text,300

with scores typically ranging from 0 (no similarity)301

to 1 (identical meaning). In previous methods, lan-302

guage models were trained to predict STS scores303

between text containing IEs and those without IEs,304

in order to improve their ability to understand IEs.305

In our method, we will utilize a triplet loss in 306

combination with a miner to extract triplets without 307

STS scores, approximating the definition in equa- 308

tions (3). It is worth noting that without using STS 309

scores, training data can be acquired more easily. 310

3.3 Mining to Extract Triplets 311

To extract triplets for our idiomatic-aware training 312

we use a semantic meaning miner. We use batch 313

negatives approach that leverages the other samples 314

present in the same mini-batch for serving as nega- 315

tive instances. However, not all negatives in a batch 316

are useful for our training. Thus, we introduce a 317

special preprocessing step in our method. 318

Relabel Training Data For a triplet to be valid, 319

it must meet certain requirements. We first catego- 320

rize sentences into different groups. Each group 321

contains a sentence with the IE (s), its correct (c) 322

and incorrect (i) paraphrases, such as examples in 323

Table 1. New labels will be assigned in each group 324

based on IEs and their paraphrases. Firstly, s and c 325

must have the same label, which means they repre- 326

sent the same meaning. Secondly, each i must have 327

different labels and differ from the label of s and c, 328

which means they represent different meanings. 329

It also needs labels in different groups to be dis- 330

tinct to others. For example in Table 1, as sentences 331

with index 4 and 5 are a pair of s and c, they are 332

assigned with the same label en3. Other sentences 333

in group 2 are assigned different labels because 334

they are incorrect paraphrases. The labels in group 335

2 are distinct from labels in group 1. 336

In this way, a triplet can be acquired easily since 337

anchor, positive are sentences with the same la- 338

bels, and a negative is a sentence with different 339

labels. 340

Selected Multi-negatives with a Miner Nega- 341

tive instances refer to sentences whose labels differ 342

from the anchor and positive in a batch. In the case 343

of Multi Negative Ranking Loss (Sun et al., 2020) 344

with triplet formation, there are multiple negatives 345

[n1, n2, ...nk] for each anchor-positive pair, and the 346

objective is to ensure that the anchor is closer to the 347

positive than to any of the negatives by a margin. 348

Lmulti-negative(a, p, [n1, . . . , nk])

=
k∑

i=1

max(d(a, p)− d(a, ni) +m, 0)
(5) 349

We take the SemEval 2022 task 2B training set as 350

our source to build our training data. After rela- 351
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Group Index Label Instance

1
1 en1 So Aaron faced the same brutal racism other Black players of the era experienced , especially

as the slugger approached Ruth ’ s IDhomerunID record .
2 en1 So Aaron faced the same brutal racism other Black players of the era experienced , especially

as the slugger approached Ruth ’ s baseball run record .
3 en2 So Aaron faced the same brutal racism other Black players of the era experienced , especially

as the slugger approached Ruth ’ s house run record .

2

4 en3 Robinhood is supposed to be the revolutionary trading app that made it possible for the
IDsmallfryID to get together and crush the big boys.

5 en3 Robinhood is supposed to be the revolutionary trading app that made it possible for the
insignificant to get together and crush the big boys.

6 en4 Robinhood is supposed to be the revolutionary trading app that made it possible for the
little fry to get together and crush the big boys.

7 en5 Robinhood is supposed to be the revolutionary trading app that made it possible for the
little kid to get together and crush the big boys.

Table 1: Examples of training data. Sentences that have the same meaning are given the same labels. We treat IE
expressions as a single token and preprocess it as shown. For example, the IE home run is replaced as IDhomerunID.

beling, the training dataset will be a list of sen-352

tences with their corresponding label. We do not353

shuffle the training data to maintain its order, as354

sentences that belong to a triplet are adjacent in355

the training set. The batch size is set to 64, which356

is a balance between easy training and ensuring a357

sufficient number of sentences to build triplets.358

However, not all negatives contribute equally to359

our learning. Some triplets may already satisfy the360

constraint (easy triplets), such as triplets with neg-361

atives that are sentences from other groups. They362

provide little to no information of IEs understand-363

ing for the model to learn from.364

In our methods, a semantic similarity miner cal-365

culates Euclidean distance between all possible366

pairs of embeddings in a batch and selects accord-367

ing to its similarity margin. The miner similar-368

ity margin is the difference between the anchor-369

positive distance and the anchor-negative distance.370

It is also a hyperparameter in our method. The371

miner select the triplets that violate the miner sim-372

ilarity margin to make the model learn nuanced373

differences between figurative and literal meanings374

of IEs. For instance, a triplet of sentences could375

include an idiomatic expression as the anchor, its376

paraphrases as the positive, and a sentence with a377

literal meaning as the negative.378

Table 1 illustrates the newly build training data.379

In this case, SMWE and S→c can act as anchor380

and positive to each other, and S→i can only be381

treated as the negative in a triplet. It is worth noting382

that SMWE and S→c are interchangeable to form383

pairs (ai, pi), which can build more triplets for our384

training. For example, in Table 1, with the miner, it385

will only take sentences in the same group because386

the semantic meanings of different groups are not387

similar. In this way, sentences in Group 1 can build 388

2 triplets with index 1 and 2 being the anchor and 389

positive interchangeably. Sentences in Group 2 can 390

build 4 triplets. 391

3.4 Objective Transformation 392

In our approach, both SMWE and S→c can serve 393

as anchors. However, since we assign different 394

labels to various incorrect paraphrases, no positive 395

sentence in a group can be associated with any 396

S→i as the anchor. As a result, there are only two 397

possible scenarios in our approach. 398

If SMWE is the anchor, 399

sim(SMWE , S→c)− sim(SMWE , S→i) ≤ ma

(6) 400

if S→c is the anchor, 401

sim(S→c, SMWE)− sim(S→c, S→i) ≤ mb (7) 402

The margin m is a predefined fixing value. If we 403

set ma = mb, then combining Eq. (6) and Eq. (7), 404

the objective function can be transformed to: 405

sim(SMWE , S→c)− sim(SMWE , S→i) ≈
sim(S→c, SMWE)− sim(S→c, S→i)

(8) 406

The similarity measure is symmetric, therefore 407

sim(SMWE , S→c) = sim(S→c, SMWE). In this 408

way, our objective function equivalent to: 409

sim(SMWE , S→i) ≈ sim(S→c, S→i) (9) 410

Equation (9) approximates the definition of the 411

good idiomatic aware model in Equation (3). In this 412

way, by using our specific triplet loss, we can train 413

a model to be idiomatically aware more directly 414

without STS scores. 415
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4 Experiment416

This section presents the comprehensive methodol-417

ogy employed to our model training. We begin by418

detailing the experiment implementation, including419

the hyperparameter setting, models used, evalua-420

tion method, and the overall setup.421

4.1 Implementation Details422

The method is implemented by using the Trans-423

formers (Wolf et al., 2020) and PyTorch Met-424

ric Learning (Musgrave et al., 2020) libraries.425

Some of the pre-trained models are fetched from426

Sentence-transformer library2 and HuggingFace427

Model repositories3.428

We calculate sentence similarity using the co-429

sine similarity of the mean pooling of the last two430

hidden layers. Empirically, we set the similarity431

margin for the miner to 0.4, and the training loss432

margin to 0.3. Given the limited availability of id-433

iomatic text data, relying solely on the training sig-434

nal from our contrastive objective is insufficient for435

learning general semantic representations. There-436

fore, we initialize our model with other pre-trained437

semantic-aware models (Reimers and Gurevych,438

2019). Our best model takes a pretrained multilin-439

gual model ‘paraphrase-multilingual-mpnet-base-440

v24’ to fit for the task. It is pre-trained with millions441

of paraphrases, so it can represent sentence seman-442

tic meanings well (Reimers and Gurevych, 2019).443

4.2 Evaluation444

We perform intrinsic evaluation using the SemEval-445

2022 task 2 Subtask B5 (Sem2B). We use446

Spearman’s rank correlation (ρ) between model-447

generated scores and human judgment scores to see448

how well models understand idioms in sentences.449

Instead of comparing exact scores, this method450

focuses on the order of sentence pairs based on451

predicted similarity compared to human judgments.452

A higher correlation means the model is better at453

understanding relationships, including those involv-454

ing idioms, even if the exact predicted scores them-455

selves aren’t always perfect matches.456

4.3 Comparative Analysis457

We compare our method with well-performed Se-458

mantic Textual Similarity models and recent large459

2https://www.sbert.net/docs/pretrained_models.html
3https://huggingface.co/models
4https://huggingface.co/sentence-

transformers/paraphrase-multilingual-mpnet-base-v2
5https://codalab.lisn.upsaclay.fr/competitions/8121

Method
Subset

All
Idiom Only STS Only

YNU-HPCC 0.428 0.664 0.665
drsphelps 0.412 0.819 0.650
baseline 0.399 0.596 0.595

GTE large 0.236 0.806 0.465
E5 large 0.252 0.807 0.514
LLama2 0.171 0.486 0.399

Our method 0.548 0.716 0.690

Table 2: Test results of Task 2 on Spearman’s rank cor-
relation coefficient between the two sets of STS scores.
baseline is the task’s baseline results.

language models (LLMs). Some training-based 460

methods are from SemEval-2022 task 2 Fine Tune 461

solutions (Madabushi et al., 2022). Here are brief 462

descriptions: 463

YNU-HPCC (Liu et al., 2022) is the previous best 464

method, which uses contrastive learning ap- 465

proaches in sentence representation. It treats 466

negatives in a batch equally. 467

drsphelps (Phelps, 2022) introduces a method for 468

improving idiom representation in language 469

models by incorporating idiom-specific em- 470

beddings using BERTRAM into a BERT sen- 471

tence transformer. 472

GTE large6 is a powerful text embedding model 473

trained with multi-stage contrastive learning, 474

delivers impressive performance across NLP 475

and code tasks despite its modest size (Li et al., 476

2023). 477

E5 large7 uses weakly-supervised contrastive pre- 478

training for text embeddings that achieves ex- 479

cellent for general-purpose text representation 480

(Wang et al., 2022). 481

LLama2 (Touvron et al., 2023) achieved excel- 482

lent performance in a series of NLP tasks. We 483

select the largest LLama2 with the best perfor- 484

mance LLama2-70B for comparison. 485

5 Results and Analysis 486

In this section, we report results and analyze them 487

in different settings. 488

5.1 Overall Results 489

Table 2 demonstrates that our method outperforms 490

all other models both overall and in the Idiom Only 491
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Language
Subset

All
Idiom Only STS Only

EN 0.560 0.759 0.757
PT 0.570 0.657 0.707
GL 0.515 - 0.515
3L 0.548 0.716 0.690

Table 3: Our test results of Task 2 on Spearman’s rank
correlation coefficient in English (EN), Portuguese (PT),
and Galician (GL) separately. 3L is the combination of
3 languages.

subset. The "STS only" score refers to the per-492

formance of systems on Semantic Text Similarity493

data that does not necessarily contain idioms. In494

contrast, the "Idiom only" score pertains to the495

performance on idiom STS data. "All" represents496

the overall performance of a model across the en-497

tire dataset. In the Idiom Only subset, our method498

achieves a score of 0.548, which is higher than the499

score of the next best model, YNU-HPCC (0.428).500

In the overall performance, it achieves a score of501

0.690, exceeding the score of the next best model,502

YNU-HPCC (0.665). In the STS subset, drsphelps503

achieves the highest score of 0.819. These results504

suggest that our method is a powerful and effec-505

tive idiom-aware text embedding model that can be506

used for a variety of NLP tasks.507

GTE large and E5 large both show a similar508

pattern of lower performance in the Idiom task509

(0.236 and 0.252, respectively) but strong results510

in the STS task (0.806 and 0.807, respectively).511

Their overall scores (0.465 and 0.514, respectively)512

suggest that while they are proficient in semantic513

textual similarity, their capacity to handle idiomatic514

expressions is not as developed. LLama2 has the515

lowest scores across all three categories, with a516

particularly low score for Idiom (0.171). It reveals517

a surprising lack of ability to represent idiomatic518

expressions for such recent general large language519

model.520

5.2 Performance on Different Languages521

The results in Table 3 show that our best model per-522

formed well on Sem2B and in all three languages.523

The best results were achieved, with overall ρ val-524

ues of 0.757 for English, 0.707 for Portuguese, and525

0.515 for Galician. The best overall results on526

Sem2B were achieved for English, and the best Id-527

iom Only score was achieved for Portuguese. There528

is no STS-only score for Galician in the test set.529

The models performed best on English, followed530

Model
Subset

All
Idiom Only STS Only

Original
roberta-base 0.184 0.626 0.492

x-r-large 0.138 0.284 0.444
p-v2 0.225 0.838 0.532

After Training
roberta-base 0.454 0.622 0.613

x-r-large 0.484 0.465 0.639
p-v2 0.548 0.716 0.690

Table 4: Test results across three models roberta-
base, xlm-roberta-large (x-r-large) and paraphrase-
multilingual-mpnet-base-v2 (p-v2) before and after
training.

by Portuguese and Galician. This is due to the fact 531

that there is more training data available for English 532

than for Portuguese or Galician. The results also 533

show that the models were able to generalize well, 534

even when the amount of training data was lim- 535

ited. For example, the models achieved ρ values of 536

0.707 and 0.515 for Portuguese and Galician, even 537

though the training data for these two languages 538

was smaller than the training data for English. 539

5.3 Impact of Our Training 540

Table 4 presents comparative performance re- 541

sults of three language models, roberta-base (Liu 542

et al., 2019b), xlm-roberta-large (Conneau et al., 543

2020) (x-r-large) and paraphrase-multilingual- 544

mpnet-base-v2 (p-v2), across three different sub- 545

sets of data: Idiom Only, STS Only, and All. The 546

first two models are widely used language models 547

with general and multilingual properties, respec- 548

tively. The third model is the base model we used 549

in our best model. The results are split into two 550

categories: ‘Original’, which indicates the perfor- 551

mance before additional training, and ‘After Train- 552

ing’, showing the performance post-training. 553

For the Idiom Only subset, the original scores 554

were 0.184 for roberta-base, 0.138 for x-r-large, 555

and 0.225 for p-v2. After training, these scores 556

improved significantly to 0.454 for roberta-base, 557

0.484 for x-r-large and 0.548 for p-v2. When 558

looking at the overall performance, the x-r-large 559

model’s performance originally was 0.444 and in- 560

creased to 0.639 after training. Similarly, the p-v2 561

model’s performance was initially 0.532 and rose 562

to 0.690 after training. In the STS Only subset, 563

there have been declines at p-v2 from 0.838 to 564

0.716. It is because our training only focuses on 565
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Epoch
Subset

All
Idiom Only STS Only

0 0.225 0.838 0.532
8 0.499 0.785 0.670
10 0.531 0.740 0.682
15 0.539 0.740 0.688
25 0.548 0.716 0.690

Table 5: Test Results with different training epochs by
using same p-v2 model.

improving idiom representation, and it may slightly566

sacrifice the performance of specific fully-trained567

models.568

The results in Table 5 showcase that as the num-569

ber of epochs increases, the overall performance570

as well as the performance on the "Idiom Only"571

subset generally improves. This suggests that the572

model is learning and improving its IE understand-573

ing ability during our training. The performance on574

the "Idiom Only" subset starts very low at epoch 0,575

with an accuracy of 0.225, which is expected since576

the model has not learned much IE representation577

yet. There is a significant improvement between578

epoch 0 and epoch 8, with the score nearly dou-579

bling to 0.499. The improvement in performance580

starts to plateau after epoch 10, with only minor581

increases observed at epochs 15 and 25. The "STS582

Only" subset starts with a high performance even583

at epoch 0, with an accuracy of 0.838. This is be-584

cause the model has already been pre-trained with585

STS tasks. Unlike the "Idiom Only" subset, the per-586

formance on the "STS Only" subset decreases as587

the number of epochs increases, dropping to 0.716588

by epoch 25. This could indicate that the model589

is becoming more specialized in the idiom task at590

the expense of the STS task. In summary, while591

the model is improving in its ability to understand592

idioms with more training, this comes at the cost593

of its performance on STS tasks. This trade-off can594

be addressed by adjusting the training process.595

In summary, our models were able to generalize596

well to different settings, even when the amount of597

training data was limited. This suggests that the598

models are learning to capture the underlying prop-599

erties of idiomatic expressions, rather than simply600

memorizing a list of idiomatic expressions.601

6 Discussion602

The proposed model for training requires the iden-603

tification of idiomatic expressions (IEs) in each604

sentence beforehand. This step is crucial for reduc- 605

ing the difficulty of the training process. Without 606

identifying the IEs beforehand, the model may not 607

perform optimally, and its accuracy may be com- 608

promised. Therefore, it is essential to ensure that 609

the text has IEs identified to achieve the best re- 610

sults. 611

7 Conclusion 612

Idiom representations have always been a challenge 613

due to the non-compositional nature of idiomatic 614

expressions. The performance of downstream tasks, 615

such as translation and simplification, is dependent 616

on the quality of the representations. This paper 617

proposes a new method to train language models 618

using adaptive contrastive learning with triplets and 619

resampling miners. In this way, our method can 620

build a better optimization objective, which makes 621

the training very efficient. 622

The proposed method, evaluated on the id- 623

iomatic semantic text similarity tasks, significantly 624

outperforms previous methods. With limited id- 625

iomatic text data, the sole training signal of the 626

contrastive objective is not sufficient to learn gen- 627

eral semantic representations. Therefore, the model 628

is initialized with other pre-trained semantic-aware 629

models. A series of base models in different sizes 630

and pre-training strategies are trained in the pro- 631

posed training loss. The best models achieve new 632

state-of-the-art results with a significant improve- 633

ment in overall over the previous best in the evalu- 634

ation task. 635

8 Future Work 636

In the future, we plan to use the idiomatic-aware 637

model in other NLP tasks that require sensitivity 638

to idiomatic expressions, such as machine transla- 639

tion. Additionally, we aim to improve the model’s 640

training by adding more supervision, which will 641

help it focus on contextual information. This will 642

allow the model to better understand multiword 643

expressions based on different contexts. 644

9 Limitations 645

In order to train our model, we require triplets that 646

consist of three distinct parts: a sentence that con- 647

tains IEs, a correct paraphrase of those IEs, and an 648

incorrect paraphrase of those IEs. The quality of 649

triplets is crucial to the development of our model 650

and requires intensive human expert involvement 651

to ensure accuracy. 652
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Filip Klubička, Vasudevan Nedumpozhimana, and John812
Kelleher. 2023. Idioms, probing and dangerous813
things: Towards structural probing for idiomaticity in814
vector space. In Proceedings of the 19th Workshop on815
Multiword Expressions (MWE 2023), pages 45–57,816
Dubrovnik, Croatia. Association for Computational817
Linguistics.818

Bing Li, Xiaochun Yang, Bin Wang, Wei Wang, Wei819
Cui, and Xianchao Zhang. 2018a. An adaptive hier-820
archical compositional model for phrase embedding.821
In IJCAI, pages 4144–4151.822

Minglei Li, Qin Lu, Dan Xiong, and Yunfei Long. 823
2018b. Phrase embedding learning based on external 824
and internal context with compositionality constraint. 825
Knowledge-Based Systems, 152:107–116. 826

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, 827
Pengjun Xie, and Meishan Zhang. 2023. Towards 828
general text embeddings with multi-stage contrastive 829
learning. arXiv preprint arXiv:2308.03281. 830

Emmy Liu, Aditi Chaudhary, and Graham Neubig. 2023. 831
Crossing the threshold: Idiomatic machine transla- 832
tion through retrieval augmentation and loss weight- 833
ing. In Proceedings of the 2023 Conference on Em- 834
pirical Methods in Natural Language Processing, 835
pages 15095–15111. 836

Kuanghong Liu, Jin Wang, and Xuejie Zhang. 2022. 837
YNU-HPCC at SemEval-2022 task 2: Represent- 838
ing multilingual idiomaticity based on contrastive 839
learning. In Proceedings of the 16th International 840
Workshop on Semantic Evaluation (SemEval-2022), 841
pages 211–216, Seattle, United States. Association 842
for Computational Linguistics. 843

Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, 844
Jingren Zhou, and Xia Hu. 2019a. Is a single vector 845
enough? exploring node polysemy for network em- 846
bedding. In Proceedings of the 25th ACM SIGKDD 847
International Conference on Knowledge Discovery 848
& Data Mining, pages 932–940. 849

Pengfei Liu, Kaiyu Qian, Xipeng Qiu, and Xuanjing 850
Huang. 2017. Idiom-aware compositional distributed 851
semantics. In Proceedings of the 2017 Conference on 852
Empirical Methods in Natural Language Processing, 853
pages 1204–1213, Copenhagen, Denmark. Associa- 854
tion for Computational Linguistics. 855

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 856
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 857
Luke Zettlemoyer, and Veselin Stoyanov. 2019b. 858
Roberta: A robustly optimized bert pretraining ap- 859
proach. arXiv preprint arXiv:1907.11692. 860

Harish Tayyar Madabushi, Edward Gow-Smith, Marcos 861
García, Carolina Scarton, Marco Idiart, and Aline 862
Villavicencio. 2022. Semeval-2022 task 2: Multilin- 863
gual idiomaticity detection and sentence embedding. 864
In Proceedings of the 16th International Workshop 865
on Semantic Evaluation (SemEval-2022), pages 107– 866
121. 867

Jeff Mitchell and Mirella Lapata. 2008. Vector-based 868
models of semantic composition. In Proceedings 869
of ACL-08: HLT, pages 236–244, Columbus, Ohio. 870
Association for Computational Linguistics. 871

Kevin Musgrave, Serge J. Belongie, and Ser-Nam 872
Lim. 2020. Pytorch metric learning. ArXiv, 873
abs/2008.09164. 874

Navnita Nandakumar, Timothy Baldwin, and Bahar 875
Salehi. 2019. How well do embedding models cap- 876
ture non-compositionality? a view from multiword 877
expressions. In Proceedings of the 3rd Workshop on 878

10

https://doi.org/10.18653/v1/P16-1020
https://doi.org/10.18653/v1/P16-1020
https://doi.org/10.18653/v1/P16-1020
https://doi.org/10.18653/v1/2021.emnlp-main.592
https://doi.org/10.18653/v1/2021.emnlp-main.592
https://doi.org/10.18653/v1/2021.emnlp-main.592
https://doi.org/10.18653/v1/2021.emnlp-main.592
https://doi.org/10.18653/v1/2021.emnlp-main.592
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/P18-2055
https://doi.org/10.18653/v1/P18-2055
https://doi.org/10.18653/v1/P18-2055
https://doi.org/10.18653/v1/P18-2055
https://doi.org/10.18653/v1/P18-2055
https://doi.org/10.18653/v1/P18-2055
https://doi.org/10.18653/v1/P18-2055
https://doi.org/10.18653/v1/2023.mwe-1.8
https://doi.org/10.18653/v1/2023.mwe-1.8
https://doi.org/10.18653/v1/2023.mwe-1.8
https://doi.org/10.18653/v1/2023.mwe-1.8
https://doi.org/10.18653/v1/2023.mwe-1.8
https://doi.org/10.18653/v1/2022.semeval-1.26
https://doi.org/10.18653/v1/2022.semeval-1.26
https://doi.org/10.18653/v1/2022.semeval-1.26
https://doi.org/10.18653/v1/2022.semeval-1.26
https://doi.org/10.18653/v1/2022.semeval-1.26
https://doi.org/10.18653/v1/D17-1124
https://doi.org/10.18653/v1/D17-1124
https://doi.org/10.18653/v1/D17-1124
https://aclanthology.org/P08-1028
https://aclanthology.org/P08-1028
https://aclanthology.org/P08-1028
https://doi.org/10.18653/v1/W19-2004
https://doi.org/10.18653/v1/W19-2004
https://doi.org/10.18653/v1/W19-2004
https://doi.org/10.18653/v1/W19-2004
https://doi.org/10.18653/v1/W19-2004


Evaluating Vector Space Representations for NLP,879
pages 27–34, Minneapolis, USA. Association for880
Computational Linguistics.881

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru.882
2016. Learning text similarity with Siamese recur-883
rent networks. In Proceedings of the 1st Workshop884
on Representation Learning for NLP, pages 148–157,885
Berlin, Germany. Association for Computational Lin-886
guistics.887

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-888
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,889
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.890
2022. Text and code embeddings by contrastive pre-891
training. arXiv preprint arXiv:2201.10005.892

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-893
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang.894
2022a. Sentence-t5: Scalable sentence encoders895
from pre-trained text-to-text models. In Findings of896
the Association for Computational Linguistics: ACL897
2022, pages 1864–1874, Dublin, Ireland. Association898
for Computational Linguistics.899

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Her-900
nandez Abrego, Ji Ma, Vincent Zhao, Yi Luan, Keith901
Hall, Ming-Wei Chang, and Yinfei Yang. 2022b.902
Large dual encoders are generalizable retrievers. In903
Proceedings of the 2022 Conference on Empirical904
Methods in Natural Language Processing, pages905
9844–9855, Abu Dhabi, United Arab Emirates. As-906
sociation for Computational Linguistics.907

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021.908
Contrastive learning for many-to-many multilingual909
neural machine translation. In Proceedings of the910
59th Annual Meeting of the Association for Compu-911
tational Linguistics and the 11th International Joint912
Conference on Natural Language Processing (Vol-913
ume 1: Long Papers), pages 244–258, Online. Asso-914
ciation for Computational Linguistics.915

Dylan Phelps. 2022. drsphelps at semeval-2022 task916
2: Learning idiom representations using bertram. In917
Proceedings of the 16th International Workshop on918
Semantic Evaluation (SemEval-2022), pages 158–919
164.920

Yujia Qin, Yankai Lin, Ryuichi Takanobu, Zhiyuan Liu,921
Peng Li, Heng Ji, Minlie Huang, Maosong Sun, and922
Jie Zhou. 2021. ERICA: Improving entity and rela-923
tion understanding for pre-trained language models924
via contrastive learning. In Proceedings of the 59th925
Annual Meeting of the Association for Computational926
Linguistics and the 11th International Joint Confer-927
ence on Natural Language Processing (Volume 1:928
Long Papers), pages 3350–3363, Online. Association929
for Computational Linguistics.930

Nils Reimers and Iryna Gurevych. 2019. Sentence-931
BERT: Sentence embeddings using Siamese BERT-932
networks. In Proceedings of the 2019 Conference on933
Empirical Methods in Natural Language Processing934
and the 9th International Joint Conference on Natu-935
ral Language Processing (EMNLP-IJCNLP), pages936

3982–3992, Hong Kong, China. Association for Com- 937
putational Linguistics. 938

Ivan A Sag, Timothy Baldwin, Francis Bond, Ann 939
Copestake, and Dan Flickinger. 2002. Multiword 940
expressions: A pain in the neck for nlp. In Compu- 941
tational Linguistics and Intelligent Text Processing: 942
Third International Conference, CICLing 2002 Mex- 943
ico City, Mexico, February 17–23, 2002 Proceedings 944
3, pages 1–15. Springer. 945

Florian Schroff, Dmitry Kalenichenko, and James 946
Philbin. 2015. Facenet: A unified embedding for 947
face recognition and clustering. In Proceedings of 948
the IEEE conference on computer vision and pattern 949
recognition, pages 815–823. 950

Rico Sennrich, Barry Haddow, and Alexandra Birch. 951
2016. Neural machine translation of rare words with 952
subword units. In Proceedings of the 54th Annual 953
Meeting of the Association for Computational Lin- 954
guistics (Volume 1: Long Papers), pages 1715–1725, 955
Berlin, Germany. Association for Computational Lin- 956
guistics. 957

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, 958
Liang Zheng, Zhongdao Wang, and Yichen Wei. 959
2020. Circle loss: A unified perspective of pair simi- 960
larity optimization. In Proceedings of the IEEE/CVF 961
conference on computer vision and pattern recogni- 962
tion, pages 6398–6407. 963

Harish Tayyar Madabushi, Edward Gow-Smith, Marcos 964
Garcia, Carolina Scarton, Marco Idiart, and Aline 965
Villavicencio. 2022. SemEval-2022 task 2: Multilin- 966
gual idiomaticity detection and sentence embedding. 967
In Proceedings of the 16th International Workshop 968
on Semantic Evaluation (SemEval-2022), pages 107– 969
121, Seattle, United States. Association for Computa- 970
tional Linguistics. 971

Harish Tayyar Madabushi, Edward Gow-Smith, Car- 972
olina Scarton, and Aline Villavicencio. 2021. 973
AStitchInLanguageModels: Dataset and methods for 974
the exploration of idiomaticity in pre-trained lan- 975
guage models. In Findings of the Association for 976
Computational Linguistics: EMNLP 2021, pages 977
3464–3477, Punta Cana, Dominican Republic. Asso- 978
ciation for Computational Linguistics. 979

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 980
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 981
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 982
Bhosale, et al. 2023. Llama 2: Open founda- 983
tion and fine-tuned chat models. arXiv preprint 984
arXiv:2307.09288. 985

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 986
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 987
Kaiser, and Illia Polosukhin. 2017. Attention is all 988
you need. Advances in neural information processing 989
systems, 30. 990

Aline Villavicencio and Marco Idiart. 2019. Discover- 991
ing multiword expressions. Natural Language Engi- 992
neering, 25(6):715–733. 993

11

https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/W16-1617
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.emnlp-main.669
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.21
https://doi.org/10.18653/v1/2021.acl-long.260
https://doi.org/10.18653/v1/2021.acl-long.260
https://doi.org/10.18653/v1/2021.acl-long.260
https://doi.org/10.18653/v1/2021.acl-long.260
https://doi.org/10.18653/v1/2021.acl-long.260
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2022.semeval-1.13
https://doi.org/10.18653/v1/2022.semeval-1.13
https://doi.org/10.18653/v1/2022.semeval-1.13
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294
https://doi.org/10.18653/v1/2021.findings-emnlp.294


Liang Wang, Nan Yang, Xiaolong Huang, Binxing994
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,995
and Furu Wei. 2022. Text embeddings by weakly-996
supervised contrastive pre-training. arXiv preprint997
arXiv:2212.03533.998

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien999
Chaumond, Clement Delangue, Anthony Moi, Pier-1000
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,1001
et al. 2020. Transformers: State-of-the-art natural1002
language processing. In Proceedings of the 2020 con-1003
ference on empirical methods in natural language1004
processing: system demonstrations, pages 38–45.1005

Qiyu Wu, Chongyang Tao, Tao Shen, Can Xu, Xiubo1006
Geng, and Daxin Jiang. 2022. PCL: Peer-contrastive1007
learning with diverse augmentations for unsupervised1008
sentence embeddings. In Proceedings of the 20221009
Conference on Empirical Methods in Natural Lan-1010
guage Processing, pages 12052–12066, Abu Dhabi,1011
United Arab Emirates. Association for Computa-1012
tional Linguistics.1013

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,1014
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold1015
Overwijk. 2020. Approximate nearest neighbor neg-1016
ative contrastive learning for dense text retrieval.1017
arXiv preprint arXiv:2007.00808.1018

Jiahao Xu, Wei Shao, Lihui Chen, and Lemao Liu. 2023.1019
SimCSE++: Improving contrastive learning for sen-1020
tence embeddings from two perspectives. In Proceed-1021
ings of the 2023 Conference on Empirical Methods in1022
Natural Language Processing, pages 12028–12040,1023
Singapore. Association for Computational Linguis-1024
tics.1025

Wenpeng Yin and Hinrich Schütze. 2015. Discrimina-1026
tive phrase embedding for paraphrase identification.1027
In Proceedings of the 2015 Conference of the North1028
American Chapter of the Association for Computa-1029
tional Linguistics: Human Language Technologies,1030
pages 1368–1373, Denver, Colorado. Association for1031
Computational Linguistics.1032

Ziheng Zeng and Suma Bhat. 2022a. Getting bart to1033
ride the idiomatic train: Learning to represent id-1034
iomatic expressions. Transactions of the Association1035
for Computational Linguistics, 10:1120–1137.1036

Ziheng Zeng and Suma Bhat. 2022b. Getting BART1037
to ride the idiomatic train: Learning to represent id-1038
iomatic expressions. Transactions of the Association1039
for Computational Linguistics, 10:1120–1137.1040

Ziheng Zeng and Suma Bhat. 2023. Unified represen-1041
tation for non-compositional and compositional ex-1042
pressions. In Findings of the Association for Com-1043
putational Linguistics: EMNLP 2023, pages 11696–1044
11710, Singapore. Association for Computational1045
Linguistics.1046

Yanzhao Zhang, Richong Zhang, Samuel Mensah,1047
Xudong Liu, and Yongyi Mao. 2022. Unsupervised1048
sentence representation via contrastive learning with1049

mixing negatives. In Proceedings of the AAAI Con- 1050
ference on Artificial Intelligence, volume 36, pages 1051
11730–11738. 1052

Jianing Zhou, Hongyu Gong, and Suma Bhat. 2021. 1053
PIE: A parallel idiomatic expression corpus for id- 1054
iomatic sentence generation and paraphrasing. In 1055
Proceedings of the 17th Workshop on Multiword Ex- 1056
pressions (MWE 2021), pages 33–48, Online. Asso- 1057
ciation for Computational Linguistics. 1058

Jianing Zhou, Ziheng Zeng, and Suma Bhat. 2023. 1059
CLCL: Non-compositional expression detection with 1060
contrastive learning and curriculum learning. In Pro- 1061
ceedings of the 61st Annual Meeting of the Associa- 1062
tion for Computational Linguistics (Volume 1: Long 1063
Papers), pages 730–743, Toronto, Canada. Associa- 1064
tion for Computational Linguistics. 1065

12

https://doi.org/10.18653/v1/2022.emnlp-main.826
https://doi.org/10.18653/v1/2022.emnlp-main.826
https://doi.org/10.18653/v1/2022.emnlp-main.826
https://doi.org/10.18653/v1/2022.emnlp-main.826
https://doi.org/10.18653/v1/2022.emnlp-main.826
https://doi.org/10.18653/v1/2023.emnlp-main.737
https://doi.org/10.18653/v1/2023.emnlp-main.737
https://doi.org/10.18653/v1/2023.emnlp-main.737
https://doi.org/10.3115/v1/N15-1154
https://doi.org/10.3115/v1/N15-1154
https://doi.org/10.3115/v1/N15-1154
https://doi.org/10.1162/tacl_a_00510
https://doi.org/10.1162/tacl_a_00510
https://doi.org/10.1162/tacl_a_00510
https://doi.org/10.1162/tacl_a_00510
https://doi.org/10.1162/tacl_a_00510
https://doi.org/10.18653/v1/2023.findings-emnlp.783
https://doi.org/10.18653/v1/2023.findings-emnlp.783
https://doi.org/10.18653/v1/2023.findings-emnlp.783
https://doi.org/10.18653/v1/2023.findings-emnlp.783
https://doi.org/10.18653/v1/2023.findings-emnlp.783
https://doi.org/10.18653/v1/2021.mwe-1.5
https://doi.org/10.18653/v1/2021.mwe-1.5
https://doi.org/10.18653/v1/2021.mwe-1.5
https://doi.org/10.18653/v1/2023.acl-long.43
https://doi.org/10.18653/v1/2023.acl-long.43
https://doi.org/10.18653/v1/2023.acl-long.43

	Introduction 
	Related Work
	Idiomaticity-aware Objective
	Triplet Loss
	Modelling IEs with Adaptive Contrastive Tripet Loss
	Task Definition

	Mining to Extract Triplets
	Objective Transformation

	Experiment
	Implementation Details
	Evaluation
	Comparative Analysis

	Results and Analysis
	Overall Results
	Performance on Different Languages
	Impact of Our Training

	Discussion
	Conclusion
	Future Work
	Limitations

