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1 Introduction

In the last few decades, the most prevalent model of numerical cognition supposed
that an evolutionarily ancient, simple representation is the basis of human numer-
ical understanding. The model accounted for many phenomena described in the
numerical cognition literature. Here, we present an alternative account, that proposes
that, while nonsymbolic numerosities may be processed by this evolutionarily old
system, the processing of symbolic numbers is supported by an architecture that
is entirely different from the classic proposal and which alternative representation
is more similar to mental conceptual networks or to the mental lexicon. With the
example of distance and size effects in number comparison tasks we present several
recently described phenomena supporting this alternative account.

Discussing these topics, the first section of this chapter summarizes the main
features of the classic account and some of the relevant phenomena on which the
model is based. Then, the second section introduces our alternative account for the
same phenomena. Finally, the third section presents recently discovered phenomena
that demonstrate why symbolic distance and size effects cannot be accounted for by
the classic model, and how our alternative model can explain these effects.
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2 The Approximate Number System Account

In 1967,Moyer andLandauer published a relatively simple experiment inNature that,
despite its simplicity, profoundly changed how cognitive scientists thought about
mathematical abilities. Before Moyer and Landauer’s work, it was supposed that
mathematics is a complicated subject for most people and that, from a cognitive
perspective, numerical cognition is a high-level, human-specific, culture-dependent
capability, which relies on complex mental processes. The work of Moyer and
Landauer (1967) changed this view radically; they proposed that even symbolic
number tasks may rely on a mechanism as simple as the perceptual representations
described in psychophysics. In their experiment, it was found that, when partici-
pants compare single-digit numbers (e.g., “which one is larger, 5 or 8?”), the their
performance depended on the ratio of the two numbers, with a behavioral pattern
resembling the performance that the well-known Weber’s law would generate. This
meant that understanding even symbolic mathematics, which had been believed to
be a high-level and culture-dependent cognitive process, may be supported by a very
simple, evolutionarily old representation, which was later named the Approximate
Number System (ANS).

In line with this discovery, many later studies demonstrated that the functioning
of the ANS can be observed in young children or even infants (e.g., Izard, Sann,
Spelke, & Streri, 2009), as well as in non-human animals (e.g., Hauser, 2000). Many
further works proposed that the ANS played pivotal roles in many phenomena,
such as the interference of numerical and spatial information (Dehaene, Bossini,
& Giraux, 1993), approximate mathematical operations (Dehaene, Spelke, Pinel,
Stanescu, & Tsivkin, 1999), understanding the cardinality principle (Piazza, 2010),
developmental dyscalculia (Piazza et al., 2010), and math achievements (Halberda,
Mazzocco, & Feigenson, 2008).

From the viewpoint of the present review, an important feature of the ANS is
that while it is—as its name suggests—imprecise, it may also be the root of precise
symbolic number processing, as demonstrated for example, in the original work of
Moyer and Landauer (1967). Importantly, while the model assumes that the same
kind of mechanisms support both imprecise nonsymbolic (such as arrays of dots,
series of sounds, and baskets of marbles) processing and precise symbolic (such
as Indo-Arabic digits, number words, and Roman numbers) processing, this does
not necessarily mean that there is a single ANS behind such numerical tasks. It is
possible that there is a noisier mechanism processing imprecise nonsymbolic stimuli,
in addition to a less noisy mechanism processing precise symbolic stimuli (Dehaene,
1997, 2007; and see a model that is considered to be a possible implementation in
Verguts & Fias, 2004).

With a simple implementation of the ANS, one may imagine that numbers are
stored on a continuum,where the representation of the numbers are noisy (see Fig. 1).
The noisy signal can be described as a Gaussian distribution, where the mean of that
distribution is the to-be-represented value, and the dispersion of the distribution is
proportional to the value (i.e., the larger the number, the noisier its representation is).
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Fig. 1 Possible implementation of the ANS model, displaying the representation of number 2 and
number 4 with different Weber fractions (i.e., different sensitivity; see the two panels)

This simple implementation can account for the ratio effect, which is observed in,
for example, the number comparison task: The difficulty of the task depends on the
overlap of the two numbers’ noisy representation (see the more mathematical details
of this explanation for example in Dehaene, 2007).

In this simple implementation of the ANS, the dispersion of the Gaussian distribu-
tion depends not only on the value to be represented (technically, this is the mean of
the distribution) but also on another parameter—the sensitivity of the system—which
is expressed as theWeber fraction of the representation (Dehaene, 2007) (see the left
and right panels of Fig. 1 for representations with different Weber fractions). Techni-
cally, the standard deviation of the distribution is the product of the to-be-represented
value (i.e., the mean of the distribution) and the Weber fraction. The Weber frac-
tion can be responsible either for the individual differences of the system, which
differences may partially explain, for example later math achievements (Halberda
et al., 2008), or for the different sensitivity of the ANS for processing symbolic and
nonsymbolic stimuli.

In the last few decades, the ANS has become the most frequently investigated
representation that supports number processing and has become dominant in many
aspects of numerical cognition, such as bases of adult numerical understanding, infant
cognition, education, impairments of numerical abilities, and even animal cognition
(Dehaene, 1992, 2007; Halberda et al., 2008; Piazza, 2010).

3 An Alternative Account: Discrete Semantic System

While the ANS model is an elegant and parsimonious solution that offers expla-
nations for a series of phenomena, in the present section, we outline an alternative
explanation. We hypothesize that, while the ANS may have a role in processing
nonsymbolic numerosities, parallel symbolic numerical phenomena are handled by
an entirely different architecture (Krajcsi, Lengyel, & Kojouharova, 2016).

Before we outline this alternative account, a technical detail should first be clari-
fied. While the psychophysical model formulates the performance of a comparison
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Fig. 2 Left panel. The ANS model predicted performance for all combinations of numbers in a
single-digit comparison task. Values are measured on an arbitrary scale. More difficult number pairs
are denoted by darker shades. Right panel. Distance and size effect regressors for measuring those
effects in number comparison tasks

task as the ratio effect, technically, many numerical cognition studies have measured
the distance effect (better behavioral performance with a larger distance between the
two numbers) or, occasionally, the size effect (better behavioral performance with
smaller numbers). Importantly, the distance and size effects are considered to be
alternative approximate measurements of the ratio effect. To understand more accu-
rately how the distance and size effects may reflect the underlying ratio effect, the
behavioral pattern shown in the left panel of Fig. 2 must be considered. The figure
displays the performance of a comparison task predicted by the ANS model, where
the rows and columns denote the two numbers to be compared, and the values and
corresponding shadings of the cells display the difficulty of the task (darker cells
denoting worse performance). The figure shows a diagonal necktie-shaped pattern,
which reflects the ratio effect, which effect is based on the psychophysical model. In
this context, many studies measure the distance and size effects based on the regres-
sors displayed in the right panel of Fig. 2, where data cells with the same regressor
values are collapsed and where performance change is measured as a function of
distance or size. In the ANS model, the distance and size effects are no more than
two additional ways to measure the ratio effect; no matter which one is measured,
they reflect the same phenomena. The relation of the distance and size effects with
the ratio effect is important in not only the ANS model but also our alternative
explanation.

Turning to a possible alternative explanation of the relevant symbolic numerical
effects, it is important to highlight that, whenever the distance effect can be observed
in a numerical task, the literature assumes that it is a sign of the ANS. In other
words, it is supposed that it is only the ANS that could generate a distance effect in
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a numerical task. However, this may not always be true. For example, a semantic
distance-based effect was also observed in a linguistic task: In a picture-naming task,
the size of the priming effect of the previous picture was proportional to the semantic
distance between the priming and target pictures (Vigliocco, Vinson, Damian, &
Levelt, 2002). This semantic distance effect is conceptually and technically very
similar to the numerical distance effect, because the numerical distance effect is,
in fact, a gradual effect, where the effect size depends on the semantic distance
between the stimuli (i.e., on the numerical distance). Importantly, in the linguistic
task, it is most likely not a single (or several) continuous dimension that generates
the performance pattern, like in the case of the ANS, but rather it may be a network of
nodes (words, concepts, etc.) with specific connections. Overall, in contrast with the
presumption of the current view in the numerical cognition literature, a continuous
representation, such as the ANS, is not the only representation that can be the source
of a numerical distance effect, where some other architectures can also produce the
effect, for example a network of nodes.

Based on the idea of this potential alternative generator, our research group
proposed a comprehensive alternative account for symbolic number processing,
which tries to account for all the phenomena that the ANS accounts for (Krajcsi
et al., 2016). We once more point out that this alternative explanation deals only with
symbolic numbers and not with nonsymbolic numerosities. We discuss below more
details of the representation in this alternative framework that supports nonsymbolic
numerosities.

In the Discrete Semantic System (DSS) model, symbolic numbers are represented
by nodes and their connections (see the lower part of Fig. 3). (Note that the word
‘semantic’ in the name of the model refers to the fact that the model is similar to
other conceptual or linguisticmodels accounting for semantic representations; it does
not necessarily mean that this is the system that holds the meaning of the numbers:
The effects that the model accounts for may be simply rooted in simple statistical
properties of the numerical stimuli. See examples of the stimulus statistics-based
phenomena below.) Single digits, number words, and special multi-digit numbers
could be nodes in the network. Connectionsmay depend on the semantic or statistical

Fig. 3 Schematic example
of the Discrete Semantic
System. Width of the lines
between the nodes reflect the
strength of the connections.
Width of the node outlines
reflect the frequency of those
symbols
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(in the sense of environmental occurrence) properties of the nodes. For example,
connection strength may depend on semantic relations (e.g., numbers with a smaller
distance are connected more strongly, or even numbers have stronger connections
with each other), while some of the semantic relations may also be based on non-
mathematical properties (e.g., lucky numbers). Some other relations may depend on
statistical correlations of the stimuli (e.g., if two numbers are observed together more
frequently compared to other number pairs, their relationmay become stronger). This
statistical property can be related to semantic properties (e.g., numbers close to each
other are more likely to be mentioned frequently together, such as in a counting
list), but it may also be independent of semantic properties (e.g., numbers learned
by roulette or darts players based on the locations of different values on the roulette
wheel or on the dartboard). The network does not necessarily include only numbers; it
may also include other related concepts, such as “small”, “large”, “even”, and “odd”
(see the upper part of Fig. 3). (In a different conceptualization, one may imagine that
the whole network is only a part of the conceptual system or the mental lexicon.)
This architecture is simply the architecture of various conceptual networks or mental
lexicon models, which are applied to symbolic numbers.

We propose that this simple architecture can account for all the phenomena in
symbolic numbers that the ANS is supposed to account for. Because the ratio effect
is the most frequently referenced defining feature of the ANS, we first discuss how
the apparent ratio effect can be accounted for in the DSS model. In this model,
comparison distance and size effects are two independent effects with two indepen-
dent sources, and they form an illusionary ratio effect, which, in fact, has nothing
to do with the psychophysical ratio effect. First, in the DSS model, the size effect is
a frequency effect. In everyday life, smaller numbers are more frequent than larger
numbers (Dehaene & Mehler, 1992). Both in linguistic models and in many other
areas, stimulus frequency heavily influences the processing speed; for example, word
frequency is one of the strongest predictors of word reading time. Similarly, it is
possible that smaller numbers are easier to process than larger numbers, because they
are more common, which produces the size effect. Second, the distance effect may
be related to the value or relative order of the numbers. According to one possibility,
smaller digits are more strongly associated with the “small” node than larger digits,
and larger digits are more strongly associated with the “large” node than smaller
digits (see Fig. 3). In this configuration, when two numbers are compared, numbers
with a larger distance are easier to compare, because they have more differing associ-
ations with the “large” and “small” nodes than number pairs with a smaller distance.
Alternatively, one may imagine that numbers with a smaller numerical distance have
a stronger connection than numbers with a larger distance (e.g., 3 has a stronger
connection with 4 than with 7; see also Fig. 3). In this explanation, the distance
effect could be the result of the spreading activation between the nodes: Numbers
with a stronger connection (and with a smaller distance) between them may cause
more interference, which produces the distance effect. No matter which explanation
could be the appropriate one, the important point is that the DSS architecture can
offer a mechanism to account for the distance effect.
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Distance effect
Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 2

1 1 2 3 4 5 6 7 8
2 1 1 2 3 4 5 6 7
3 2 1 1 2 3 4 5 6
4 3 2 1 1 2 3 4 5
5 4 3 2 1 1 2 3 4
6 5 4 3 2 1 1 2 3
7 6 5 4 3 2 1 1 2
8 7 6 5 4 3 2 1 1
9 8 7 6 5 4 3 2 1

+

Size effect
Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 2

1 1.5 1.3 1.3 1.2 1.2 1.1 1.1 1.1
2 1.5 0.8 0.8 0.7 0.7 0.6 0.6 0.6
3 1.3 0.8 0.6 0.5 0.5 0.5 0.5 0.4
4 1.3 0.8 0.6 0.5 0.4 0.4 0.4 0.4
5 1.2 0.7 0.5 0.5 0.4 0.3 0.3 0.3
6 1.2 0.7 0.5 0.4 0.4 0.3 0.3 0.3
7 1.1 0.6 0.5 0.4 0.3 0.3 0.3 0.3
8 1.1 0.6 0.5 0.4 0.3 0.3 0.3 0.2
9 1.1 0.6 0.4 0.4 0.3 0.3 0.3 0.2

=

Possible DSS prediction
Number 1

1 2 3 4 5 6 7 8 9

N
um

be
r 2

1 1.9 2.1 2.5 2.8 3.2 3.5 3.9 4.3
2 1.9 1.2 1.6 1.9 2.3 2.6 3.0 3.4
3 2.1 1.2 1.0 1.3 1.7 2.1 2.5 2.8
4 2.5 1.6 1.0 0.9 1.2 1.6 2.0 2.4
5 2.8 1.9 1.3 0.9 0.8 1.1 1.5 1.9
6 3.2 2.3 1.7 1.2 0.8 0.7 1.1 1.5
7 3.5 2.6 2.1 1.6 1.1 0.7 0.7 1.1
8 3.9 3.0 2.5 2.0 1.5 1.1 0.7 0.6
9 4.3 3.4 2.8 2.4 1.9 1.5 1.1 0.6

Fig. 4 Predicted symbolic comparison task distance effect performance (left) and size effect perfor-
mance (middle) and their sum (right) in the DSS model. Values are measured on an arbitrary scale.
See more technical details of the quantitative description in Krajcsi et al. (2016)

A final step to account for the apparent ratio effect in symbolic number compar-
isons is to combine the size and distance effects in the DSS model. Adding the two
effects together results in a very similar pattern to the one seen in the ANSmodel (see
the distance and size effect components and their sum in Fig. 4, and contrast this with
the DSS description of the effect with the ANS description displayed in the left panel
of Fig. 2). (See more details in Krajcsi et al., 2016 about how hypothetical quantita-
tive descriptions of the DSS could be formed.) The similarity of the DSS prediction
and the ANS prediction can be captured in several ways. For example, the correlation
of the cells in the two models in one-digit comparison tasks is high: The exact value
depends on the exact formulation of the model predictions, and it is r = 0.89 in the
versions shown in Figs. 2 and 4. Another way to demonstrate the similarities of the
two models is to contrast them as predictors of empirical behavioral performance in
comparison task. In such a study, we found that it is practically impossible to find
which model predicts behavioral data better, because the difference of the models is
smaller than typical noise in the measured data (Krajcsi et al., 2016, Experiment 1).

While, in the present review, we focus on the essential comparison distance and
size effects, the DSS model can explain several other phenomena that have been
attributed to the ANS model. For example, the interference of numerical and spatial
information was originally explained by the ANS model, where the spatial property
of the ANS interferes with spatial representation (Dehaene et al., 1993), but it can
also emerge in the DSS model, where “small”–“large” nodes are connected to the
“left”– “right” nodes, respectively (see the upper part of Fig. 3) (Krajcsi, Lengyel, &
Laczkó, 2018). (Note that this latter explanation is in line with other linguistic based
accounts of the numerical interference effects, but those models were not intended
to account for a broader range of numerical effects.) See additional examples of how
the DSS can account for symbolic numerical effects in Krajcsi et al. (2016).

As it was mentioned above, in this framework, we hypothesize that nonsymbolic
stimuli are still processed by the ANS (see Fig. 5 in the next section). The difference
between the classic ANS account and the alternative DSS account can be emphasized
by highlighting that, while the classic view believes that both symbolic and nonsym-
bolic stimuli are processed by the ANS (which we term the pure ANS account),
our alternative explanation supposes that it is only the nonsymbolic stimuli that are
processed by the ANS and that symbolic stimuli are handled by the DSS (which we
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Fig. 5 Summary of the pure ANS and the hybrid ANS-DSS accounts for comparison tasks

term the hybrid ANS–DSS account). Note that the pure ANS account supposes that,
while both symbolic and nonsymbolic numerical information is processed by the
ANS, the account does not propose a single ANS, but two instantiations of the ANS,
and the two instantiations have different Weber fractions (see Fig. 5).

In summary, we propose an alternative account for symbolic number processing
phenomena, which were formerly attributed to the ANS. We suggest that a simple
architecture comprising a network of nodes can account for those phenomena both
qualitatively and quantitatively, as demonstrated in the example of the comparison
numerical distance and size effects. Overall, the DSS model offers as an appropriate
prediction for the numerical effects as the ANS model.

4 Contrasting the Two Accounts with New Phenomena

The previous section explained that the DSSmodel can account for symbolic number
processing as appropriately as can the ANSmodel. More generally, we found that the
two models produce the same predictions for almost all of the known phenomena.
While this explanatory equality of the models means that the DSS model is a viable
option, it also introduces a new challenge: It is not possible to evaluate the twomodels
and determine which serves as a better account of those phenomena.

To overcome this issue, we designed several new tests to contrast the two models.
These studies were designed to reveal phenomena for which the two models have
different predictions. In this section, we focus on recent results that contrast the
predictions of the two models in a comparison task measuring the distance and size
effects. Testing the comparison distance and size effects is essential, because, in the
ANS model, the ratio effect reflects the defining feature of the ANS (i.e., the func-
tioning according toWeber’s law).Most additional pieces of evidence that seemingly
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support the ANS model are either other examples of the ratio effect or direct conse-
quences of Weber’s law-based functioning. To summarize the main results of our
tests in advance, all of them are so far only in line with the DSS model, and they
reveal new details of the comparison task that cannot be reconciled with the ANS
model.

Figure 5 summarizes the two accounts to be contrasted and their main assump-
tions about the comparison distance and size effects in symbolic and nonsymbolic
comparison tasks. While the pure ANS account supposes that both symbolic and
nonsymbolic comparisons are handled by the ANS (although with different Weber
fractions), the hybrid ANS–DSS account supposes that nonsymbolic comparison is
handled by the ANS, and that symbolic comparisons are processed by the DSS. In
addition, the ANS model presumes that the distance and size effects are no more
than two different ways to measure the ratio effect, while the DSS model proposes
that the size effect depends on the frequency of the symbols and that the distance
effect depends on the associations of the symbols.

In a series of empirical works (see a summary of the findings in Table 1), first, it
was demonstrated that, in a symbolic comparison task, the size effect is a frequency
effect (Kojouharova & Krajcsi, 2019; Krajcsi et al., 2016) (see the first row of Table
1). In these two studies, the frequency of the stimuli was manipulated, and the size

Table 1 Properties of the distance and size effects in symbolic and nonsymbolic comparison tasks.
Flexibility of the nonsymbolic effects has not yet been tested, as noted by the question mark. See
Fig. 5 for the predictions of the pure ANS and the hybrid ANS-DSS accounts

Symbolic Nonsymbolic

Distance effect Size effect Distance effect Size
effect

Source of the effect Large-small
association of the
numbers
(Kojouharova &
Krajcsi, 2018;
Krajcsi &
Kojouharova, 2017)

Frequency of the
symbols
(Kojouharova &
Krajcsi, 2019;
Krajcsi et al.,
2016)

Psychophysical model: Ratio
effect according to Weber’s
law (Krajcsi, Lengyel, &
Kojouharova, 2018)

Independence
(Kojouharova &
Krajcsi, 2018, 2019;
Krajcsi &
Kojouharova, 2017;
Krajcsi et al., 2016)

Dissociation of the effects No dissociation of the effects
is observed

Correlation of the
slopes (Krajcsi,
2017)

Independent Strongly correlate

Flexibility for the
statistics of the
stimuli

Highly flexible
(Kojouharova &
Krajcsi, 2018)

Moderately
flexible
(Kojouharova &
Krajcsi, 2019)

Rigid?
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A

Symbol 
learning

different       same    

Comparison

left larger right larger

B
Value-based distance is 4

1 2 3 4 5 6 7 8 9

Association-based distance is 1

C
Example symbols
Meaning of the symbols 1 2 3 7 8 9
% of being associated to “smaller” 100% 80% 60% 40% 20% 0%
% of being associated to “larger” 0% 20% 40% 60% 80% 100%

Fig. 6 A Two tasks of the new symbol comparison paradigm. After seeing a list of new symbols
and their meaning in Indo–Arabic numbers, participants practiced understanding the symbols in
the symbol learning task and then compared numbers in the new symbol notation. B Numbers
between 1 and 3 and 7 and 9 (i.e., a gap between 3 and 7) were used in the comparison task. If the
distance effect is based on the values of the numbers, then the gap should be four-units long. If the
distance effect is based on the symbol frequency (see Panel C), then the gap should be one-unit
long. C When numbers with a gap are presented with equal frequencies in a comparison task, the
proportion of being a number “smaller” and “larger” is shown. The proportions are continuously
increasing/decreasing across the gap

effect changed accordingly. In the first study, the participants learned new symbols
and, after learning their meaning, they performed comparison tasks (see the summary
of the paradigm in Fig. 6A). It was supposed that, if the new symbols do not take
the frequency information of the Indo–Arabic numbers (or another symbolic nota-
tion), which precondition proved to be true, then the size effect may reflect purely
the frequency of the stimuli of the session. The results confirmed this supposition:
Number stimuli following an everyday number frequency (Dehaene&Mehler, 1992)
caused a regular size effect, and a uniform number frequency removed the size effect
(Krajcsi et al., 2016). This result is in line with the DSS model, but it is in contrast
with the ANS model, which proposes that the size effect is rooted in the ratio of
the values, independent of the frequencies of the stimuli. In a subsequent study, the
same manipulation of stimulus frequency was applied to Indo–Arabic numbers. It
was found that, extending the first findings, stimulus frequency also changed the
size effect in Indo–Arabic numbers, although the frequency manipulation did not
entirely change the size effect; rather, the observed size effect was a combination of
the participants’ previous experience with the Indo–Arabic numbers and the actual
session statistics (Kojouharova & Krajcsi, 2019).

Second, it was demonstrated that, in a symbolic comparison task, the distance
effect follows the association of the digits with the “large” and “small” properties (see
thefirst rawofTable 1) (Kojouharova&Krajcsi, 2018;Krajcsi&Kojouharova, 2017).
To contrast whether the distance effect is rooted in the value of the digits (prediction
of the ANS) or in the association of the digits with “large” and “small” properties
(prediction of the DSS model), participants compared single-digit numbers, where
numbers 4, 5, and 6 were omitted, creating a gap in the range (see Fig. 6B). If the
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distance effect depends on the values of the numbers, then the distance between
the two sides of the gap measured empirically should show a three-unit distance.
However, if the distance effect depends on the association of the digits and the
“large”– “small” properties, then in a comparison task where all number pairs are
presented uniformly, the distance between the two sides of the gap measured empir-
ically should show a one-unit distance (see the explanation in Fig. 6B, C). It was
found both in new artificial and Indo–Arabic notations that the distance between the
two sides of the gap was one-unit long, supporting the DSS model (Kojouharova &
Krajcsi, 2018; Krajcsi & Kojouharova, 2017). In addition, in the Indo–Arabic nota-
tion, the distance effect entirely followed the association statistics of the session, and
it was not a combination of the current session statistic and the previous experience,
as it was observed in the frequency-based size effect. These results further confirm
that the symbolic number comparison distance effect cannot be accounted for by the
ANS model, because the distance effect is not driven by the values of the numbers,
but by the associations between the digits and the “large”– “small” properties.

Third, in a different type of study, the psychophysical model was tested to deter-
mine whether it can describe symbolic and nonsymbolic comparisons equally well
(Krajcsi, Lengyel, & Kojouharova, 2018). While this model has been applied to both
symbolic and nonsymbolic comparison tasks, and it has repeatedly been found to
be appropriate for both types of notations (e.g., Dehaene, 2007; Moyer & Landauer,
1967), our study included more extensive tests. One such test investigated whether
the psychophysical model describes the drift rates of the comparisons correctly in the
diffusion model framework. The diffusion model supposes that, in a trial, evidence
is accumulated until a prespecified threshold is reached (Ratcliff & McKoon, 2008;
Smith & Ratcliff, 2004). Drift rate is the average amount of evidence that is accu-
mulated in a time unit, and it can be considered as the difficulty of the task or the
efficiency of the appropriate representation that is responsible for the property on
which the decision is based. See an introduction for more details about the diffusion
model in Ratcliff and McKoon (2008) and Smith and Ratcliff (2004). This model
successfully explains many phenomena related to the reaction time and error rate
distribution within a participant (Ratcliff &McKoon, 2008; Smith & Ratcliff, 2004).
In the ANS model, as in similar psychophysical models, it is assumed that, as the
two to-be-compared values get closer (in terms of ratio), the drift rate approaches
zero (Dehaene, 2007; Palmer, Huk, & Shadlen, 2005). For example, in a nonsym-
bolic dot comparison task, as the two values become more and more similar, the
participant becomes unsure which array has more items. Our analysis revealed that,
in the nonsymbolic comparison task, the drift rate indeed approached zero as the
task became more difficult. However, in the symbolic comparison task, the drift
rate approached a non-zero value. This latter result is in line with the commonsense
observation that, even if comparing two symbolic numbers gets harder as the distance
(or ratio) decreases, it never becomes impossible to solve (unlike for a nonsymbolic
comparison task). The results further reveal that, while nonsymbolic comparison
works according to the psychophysical ANS model, symbolic comparison works
differently, and the psychophysical model cannot describe it correctly (see the first
row of Table 1).
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Fourth, related to the previous properties and findings, we may state that, in the
symbolic comparison task, the distance and size effects dissociate (see the second
row of Table 1). In the studies described above, where size effects were manipulated
by utilizing different frequencies of the numbers, the size effect changed according
to the stimulus frequency, while the distance effect was not influenced (Kojouharova
& Krajcsi, 2019; Krajcsi et al., 2016). Similarly, in the studies where the distance
effect was manipulated by presenting a number range with a gap, the size effect still
depended on the frequencies of the digit (Kojouharova & Krajcsi, 2018; Krajcsi &
Kojouharova, 2017). Thus, unlike the prediction of the ANS model, distance and
size effects can be modified and manipulated independently.

Fifth, related to the independence and dissociation of the distance and size effects
described in the previous point, the two accounts have different predictions for the
correlation between the slopes of the distance and size effects (see the third row of
Table 1). In the ANS model, the slopes of the distance and size effects are influenced
only by the ratio effect slope, which is, in turn, influenced only by theWeber fraction
(Dehaene, 2007). (This is true even if the slopes of the ratio, distance, and size effects
show some non-monotonic relation with the Weber fraction, see Chesney, 2018; and
Krajcsi, 2020.) In other words, in the ANS model, if the distance and size effects
are measured independently, then the same construct is actually measured in two
different ways, and the two indexes should correlate perfectly (supposing perfect
reliability of the measurements). In contrast, according to the hybrid ANS–DSS
account, this perfect correlation is only expected in nonsymbolic comparison, while
symbolic comparison distance and size effectsmay be independent (see again Fig. 5).
In a study measuring the correlation between the slope of the distance effect and the
slope of the size effect in nonsymbolic and symbolic comparison tasks, it was found
that, in nonsymbolic comparison after correcting for the reliability-caused attenuation
of correlation (i.e., calculating the correlation as if the reliability was perfect), the
correlation was practically 1, on the other hand, in symbolic comparison, the same
correlation was not different from 0 (Krajcsi, 2017) (where the original uncorrected
correlations were around 0.9 in the nonsymbolic, and 0.1 in the symbolic comparison
tasks, and the reliabilities of the indexes were between 0.71 and 0.94: therefore,
utilizing the corrections was reasonable). This result further makes the case for
different types of mechanisms behind symbolic and nonsymbolic comparison in
line with the hybrid ANS–DSS account.

Sixth, the aforementioned flexibility of the symbolic distance and size effects
is also informative in the present investigation. As described above, the symbolic
distance effect proved to be highly flexible, almost entirely relying on the stimulus
statistics of the session and ignoring former experience (Kojouharova & Krajcsi,
2018), while the symbolic size effect is less flexible, combining the statistics of the
actual session and former experience (Kojouharova & Krajcsi, 2019). In the pure
ANS account the two effects should show the same flexibility (and they should not
be modified by those stimulus statistics in the first place), which further suggests that
symbolic numbers are compared by the DSS.

Overall, these results show that (a) the properties of the symbolic comparison and
the nonsymbolic comparison differ, and (b) while the properties of the distance and
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the size effects are similar within a nonsymbolic comparison task, the properties of
the two effects are different within a symbolic comparison task (see Table 1). Both
of these findings are in line only with the hybrid ANS–DSS account and not with the
pure ANS account.

5 Conclusions

In the last few decades, the ANS model has been the dominant account in explaining
many phenomena related to numerical understanding. Here, we briefly described
an alternative model (DSS) with an entirely different architecture, which is also
capable of explaining the symbolic phenomena that has been attributed to the ANS.
The current review summarized several recently described effects in the number
comparison task, which reveals a defining feature of the ANS. None of these effects
can be explained by the classic pure ANS account, while all of them can be explained
by our alternative hybrid ANS–DSS account.

It is essential to highlight that,while theANS representationwas believed to be one
of the main sources of numerical meaning, the DSS representation can be considered
a simple associative network, where the critical effects discussed in the literature
simply reflect statistical features or correlations of the stimuli without referring to
the meaning of the numerical information. In other words, the DSS may not be
the primary source of numerical meaning. This property has at least two important
consequences. First, many of the effects that the literature has been investigating in
recent decades, such as the distance and size effects or the spatial-numerical effect,
in fact, do not reflect a meaningful understanding and semantic processing of the
numerical information. Second, and as a consequence, a large part of the meaning
and semantic processing should be handled by other representations, which should
be investigated via other effects and phenomena. Recognizing that the symbolic
comparison distance and size effects, and related phenomena are not processed by
the ANS, but by the DSS, opens the possibility to look for other phenomena and
representations that may account for meaningful mathematical understanding.

This alternative account is in line with several similar alternative models (e.g.,
Leth-Steensen, Lucas, & Petrusic, 2011; Pinhas & Tzelgov, 2012; Proctor & Cho,
2006; Tzelgov, Ganor-Stern, & Maymon-Schreiber, 2009; Verguts & Van Opstal,
2014; Verguts, Fias, & Stevens, 2005), although the scope of these models is less
comprehensive than the intended scope of the DSS model. Also, the present model
extends and specifies the ideas of many recent works suggesting that symbolic
and nonsymbolic numerical information is processed differently (e.g., Leibovich
& Ansari, 2016; Lyons, Ansari, & Beilock, 2015; Noël & Rousselle, 2011; Sasan-
guie, Defever, Maertens, & Reynvoet, 2014; Schneider et al., 2017). Our proposal,
together with the increasing number of publications discussing the limitations of the
ANSmodel and offering solutions for some of the issues, can form a new framework
of numerical cognition, which framework can integrate the results from recent years
more successfully than the current dominant view of number processing and can open
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the way to discover additional essential representations that support mathematical
understanding.
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