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Abstract

Existing collaborative self-supervised learning (SSL) schemes are not suitable for
cross-client applications because of their expensive computation and large local
data requirements. To address these issues, we propose MocoSFL, a collabora-
tive SSL framework based on Split Federated Learning (SFL) and Momentum
Contrast (MoCo). In MocoSFL, the large backbone model is split into a small
client-side model and a large server-side model, and only the small client-side
model is processed locally on the client’s local devices. MocoSFL is equipped with
three components: (i) vector concatenation which enables the use of small batch
size and reduces computation and memory requirements by orders of magnitude;
(ii) feature sharing that helps achieve high accuracy regardless of the quality and
volume of local data; (iii) frequent synchronization that helps achieve better non-
IID performance because of smaller local model divergence. For a 1,000-client
case with pathological non-IID case (each client only has data from 2 random
classes of CIFAR-10), MocoSFL can achieve over 84% accuracy with ResNet-18
model.

1 Introduction

Collaborative learning schemes have become increasingly popular, as clients can train their own local
models without sharing their private local data. Current collaborative learning applications mostly
focus on supervised learning applications where labels are available [Hard et al.,2018|, [Roth et al.,
2020]]. However, the fully-labeled assumption may not be practical since labeling can be difficult and
requires expertise.

Federated learning (FL) [McMabhan et al.,2017] is the most popular collaborative learning framework.
One representative algorithm is “FedAvg”, where clients send their local copies of the model to the
server and the server performs a weighted average operation (weight depends on data proportion)
to get a new global model. FL has achieved great success in supervised learning, and has benefited
a wide range of applications such as next word prediction McMahan et al.|[2017]], visual object
detection [Liu et al.|[2020], recommendation [Wu et al.|[2022alb]], graph-based analysis (Chen et al.
[2022]], Wu et al.| [2022c], etc.
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Figure 1: Challenges in FL-SSL schemes. (a) A large batch size is necessary to achieve good
performance (KNN validation accuracy [Wu et al.} 2018])); (b) Accuracy reduces with an increasing
number of clients as a result of insufficient local data; (c) Hard negative keys are essential for the
success of contrastive learning.

For more practical collaborative learning on unlabeled data, prior works [Zhang et al., [2020, Zhuang
et al.,[2021}, [2022]] combine FL scheme with classic self-supervised learning (SSL) methods such
as BYOL [Grill et al.l 2020] and Moco [He et al., [2020]. These methods can all achieve good
performance when clients’ data is Independent and Identically Distributed (IID), however, they
suffer from poor performance in non-IID cases. Recently, Zhuang et al.|[2022] is able to mitigate
non-IID performance drop with divergence-aware aggregation technique and provides the state-of-
the-art (SoTA) accuracy performance using a combination of FL and different SSL methods.

However, these SoOTA FL-SSL schemes are not practical for cross-client applications, in which
number of participants can be thousands even millions, participants’ datasets tend to be small, and
participants generally possess limited computational power and low technical capabilities [Lyu et al.|
2020]]. First, FL-SSL imposes a significant computation overhead and large memory requirement on
clients. This is because SSL requires a large backbone architecture [Chen et al.,|2020a]] together with
a large batch size to ensure good performance. As shown in Fig. [I[(a), accuracy drops dramatically
when batch size is low for both FL-SSL methods. Second, FL-SSL schemes fail to maintain a good
accuracy with a large number of clients (cross-client cases), as shown in Fig.[T[b). Given that on a
dataset with fixed size, data per client decreases when the number of clients increases, where we
notice immediate accuracy degradation. This is mainly because of the failure to meet data requirement
in performing contrastive learning.

To solve the above two challenges, we propose MocoSFL, a scheme that adopts Split Federated
Learning (SFL) Thapa et al.| [2020] as its core and incorporates the feature memory bank and momen-
tum model designs of Moco. We adopt the SFL scheme for three reasons: (i) SFL utilizes a smaller
client-side model and so reduces the computation overhead and has lower memory consumption and
model parameters; (ii) SFL’s latent vector concatenation enables a large equivalent batch size for the
centralized server-side model, making the use of micro-batch in training possible for clients, and
thus reducing local memory; (iii) SFL’s shared server-side model enables effective feature sharing,
which removes the requirement of abundant local data and makes the scheme possible for cross-client
applications. As a result, our proposed MocoSFL can achieve good accuracy with ultra-low memory
requirements and computation overhead and can support a very large number of clients. MocoSFL
shows better non-1ID performance since local model divergence is smaller.

Our main contributions are:

* We identify two major challenges in FL-SSL schemes for cross-client applications. We find
that having a large number of data and a large batch size are two critical factors in achieving
a good accuracy performance. However, meeting these requirements is not practical for
cross-client applications.

* We propose solutions based on SFL for self-supervised learning. The resulting MocoSFL
scheme uses small client-side model, latent vector concatenation, and feature sharing, which
effectively solves two challenges, making it amenable for cross-client cases. For cross-silo
case, because of less model divergence, the proposed MocoSFL can achieve even better
performance than SoTA FL-SSL schemes under non-IID setting.



2 Background

2.1 Self-Supervised Learning

To learn from unlabeled data, SSL schemes based on contrastive learning such as SimCLR |Chen et al.
[2020a]], BYOL |Grill et al.| [2020]], Simsiam (Chen and He|[2021]] and MoCo |He et al.| [2020] have
achieved great performance on popular benchmarks. We choose MoCo since it uses memory to store
negative samples that are absent in other schemes. MoCo relies on InfoNCE loss |Oord et al.| [2018]]
as the contrastive mechanism to update its model parameters:

exp(Q - K*/7)
exp(Q - KT/7) 4+ nemerp(Q - N/T)

where query key @ and positive key K are the output vectors of feeding two augmented views of
the image to the online model and the momentum model, respectively. N denotes all negative keys
in the feature memory M. The success of MoCo scheme highly depends on the “hardness” of its
negative keys [Kalantidis et al.; 2020, [Robinson et al., |2020]]. The “hardness” for a negative key N in
the feature memory bank, can be determined by the similarity (inner-product) between @; (at step t)
and N. The smaller the similarity, the better the “hardness” which benefits the optimization process.

Lo kN = —log (1)

MoCo stores current positive keys in a feature memory as negative keys for future iteration, and uses
previously stored negative keys to perform contrastive learning. In addition, to maintain the hardness
and consistence of negative keys, MoCo adopts a stable momentum model to produce consistent
negative keys, that are added to the feature memory at the end of every training step.

2.2 Split Federated Learning

SFL|Thapa et al.|[2020] is a recent collaborative learning scheme that focuses on extreme computation
efficiency. It splits the original model architecture into two parts, client-side model copies C; at
clients’s local device, and a large server-model S in a cloud server. To complete each training
step, clients need to send the latent vectors (the output of client-side model) to the server, and the
server processes latent vectors, computes the loss, performs backward propagation and returns the
corresponding gradients to clients. Thapa et al|[2020] presents two possible ways for server to
process latent vectors sent by clients. In this paper, we use SFL-V1 where the server concatenates all
clients’ latent vectors and processes them altogether, which makes the batch size equivalently larger
at the server and benefits the contrastive learning. In contrast, in SFL-V2, client’s latent vectors are
processed sequentially in a first-come-first-serve manner that does not bring the “large batch” benefit.
We provide detailed process of SFL-V1 in Appendix

3 Motivation

3.1 High computing resource requirement

The first challenge is the computing resource requirement of training an SSL model locally. Using a
compact backbone model may be accurate enough for supervised learning, but cannot succeed in SSL
as it requires a much higher requirement on the model capacity. [Shi et al.} 2021} Fang et al.,2021]
show that using compact architectures like Mobilenet-V3 [Howard et al., [2019], EfficientNet|Tan and
Le|[2019]] suffers from over 10% accuracy degradation compared to a larger ResNet-18 architecture,
while an even larger ResNet-50 model is over 15% better over ResNet-18. This means memory
requirement for training an SSL model is very high. Using a smaller batch size reduces accuracy
dramatically, as shown in Fig.[I(a) and is not an option. A typical FL-SSL scheme costs 590.6
MFLOPs per image and over 1100MB of memory per client for a ResNet-18 with a batch size of 128,
which is not practical.

3.2 Large data requirement

The other major difficulty for FL-SSL to generalize to the cross-client case is the large data require-
ment. Especially for cross-client applications, the number of data available to each client can be
very limited and biased. For example, a client typically means a hospital in a cross-silo medical



(Client i

Xl—b Augmentation

2
=+ Xt I:II:II:I B

Client i momentum

* X, M Agi

Client i online j

Wire

less communication

flientj

Xj—>|Augmentation|

N

Client j momentum

-

Server online

Serve}

DeQueue
gl [k—w
Shared Feature Memory
EnQueue
Concatenate
Ak o K+—— InfoNCE
Loss
Server momentum
Concatenate
> Aq Q

avg

A !
Client j online _JFrequent Synck

Figure 2: MocoSFL scheme. Three highlighted components are (1) latent vector concatenation, (2)
shared feature memory, and (3) frequent synchronization.

application, which has tons of data available. In comparison, in a cross-client application, a client
means one patient and thus has limited number of data. The root of the problem lies in the difficulty
to find hard negative samples when clients do not have enough local data. And as the number of
data is larger, the chance for hard negative samples to present becomes much higher. As a result,
existing FL-SSL can only be successful for cross-silo applications where clients can perform effective
contrastive learning locally. As demonstrated in Fig.[I{b), we observe high accuracy when clients
have 10K samples of data, while the accuracy drops quickly to around 30% for clients having only
500 samples.

4 Method

4.1 Proposed MocoSFL

Our proposed MocoSFL is an innovative combination of SFL-V1 and MoCo-V2 [[Chen et al.| | 2020b]
as shown in Fig. 2] There are three key components to its design. First, in each training step, the
latent vectors sent by all clients are concatenated before being processed by the server-side model.
This helps achieve a large equivalent batch size in order to support mini-batch training. Second,
we use a shared feature memory which is updated by positive keys contributed by all clients in
every training step. Third, we use a higher synchronization frequency, which improves the non-1ID
performance.

4.2 Reduce Hardware Resource Requirement

Choice of SFL helps reduce computational overhead and memory consumption because of the much
smaller client-side model. For example, on a CIFAR-10 ResNet-18 model with a batch size of 128,
a client-side model with 3 layers only costs 13.7% of the FLOPs compared to the entire model,
and its memory cost is 227MB, merely one fourth of the entire model. Furthermore, we reduce the
batch size to 1 (also known as “micro-batch”), to further reduce the memory consumption. The
use of micro-batch in local model training is only possible thanks to the latent vector concatenation
mechanism which basically aggregates latent vectors sent by all clients into a big batch before sending
it to the server. In addition, in a micro-batch setting, we replace the batch normalization layer by
group normalization [Wu and He|[2018]] and weight standardization [Qiao et al., | 2019] to gain better
accuracy performance. In Fig. [3(b), we compare the computation and memory consumption of
the proposed MocoSFL with the FL-SSL scheme. MocoSFL with cut-layer of 3 achieves ~ 288 x
reduction in memory consumption than FL-SSL and has 2%-10% higher accuracy. Details of accuracy
evaluation are included in Section 3.1l

4.3 Mitigate Large Data Requirement

We also find it is necessary to use a large batch size and a large enough feature memory. This finding
agrees with the study in Bulat et al.|[2021]] and also explains the accuracy drop for a small batch
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Figure 3: (a) Proposed MocoSFL reduces model divergence. (b) Computation overhead (online
model, inference) comparison between FL-SSL scheme and MocoSFL schemes. MocoSFL-/N:
client-side model has N layers.

size in FL-MocoV?2 in Fig. a). To illustrate this, consider an ideal case: given that K;_; of size B
being the newest negative keys in the feature memory at time ¢, we assume the similarity measure
between K;_; and Q); is a constant 7 for all £. We also assume similarity of every negative key batch
in feature memory gets reduced by a constant factor -y (y < 1) after each model update, since model
updates degrade similarity. Thus, for a freshly computed query ();, the total hardness of negative
keys in a feature memory can be evaluated as:

hardness = Bny + Biyy? + ... + By M/ Bl )
1 — ~LM/B]

L—n
where B is the batch size and M is the feature memory size. We can tell that using a large batch
size B is beneficial as it helps maintain better freshness. Also, using a large enough feature memory
(increasing M) can keep enough negative keys and contribute to a better total hardness. These two
requirements are hard to meet in cross-client case because of the memory limit for FL-SSL schemes.

Nonetheless, they can be easily fulfilled by MocoSFL because (1) latent vector concatenation enables
a large equivalent batch size, and (2) feature memory hosted by the cloud server can be much larger.

= By x ( 3)

4.4 TImproving Non-IID Performance

We found that use of SFL results in fewer model parameters at the client side and hence smaller model
divergence. Furthermore, by introducing frequent synchronization in MocoSFL provides additional
reduction in model divergence and greatly improves the non-IID performance. According to|/Zhuang
et al.|[2021} |2022], the model divergence can be calculated by:

E Nc¢ L

divergence = %% Z Z Z ||W(fl = WZill2 “4)

e=11i=11=1

where L denotes the number of layers for the client-side model, £ denotes the total number of
synchronizations, N denotes the number of clients, and [, e, ¢ are the respective indices for L, F/, N¢.
W* is the average of all client models W*. MocoSFL reduces the model divergence with two
orthogonal mechanisms. The first mechanism is the reduction of client-side model size, which
directly results in a lower model divergence. As shown in Fig.[3(a), compared to FL-SSL scheme,
MocoSFL has a much lower model divergence when the client-side model has less than 5 layers. The
other mechanism is that model synchronization can be done more frequently which helps reduce the
model divergence. This is only possible in SFL because the communication overhead is affordable as
the client-side model parameter size is much smaller. As shown in the Fig.[3(a), model divergence
further reduces as we increase the synchronization frequency.

S Experimental Result

Experimental Setting. We simulate MocoSFL clients using different CPU threads and MocoSFL
server using a single RTX-3090 GPU. We use ResNet-18 [He et al.,[2016]] for the majority of the



experiments to better compare with existing SoTA [Zhuang et al.,[2022]]. We use CIFAR-10 as the
main dataset and also present results on CIFAR-100 and ImageNet 12-class subset as in|L1 et al.
[2021]]. For the IID case, we assume the entire dataset is divided randomly and equally among
all clients. For non-1ID experiments, we only consider the pathological (aka. class-wise) non-IID
distribution as inMcMabhan et al.|[2017]], Zhuang et al.| [2022]] where we assign only 2 classes of
CIFAR-10/ImageNet-12 data or 20 classes of CIFAR-100 data randomly to each client. We perform
the MocoSFL training for a total of 200 epochs, using SGD as the optimizer with an initial learning
rate of 0.06. For accuracy performance evaluation, we adopt similar linear probe methods as in |Grill
et al.|[2020], Zhuang et al.| [2022], where we train a new linear classifier on the representation outputs
generated by the MocoSFL backbone model that stays frozen during this process. We leave more
details of hyper-parameter choices and evaluations in Appendix

5.1 Accuracy Performance

Improved non-IID performance. Fig. 4{shows how using an increased synchronization frequency
can significantly improve the non-IID accuracy. We present results for the cut-layer choices of 1 and
3 convolutional layers in the client-side model, represented by “MocoSFL-1" and “MocoSFL-3",
respectively. We attribute the improved accuracy to the reduction in model divergence.

Comparison with FL-SSL. With synchronization frequency of the MocoSFL scheme set to 10 (per
epoch), in cross-silo cases, our proposed MocoSFL achieves significantly better non-IID accuracy
performance than |Zhuang et al.|[2022], despite on the CIFAR-100 dataset when N¢ = 5, as shown
in Table[T

v 89%
L 85% 0COSFL- Ne=5 NH=2 No = N~ = 20
S 83% —e—MocoSFL-3 c c=20 c=5 fo

.5 1 2 5 10 20 FL-BYOL [Zhuang et al., 2022‘ 83.34 75.77 61.78 52.78
Sync Frequency MocoSFL-1 (ours) 87.81 85.84 58.78 57.80
MocoSFL-3 (ours) 87.29 85.32 57.70 57.52

Figure 4: Effect of increasing
synchronization Table 1: Non-IID performance comparison (linear probe accuracy)

Cross-client Performance. Our proposed MocoSFL can generalize from a cross-silo application to
a cross-client application with 100, 200, and 1000 clients. Note that none of the previous FL-SSL
methods can scale to such a large number of clients. Through our experiment, we let each client use a
batch size of 1 and an increased synchronization frequency of fs = 1000/N¢, to keep a constant
frequency of 50 training steps. We also use a client sampling ratio of S = 100/N¢ to keep the
same equivalent batch size at the server. The results are shown in Table[2] Note that each client has
only 50 data samples in the 1000-client case while the accuracy performance has negligible impact.
MocoSFL’s accuracy for IID case is almost the same when N¢ increases from 100 to 1,000, it has an
accuracy drop of only 1% for non-1ID case. This small drop is because model divergence scales with
number of clients as described in Section 4.4l

Table 2: MocoSFL cross-client accuracy performance (linear probe accuracy) of ResNet-18 model
on CIFAR-10, CIFAR-100 and Imagenet-12 datasets with different number of clients N¢.

Method Dataset D non-1ID
Ne =100 Ne =200 Ne=1000 Ng =100 Nec =200 N¢ = 1000
CIFAR-10 87.29 87.38 87.51 87.71 87.39 86.46
MocoSFL-1  CIFAR-100 58.91 59.15 58.85 59.22 58.90 56.75
ImageNet-12 92.02 91.73 91.76 92.24 91.44 91.28
CIFAR-10 87.29 87.15 87.25 87.10 85.22 84.09
MocoSFL-3  CIFAR-100 58.41 58.30 58.80 58.69 58.59 56.88
ImageNet-12 92.08 92.24 92.02 92.60 91.83 91.28




6 Conclusion

We propose MocoSFL, a collaborative SSL framework based on SFL. The proposed framework
addresses hardware resource requirement at client-side by enabling small batch size training and
computation offloading. It also relieves the large data requirement of local contrastive learning by
enabling effective feature sharing. The proposed scheme can support massive number of clients. More
importantly, we achieve even better IID/non-IID performance with much lower hardware requirement
than the SoTA FL-based SSL methods.
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A Technical Details

A.1 Details of Hyper-parameter Choices

Training Hyper-parameters. For the data preprocessing, we split each dataset into 50K training and
10K validation data. And we use the training data directly as query data X, and its augmented version
as positive data X +. We use the same augmentation pipeline as in |Chen et al.| [2020b]]. For the
backbone model, we remove the last fully-connect layer and replace it with two larger fully connected
layers of 1024 neurons as the MLP head, to fit well with small batch size training, we replace the
batch normalization layers by group normalization layers and set the number of channel per group to
4 (while keeping the minimum number of group to 1, if input channels is less than 4). We also use the
weight standardization technique |Q1ao et al.|[2019]] in combination with group normalization, which
is reported to perform better. At the server-side, we use a feature memory of 6,000 negative keys that
is implemented as a First-In-First-Out (FIFO) queue, and we update it by pushing newly generated
positive keys at every training step. For contrastive loss calculation, we use the symmetric contrastive
loss calculation introduced in Moco-V3 [Chen et al.|[2021]], where the position of query and positive
keys are swapped in Eq. , and the new loss takes the form of (Lg, K, N + Lk,Q, N)/2. For
the optimization process, we update the online model of both client-side and server-side model with
the SGD optimizer with 0.06 initial learning rate, 0.9 momentum and 0.0005 weight decay. We
schedule the learning rate using the cosine annealing trick for both client-side and server-side models.
The momentum model update is done through the moving average mechanism in He et al.| [[2020]].
In the macro level, we set the number of epochs to a fixed of 200 epochs, where we observe the
performance almost converges. To be noticed, according to previous study (Chen et al.| [2020b], the
training accuracy can increase with extensive long training (i.e. >800 epochs). Instead of using a
long training session, we set it to 200 epochs to maximize time & performance tradeoff. At the end
of each epoch, we perform a k-nearest-neighbor (knn) validation using the 20% validation dataset,
and finally use the best of which to perform the final linear probe evaluation.

Evaluation Hyper-parameters. For the knn validation, we feed the validation dataset and use the
normalized feature output of the backbone (together with the MLP head) and follows the implemen-
tation in [Wu et al.| [2018]] to get the accuracy. For the linear probe evaluation, we follow exactly
the same procedure as in Zhuang et al.|[2022], where we replace the MLP head with a randomly
initialized fully-connected layer, fine-tune the new model on the labeled dataset while keeping the
backbone parameters frozen. We train the single fully-connected layer for a total of 100 epochs on
the labeled training dataset and use the accuracy on the labeled validation dataset as final accuracy.
To optimize the single FC layer, we use a batch size of 128 and Adam optimizer with default learning
rate 0.001 and use cosine annealing to schedule its learning rate.

FL Hyper-parameters: Synchronization Frequency and Client Sampling Ratio. In our proposed
MocoSFL scheme, we present an auto-adjust mechanism on adjusting the synchronization frequency,
the client-sampling ratio, and the local batch size according to number of clients, which is supplied
by the scheme owner. We use it for all of our results for MocoSFL. The design of the auto-adjust is to
strike a balance between model divergence and sample hardness and is based on two principles. The
first principle is to always keep the equivalent batch size greater than 100, so that a good hardness
can be kept (indicated by Eq. (3)). For example, if only 5 clients join the MocoSFL, we force each
client to have a batch size of 20 to keep the equivalent batch size to 100. If 1,000 clients join the
MocoSFL, we use a client sampling ratio of 0.1 to let 100 clients join in each round. The second
principle is the synchronization frequency must be adjusted correspondingly to the number of local
training steps. The reason is that more local updates leads to higher model divergence, which needs
to be mitigated using more frequent synchronization. = For example, for a 1,000-client MocoSFL
where each client has 50 data and perform 50 local training steps each epoch (with batch size of 1),
the default synchronization frequency of “1/epoch” can suffice and we do not need to increase it.
However, for a 100-client MocoSFL where each client performs 500 local training steps, accuracy
drops for a frequency of “l/epoch”, so we increase the synchronization frequency to “10/epoch”.

A.2  Detailed SFL-V1 Process
The training process of SFL-V1 in supervised learning is shown in Algorithm[I] Since we find the

large equivalent batch size essential for the success of contrastive learning, we adopt SFL-V1 since a
large equivalent batch size (equal to the number of clients times clients’ batch size) can be achieved
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Algorithm 1 Split Federated Learning V1 [Thapa et al., | 2020]

Require: For N clients, instantiate private training data (X;,Y;) for 1,2, ..., N. Each client-side
model C; has M layers and server-side model S has L — M layers.
for epoch t <— 1 to num_epochs do

1:

2 Cr =5 SN i €y C* forall i {Model Synchronization}
3 for step s «— 1 to num_batches do

4: for client 7 < 1to IV in Parallel do

5 data batch (x;, y;) + (X;,Y;)

6 A; =C,(Wg,;x;) {Send A; to Server}
7 end for

8: A:cat(AhAQa“'aAN); y:Cat(y17y27'“7yN)

9: L=Lcp(S(Ws;A),y)
10: V AL < back-propagation  {Partition V oL, Send V 4, £ Correspondingly to Client 4}
11: Update Wg;
12: for client i < 1 to N in Parallel do
13: Vg, L + back-propagation
14: Update W¢,;
15: end for
16:  end for
17: end for

thanks to the latent vector concatenation in line 8. Difference between SFL-V1 and V2: V1 performs
concatenation on clients’ latent vectors and feeds it to S and update the model for only one time (call
“optimizer.step() for one time” in pytorch), while V2 sequentially feeds them and updates S for a total
of N (N : number of clients) times (call “optimizer.step() for IV time”).

B Extensive Empirical Results

In this section, we perform extensive empirical evidence of the proposed MocoSFL scheme on
different architecture (Appendix and performance of MocoSFL in a semi-supervised learning

application (Appendix [B.2)).

B.1 ResNet-50 results

We follow the same setup in Table Table|l|and Table 3 on ResNet-50 architecture for cross-silo (5
and 20 clients) and cross-client setting (100 clients). As shown in Table[3] compared with ResNet-18
model, using a larger model brings ~3% better accuracy performance.

Ne=5 Ne = 20 Ne = 100
IID NonIID IID NonlIID IID Non-IID
MocoSFL-1 (ResNet-18) 87.38  87.81 8721 8584 8729 87.71
MocoSFL-3 (ResNet-18) 87.09  87.29  87.09 8532 8729  87.10

MocoSFL-1 (ResNet-50)  90.54 90.29 90.27 88.78 90.17 90.37
MocoSFL-3 (ResNet-50)  90.86 90.94 90.58 89.83 90.67 90.66

Method

Table 3: MocoSFL Performance (linear probe accuracy) on a ResNet-50 model

B.2 Semi-supervised Learning Evaluation
We report the performance of using the proposed MocoSFL for semi-supervised learning application

for both cross-silo (5 and 20 clients) and cross-client setting (100 clients). As shown in Table 4] the
proposed MocoSFL achieves competitive accuracy performance. For ResNet-18 model, we achieve
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10% higher accuracy than FL-BYOL [Zhuang et al.} 2022] if only 1% label is given on a CIFAR-10
dataset.

Arch Method Ne =5 Ne =20 Ne = 100
1% 10% 1% 10% 1% 10%
FL-BYOL [Zhuang etal.|[2022] 73.44 7949 N/A N/A NA N/A

ResNet-18 MocoSFL-1 84.69 87.05 76.80 8446 82.27 86.84
MocoSFL-3 84.46 86.50 76.70 84.20 81.72 8591

FL-BYOL [Zhuang et al.;2022] 72.52 80.68 N/A N/A N/A NA

ResNet-50 MocoSFL-1 86.28 89.55 80.34 86.09 84.83 88.78
MocoSFL-3 87.09 90.33 81.59 87.21 84.65 88.81

Table 4: MocoSFL Semi-supervised learning Performance (Non-1ID).
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