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ABSTRACT

Knowledge distillation (KD) approximates a large feacher model using a smaller
student model. KD can be used to train multiple students of different capacities,
allowing for flexible management of inference costs at test time. We propose a
novel distillation method we term meta-collaboration, wherein a set of students
are simultaneously distilled from a single teacher, and can improve each other
through information sharing during distillation. We model this information shar-
ing through a separate network designed to predict instance-specific loss mixing
for each of the students. This auxiliary network is trained jointly with the multi-
student distillation, utilizing a separate meta-loss aggregating student model loss
on a separate validation set. Our method improves student accuracy for all stu-
dents and beats state-of-the-art distillation baselines, including methods that use
multi-step distillation, combining models of different sizes. In particular, addition
of smaller students to the pool clearly benefits larger student models, through the
mechanism of meta-collaboration. We show average gains of 2.5% on CIFAR100
& 2% on TinylmageNet datasets; our gains are consistent across a wide range of
student sizes, teacher sizes, and model architectures.

1 INTRODUCTION

Practical deployments of machine learning models often need to balance model accuracy against
constraints on compute, memory, and inference latency. Recent work in knowledge distillation
(KD (Hinton et al., [2015)) offers a helpful tool-train a smaller student model to approximate the
higher quality predictions of a larger teacher model. Such distilled student models may perform
significantly better than an equivalent model trained from scratch. A known challenge in KD is its
poor performance when there is a large capacity gap between the teacher and the student (Cho &
Hariharan, 2019). Previous work attempted to bridge this gap by using supervision from multiple
models of different sizes, potentially themselves learnt by KD in a sequential manner (Mirzadeh
et al., [2020; [Son et al.| [2021). However often the knowledge transfer is unidirectional i.e. from a
larger student to a smaller student. In this work, we approach the problem from a complementary
perspective: what if multiple students of different sizes could learn from and improve each other
through collaboration?

Model collaboration has been leveraged by previous work; e.g., by cross-correlating errors across
multiple equivalent models in supervised learning (Baluja et al., |2015), or by creating a pseudo-
teacher by pooling multiple peer model predictions in the distillation setting (Chen et al., [2020).
Online knowledge distillation, where a strong pre-trained teacher is absent, also utilizes this ap-
proach. In|Chen et al|(2020), a soft target is obtained by aggregating predictions from peer models
of the same architecture, using an attention-based mechanism. In Wu & Gong|(2021)), the m-branch
model treats each branch as a peer model, constructing soft distillation targets from weighted logits
of these branches and from an exponentially moving-averaged m-branch model. Additionally, /Guo
et al.| (2020) suggests using pooled student logits with varying learning capacities as soft distillation
targets. However, the primary focus in these works lies in constructing logits due to the absence
of a pre-trained teacher model. In contrast, our approach centers on influencing the learning pat-
terns of the models participating in the collaborative process. For instance, |Du et al.| (2023)) devise
a curriculum of sorts using variance in predictions of multiple students with varying levels of spar-
sity as a measure of task complexity. Therefore, we aim to harness the advantages of collaborative
learning seen in previous research while also benefiting from the introduction of intermediate mod-
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Figure 1: (a) Losses are weighted according to the parameters obtained from C-NET which are then
used to train the individual students. (b) Absolute gains over closest baseline for each teacher/student
combo, with CIFAR100 (top) and TinyImageNet (bottom) datasets. MC-DISTIL consistently out-
performs all baselines across different teachers and student combinations.

els to bridge the gap between teacher and student models. This is not a straightforward task, since
techniques such as variance reduction may not be applicable due to the differing learning capacities
among the models.

We propose the novel approach of meta-collaborative distillation (MC-DISTIL), where students of
different capacities collaborate with, and help improve each other, during distillation. The “meta” in
meta-collaboration refers to our use of a separate “coordinator” network (C-NET) that synthesizes
learnings from the different students, and in turn influences each student’s learning process, setting
up a meta-learning problem. Our insight is that the C-NET can learn not only about each individual
student’s performance and needs, but also about training instance characteristics, through the process
of evaluating students on input data. As shown in fig.[Ta] the C-NET modulates the training loss of
each student through an instance-dependent reweighting of the teacher and cross-entropy losses. To
set up the C-NET learning objective, we calculate student loss on a separate validation set; this loss
is an implicit function of the C-NET through the loss reweighting shown in fig. [Ta] In other words,
the C-NET learns to weigh student training losses such that their generalization on the validation
set is maximized. We develop the modeling objectives and learning algorithm for MC-DISTIL, and
evaluate it on a wide range of student & teacher architectures and model sizes, quantifying gains
against SOTA benchmarks. MC-DISTIL improves the performance of each student in the ensemble,
highlighting the interesting finding that smaller student models can help improve larger students in
a collaborative distillation framework.

In Figure[Tb] we depict the absolute performance improvement achieved by MC-DISTIL compared
to the best state-of-the-art (SOTA) baseline when training a group of ResNet (Krizhevsky, [2009)
students. Notably, we observe performance enhancements in individual students across various
experimental settings. This feature provides our approach with an additional advantage: it furnishes
a spectrum of student models with varying capacities all with improved generalization capabilities,
which can be deployed contextually at test time to suit specific application requirements.

2 RELATED WORKS

Knowledge Distillation (KD) In supervised learning, Knowledge Distillation (KD) (Hinton et al.,
2015) is a valuable method where a ‘student’ model learns by mimicking a pre-trained ‘teacher’
model, rather than solely relying on labeled data. The success of KD depends on factors like teacher
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model accuracy and student model capacity (Menon et al., [2021). Recent research (Harutyunyan
et al.l 2023)) explores its efficacy in relation to supervision complexity. Using early-stopped teacher
models has shown promise in improving student training (Cho & Hariharan, [2019), though it re-
quires iterative distillation. Another approach (Liu et al.l|2020) employs multiple teacher networks
with intermediate knowledge transfer. Strategic blending of loss components (Sivasubramanian
et al., 2023) has recently improved KD, particularly in scenarios with significant representation
gaps between teacher and student models. The challenge of suboptimal KD performance caused
by significant capacity disparities between student and teacher models was addressed through by
strategically choosing points to learn from the teacher model in Kag et al.[(2023). Other innova-
tions such as ‘Teacher Assistants’ (TAs) or intermediate models have been introduced (Mirzadeh
et al., 2020), with further enhancements achieved through stochastic techniques such as Dense Gra-
dient Knowledge Distillation (DGKD) (Son et al.,[2021)), which involves the simultaneous training
of intermediates with occasional model dropout. These works indicate knowledge transfer to the
smaller models, resulting in their improvement by virtue of presence of the intermediate bigger
models; however the generalization of the larger models has also been shown to improve from the
knowledge of smaller models (Mindermann et al.| |2022)). Therefore, inspired by these bidirectional
signals, we present an approach to train multiple student models simultaneously, and communicate
vital information via a coordinator network.

Instance-Specific Learning: A substantial body of prior research has delved into instance-specific
learning, including the exploration of instance-specific temperature parameters in supervised learn-
ing (Saxena et al} 2019). Related literature (Algan & Ulusoyl 2021} [Vyas et al. 2020) has also
investigated the learning of per-instance label uncertainty parameters to account for potential label
noise. In the context of knowledge distillation, (Zhao et al., | 2021)) have demonstrated the advantages
of learning instance-level sequences (or curricula) for training samples. A similar instance-wise
weighing scheme has been proposed to improve distillation in semi-supervised settings (Iliopou-
los et al., |2022). Recent contributions such as those in (Ren et al.l 2018} [Shu et al.l |2019; [Raghu
et al.| [2020) employ meta-learning based on validation sets to acquire instance-specific weights, en-
hancing robustness. We introduce a novel approach, MC-DISTIL, that involves the utilization of
meta-learning based on validation sets to facilitate a collaborative learning process among multiple
models. To the best of our knowledge, this has not been previously explored.

Bi-level Optimization and Meta-Learning: In prior research (Jenni & Favaro}|2018}; Bengio, 2000;
Domke, 2012)), there has been an exploration of the learning of network hyper-parameters through
the solution of a two-level optimization problem. This entails optimizing on the primary task, and
concurrently, on an external meta-task, often involving validation data. These algorithms share
similarities with the field of ‘learning to learn’, which is typically applied in multi-task contexts
(Finn et al.l 2017; Nichol et al.| 2018} [Hospedales et al., |2020; [Vyas et al.,[2020). The conventional
approach in these contexts is to acquire a “meta-" algorithm capable of generalizing across tasks
by simulating the test dynamics, including the sampling of test tasks, alongside test data, for the
assessment and optimization of loss during training (Hospedales et al.l|2020). It is important to note
that while both kinds of literature employ nested optimization objectives, our work diverges, in that
we are primarily focused on enhancing generalization across different student models via sharing
information during joint training using a coordinator network.

3 MC-DISTIL: META-COOPERATIVE DISTILLATION

3.1 STANDARD KNOWLEDGE DISTILLATION

Supervised learning trains a classifier y = f(x) using training data D = (z;,y;) | i € (1,--- ,n).
Here, (z;,y;) € X X Y denote pairings of inputs z; and their corresponding labels y;. We
parametrize the model f by 6 € ©. Typically, the labels y are cardinal in nature, and practi-
tioners have found that such labels are often inadequate in capturing nuances in the data. A popular
mitigation is to incorporate more nuanced ‘soft labels’, or distributions over labels, as the target
for supervision instead of cardinal labels. In particular, Knowledge distillation (KD) (Hinton et al.,
2015) uses the logits from a pre-trained model (the ‘teacher model’) as soft labels for training a
classifier, in addition to the standard cardinal labels.

Suppose a pre-trained model (teacher) generates logits denoted by y(*) = T (x). Then a new model
(student) could be trained using a “teacher matching” objective that involves minimizing the KL-



Under review as a conference paper at ICLR 2024

divergence between y(7) and the student’s logits (). The KD objective is as follows:

L= Z ((1 = Mlee + )‘(T2KL(y(S)’ y(T)))) M

D

Here, l.c = H(y'®),y) is a supervised learning loss matching y() to the true labels y, and lyq =

T2KL (y(s ), y(T)) is the teacher-matching loss. Typically, H is the standard cross-entropy loss. The
hyperparameters 7, A control the softening of the KL-divergence term, and the relative contributions
of the two loss components.

3.2 IMPROVING THE EFFICACY OF KD

Successful application of KD often depends on the quality of the pretrained teacher model (see
e.g., (Menon et al.,[2021)), and the representational gap between the teacher and student models. For
improving KD in general, approaches include (i) early stopping of the teacher model (Cho & Hari-
haran) 2019), which reduces teacher overfitting, and (ii) instance-based loss mixing (AMAL (Siva-
subramanian et al., [2023))). The latter approach uses a training objective specified below:

Zaz y y) + B KL (5, y") 2)

Here, «;, 8; are weights that control the contributions of the KD loss components at an instance
level. These parameters improve knowledge transfer even in settings with a large capacity gap
between the teacher and student models, although at the cost of learning a large number of free
parameters («;, 3;) equal to the size of the training dataset.

Other approaches have addressed the capacity gap directly, for instance by using Teacher Assis-
tants (TA) or intermediate models (Mirzadeh et al.| [2020). Teacher knowledge is first distilled to
an intermediate-sized model, which is then used to teach the student model. This idea was then ex-
tended to multi-step sequential distillation where the sequence of KD steps may depend on the size
of the capacity gap. Other work sped up this inherently sequential process by using an ensemble of
differently-sized teachers (DGKD (Son et al.,[2021))) in a stochastic manner with occasional teacher
model dropout.

3.3 MC-DISTIL: MULTI STUDENT KNOWLEDGE DISTILLATION

The success of the multi-teacher approaches described above (Mirzadeh et al., 2020; Son et al.,
2021) suggests that supervisory inputs from teacher models of different sizes enrich the information
available to the student. We leverage this insight in a completely different setup where a single
teacher is simultaneously distilled into multiple cooperating student models. Our primary thesis
is that by integrating the performance characteristics of different students (and the teacher) on a
training instance, we can learn how to effectively customize the distillation loss for each student.

Formally, we assume a series of student models S = {S;|j € {1,--- ,k}}, and a single pre-trained
teacher model 7. We start with the MC-DISTIL training objective in its basic form:

Zau W i) + By KLy ") ie {1, k) 3)

i.e., each student has its own set of instance-specific loss mixing parameters, similar to eq. (2).

Coordinator network: Recall that in AMAL (eq. (2)), the loss-mixing weights are entirely free
parameters, leading to a large number of learnable parameters. Further, the student losses as written
in eq. do not interact with each other as yet. Our key innovation is the use of an additional
“coordinator network”, that we call C-NET, to address both these challenges (fig. @ The C-NET
is a learnt function (A, B) = g4(z), where A = [a1,...,ax],B = [f1, ..., Bk] represent the loss
mixing parameters for the k students on the input x. In this manner, not only are the loss mixing
parameters compactly represented by the C-NET parameters ¢ € @, but also all learning across
students and training instances is channeled through the single point of the coordinator network.
The training procedure for the C-NET is described in the following section.
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Consensus across students: To further encourage information sharing across students, we propose
an additional term in the loss function eq. (3). This term minimizes the KL divergence between each
student’s logits and a consensus representation of logits across students (a representation we call the
“Pooled Student™). For a training instance (z,y) € D such that the true label is ¢, i.e., y[c] = 1, we
first define the PooledStudent logits for each label [:

y(ps) 1] = max (y(sl)[l]’ . ..y(sk)[”)7 ifl = ¢ @
min (y(sl) [1,- -y [ZD, otherwise

This is similar to MinLogit introduced in (Guo et al., [2020). Using the PooledStudent logits, the
loss function in eq. (EI) is updated to:

Z% 5 i) + By KL(y™) ")

+ KLy yF9)  vie {1, k} 5)

Correspondingly, the C-NET outputs are extended to be (A, B,T") = g,(x). Putting it all together,

MC-DISTIL minimizes the total loss over all students, i.e., L, =) j Ls,

3.4 TRAINING THE C-NET

We train the C-NET g using a separate validation set of data V = (a¥,y?) | ¢ € (1,--- ,m). The
model gy is learnt so as to minimize the average of the student losses on the validation data, i.e.,
k m kK m
s
Loner =Y Hy w2y =S ST H(fs, (20).97) (©6)
j=114=1 j=li=1

Here H is chosen to be cross-entropy, and summed over students fp, (-) and validation instances.
The meta-loss Lc.Ner depends on ¢ indirectly through the student model parameters 6, which are
themselves optimized using the outputs of g4(-) (eq. .) In other words, our proposal defines a
bi-level optimization that encompasses both the C-NET and classifier parameters. This is due to the
mutual influence between the optimization objectives of each parameter set, # and ¢. Formally:

1 — ,
0; = axgmin, S AL) - H (5™ ) + Bl KL, (")
i=1

+ T[] - QKL( (S),yZ(PS)) vie{l, -k}
s.t. ¢* =argmin Lcner(V, 01, ,0k) @)
®

where (A, B,T") = g¢-(-) are loss-mixing weights output using the optimal C-NET parameters ¢*.
From the equations above, clearly the optimal 6 values depend on the optimal choice of ¢. Equally,
to obtain the optimal ¢ values, one needs optimal 6 values, since Lc_ngr uses the student models
fo,s- .., fo,. Instead of completely solving the inner loop (optimizing ¢) for every setting of the
outer parameters 6, we use alternating stochastic gradient descent to devise a tractable learning
algorithm. The updates can be summarized as follows:

00 = 0! — Zgw )+ Vo H (3™ i)

+ g li] + 72 Vo KL(y ™, y(")

’L

+g¢1[]*7— *VGtKL( (J) ( )) vj€{177k} (8)
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Algorithm 1 The MC-DISTIL approach: learning student Sy, - - - Sk, Training data D, Validation
data V, teacher 7 and C-NET g.

Hyperparameters: 7 Temperature, 7} - - -7¥: learning rates for k students, 7o learning rate for
C-NET

1: Initialize student model parameters with #() . .. #(¥) and C-NET with g((bo)

2: fort € {0,...,T} do
3: Update 0*+! by Equation 8]
if t % L == 0 then
{z",y"} < sampleMiniBatch())
Compute Lc.ngr using {z¥,y"} as described in Equation E] using the recently updated
parameters.
7 Update ¢+ by Eq. Equation[9}
8: end if
9: end for

AN AN

Here ni,--- ,n¥ and 7, are learning rates corresponding to the various student model training and
the C-NET training respectively. The update step for the C-NET is similar to the standard meta-
learning objectives as it uses the updated student model parameters. We present the complete algo-
rithm of MC-DISTIL in Algorithm[I] Since, training C-NET adds to the cost of training, we propose
to update C-NET only after L epochs.

4 EXPERIMENTS

4.1 MODEL ARCHITECTURE AND TRAINING

To demonstrate the utility of our method across groups of different model sizes we experiment
with a group of ResNet (He et al., 2016) models and several recent larger models. We use the
ResNet32 model as C-NET with the classification head changed to output weighting parameters. We
use ResNetl10-xxxs, ResNet10-xxs, ResNet10-xs, ResNet10-s and ResNet10-m (Kag et al.|, [2023))
models as the student models. These models are simultaneously trained with either ResNet-10L,
ResNet-10, ResNet-18 or ResNet-34 models as a teacher model. In Section We present details
of these models. We present experiment results on these combinations in Table[I] To illustrate the
utility of our method in larger vision models we perform knowledge distillation with ResNet-32x4
as the teacher and ResNet-8x4, ShuffleNet-V2 (Ma et al., |2018)), WideResNet-16x2 (Zagoruyko
& Komodakis) 2016) and MobileNet-V2x2 (Sandler et al., 2018) as the group of student models.
We also perform knowledge distillation with WideResNet-40x2 as a teacher model and ResNet-8x4,
ShuffleNet-V2, WideResNet-40x1 and MobileNet-V2x2 as a student model group in the large vision
model setting. The results of these experiments are presented in Table[2]

We train the student models for 500 epochs and update C-NET every 20 epoch (i.e., L = 20). Other
training related details are presented in Section[A.3] We perform all our experiments on the CIFAR-
100 (Krizhevskyl [2009) and Tiny-ImageNet (Le & Yang, 2015) datasets. Details of train-val-test
splits, input dimensions, and the augmentations used on the input to model are presented in Ap-

pendix [A.T]

4.2 BASELINES

In our comparative analysis, we assess the performance of our method against a selection of recent
works in the field of knowledge distillation, with a specific emphasis on scenarios involving mul-
tiple students or intermediate models. This evaluation is conducted alongside standard knowledge
distillation and Empirical Risk Minimization (ERM). We specifically highlight three notable recent
publications, chosen as representative benchmarks:

Teacher Assistant Knowledge Distillation (TAKD) (Mirzadeh et al.| [2020) This approach intro-
duces a multi-step distillation process that leverages intermediate-level teachers to facilitate the ef-
ficient transfer of knowledge from a large pretrained teacher network to a more compact student
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Table 1: Comprehensive comparison of methods across datasets. Columns represent various base-
lines, alongside the Teacher model and MC-DISTIL. For each teacher model, we perform knowledge
distillation with a group of student models. Rows show average accuracy on unseen test data. MC-
DISTIL substantially improves the test accuracy compared to other distillation baselines especially
the ones designed to take advantage of a multi-student setup. The highest accuracies are highlighted
in bold.

CIFAR100 Test Accuracies

Teacher Student CE KD | TAKD | DGKD | RMC | Meta-Distill | MC-DISTIL
ResNet10-xxs | 31.85 | 33.45 | 34.39 3534 | 34.07 34.92 37.27

ResNet10 | 72.2 ResNetlO-xs | 42.75 | 44.87 | 44.97 47.11 45.18 46.01 48.25
ResNetl0-s | 52.48 | 55.38 | 56.16 57.02 | 53.74 57.2 58.59

ResNetl0-m | 64.28 | 66.93 | 67.12 67.4 66.66 68.28 69.13

ResNet10-xxs | 31.85 | 33.95 | 34.98 34.85 33.64 34.66 37.28

ResNetl0 | 75.18 ResNetlO-xs | 42.75 | 44.87 | 45.64 46.68 | 4245 46.32 48.34
ResNetl0-s | 52.48 | 55.56 | 56.51 56.84 | 53.64 57.78 58.24

ResNetlO-m | 64.28 | 67.27 | 67.82 67.94 | 66.58 68.89 69.83

ResNet10-xxs | 31.85 | 33.56 | 34.26 3426 | 33.77 344 36.22

ResNetl8 | 76.99 ResNetl0-xs | 42.75 | 45.02 | 45.27 4733 | 45.14 46.24 47.72
ResNetl10-s | 52.48 | 55.73 | 55.41 56.7 54.03 574 57.91

ResNetlO-m | 64.28 | 66.42 | 66.04 67.35 66.04 68.43 68.95

ResNet10-xxs | 31.85 | 33.32 | 34.46 35.64 | 34.46 33.76 37.05

ResNet3d | 7947 ResNetl0-xs | 42.75 | 44.94 | 45.92 47.21 42.78 46.43 47.88
ResNetl0-s | 52.48 | 54.73 | 56.17 57.12 | 53.58 56.91 57.88

ResNetlO-m | 64.28 | 66.52 | 67.47 67.55 | 65.58 68.09 69.04

Tiny-ImageNet Test Accuracies

ResNet10-xxs | 13.76 | 13.53 | 13.81 14.34 13.69 14.78 14.97

ResNet10-1 | 41.25 ResNetl0-xs | 18.56 | 19.19 | 19.22 20.54 19.04 20.13 20.61
ResNetl0-s | 24.56 | 25.95 | 26.35 27.24 | 25.86 27.06 28.24

ResNetl0-m | 33.47 | 34.63 | 34.86 34.61 33.72 36.02 37.32

ResNet10-xxs | 13.76 | 13.8 14.01 14.52 13.83 14.19 15.1

ResNetl0 | 44.04 ResNetl0-xs | 18.56 | 19.48 | 19.09 21.21 19.28 20.13 21.9
ResNetl0-s | 24.56 | 26.95 | 25.58 26.99 | 26.18 27.06 29.11

ResNetl0-m | 3347 | 35.5 | 35.03 3528 | 34.78 36.02 38.27

ResNet10-xxs | 13.76 | 14.12 | 14.53 13.87 14.08 14.24 15.19

ResNetl8 | 47.94 ResNetl0-xs | 18.56 | 19.78 | 19.35 19.54 19.75 19.96 21.25
ResNetl0-s | 24.56 | 26.3 | 26.17 2742 | 25.08 27.32 30.25

ResNetl0-m | 33.47 | 35.08 | 35.02 3528 | 33.37 36.08 38.94

ResNet10-xxs | 13.76 | 14.43 | 13.47 14.58 13.78 13.96 15.23

ResNet3d | 50.1 ResNetl0-xs | 18.56 | 19.72 | 18.33 20.84 19.28 20.93 22.1
ResNetl0-s | 24.56 | 27.05 | 24.96 27.89 | 25.99 27.64 29.18

ResNetlO-m | 33.47 | 3594 | 3594 35.6 33.58 36.88 38.32

model. To realize this, we employ a teacher network identical to our own and enlist fellow student
models with higher learning capacities to serve as intermediate models in this knowledge distillation
process.

Densely Guided Knowledge Distillation (DGKD)(Son et al., |2021) Much like TAKD, this ap-
proach employs several intermediate models; however, it distinguishes itself by training the final
student model through a single distillation step. In addition to the teacher KL divergence loss, the
training objective for the final student model incorporates the KL divergence loss obtained from the
pretrained intermediate models.

Robust Model Compression (RMC)(Du et al.| [2023). It uses multiple students with various levels
of sparsity and interprets the variance in their predictions for each instance as a measure of task
complexity. Subsequently, it refines the teacher predictions based on this complexity metric, re-
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Table 2: Comprehensive comparison of methods when training models with larger learning capacity.
Here again, columns represent baselines, Teacher model accuracy and MC-DISTILRows show aver-
age accuracy on unseen test data. MC-DISTIL substantially improves the test accuracy compared to
other distillation baselines, especially the ones designed to take advantage of a multi-student setup.
The highest accuracies are highlighted in bold.

CIFAR100 Test Accuracies
Teacher Student CE KD | TAKD | DGKD | RMC | Meta-Distill | MC-DISTIL
ResNet-8x4 7112 | 72.62 | 74.26 74.45 | 73.89 73.12 75.38
ResNet-32x4 20.12 ShuffleNet-V2 73.73 | 75.33 | 76.89 7724 | 76.52 76.74 77.97
WideResNet-16x2 | 72.79 | 73.34 | 73.72 7412 | 75.19 74.1 75.52
MobileNet-V2x2 | 69.52 | 71.78 | 72.07 7227 | 71.23 72.53 73.05
ResNet-8x4 7112 | 72777 | 73.82 74.63 | 73.84 74.49 76.73
WideResNet-40x2 | 77.67 ShuffleNet-V2 73.73 | 75.85 | 77.59 78.05 | 76.72 78.17 77.94
WideResNet-40x1 | 72.90 | 73.01 | 73.72 74.67 | 75.44 75.38 75.85
MobileNet-V2x2 | 69.52 | 72.69 | 72.69 71.61 | 70.90 74.20 74.36
Tiny-ImageNet Test Accuracies
ResNet-8x4 37.16 | 37.23 | 38.83 39.52 | 36.76 40.46 41.89
ResNet-32x4 50.24 ShuffleNet-V2 47.76 | 50.44 | 49.80 50.40 | 49.46 50.62 52.38
WideResNet-16x2 | 39.11 | 39.47 | 41.66 41.77 | 39.77 42.12 43.88
MobileNet-V2x2 | 47.68 | 49.89 | 49.89 48.21 | 48.07 49.85 49.95

sulting in a more robust knowledge distillation process. In our experiments, we employ students
with diverse learning capacities as a substitute for models with different levels of sparsity, achieving
similar benefits.

We also compare MC-DISTIL against one more baseline that involves distilling knowledge to each
of the students independently using a network architecturally similar to C-NET. We refer to this
baseline as the Meta-Distil. This baseline is similar to AMAL (Sivasubramanian et al., 2023)); the
strategic mixing loss components are achieved via the C-NET optimization.

4.3 IMPROVING EFFICACY OF KNOWLEDGE DISTILLATION

In Table[I] we present results from experiments conducted on CIFAR100 and TinyImagenet datasets,
exploring scenarios with a significant capacity gap between teacher and student models. We start
with ResNet10-1 as the teacher and go on continuing the increasing learning capacity of the teacher
model and perform knowledge distillation with ResNet10, ResNet18 and ResNet34. On both the
datasets, MC-DISTIL, by virtue of meta-collaboration, achieves the best performance among the
baselines showing accuracy gains of up to 4% on both the datasets compared to KD. The gains are
much more pronounced on the larger models in the student pool for the TinyImagenet dataset owing
to the increased difficulty in classifying it whereas for CIFAR100 the gains are pretty uniform across
the student models. These gains are consistent across a wide range of student and teacher capaci-
ties. MC-DISTIL improves all of the student model’s performances as compared to the baselines,
thereby showing that joint distillation of knowledge to a student set is beneficial for both smaller
and larger students. We perform all our experiments with the loss described in equation [3]i.e. with
PooledStudent logits. We present an ablation on the effect of model performance when models are
trained with PooledStudent logits in Appendix

MC-DISTIL remains competitive even in scenarios with a small capacity difference. As illustrated
in Table[2] MC-DISTIL maintains its competitive advantage over KD, even when the student model
closely matches the size of the teachers, achieving gains of up to 3% relative to KD. These im-
provements can be attributed to two key factors: (i) the reweighing of loss terms and (ii) meta-
collaboration. The reweighing strategy effectively imposes a curriculum, prioritizing the learning
of easier points according to the model’s capacity, which elucidates the performance gain observed
with Meta-Distill compared to KD for students such as ‘ResNet-m’. However, just this reweighing
is not sufficient for students such as ‘ResNet-xxs’ and ‘Resnet-s’ in case of larger teachers. This is
where MC-DISTIL’s ability to leverage C-NET as a communication channel among student models
is useful in enhancing knowledge transfer from the teacher model. While the benefits of information
flow from intermediate models to smaller ones to improve final performance, as demonstrated in
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Figure 2: Analysis of the effect of introducing student model cohorts for different learning capacities
in meta-collaboration setting.

previous studies (Son et all 2021} [Mirzadeh et al.| [2020), are well-established, the reverse scenario
has been under-explored. The gains reported in Tables [I] and [2] clearly indicate that larger mod-
els can also benefit from information exchange with smaller models, akin to standard supervised
settings (Mindermann et al., [2022).

MC-DISTIL outperforms KD when using less capable teachers compared to KD'’s best teachers. As
shown in Table[I] KD exhibits an increase in student performance as teacher complexity rises for a
given student model. However, it is worth noting that MC-DISTIL achieves significantly superior
performance with even less capable teachers, exemplified by the ‘ResNet10-s’ student. When trained
on the TinyImagenet dataset, KD boosts accuracy from 25.95% to 27.05% with high-capacity teach-
ers, whereas ‘ResNet10-s’ trained with MC-DISTIL achieves an impressive accuracy of 28.24%
even when taught by the least capable teacher, ‘ResNet10-1’. This not only leads to improved per-
formance but also conserves valuable resources, as it obviates the need for large, computationally
intensive teacher models. Instead, our approach advocates for the use of a cost-effective smaller
student model to enhance final model performance.

4.4 ABLATIONS: CHANGING NO. OF STUDENT COHORTS

To investigate the impact of introducing additional students in the presence of C-NET, we conducted
an experiment in which we incrementally introduced student models, one at a time. We present the
results of these experiments in Figure 2] This experiment was conducted in two distinct settings:
one in which each subsequent addition involved a student with a larger learning capacity. This is
presented in Figure[2aland[2b] The other setting is in which each additional introduced student is of a
smaller learning capacity as shown in Figure[2c|and[2d} In both the settings, we perform knowledge
distillation with two teachers viz., ResNet10 and Resnet18. We note that across different teachers,
introducing additional students improves the performances of all the students participating in the
training process. This is much more pronounced in the setting where larger students are added.

5 CONCLUSION

In this paper, we introduce MC-DISTIL, a novel knowledge distillation framework based on meta-
collaboration. Through collaborative learning among a group of student models facilitated by a co-
ordinating network C-NET, we enhance each individual student model’s performance. Our student
pool includes models with varying learning capacities. Thus, in addition to leveraging teacher model
signals, our approach taps into insights from peer student models to improve individual models’
performance. We validate these claims through extensive experiments with various teacher-student
combinations and datasets. Our results consistently demonstrate MC-DISTIL outperforming several
state-of-the-art knowledge distillation methods involving intermediate models



Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

In Section we introduce several smaller ResNet models, specifically ResNet10-xxxs, ResNet10-
xxs, ResNet10-xs, ResNet10-s, ResNet10-m, and ResNet10-1. These models are adopted from |Kag
et al.| (2023)), and in Table E} we compare their architectural details with well-established ResNet
models like ResNet10, ResNet18, and ResNet34. Similar to the standard ResNet models, these
newer, more compact versions also employ the traditional ’BasicBlock’ as their fundamental build-
ing block. The architectural structure consists of a convolutional block, four stages of residual
blocks, an adaptive average pooling layer, a convolutional block, and a classifier layer. The sole
variation among the various capacity variants within this experimental setup is the number of filters
in each stage and the residual block. Additionally, Table [3] provides information about the number
of parameters and multiply-addition (MAC) operations for each model for the datasets CIFAR-100
and Tiny-ImageNet.

For all the KD baselines listed in Section [.2] we use temperature 7 = 2. We employ the SGD
optimizer to train the student models and ADAM optimizer (Kingma & Ba, 2014) to train C-NET.
We use a batch size of 400 for both the CIFAR100 and Tinylmagenet datasets, We train the student
models for 500 epochs and update C-NET every 20 epoch (i.e., L = 20). We use cosine annealing
(Loshchilov & Hutter, |2017) as the learning rate schedule for training the student models. We warm
start each student model by first training it using the cross entropy loss without using the teacher
model for all KD baselines. For both the datasets, we use a learning rate of 0.05, set weight decay
to le — 4 and momentum to 0.95. For the C-NET training we use a learning rate of 1le — 3 and set
weight decay to 1le — 4.
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Appendix

A TRAINING DETAILS

A.1 DATASET DETAILS
We conduct experiments using the following real-world datasets to showcase the effectiveness of
our approach,

CIFAR-100 (Krizhevsky, [2009). The dataset consists of a total of 60K examples, distributed
across 100 distinct classes. Each example in this dataset comprises images with a resolution of
32 x 32 x 3. Specifically, the training set encompasses 50,000 examples, while the remaining 10K
serve as the testing set. In our experimental setup, approximately 5K examples are allocated for
use as a validation set for our C-NET. For the other baseline models, these validation examples are
utilized for the purpose of hyper-parameter tuning.

Tiny-ImageNet (Le & Yang, |2015). This dataset is derived from the extensive ImageNet-1K dataset
(Russakovsky et all 2015). This dataset encompasses a total of 100K images, which have been
downsampled to a 64 x 64 resolution, representing a subset of 200 classes mirroring those in the
ImageNet-1K dataset, with each class containing precisely 500 images. As part of our experimental
protocol, we have set aside an independent validation set comprising 10K examples, which is utilized
for both our proposed method and the baseline models.

For both the datasets, we use the data augmentations methods, using the torchvision’s transforms
module. We use RandomCrop, RandomResizedCrop, RandomSizedCrop, RandomHorizontalFlip,
Normalize, Colorlitter for our purpose. Augmentation methods applied on both dataset, over all
experiments, baselines, over all models.

A.2 MODEL DETAILS

In Section@ we introduce several smaller ResNet models, specifically ResNet10-xxxs, ResNet10-
xxs, ResNet10-xs, ResNet10-s, ResNet10-m, and ResNet10-1. These models are adopted from |Kag
et al.| (2023), and in Table [3|, we compare their architectural details with well-established ResNet
models like ResNet10, ResNetl18, and ResNet34. Similar to the standard ResNet models, these
newer, more compact versions also employ the traditional BasicBlock’ as their fundamental build-
ing block. The architectural structure consists of a convolutional block, four stages of residual
blocks, an adaptive average pooling layer, a convolutional block, and a classifier layer. The sole
variation among the various capacity variants within this experimental setup is the number of filters
in each stage and the residual block. Additionally, Table [3| provides information about the number
of parameters and multiply-addition (MAC) operations for each model for the datasets CIFAR-100
and Tiny-ImageNet.

. . Basic block CIFAR-100 Tiny-Imagenet
Architecture Filters

Repeats MACs | Params | MACs | Params

ResNet10-xxs [8, 8, 16, 16] [1,1,1,1] 2M 13 K &M 15 K

ResNet10-xs [8, 16, 16, 32] [1,1,1,1] 3M 28 K 12M 31 K

ResNet10-s [8, 16, 32, 64] [1,1,1,1] 4 M 84 K 16 M 90 K
ResNet10-m [16, 32, 64, 128] [1,1,1,1] 16 M 320 K 64 M 333 K
ResNet10-1 [32, 64, 128, 256] [1,1,1,1] 64 M 1.25M | 255M 1.28 M

ResNet10 [64, 128,256,512] | [1,1,1,1] 253M | 492M | 1013 M 5M
ResNet18 [64, 128, 256, 512] | [2,2,2,2] 555M | 11.22M | 2221 M | 11.27M
ResNet34 [64, 128, 256,512] | [3,4,6,3] | 1159M | 21.32M | 4637M | 21.38 M

Table 3: Comparision of newly introduced smaller ResNet with the standard ResNet models

14
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A.3 HYPER-PARAMETERS

For all the KD baselines listed in Section we use temperature 7 = 2. We employ the SGD
optimizer to train the student models and ADAM optimizer (Kingma & Bal [2014) to train C-NET.
We use a batch size of 400 for both the CIFAR100 and TinyImagenet datasets, We train the student
models for 500 epochs and update C-NET every 20 epoch (i.e., L = 20). We use cosine annealing
(Loshchilov & Hutter, [2017) as the learning rate schedule for training the student models. We warm
start each student model by first training it using the cross entropy loss without using the teacher
model for all KD baselines. For both the datasets, we use a learning rate of 0.05, set weight decay
to le — 4 and momentum to 0.95. For the C-NET training we use a learning rate of le — 3 and set
weight decay to le — 4.

B ADDITIONAL EXPERIMENTS

We have released anonymized code at the URL: https://anonymous.4open.science/r/
Multinet-EQ1D.

B.1 EFFECT ADDING POOLED STUDENT

Teacher Student MC-DiSTIL-NoPS | MC-DISTIL

ResNet10-xxs 36.29 36.44

ResNet10-1 ResNet10-xs 47.14 47.65

ResNet10-s 57.37 57.55

ResNet10-m 68.47 68.51

ResNet10-xxs 36.57 36.78

ResNet10 ResNet10-xs 47.55 48.03
ResNet10-s 57.59 58.2
ResNet10-m 69.03 69.5

Table 4: We present the analysis of the effect of adding loss component based on the pooled student
to MC-DISTIL. Here MC-DISTIL-NoPS represents the test result obtained with model trained
without pooled student based loss component.

We analyze the effect of adding an additional loss component associated with a fake teacher in-
troduced in equation [ in Section [3.3] The PooledStudent logit is composed of logits from fellow
student models and was introduced to improve communication amongst the student models. We
present test accuracy obtained on CIFAR100 dataset in Table[d] where MC-DISTIL-NoPS represents
training without addition of loss component associated with a fake teacher. We note that training
with this new logit is helpful to boost the performance gains obtained via using meta-collaborative
learning.

15


https://anonymous.4open.science/r/Multinet-E01D
https://anonymous.4open.science/r/Multinet-E01D

	Introduction
	Related works
	MC-Distil: meta-cooperative distillation
	Standard Knowledge Distillation
	Improving the Efficacy of KD
	MC-Distil: Multi Student Knowledge Distillation
	Training the C-Net

	Experiments
	Model Architecture and Training
	Baselines
	Improving efficacy of Knowledge Distillation
	Ablations: Changing no. of student cohorts

	Conclusion
	Training Details
	Dataset Details
	Model Details
	Hyper-Parameters

	Additional Experiments
	Effect adding pooled student


