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Abstract

We present LUMÁWIG, a novel efficient algorithm to compute dimension zero
bottleneck distance between two persistence diagrams of a specific kind which
outperforms all other publicly available algorithm in runtime and accuracy. We
bypass the overwhelming matching problem in previous implementations of the
bottleneck distance, and prove that the zero dimensional bottleneck distance can be
recovered from a very small number of matching cases. LUMÁWIG also generally
enjoys linear complexity as shown by empirical tests. This allows us to scale
TDA to data sets of sizes encountered in machine learning and utilize persistence
diagrams in a manner that goes beyond the simple use of the most persistent
components2.

1 Introduction

Topological data analysis (TDA) has gathered significant interest from a wide range of researchers
because of its novel approach and use of classical tools from algebraic topology for extracting de-
scriptive features from data. Succinctly, topological data analysis captures and records the persistence
(2; 3) of algebraically computable topological signatures, and regards it as a measure of significance
for different features embedded in the structure of data. For the zero dimensional case, these signa-
tures correspond to clusters within data that merge based on a filtration of the data points. One of the
most common filtration used in practice is the Rips filtration where pairs of points are considered
merged at a given filtration slice δ when the points are at most δ apart. Hence, as opposed to other
filtrations that require additional parameter choices, the Rips filtration only depends on intrinsic
distances between data points and reveals the underlying multi-scale connectivity information about
natural clusters existing within data. The Rips filtration produces summaries of topological signatures
all beginning at the start of the filtration, capturing cluster merging dynamics akin to that observed by
hierarchical clustering methods (see Figure 1). This is the setting we will be working on.

The captured topological signatures are recorded in diagrams called persistence diagrams, which are
a collection of points in the extended plane where the coordinates represent the birth and death times
of the recorded features. In these diagrams, points that have multiplicity capture distinct features
with the same birth-death profile, and points with infinite persistence capture perpetual features. For
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Figure 1: A Rips filtration over a point cloud captures the merging dynamics of clusters evolving from
points across multiple scales. The dimension zero persistence diagram produced by this filtration is a
set of points positioned along an extended vertical line at the merging heights in the corresponding
dendrogram, except for the last point positioned at∞ representing the eventual single component.
The neighborhoods around points are colored by the persistent cluster determined by the elder rule.

diagrams induced by the Rips filtration, the sole constant perpetual feature appears in dimension 0,
capturing the eventual single cluster that merges all components (see Figure 1).

Given two persistence diagrams X and Y , the bottleneck distance between them is defined as
dB(X,Y ) = infφ supx∈X ||x−φ(x)||∞ where the infimum is taken over all bijections φ : Xt∆→
Y t∆ and ∆ is the diagonal. In general terms, the bottleneck distance measures the cost to transform
one diagram to another. The first, and for a long time the only, publicly available implementation of
the bottleneck distance for persistence diagrams is in the library DIONYSUS, released by Morozov
(4) in 2010. DIONYSUS uses a variant of the Hungarian algorithm (5) for the assignment problem.

In 2017, Morozov et al. (6) provided an improved implementation in the library HERA by exploiting
geometry. Their approach follows closely the work of Efrat et al. (7). For the sets X0 and Y0 of
orthogonal projections on the diagonal ∆ of points respectively from X and Y , and the sets U =
X∪Y0 and V = X0∪Y , they consider the weighted complete bipartite graphG = (U tV,U×V,w)
where w : U × V → R≥0 is given by w(u, v) = ||u − v||∞ if u ∈ X or v ∈ Y and w(u, v) = 0
otherwise. With this, the bottleneck computation problem can be recast in the following manner: if
G[r] is the subgraph of G having all edges e of weight w(e) ≤ r, then the bottleneck distance of G
is the minimal value r such that G[r] contains a perfect matching. Hence the bottleneck distance
can be recovered by combining a binary search on the edge weights of G with a test for a perfect
matching. For the matching step, they augment the Hopcroft-Karp algorithm (8) by appealing to a
near-neighbor data structure (a k-d tree) to search for the best candidate pair for a query point, pruning
from the search the subtrees (and hence all other candidates within them) whose enclosing box is
further away from the query than the current best candidate. This circumvents the overwhelming
matching problem by significantly shrinking down the combination pool to retrieve the best matching.
To approximate complexity, they fit curves of the form cnα and found a best fit with α = 1.4. This
translates to speed-up from DIONYSUS already by a factor of 400 on diagrams with 2,800 points, and
opened opportunities for several works that examine larger (9) or more complex (10; 11) data sets.

We take inspiration from this idea of exploiting the geometry of persistence diagrams to extract
computational speed-up. By considering dimension 0 persistence diagrams induced from the Rips
filtration, we can approach the problem via a different framework, birthing a new efficient algorithm
for computing the bottleneck distance. The key idea is to begin with a specific initial bijection that
one can methodically modify to optimize the norm between matched points. This process allows
us to identify all possible instances where the bottleneck matching is achieved, and the exact value
for the bottleneck distance, significantly bypassing the overwhelming matching step in previous
implementations. We remark that while this strategy only works for persistence diagrams of a specific
kind—those whose detected signatures all begin at the same time — this class is in no way less
significant than diagrams induced from other filtrations. Moreover, in addition to diagrams induced
from the above setting, this class also includes diagrams obtained from the output of any hierarchical
clustering algorithm applied to point cloud data. Hence, the computational speed-up for the bottleneck
distance we obtain benefits the comparison of these diagrams as well. Furthermore, we note that there
are other metrics used in the literature to compare persistence diagrams, and we make no preference
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claim in favor of the bottleneck distance. In fact, it is a good question to ask whether the above
strategy can be followed to generate computational speed-up for these metrics as well. We credit
Katharine Turner for raising this question first in relation to the Wasserstein distance.

2 Bypassing matchings

We first note that for many practical applications to data analysis of 0-dimensional persistence
diagrams, components are assumed to be born at the beginning of the filtration, hence all non-trivial
points lie in the vertical axis. Hence, in this case, if δx and δφ(x) are the death times respectively for
the pair x and φ(x), then

||x− φ(x)||∞ =

{
max(δx, δφ(x))/2 if φ(x) ∈ ∆

|δx − δφ(x)| otherwise.
(1)

This suggests that while it is natural to do a point-to-point matching between diagrams, there are
cases when we are better off matching a point to the diagonal. For a point x ∈ X and φ(x) ∈ Y , this
happens precisely when

max(δx, δφ(x)) > 2 min(δφ(x), δx). (2)
Figure 5a in the supplementary materials illustrates this point. Therefore, unless (2) is satisfied, it is
our priority to match a non-trivial point in a diagram X with a non-trivial point in another diagram.
This supports the interpretation that the bottleneck distance is the cost of transforming one diagram
to another.

We now present the LUMÁWIG algorithm. We first induce an ordering of the death times in both
diagrams and define a bijection that we can methodically modify to optimize the norm between
matched points and recover the desired matching that achieves the bottleneck distance. The proof
of Lemma 1 (see supplementary material) provides the basic argument that allows to bypass the
overwhelming matching problem. Lemma 2 proceeds in the same manner and identifies all other
instances where the bottleneck matching is achieved, and the exact bottleneck distance in each case.

Let X and Y be two 0-dimensional persistence diagrams whose death times are arranged from
largest to smallest. Without loss of generality, assume that X has at most as many points as Y has.
We remark that this pre-processing is equivalent to considering the bijection φ that matches points
between X and Y according to the relative ranking of death times from largest to smallest, and where
unmatched points in Y are matched to the diagonal. Let N = length(X) and define

Z = [zi]
length(Y )
1 where zi =

{
|xi − yi| if i ≤ N
yi/2 otherwise

and l = arg max(Z). We then have the following results.
Lemma 1. If N < length(Y ) and max(Z) ≤ yN+1/2, then dB(X,Y ) = yN+1/2 where yN+1 is
the largest death time of a point in Y matched to the diagonal.
Lemma 2. Let ζ be the second largest entry of Z.
1. If max(Z) ≤ max(xl, yl)/2, then dB(X,Y ) = max(Z).
2. If ζ < max(xl, yl)/2 < max(Z), then dB(X,Y ) = max(xl, yl)/2.
3. If ζ ≥ max(xl, yl)/2 and m ≥ l for every m such that zm ≥ max(xl, yl)/2,
then dB(X,Y ) = max(xl, yl)/2.
4. If ζ ≥ max(xl, yl)/2 and there exists m < l such that zm ≥ max(xl, yl)/2, then there exists a
bijection τ between X and Y such that one of the three preceding cases holds and where
max ||x− τ(x)||∞ < max ||x− φ(x)||∞.

The two Lemmas above provide the theoretical basis for our bypass strategy. Together, they take
advantage of the specific form of dimension zero persistence diagrams being considered, and the
methodical approach to optimize norms induced by a specific matching. The complete pseudo code
for the algorithm is provided as supplementary material.

3 Benchmarking LUMÁWIG against the state-of-the-art

We benchmark LUMÁWIG against the current state-of-the-art implementation of the bottleneck
distance in HERA. Specific details about this benchmarking are provided as supplementary material.
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Figure 2: Running time (seconds in log scale) of LUMÁWIG versus the current state-of-the-art
implementation in HERA. Five boxplots for the running time of the original algorithm in DIONYSUS
are superimposed for reference.

Figure 2 shows the running time distribution of 100 dimension zero bottleneck distance computations
over increasing diagram sizes. Note that the vertical axis is displayed in logarithmic scale. Only five
boxplots for the running time of the original algorithm implemented in DIONYSUS are superimposed
to provide reference for the state-of-the-art HERA and our two implementations of LUMÁWIG. A
quick inspection reveals that both implementations of LUMÁWIG are consistently several orders of
magnitude faster than the current state-of-the-art HERA.

As LUMÁWIGR yields exact values for the bottleneck distance relative to the original DIONYSUS
implementation, we use it as basis in the computation of relative differences in this stage. Figures 3a
and 3b show the relative difference in the computed dimension zero bottleneck distance respectively
of HERA and LUMÁWIGPY with respect to that of LUMÁWIGR. Note that HERA consistently
overestimates the bottleneck distance with respect to that of LUMÁWIGR. In contrast, relative
differences between the two implementations of LUMÁWIG can be attributed to rounding differences.
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(b) LUMÁWIGPY versus LUMÁWIGR.
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Figure 3: (a)-(b) Boxplots of relative differences between the bottleneck computation outputs of the
indicated pair of implementations. (c) For i ≤ j, pixel (i, j) is the median running time to compute
the bottleneck distance between diagrams of sizes 1000i and 1000j with death times uniformly drawn
from the interval range (0, 2000i) and (0, 2000j) respectively.

4 Empirical tests for complexity

Figure 3c shows a heat map of the median running time of LUMÁWIGR over 100 computations per
pixel of the bottleneck distance between pairs of persistence diagram with varying number of points.
It can be inferred that the best running times happen along the main diagonal and the upper and left
portions of the heat map. These correspond respectively to when the diagrams have equal number of
points, or when one is overwhelmingly larger than the other. In contrast, regions in the heat map that
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show increased running times correspond to when a large diagram is compared to another that has
about half as many points.

To further investigate the observations above, we examine the performance of LUMÁWIGR in the
computation of dimension zero bottleneck distance in four pairs of settings for size of the diagrams
and the range of values the death times are drawn from. The first is when LUMÁWIGR is tasked to
compare two persistence diagrams with the same number of points whose death times are drawn
from the same range of values. We calculate the dimension zero bottleneck distance over 100 pairs
of persistence diagrams of equal sizes starting from 1000 to 1,000,000 points. Every diagram is
simulated in the same manner as the previous experiments. Median running times are then plotted
and fitted with a regression curve. Midspread and range for every 100 computations at every unit
of 1000 points are superimposed to illustrate the distribution of running times. Figure 4a shows an
excellent linear fit (R2 = 0.99) for the running time. We also highlight the observed experimental
result that the running time between two diagrams each with 1 million points with death times drawn
from the range (0, 2,000,000) averages to between 2 and 3 tenths of a second.
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(b) Equal size but different range.
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(c) Different size but equal range.
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Figure 4: Median running time in the computation of bottleneck distance between two diagrams with
varying size and range settings fitted with regression curves. Superimposed are the minimum and
maximum running times over the 100-run simulation per unit of 1000 points to illustrate the running
time range, and the narrow darker blue band to show the midspread.

The second setting involves two diagrams of the same size but the range of death values for the
second is half as wide as the first. In this case, we see in Figure 4b that the running time trend is
perfectly fitted with a linear curve. The third setting considers two diagrams where the second has
half as many points as the first. We remark that this setting differs from that performed for Figure 3c
in that the range where the death times are drawn from for the simulated diagrams in this experiment
is the same for the two diagrams. We do this to ensure that any observed significant difference in
performance is attributable only to fixed difference in the number of points between the diagrams. As
we observe an increased running time for LUMÁWIGR in this case, we compute only to until there are
100,000 points in the larger diagram. Figure 4c shows two fitted regression curves: a quadratic fit
with R2 = 1 and a linear fit with R2 = 0.95. We highlight that even for the case where LUMÁWIGR
evidently takes longer to compute the dimension zero bottleneck distance, a linear model provides a
very good fit for the trend.

The final setting is where the second of two diagrams has half as many points with death values
drawn from a range half as wide as that for the first. Regression curves are again shown in Figure 4d
with linear and quadratic fit both achieving R2 = 0.87.
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5 Conclusion

Our new algorithm, LUMÁWIG, outperforms by several orders of magnitude, all currently available
implementations of dimension zero bottleneck distance in terms of running time. LUMÁWIG also
recovers the exact bottleneck distance produced by DIONYSUS. As LUMÁWIG generally enjoys linear
complexity as shown by our empirical tests, we are able to present in this note the first instance, to
the best of our knowledge, that the bottleneck distance is used in practice on data of magnitude and
scale in the order of up to a million. This opens the opportunity to scale TDA to data sets of sizes
encountered in machine learning and utilize persistence diagrams in a manner that goes beyond the
simple use of the most persistent components.

Broader Impact

Our motivation for this work is to clear the computational obstruction in the use of bottleneck
distance in applications. The English translation of LUMÁWIG is to extend, broaden, or expand.
Our hope is that this contribution will serve as a catalyst in the further development of TDA that
leverages persistence diagrams and the bottleneck distance similar to what has been achieved for
persistence landscapes. Even now, a truly comprehensive and holistic treatment of information
embedded in dimension zero persistence diagrams has been left unexplored due primarily to the lack
of feasible machinery that can handle significant scaling up in data size. We believe that LUMÁWIG is
a significant contribution in this direction as it affords a viable tool to process and utilize dimension
zero persistence diagrams in comparing evolving connectivity information between larger data sets.
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Supplementary Materials

Proofs of Lemmas 1 and 2

Figure 5: Examples of point-matching between persistence diagrams highlighting the resulting
bottleneck distance. Points in each diagrams are shape coded and matched points are color coded.
Figure (a) illustrates when diagonal matching achieves the bottleneck distance. Figure (b) is used in
the proof of Lemma 1 and (c,d) in Lemma 2.

Proof of Lemma 1. For the bijection φ corresponding to the pre-processing described above, it follows
that

max
x∈X
||x− φ(x)||∞ = yN+1/2.

To see why φ achieves the infimum over all bijections between X and Y , note that any other bijection
ψ produces a death time for a point in Y matched to the diagonal that is at least as large as yN+1/2.
Therefore maxx∈X ||x− φ(x)||∞ ≤ maxx∈X ||x− ψ(x)||∞. See Figure 5b. �

Proof of Lemma 2.

1. It follows from our remark immediately after (1) that

max ||x− φ(x)||∞ = max(Z) ≤ max(xl, yl)/2 = max ||x− φ′(x)||∞
where φ′ is the bijection that matches both xl and yl to the diagonal, and coincides with φ
otherwise. Figure 5c illustrates this comparison between the two matchings. For any other
bijection ψ, if x′ ∈ X such that |x′ − ψ(x′)| is maximum among all non-trivial matchings,
either max(Z) ≤ |x′ − ψ(x′)|, or max(xl, yl) ≤ max(x′, ψ(x′)). If N < length(Y ),
then a similar argument as that in Lemma 1 holds. The conclusion now follows.

2. In this case, the same bijection φ′ in the previous case yields

max ||x− φ′(x)||∞ = max(xl, yl)/2 < max(Z) = max ||x− φ(x)||∞.

The same argument in the previous case holds for any other bijection ψ. Hence, the inequality
above implies the conclusion.

3. For the bijection φ′′ that sends xm and ym to the diagonal for all such m, and coincides
with φ otherwise (see Figure 5d), we have that

max ||x− φ′′(x)||∞ = max(xl, yl)/2 < max(Z) = max ||x− φ(x)||∞.

Again, since the same argument in the first case holds for any other bijection ψ, the previous
inequality implies the conclusion.

4. Define the bijection τ that sends xj and yj to the diagonal for all j ≥ l, and coincides with
φ otherwise. Then we have that

max ||x− τ(x)||∞ < max(Z) = max ||x− φ(x)||∞,

Moreover, note that max ||x − τ(x)||∞ depends only on ||x − τ(x)||∞ for non-trivially
matched x and τ(x). Therefore, we can consider only the subsets X ′ and Y ′ respectively
of X and Y whose points are non-trivially matched by τ . In this case, length(X ′) =
length(Y ′) and one of the three previous cases above holds.

The proof is now complete.�

The complete LUMÁWIG pseudo code is given below.
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Algorithm 1 LUMÁWIG algorithm for computing 0-dimensional bottleneck distance between two
persistence diagrams

1: Input: Two dimension zero persistence diagrams X and Y such that X 6= Y and where X has
fewer than or as many points as Y .

2: Output: The bottleneck distance between X and Y .
3: Initialization d← 0, X ← death times of points from X sorted from largest to smallest, Y ←

death times of points from Y sorted from largest to smallest, N = length(X), Z ← vector
[zi := |xi − yi|]N1 , l = arg max(Z), dtemp = max(Z)

4: if length(X) 6= length(Y ) and dtemp < yN+1/2 then
5: d = (yN+1)/2;
6: else
7: while length(Z) > 1 do
8: if Second largest entry of Z < max(xl, yl)/2 < dtemp then
9: d = max(xl, yl)/2

10: break
11: else if Second largest entry of Z ≥ max(xl, yl)/2 then
12: if For every m for which zm ≥ max(xl, yl)/2, m ≥ l then
13: d = max(xl, yl)/2
14: break
15: else
16: Trim off all zm, xm, ym for m ≥ l; update l and dtemp
17: if length(Z) = 1 then
18: d = min(dtemp,max(xl, yl)/2)
19: break
20: end if
21: end if
22: else
23: d = dtemp
24: break
25: end if
26: end while
27: end if

Experimental details for benchmarking

We simulate 100 0-dimensional persistence diagrams using a set of positive numbers as death times
uniformly chosen from a range twice as wide as the number of points. We pair each diagram with
another simulated diagram with as much as 80% more or fewer points, then compute the bottleneck
distance between the pair. The running time of LUMÁWIG (implemented both in PYTHON and R)
and HERA are recorded, and the distribution summary of 100 run times for each algorithm is plotted
out as a boxplot. For HERA, we follow the experimental setup from (6) and set δ = 0.01. We repeat
this process while increasing number of points from 1,000 to 30,000.
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